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Abstract Severe acute respiratory syndrome coronavirus 2 (SARS- CoV- 2) variants of concern 
(VOCs) have been key drivers of new coronavirus disease 2019 (COVID- 19) pandemic waves. To 
better understand variant epidemiologic characteristics, here we apply a model- inference system 
to reconstruct SARS- CoV- 2 transmission dynamics in South Africa, a country that has experienced 
three VOC pandemic waves (i.e. Beta, Delta, and Omicron BA.1) by February 2022. We estimate key 
epidemiologic quantities in each of the nine South African provinces during March 2020 to February 
2022, while accounting for changing detection rates, infection seasonality, nonpharmaceutical inter-
ventions, and vaccination. Model validation shows that estimated underlying infection rates and 
key parameters (e.g. infection- detection rate and infection- fatality risk) are in line with independent 
epidemiological data and investigations. In addition, retrospective predictions capture pandemic 
trajectories beyond the model training period. These detailed, validated model- inference estimates 
thus enable quantification of both the immune erosion potential and transmissibility of three major 
SARS- CoV- 2 VOCs, that is, Beta, Delta, and Omicron BA.1. These findings help elucidate changing 
COVID- 19 dynamics and inform future public health planning.

Editor's evaluation
This paper proposes a modeling framework that can be used to track the complex behavioral and 
immunological landscape of the COVID- 19 pandemic over multiple surges and variants in South 
Africa, which has been validated previously for other regions and time periods. This work may be 
useful for infectious disease modelers, epidemiologists, and public health officials as they navigate 
the next phase of the pandemic or seek to understand the history of the epidemic in South Africa.

Introduction
Since its emergence in late December 2019, the severe acute respiratory syndrome coronavirus 2 
(SARS- CoV- 2) has spread globally, causing the coronavirus disease 2019 (COVID- 19) pandemic 
(Koelle et al., 2022). In just 2 years, SARS- CoV- 2 has caused several pandemic waves in quick succes-
sion in many places. Many of these repeated pandemic waves have been driven by new variants 
of concern (VOCs) or interest (VOIs) that erode prior immunity from either infection or vaccination, 
increase transmissibility, or a combination of both. However, while laboratory and field studies have 
provided insights into these epidemiological characteristics, quantifying the extent of immune erosion 
(or evasion) and changes to transmissibility for each VOC remains challenging.
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Like many places, by February 2022 South Africa had experienced four distinct pandemic waves 
caused by the ancestral SARS- CoV- 2 and three VOCs (Beta, Delta, and Omicron BA.1). However, 
South Africa is also unique in that the country had the earliest surge for two of the five VOCs identified 
to date – namely, Beta (Tegally et al., 2021) and Omicron (Viana et al., 2022). To better understand 
the COVID- 19 dynamics in South Africa and variant epidemiological characteristics, here we utilize a 
model- inference system similar to one developed for study of SARS- CoV- 2 VOCs, including the Beta 
variant in South Africa (Yang and Shaman, 2021c). We use this system to reconstruct SARS- CoV- 2 
transmission dynamics in each of the nine provinces of South Africa from the pandemic onset during 
March 2020 to the end of February 2022 while accounting for multiple factors modulating underlying 
transmission dynamics. We then rigorously validate the model- inference estimates using independent 
data and retrospective predictions. The validated estimates quantify the immune erosion potential 
and transmissibility of three major SARS- CoV- 2 variants, that is, Beta, Delta, and Omicron (BA.1), in 
South Africa. Our findings highlight several common characteristics of SARS- CoV- 2 VOCs and the 
need for more proactive planning and preparedness for future VOCs, including development of a 
universal vaccine that can effectively block SARS- CoV- 2 infection as well as prevent severe disease.

Results
Model fit and validation
The model- inference system uses case and death data to reconstruct the transmission dynamics of 
SARS- CoV- 2, while accounting for under- detection of infection, infection seasonality, implemented 
nonpharmaceutical interventions (NPIs), and vaccination (see Materials and methods). Overall, the 

Figure 1. Pandemic dynamics in South Africa, model- fit and validation using serology data. (A) Pandemic dynamics in each of the nine provinces (see 
legend); dots depict reported weekly numbers of cases and deaths; lines show model mean estimates (in the same color). (B) For validation, model 
estimated infection rates are compared to seroprevalence measures over time from multiple sero- surveys summarized in The South African COVID- 19 
Modelling Consortium, 2021. Boxplots depict the estimated distribution for each province (middle bar = mean; edges = 50% CrIs) and whiskers 
(95% CrIs), summarized over n=100 model- inference runs (500 model replica each, totaling 50,000 model realizations). Red dots show corresponding 
measurements. Note that reported mortality was high in February 2022 in some provinces (see additional discussion in Appendix 1).

https://doi.org/10.7554/eLife.78933
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model- inference system is able to fit weekly case and death data in each of the nine South African 
provinces (Figure 1A, Appendix 1—figure 1, and additional discussion in Appendix 1). Additional 
testing (in particular, for the infection- detection rate) and visual inspections indicate that posterior 
estimates for the model parameters are consistent with those reported in the literature, or changed 
over time and/or across provinces in directions as would be expected (see Appendix 1).

We then validated the model- inference estimates using three independent datasets. First, we used 
serology data. We note that early in the pandemic serology data may reflect underlying infection rates 
but later, due to waning antibody titers and reinfection, likely underestimate infection. Compared 
to seroprevalence measures taken at multiple time points in each province, our model estimated 
cumulative infection rates roughly match corresponding serology measures and trends over time; as 
expected, model estimates were higher than serology measures taken during later months (Figure 1B). 
Second, compared to hospital admission data, across the nine provinces, model estimated infection 
numbers were well correlated with numbers of hospitalizations for all four pandemic waves caused 
by the ancestral, Beta, Delta, and Omicron (BA.1) variants, respectively (r>0.75, Appendix 1—figure 
2A–D). Third, model- estimated infection numbers were correlated with age- adjusted excess mortality 
for both the ancestral and Delta wave (r=0.86 and 0.61, respectively; Appendix 1—figure 2A and 
C). For the Beta wave, after excluding Western Cape, a province with a very high hospitalization 
rate but low excess mortality during this wave (Appendix 1—figure 2B), model- estimated infection 
numbers were also correlated with age- adjusted excess mortality for the remaining provinces (r=0.55; 
Appendix 1—figure 2B). For the Omicron (BA.1) wave, like many other places, due to prior infec-
tion and/or vaccination (Nyberg et al., 2022; Wolter et al., 2022), mortality rates decoupled from 
infection rates (Appendix 1—figure 2D). Overall, comparisons with the three independent datasets 
indicate our model- inference estimates align with underlying transmission dynamics.

In addition, as a fourth model validation, we generated retrospective predictions of the Delta and 
Omicron (BA.1) waves at two key time points, that is 2 weeks and 1 week, separately, before the 
observed peak of cases (approximately 3–5 weeks before the observed peak of deaths; Figure 2). To 
accurately predict a pandemic wave caused by a new variant, the model- inference system needs to 
accurately estimate the background population characteristics (e.g. population susceptibility) before 
the emergence of the new variant, as well as changes in population susceptibility and transmissibility 
due to the new variant. This is particularly challenging for South Africa, as the pandemic waves there 
tended to progress quickly, with cases surging and peaking within 3–7 weeks before declining. As a 
result, often only 1–6 weeks of new variant data were available for model- inference before generating 
the prediction. Despite these challenges, 1–2 weeks before the case peak and 3–5 weeks before the 
observed death peak, the model was able to accurately predict the remaining trajectories of cases and 
deaths in most of the nine provinces for both the Delta and Omicron (BA.1) waves (Figure 2 for the 
four most populous provinces and Appendix 1—figure 3 for the remainder). These accurate model 
predictions further validate the model- inference estimates.

Pandemic dynamics and key model-inference, using Gauteng province 
as an example
Next, we use Gauteng, the province with the largest population, as an example to highlight pandemic 
dynamics in South Africa thus far and develop key model- inference estimates (Figure 3 for Gauteng 
and Appendix 1—figures 4–11 for each of the other eight provinces). Despite lower cases per capita 
than many other countries, infection numbers in South Africa were likely much higher due to under- 
detection. For Gauteng, the estimated infection- detection rate during the first pandemic wave was 
4.59% (95% CI: 2.62–9.77%), and increased slightly to 6.18% (95% CI: 3.29–11.11%) and 6.27% (95% 
CI: 3.44–12.39%) during the Beta and Delta waves, respectively (Appendix 1—table 1). These esti-
mates are in line with serology data. In particular, a population- level sero- survey in Gauteng found 
68.4% seropositivity among those unvaccinated at the end of the Delta wave (Madhi et al., 2022). 
Combining the reported cases at that time (~6% of the population size) with undercounting of infec-
tions in sero- surveys due to sero- reversions and reinfections suggests that the overall detection rate 
would be less than 10%.

Using our inferred under- detection (Figure 3E), we estimate that 32.83% (95% CI: 15.42–57.59%, 
Appendix 1—table 2) of the population in Gauteng were infected during the first wave, predomi-
nantly during winter when more conducive climate conditions and relaxed public health restrictions 

https://doi.org/10.7554/eLife.78933
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existed (see the estimated seasonal and mobility trends, Figure 3A). This high infection rate, while 
with uncertainty, is in line with serology measures taken in Gauteng at the end of the first wave 
(ranging from 15% to 27% among 6 sero- surveys during November 2020; Figure 1B) and a study 
showing 30% sero- positivity among participants enrolled in the Novavax NVX- CoV2373 vaccine phase 
2a- b trial in South Africa during August – November 2020 (Shinde et al., 2021).

With the emergence of Beta, another 21.87% (95% CI: 12.16–41.13%) of the population in 
Gauteng – including reinfections – is estimated to have been infected, even though the Beta wave 
occurred during summer under less conducive climate conditions for transmission (Figure 3A). The 

Figure 2. Model validation using retrospective prediction. Model- inference was trained on cases and deaths data since March 15, 2020 until 2 weeks (1st 
plot in each panel) or 1 week (2nd plot) before the Delta or Omicron (BA.1) wave (see timing on the x- axis); the model was then integrated forward using 
the estimates made at the time to predict cases (left panel) and deaths (right panel) for the remaining weeks of each wave. Blue lines and surrounding 
shades show model fitted cases and deaths for weeks before the prediction (line = median, dark blue area = 50% CrIs, and light blue = 80% CrIs, 
summarized over n=100 model- inference runs totaling 50,000 model realizations). Red lines show model projected median weekly cases and deaths; 
surrounding shades show 50% (dark red) and 80% (light red) CIs of the prediction (n = 50,000 model realizations). For comparison, reported cases and 
deaths for each week are shown by the black dots; however, those to the right of the vertical dash lines (showing the start of each prediction) were not 
used in the model. For clarity, here we show 80% CIs (instead of 95% CIs, which tend to be wider for longer- term projections) and predictions for the 
four most populous provinces (Gauteng in A and B; KwaZulu- Natal in C and D; Western Cape in E and F; and Eastern Cape in G and H). Predictions for 
the other five provinces are shown in Appendix 1—figure 3.

https://doi.org/10.7554/eLife.78933
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Figure 3. Example model- inference estimates for Gauteng. (A) Observed relative mobility, vaccination rate, and estimated disease seasonal trend, 
compared to case and death rates over time. Key model- inference estimates are shown for the time- varying effective reproduction number Rt 
(B), transmissibility RTX (C), population susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue lines and surrounding areas show the 
estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show the estimated mean, 50% and 95% CrIs for estimated infection rates. All 
summary statistics are computed based on n=100 model- inference runs totaling 50,000 model realizations. Note that the transmissibility estimates 
(RTX in C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note that infection- fatality risk estimates were based on reported 
COVID- 19 deaths and may not reflect true values due to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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model- inference system estimates a large increase in population susceptibility with the surge of Beta 
(Figure 3D; note population susceptibility is computed as S / N×100%, where S is the estimated 
number of susceptible people and N is population size). This dramatic increase in population suscep-
tibility (vs. a likely more gradual change due to waning immunity), to the then predominant Beta 
variant, suggests Beta likely substantially eroded prior immunity and is consistent with laboratory 
studies showing low neutralizing ability of convalescent sera against Beta (Garcia- Beltran et al., 2021; 
Wall et al., 2021). In addition, an increase in transmissibility is also evident for Beta, after accounting 
for concurrent NPIs and infection seasonality (Figure 3C; note transmissibility is computed as the 
product of the estimated variant- specific transmission rate and the infectious period; see Materials 
and methods for detail). Notably, in contrast to the large fluctuation of the time- varying effective 
reproduction number over time (Rt, Figure 3B), the transmissibility estimates are more stable and 
reflect changes in variant- specific properties. Further, consistent with in- depth epidemiological find-
ings (Abu- Raddad et al., 2021a), the estimated overall infection- fatality risk for Beta was about twice 
as high as the ancestral SARS- CoV- 2 (0.19% [95% CI: 0.10–0.33%] vs. 0.09% [95% CI: 0.05–0.20%], 
Figure  3F and Appendix  1—table 3). Nonetheless, these estimates are based on documented 
COVID- 19 deaths and are likely underestimates.

With the introduction of Delta, a third pandemic wave occurred in Gauteng during the 2021 winter. 
The model- inference system estimates a 49.82% (95% CI: 25.22–90.79%) attack rate by Delta, despite 
the large number of infections during the previous two waves. This large attack rate was possible due 
to the high transmissibility of Delta, as reported in multiple studies (Public Health England, 2021; 
Allen et al., 2022; Challen et al., 2021; Earnest et al., 2021; Vöhringer et al., 2021), the more 
conducive winter transmission conditions (Figure 3A), and the immune erosive properties of Delta 

Figure 4. Model- inferred epidemiological properties for different variants across SA provinces. Heatmaps show (A) Estimated mean infection rates by 
week (x- axis) and province (y- axis), (B) Estimated mean cumulative infection numbers relative to the population size in each province, and (C) Estimated 
population susceptibility (to the circulating variant) by week and province. (D) Boxplots in the top row show the estimated distribution of increases in 
transmissibility for Beta, Delta, and Omicron (BA.1), relative to the Ancestral SARS- CoV- 2, for each province (middle bar = median; edges = 50% CIs; 
and whiskers = 95% CIs; summarized over n=100 model- inference runs); boxplots in the bottom row show, for each variant, the estimated distribution of 
immune erosion to all adaptive immunity gained from infection and vaccination prior to that variant. Red lines show the mean across all provinces.

https://doi.org/10.7554/eLife.78933
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relative to both the ancestral and Beta variants (Dhar et al., 2021; Liu et al., 2021; de Oliveira and 
Lessells, 2021).

Due to these large pandemic waves, prior to the detection of Omicron (BA.1) in Gauteng, esti-
mated cumulative infection numbers surpassed the population size (Figure 4B), indicating the large 
majority of the population had been infected and some more than once. With the rise of Omicron 
(BA.1), the model- inference system estimates a very large increase in population susceptibility 
(Figure 3D), as well as an increase in transmissibility (Figure 3C); however, unlike previous waves, 
the Omicron (BA.1) wave progresses much more quickly, peaking 2–3 weeks after initiating marked 
exponential growth. These estimates suggest that several additional factors may have also contrib-
uted to the observed dynamics, including changes to the infection- detection rate (Figure 3E and 
Appendix 1), a summer seasonality increasingly suppressing transmission as the wave progressed 
(Figure 3A), as well as a slight change in population mobility suggesting potential behavior changes 
(Figure 3A). By the end of February 2022, the model- inference system estimates a 44.49% (95% CI: 
19.01–75.30%) attack rate, with only 4.26% (95% CI: 2.46–9.72%) of infections detected as cases, 
during the Omicron (BA.1) wave in Gauteng. In addition, consistent with the reported 0.3 odds of 
severe disease compared to Delta infections (Wolter et al., 2022), estimated overall infection- fatality 
risk during the Omicron (BA.1) wave was about 30% of that during the Delta wave in Gauteng (0.03% 
[95% CI: 0.02–0.06%] vs. 0.11% [95% CI: 0.06–0.21%], based on documented COVID- 19 deaths; 
Appendix 1—table 3).

Model inferred epidemiological characteristics across the nine 
provinces in South Africa
Across all nine provinces in South Africa, the pandemic timing and intensity varied (Figure 4A–C). In 
addition to Gauteng, high cumulative infection rates during the first three pandemic waves are also 
estimated for Western Cape and Northern Cape (Figure 1C–E, Figure 4B and Appendix 1—table 
2). Overall, all nine provinces likely experienced three large pandemic waves prior to the growth 
of Omicron (BA.1); estimated average cumulative infections ranged from 60% of the population in 
Limpopo to 122% in Northern Cape (Figure 4B). Corroboration for these cumulative infection esti-
mates is derived from mortality data. Excess mortality before the Omicron (BA.1) wave was as high 
as 0.47% of the South African population by the end of November 2021 (The South African Medical 
Research Council (SAMRC), 2021), despite the relatively young population (median age: 27.6 years 
(Anonymous, 2020b) vs. 38.5 years in the US [United States Census Bureau, 2020]) and thus lower 
expected infection- fatality risk (Levin et al., 2020; O’Driscoll et al., 2021). Assuming an infection- 
fatality risk of 0.5% (similar to estimates in COVID- 19 Forecasting Team, 2022 for South Africa), these 
excess deaths would convert to a 94% infection rate.

We then use these model- inference estimates to quantify the immune erosion potential and 
increase in transmissibility for each VOC. Specifically, the immune erosion (against infection) potential 
is computed as the ratio of two quantities – the numerator is the increase of population susceptibility 
due to a given VOC and the denominator is population immunity (i.e. complement of population 
susceptibility) at wave onset. The relative increase in transmissibility is also computed as a ratio, that 
is, the average increase due to a given VOC relative to the ancestral SARS- CoV- 2 (see Materials 
and methods). As population- specific factors contributing to transmissibility (e.g. population density 
and average contact rate) would be largely cancelled out in the latter ratio, we expect estimates of 
the VOC transmissibility increase to be generally applicable to different populations. However, prior 
exposures and vaccinations varied over time and across populations; thus, the level of immune erosion 
is necessarily estimated relative to the local population immune landscape at the time of the variant 
surge and should be interpreted accordingly. In addition, this assessment does not distinguish the 
sources of immunity or partial protection against severe disease; rather, it assesses the overall loss of 
immune protection against infection for a given VOC.

In the above context, we estimate that Beta eroded immunity among 63.4% (95% CI: 45.0–77.9%) 
of individuals with prior ancestral SARS- CoV- 2 infection and was 34.3% (95% CI: 20.5–48.2%) more 
transmissible than the ancestral SARS- CoV- 2. These estimates for Beta are consistent across the nine 
provinces (Figure 4D, 1st column and Table 1), as well as with our previous estimates using national 
data for South Africa (Yang and Shaman, 2021c). Additional support for the high immune erosion of 

https://doi.org/10.7554/eLife.78933
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Beta is evident from recoverees of ancestral SARS- CoV- 2 infection who were enrolled in the Novavax 
NVX- CoV2373 vaccine phase 2a- b trial (Shinde et al., 2021) and found to have a similar likelihood of 
COVID- 19, mostly due to Beta, compared to those seronegative at enrollment.

Estimates for Delta vary across the nine provinces (Figure 4D, 2nd column), given the more diverse 
population immune landscape among provinces after two pandemic waves. Overall, we estimate 
that Delta eroded 24.5% (95% CI: 0–53.2%) of prior immunity (gained from infection by ancestral 
SARS- CoV- 2 and/or Beta, and/or vaccination) and was 47.5% (95% CI: 28.4–69.4%) more transmissible 
than the ancestral SARS- CoV- 2. Consistent with this finding, and in particular the estimated immune 
erosion, studies have reported a 27.5% reinfection rate during the Delta pandemic wave in Delhi, India 
(Dhar et al., 2021) and reduced ability of sera from Beta- infection recoverees to neutralize Delta (Liu 
et al., 2021; de Oliveira and Lessells, 2021).

For Omicron (BA.1), estimates also vary by province but still consistently point to its higher trans-
missibility than all previous variants (Figure  4D, 3rd column). Overall, we estimate that Omicron 
(BA.1) is 94.0% (95% CI: 73.5–121.5%) more transmissible than the ancestral SARS- CoV- 2. This esti-
mated transmissibility is higher than Delta and consistent with in vitro and/or ex vivo studies showing 
Omicron (BA.1) replicates faster within host than Delta (Garcia- Beltran et al., 2022; Hui et al., 2022). 
In addition, we estimate that Omicron (BA.1) eroded 54.1% (95% CI: 35.8–70.1%) of immunity due to 
all prior infections and vaccination. Importantly, as noted above, the estimate for immune erosion is 

Table 1. Estimated increases in transmissibility and immune erosion potential for Beta, Delta, and 
Omicron (BA.1).
The estimates are expressed in percentage for the median (and 95% CIs). Note that estimated 
increases in transmissibility for all three variants are relative to the ancestral strain, whereas 
estimated immune erosion is relative to the composite immunity combining all previous infections 
and vaccinations accumulated until the surge of the new variant. See main text and Methods for 
details.

Province Quantity Beta Delta Omicron (BA.1)

All combined

% Increase in transmissibility 34.3 (20.5, 48.2) 47.5 (28.4, 69.4) 94 (73.5, 121.5)

% Immune erosion 63.4 (45, 77.9) 24.5 (0, 53.2) 54.1 (35.8, 70.1)

Gauteng

% Increase in transmissibility 42.2 (35.6, 48.3) 51.8 (44.5, 58.7) 112.6 (96.2, 131.8)

% Immune erosion 65 (57, 72.2) 44.3 (36.4, 54.9) 64.1 (56, 74.2)

KwaZulu- Natal

% Increase in transmissibility 29.7 (22.9, 36.6) 52.5 (44.8, 60.8) 90.6 (77.9, 102.4)

% Immune erosion 58.1 (48.3, 71.3) 17.3 (1.4, 27.6) 51.1 (39.3, 58.1)

Western Cape

% Increase in transmissibility 23.4 (20.2, 27.4) 55.2 (48.2, 62.7) 86.1 (72.6, 102.6)

% Immune erosion 68.9 (62.5, 76.4) 41.5 (35.6, 53.5) 61 (55.5, 67.3)

Eastern Cape

% Increase in transmissibility 24.1 (18, 29.7) 50.2 (40.5, 57.4) 78.4 (67.6, 89.2)

% Immune erosion 54.6 (45.1, 61.2) 24.2 (15.4, 36.2) 45.3 (34.5, 57.2)

Limpopo

% Increase in transmissibility 32.6 (24.9, 39.8) 38.9 (31.5, 50.5) 91.8 (82.6, 102.4)

% Immune erosion 56.3 (38.4, 76.2) 1.8 (0, 21.2) 42.1 (33.2, 53.2)

Mpumalanga

% Increase in transmissibility 31.2 (25.4, 38.6) 35.3 (24.9, 48.2) 88.6 (72.8, 104.3)

% Immune erosion 55.6 (39.8, 70) 3.1 (0, 21.7) 45.9 (37.7, 55.7)

North West

% Increase in transmissibility 43.8 (36.9, 52.1) 36.8 (25.6, 47.5) 100 (81.7, 121.1)

% Immune erosion 67 (58.4, 75.4) 12.4 (0.4, 30.5) 56.6 (48.2, 68.8)

Free State

% Increase in transmissibility 42.7 (35, 49.8) 43.8 (31.9, 52.1) 92.2 (77.4, 106.9)

% Immune erosion 70 (64.5, 76.2) 27.7 (17.6, 41.6) 57 (49.5, 66.6)

Northern Cape

% Increase in transmissibility 38.6 (32.6, 44.8) 63.1 (50.4, 79.2) 106 (94.7, 119.6)

% Immune erosion 75 (67.4, 82) 47.9 (40.5, 59.1) 64 (57.3, 72.6)

https://doi.org/10.7554/eLife.78933
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not directly comparable across variants, as it is relative to the combined population immunity accumu-
lated until the rise of each variant. In the case of Beta, it is immunity accumulated from the first wave 
via infection by the ancestral SARS- CoV- 2. In the case of Omicron (BA.1), it includes immunity from 
prior infection and re- infection of any of the previously circulating variants as well as vaccination. Thus, 
the estimate for Omicron (BA.1) may represent a far broader capacity for immune erosion than was 
evident for Beta. Supporting the suggestion of broad- spectrum immune erosion of Omicron (BA.1), 
studies have reported low neutralization ability of convalescent sera from infections by all previous 
variants (Rössler et al., 2022; Cele et al., 2022), as well as high attack rates among vaccinees in 
several Omicron (BA.1) outbreaks (Brandal et al., 2021; Helmsdal et al., 2022).

Discussion
Using a comprehensive model- inference system, we have reconstructed the pandemic dynamics in 
each of the nine provinces of South Africa. Uncertainties exist in our findings, due to incomplete and 
varying detection of SARS- CoV- 2 infections and deaths, changing population behavior and public 
health interventions, and changing circulating variants. To address these uncertainties, we have vali-
dated our estimates using three datasets not used by our model- inference system (i.e. serology, hospi-
talization, and excess mortality data; Figure 1B and Appendix 1—figure 2) as well as retrospective 
prediction (Figure 2 and Appendix 1—figure 4). In addition, as detailed in the Results, we have 
showed that estimated underlying infection rates (Figure 1B and Appendix 1—figure 2) and key 
parameters (e.g. infection- detection rate and infection- fatality risk) are in line with other independent 
epidemiological data and investigations. The detailed, validated model- inference estimates thus allow 
quantification of both the immune erosion potential and transmissibility of three major SARS- CoV- 2 
VOCs, that is, Beta, Delta, and Omicron (BA.1).

The relevance of our model- inference estimates to previous studies has been presented in the 
Results section. Here, we make three additional general observations, drawn from global SARS- CoV- 2 
dynamics including but not limited to findings in South Africa. First, high prior immunity does not 
preclude new outbreaks, as neither infection nor current vaccination is sterilizing. As shown in South 
Africa, even with the high infection rate accumulated from preceding waves, new waves can occur 
with the emergence or introduction of new variants. Around half of South Africans are estimated to 
have been infected after the Beta wave (Appendix 1—table 2), yet the Delta variant caused a third 
large pandemic wave, followed by a fourth wave with comparable infection rates by Omicron BA.1 
(Figure 4B, Appendix 1—table 2, and Appendix 1—table 4 for a preliminary assessment of reinfec-
tion rates).

Second, large numbers of hospitalizations and/or deaths can still occur in later waves with large 
infection surges, even though prior infection may provide partial protection and to some extent 
temper disease severity. This is evident from the large Delta wave in South Africa, which resulted in 
0.2% excess mortality (vs. 0.08% during the first wave and 0.19% during the Beta wave [The South 
African Medical Research Council (SAMRC), 2021]). More recently, due to the Omicron BA.4/BA.5 
subvariants that have been shown to evade prior immunity including from BA.1 infection (Cao et al., 
2022; Khan et al., 2022), a fifth wave began in South Africa during May 2022, leading to increases in 
both cases and hospitalizations (Sarah et al., 2022). Together, the continued transmission and poten-
tial severe outcomes highlight the importance of continued preparedness and prompt public health 
actions as societies learn to live with SARS- CoV- 2.

Third, multiple SARS- CoV- 2 VOCs/VOIs have emerged in the two years since pandemic inception. 
It is challenging to predict the frequency and direction of future viral mutation, in particular, the level 
of immune erosion, changes in transmissibility, and innate severity. Nonetheless, given high exposure 
and vaccination in many populations, variants capable of eroding a wide spectrum of prior immunity 
(i.e. from infection by multiple preexisting variants and vaccination) would have a greater chance of 
causing new major outbreaks. Indeed, except for the Alpha variant, the other four important VOCs 
(i.e. Beta, Gamma, Delta, and Omicron) all produced some level of immune erosion. In addition, later 
VOCs, like Delta and Omicron, appear to have been more genetically distinct from previous variants 
(van der Straten et al., 2022). As a result, they are likely more capable of causing re- infection despite 
diverse prior exposures and in turn new pandemic waves. Given this pattern, to prepare for future 
antigenic changes from new variants, development of a universal vaccine that can effectively block 
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SARS- CoV- 2 infection in addition to preventing severe disease (e.g. shown in Mao et al., 2022) is 
urgently needed (Morens et al., 2022).

The COVID- 19 pandemic has caused devastating public health and economic burdens world-
wide. Yet SARS- CoV- 2 will likely persist in the future. To mitigate its impact, proactive planning and 
preparedness is paramount.

Materials and methods
Data sources and processing
We used reported COVID- 19 case and mortality data to capture transmission dynamics, weather data 
to estimate infection seasonality, mobility data to represent concurrent NPIs, and vaccination data to 
account for changes in population susceptibility due to vaccination in the model- inference system. 
Provincial level COVID- 19 case, mortality, and vaccination data were sourced from the Coronavirus 
COVID- 19 (2019- nCoV) Data Repository for South Africa (COVID19ZA)(Data Science for Social Impact 
Research Group at University of Pretoria, 2021). Hourly surface station temperature and relative 
humidity came from the Integrated Surface Dataset (ISD) maintained by the National Oceanic and 
Atmospheric Administration (NOAA) and are accessible using the ‘stationaRy’ R package (Iannone, 
2020a; Iannone, 2020b). We computed specific humidity using temperature and relative humidity per 
the Clausius- Clapeyron Equation (Wallace and Hobbs, 2006). We then aggregated these data for all 
weather stations in each province with measurements since 2000 and calculated the average for each 
week of the year during 2000–2020.

Mobility data were derived from Google Community Mobility Reports (Google Inc, 2020); we 
aggregated all business- related categories (i.e. retail and recreational, transit stations, and work-
places) in all locations in each province to weekly intervals. For vaccination, provincial vaccination data 
from the COVID19ZA data repository recorded the total number of vaccine doses administered over 
time; to obtain a breakdown for numbers of partial (one dose of mRNA vaccine) and full vaccinations 
(one dose of Janssen vaccine or two doses of mRNA vaccine), separately, we used national vaccination 
data for South Africa from Our World in Data (Anonymous, 2020a; Mathieu et al., 2021) to apportion 
the doses each day. In addition, cumulative case data suggested 18,586 new cases on November 23, 
2021, whereas the South Africa Department of Health reported 868 (Department of Health Republic 
of South Africa, 2021a). Thus, for November 23, 2021, we used linear interpolation to fill in estimates 
for each province on that day and then scaled the estimates such that they sum to 868.

Model-inference system
The model- inference system is based on our previous work estimating changes in transmissibility and 
immune erosion for SARS- CoV- 2 VOCs including Alpha, Beta, Gamma, and Delta (Yang and Shaman, 
2021c; Yang and Shaman, 2022). Below we describe each component.

Epidemic model
The epidemic model follows an SEIRSV (susceptible- exposed- infectious- recovered- susceptible- 
vaccination) construct per Equation 1:

 




dS
dt = R

Lt
− btetmtβtIS

N − ε− v1, t − v2,t

dE
dt = btetmtβtIS

N − E
Zt

+ ε

dI
dt = E

Zt
− I

Dt

dR
dt = I

Dt
− R

Lt
+ v1, t + v2,t   

(1)

where S, E, I, R are the number of susceptible, exposed (but not yet infectious), infectious, and 
recovered/immune/deceased individuals; N is the population size; and ε is the number of travel- 
imported infections. In addition, the model includes the following key components:

1. Virus- specific properties, including the time- varying variant- specific transmission rate  βt  , latency 
period Zt, infectious period Dt, and immunity period Lt. Of note, the immunity period Lt and the 
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term R/Lt in Equation 1 are used to model the waning of immune protection against infection. 
Also note that all parameters are estimated for each week (t) as described below.

2. The impact of NPIs. Specifically, we use relative population mobility (see data above) to adjust 
the transmission rate via the term mt, as the overall impact of NPIs (e.g. reduction in the time- 
varying effective reproduction number Rt) has been reported to be highly correlated with popu-
lation mobility during the COVID- 19 pandemic.(Yang et al., 2021b; Lasry et al., 2020; Kraemer 
et al., 2020) To further account for potential changes in effectiveness, the model additionally 
includes a parameter, et, to scale NPI effectiveness.

3. The impact of vaccination, via the terms v1,t and v2,t. Specifically, v1,t is the number of individ-
uals successfully immunized after the first dose of vaccine and is computed using vaccination 
data and vaccine effectiveness (VE) for 1st dose; and v2,t is the additional number of individ-
uals successfully immunized after the second vaccine dose (i.e. excluding those successfully 
immunized after the first dose). In South Africa, around two- thirds of vaccines administered 
during our study period were the mRNA BioNTech/Pfizer vaccine and one- third the Janssen 
vaccine (Department of Health Republic of South Africa, 2021b). We thus set VE to 20%/85% 
(partial/full vaccination) for Beta, 35%/75% for Delta, and 10%/35% for Omicron (BA.1) based 
on reported VE estimates (Abu- Raddad et al., 2021b; Lopez Bernal et al., 2021; Andrews 
et al., 2021).

4. Infection seasonality, computed using temperature and specific humidity data as described 
previously (see supplemental material of Yang and Shaman, 2021c). Briefly, we estimated the 
relative seasonal trend (bt) using a model representing the dependency of the survival of respira-
tory viruses including SARS- CoV- 2 to temperature and humidity (Biryukov et al., 2020; Morris 
et al., 2021), per
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In essence, the seasonality function in Equation 2 assumes that humidity has a bimodal effect 
on seasonal risk of infection, with both low and high humidity conditions favoring transmission [i.e. 
the parabola in 1st set of brackets, where q(t) is weekly specific humidity measured by local weather 
stations]; and this effect is further modulated by temperature, with low temperatures promoting trans-
mission and temperatures above a certain threshold limiting transmission [i.e. 2nd set of brackets, 
where T(t) is weekly temperature measured by local weather stations and Tc is the threshold]. As 
SARS- CoV- 2 specific parameters (a, b, c, Tc, and Texp in Equation 2) are not available, to estimate its 
seasonality using Equation 2, as done in Yang and Shaman, 2021c, we use parameters estimated for 
influenza (Yuan et al., 2021) and scale the weekly outputs [i.e.,  R0

(
t
)
  ] by the annual mean (i.e.  R0  ) 

per Equation 3. In doing so, the scaled outputs (bt) are no longer specific to influenza; rather, they 
represent the relative, seasonality- related transmissibility by week, general to viruses sharing similar 
seasonal responses. As shown in Figure 2A, bt estimates over the year averaged to 1 such that weeks 
with bt >1 (e.g. during the winter) are more conducive to SARS- CoV- 2 transmission, whereas weeks 
with bt <1 (e.g. during the summer) have less favorable climate conditions for transmission. The esti-
mated relative seasonal trend, bt, is used to adjust the relative transmission rate at time t in Equation 
1.

Observation model to account for under-detection and delay
Using the model- simulated number of infections occurring each day, we further computed the number 
of cases and deaths each week to match with the observations, as done in Yang et al., 2021a. Briefly, 
we include (1) a time- lag from infectiousness to detection (i.e. an infection being diagnosed as a case), 
drawn from a gamma distribution with a mean of Td,mean days and a standard deviation of Td, sd days, to 
account for delays in detection (Appendix 1—table 5); (2) an infection- detection rate (rt), that is the 
fraction of infections (including subclinical or asymptomatic infections) reported as cases, to account 
for under- detection; (3) a time- lag from infectiousness to death, drawn from a gamma distribution with 
a mean of 13–15 days and a standard deviation of 10 days; and (4) an infection- fatality risk (IFRt). To 
compute the model- simulated number of new cases each week, we multiplied the model- simulated 
number of new infections per day by the infection- detection rate, and further distributed these simu-
lated cases in time per the distribution of time- from- infectiousness- to- detection. Similarly, to compute 
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the model- simulated deaths per week and account for delays in time to death, we multiplied the 
simulated- infections by the IFR and then distributed these simulated deaths in time per the distri-
bution of time- from- infectious- to- death. We then aggregated these daily numbers to weekly totals 
to match with the weekly case and mortality data for model- inference. For each week, the infection- 
detection rate (rt), the infection- fatality risk (IFRt)., and the two time- to- detection parameters (Td, mean 
and Td, sd) were estimated along with other parameters (see below).

Model inference and parameter estimation
The inference system uses the ensemble adjustment Kalman filter (EAKF [Anderson, 2001]), a 
Bayesian statistical method, to estimate model state variables (i.e. S, E, I, R from Equation 1) and 
parameters (i.e.  βt  , Zt, Dt, Lt, et, from Equation 1 as well as rt, IFRt and other parameters from the 
observation model). Briefly, the EAKF uses an ensemble of model realizations (n=500  here), each 
with initial parameters and variables randomly drawn from a prior range (see Appendix 1—table 5). 
After model initialization, the system integrates the model ensemble forward in time for a week (per 
Equation 1) to compute the prior distribution for each model state variable and parameter, as well 
as the model- simulated number of cases and deaths for that week. The system then combines the 
prior estimates with the observed case and death data for the same week to compute the posterior 
per Bayes' theorem (Anderson, 2001). During this filtering process, the system updates the poste-
rior distribution of all model variables and parameters for each week. For a further discussion on the 
filtering process and additional considerations, see the Appendix 1; diagnosis of model posterior 
estimates for all parameters are also included in the Appendix 1 and Appendix 1—figures 15–23.

Estimating changes in transmissibility and immune erosion for each variant
As in Yang and Shaman, 2021c, we computed the variant- specific transmissibility ( RTX ) as the product 
of the variant- specific transmission rate ( βt ) and infectious period (Dt). Note that Rt, the time- varying 
effective reproduction number, is defined as  Rt = btetmtβtDtS/N = btetmtRTXS/N.  To reduce uncertainty, 
we averaged transmissibility estimates over the period a particular variant of interest was predomi-
nant. To find these predominant periods, we first specified the approximate timing of each pandemic 
wave in each province based on: (1) when available, genomic surveillance data; specifically, the 
onsets of the Beta wave in Eastern Cape, Western Cape, KwaZulu- Natal, and Northern Cape, were 
separately based on the initial detection of Beta in these provinces as reported in Tegally et  al., 
2021; the onsets of the Delta wave in each of the nine provinces, separately, were based on genomic 
sequencing data from the Network for Genomic Surveillance South Africa (NGS- SA)(The National 
Institute for Communicable Diseases (NICD) of the National Health Laboratory (NHLS) on behalf 
of the Network for Genomics Surveillance in South Africa (NGS- SA), 2021); and (2) when genomic 
data were not available, we used the week with the lowest case number between two waves. The 
specified calendar periods are listed in Appendix 1—table 6. During later waves, multiple variants 
could initially co- circulate before one became predominant. As a result, the estimated transmissibility 
tended to increase before reaching a plateau (see, e.g. Figure 2C). In addition, in a previous study of 
the Delta pandemic wave in India (Yang and Shaman, 2022), we also observed that when many had 
been infected, transmissibility could decrease a couple months after the peak, likely due to increased 
reinfections for which onward transmission may be reduced. Thus, to obtain a more variant- specific 
estimate, we computed the average transmissibility ( RTX  ) using the weekly RTX estimates over the 
8- week period starting the week prior to the maximal Rtx during each wave; if no maximum existed 
(e.g. when a new variant is less transmissible), we simply averaged over the entire wave. We then 
computed the change in transmissibility due to a given variant relative to the ancestral SARS- CoV- 2 

as 
 
(RTX,variant−RTX,ancestral)

RTX,ancestral
× 100%

 
.

To quantify immune erosion, similar to Yang and Shaman, 2021c, we estimated changes in suscep-
tibility over time and computed the change in immunity as ΔImm = St+1 – St +it, where St is the suscep-
tibility at time- t and it is the new infections occurring during each week- t. We sum over all ΔImm 
estimates for a particular location, during each wave, to compute the total change in immunity due 
to a new variant,  Σ∆Immv . Because filter adjustment could also slightly increase S, to avoid overesti-
mation, here we only included substantial increases (i.e. ΔImm per week >0.5% of the total popula-
tion) when computing changes due to a new variant. As such, we did not further account for smaller 
susceptibility increases due to waning immunity [for reference, for a population that is 50% immune 
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and a 2- year mean immunity period, 0.5 / (52×2)×100% = 0.48% of the population would lose immu-
nity during a week due to waning immunity]. We then computed the level of immune erosion as the 
ratio of  Σ∆Immv  to the model- estimated population immunity prior to the first detection of immune 
erosion, during each wave. That is, as opposed to having a common reference of prior immunity, here 
immune erosion for each variant depends on the state of the population immune landscape –that is, 
combining all prior exposures and vaccinations – immediately preceding the surge of that variant.

For all provinces, model- inference was initiated the week starting March 15, 2020 and run contin-
uously until the week starting February 27, 2022. To account for model stochasticity, we repeated the 
model- inference process 100 times for each province, each with 500 model realizations and summa-
rized the results from all 50,000 model estimates.

Model validation using independent data
To compare model estimates with independent observations not assimilated into the model- inference 
system, we utilized three relevant datasets:

1. Serological survey data measuring the prevalence of SARS- CoV- 2 antibodies over time. Multiple 
serology surveys have been conducted in different provinces of South Africa. The South African 
COVID- 19 Modelling Consortium summarizes the findings from several of these surveys (see 
Figure 1A of The South African COVID- 19 Modelling Consortium, 2021). We digitized all 
data presented in Figure 1A of The South African COVID- 19 Modelling Consortium, 2021 and 
compared these to corresponding model- estimated cumulative infection rates (computed mid- 
month for each corresponding month with a seroprevalence measure). Due to unknown survey 
methodologies and challenges adjusting for sero- reversion and reinfection, we used these data 
directly (i.e. without adjustment) for qualitative comparison.

2. COVID- 19- related hospitalization data, from COVID19ZA (Data Science for Social Impact 
Research Group at University of Pretoria, 2021). We aggregated the total number of 
COVID- 19 hospital admissions during each wave and compared these aggregates to model- 
estimated cumulative infection rates during the same wave. Of note, these hospitalization data 
were available from June 6, 2020 onwards and are thus incomplete for the first wave.

3. Age- adjusted excess mortality data from the South African Medical Research Council (SAMRC)
(The South African Medical Research Council (SAMRC), 2021). Deaths due to COVID- 19 (used 
in the model- inference system) are undercounted. Thus, we also compared model- estimated 
cumulative infection rates to age- adjusted excess mortality data during each wave. Of note, 
excess mortality data were available from May 3, 2020 onwards and are thus incomplete for the 
first wave.

Model validation using retrospective prediction
As a fourth model validation, we generated model predictions at 2 or 1  weeks before the week 
of highest cases for the Delta and Omicron (BA.1) waves, separately, and compared the predicted 
cases and deaths to reported data unknown to the model. Predicting the peak timing, intensity, and 
epidemic turnaround requires accurate estimation of model state variables and parameters that deter-
mine future epidemic trajectories. This is particularly challenging for South Africa as the pandemic 
waves tended to progress quickly such that cases surged to a peak in only 3–7 weeks. Thus, we chose 
to generate retrospective predictions 2 and 1 weeks before the peak of cases in order to leverage 
1–6 weeks of new variant data for estimating epidemiological characteristics. Specifically, for each 
pandemic wave, we ran the model- inference system until 2 weeks (or 1 week) before the observed 
peak of cases, halted the inference, and used the population susceptibility and transmissibility of 
the circulating variant estimated at that time to predict cases and deaths for the remaining weeks 
(i.e. 10–14 weeks into the future). Because the infection detection rate and fatality risk are linked to 
observations of cases and deaths, changes of these quantities during the prediction period could 
obscure the underlying infection rate and accuracy of the prediction. Thus, for these two parame-
ters specifically, we used model- inference estimates for corresponding weeks to allow comparison of 
model- predicted cases and deaths with the data while focusing on testing the accuracy of other key 
model estimates (e.g. transmissibility of the new variant). As for the model- inference, we repeated 
each prediction 100 times, each with 500 model realizations and summarized the results from all 
50,000 ensemble members.
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Appendix 1

Supplemental results and discussion
A brief note on reported COVID-19 mortality and model-inference strategy 
in this study
COVID- 19 mortality data in some South African provinces appeared irregular with very high weekly 
death counts for some weeks even though cases in preceding weeks were low (see, e.g., COVID- 19 
related deaths in Mpumalanga and Northern Cape in Appendix 1—figure 1). A likely explanation 
is the audit and release of mortality data including deaths that occurred in previous time periods, 
which were not redistributed according to the actual time of death. Such instances have occurred in 
multiple countries (see, e.g., some of the documentations by Financial Times in ref (FT Visual & Data 
Journalism team, 2020), under the header “SOURCES”). Here, we could not adjust for this possibility 
due to a lack of information on these apparent data releases. Instead, to account for potential 
data errors, the ensemble adjustment Kalman filter (EAKF) algorithm (Anderson, 2001), used in 
the model- inference system, includes an estimate of observational error variance for computing 
the posterior estimates. In this study, the observational error variance was scaled to corresponding 
observations (thus, weeks with higher mortality would also have larger observational errors). In doing 
so, the EAKF reduces the weight of observations with larger observational errors (e.g., for weeks 
with very large death counts), which reduces their impact on the inference of model dynamics. 
As such, the posterior estimates for mortality tend to (intentionally) miss very high outlying data 
points (see Figure 1 and Appendix 1—figure 1). In addition, posterior estimates for the infection- 
fatality risk (IFR) are more stable over time, including for weeks with outlying death counts (see, e.g., 
Appendix 1—figure 23, IFR estimates for Mpumalanga).

In light of these COVID- 19 related mortality data patterns, we computed the overall IFR during 
each pandemic wave using two methods. The first method computes the wave- specific IFR as the 
ratio of the total reported COVID- 19 related deaths to the model- estimated cumulative infection 
rate during each wave. Because reported COVID- 19 related mortality is used as the numerator, this 
method is more heavily affected by the aforementioned data irregularities. The second method 
computes the wave- specific IFR as a weighted average of the weekly IFR estimates during each 
wave, a measure for which both the numerator and denominator are model- inference derived; 
the weights are the estimated fraction of infections during each week. As shown in Appendix 1—
table 3, for provinces with consistent case and mortality trends (e.g., Gauteng), the two methods 
generated similar IFR estimates. In contrast, for provinces with mortality trends inconsistent with 
case trends (e.g., Mpumalanga), the second method generated IFR estimates more comparable to 
other provinces than the first method.

Considerations in parameter prior choice and the EAKF inference algorithm
The model- inference system included 9 parameters, namely, the variant- specific transmission rate 
 βt  , latency period Zt, infectious period Dt, immunity period Lt, scaling factor of NPI effectiveness et, 
infection- detection rate rt, IFRt, and two parameters for the distribution of time from infectiousness 
to case detection (i.e., the mean and standard deviation, for a gamma distribution). The initial prior 
distributions were randomly drawn from uniform distributions with ranges listed in Appendix 1—
table 5. For parameters with previous estimates from the literature (e.g., transmission rate β, 
incubation period Z, infectious period D, and immunity period L; see Appendix 1—table 5, column 
“Source/rationale”), we set the prior range accordingly. For parameters with high uncertainty 
and spatial variation (e.g., infection- detection rate), we preliminarily tested initial prior ranges by 
visualizing model prior and posterior estimates, using different ranges. For instance, for the infection- 
detection rate, when using a higher prior range (e.g., 5 –20% vs 1 –10%), the model prior tended to 
overestimate observed cases and underestimate deaths. Based on the initial testing, we then used 
a wide range able to reproduce the observed cases and deaths relatively well and then derived 
estimates of unobserved state variables and parameters.

Importantly, the EAKF used here is an iterative filtering algorithm. After initialization using the 
initial prior distributions, it iteratively incorporates additional observations at each time step (here, 
each week) to compute and update the model posterior (including all model state variables and 
parameters) using the model prior and the latest observations. For the model state variables, the 
prior is computed per the dynamic model (here, Equation 1); for the model parameters, the prior 
is the posterior from the last time step. As such, the influence of the initial prior range tends to be 
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less pronounced compared to methods such as Markov Chain Monte Carlo (MCMC). In addition, 
to capture potential changes over time (e.g., likely increased detection for variants causing more 
severe disease), we applied space reprobing (SR) (Yang and Shaman, 2014), a technique that 
randomly replaces parameter values for a small fraction of the model ensemble, to explore a wider 
range of parameter possibilities (Appendix 1—table 5). Due to both the EAKF algorithm and space 
reprobing, the posterior parameter estimates can migrate outside the initial parameter ranges (e.g., 
for the transmission rate during the circulation of new variants).

Testing of the infection-detection rate during the Omicron (BA.1) wave in 
Gauteng
A major challenge for this study is inferring the underlying transmission dynamics of the Omicron 
(BA.1) wave in Gauteng, where Omicron was initially detected and had the earliest case surge. In 
Gauteng, the number of cases during the first week of reported detection (i.e., the week starting 
11/21/21) increased 4.4 times relative to the previous week; during the second week of report (i.e., 
the week starting 11/28/21) cases increased another 4.9 times. Yet after these two weeks of dramatic 
increases, cases peaked during the third week and started to decline afterwards. Initial testing 
suggested substantial changes in infection- detection rates during this time; in particular, detection 
could increase during the first two weeks due to awareness and concern for the novel Omicron 
variant and decline during later weeks due to constraints on testing capacity as well as subsequent 
reports of milder disease caused by Omicron. To more accurately estimate the infection- detection 
rate and underlying transmission dynamics, we ran and compared model- inference estimates using 
4 settings for the infection- detection rate.

As noted above, with the model- EAKF filtering algorithm, parameter posterior is iteratively 
updated and becomes the prior at the next time step such that information from all previous time 
steps is sequentially incorporated. Given the sequential nature of the EAKF, rather than using a 
new prior distribution for the infection- detection rate, to explore new state space (here, potential 
changes in detection rate), we applied SR (Yang and Shaman, 2014), which randomly assigns the 
prior values of a small fraction of the model ensemble while preserving the majority that encodes 
prior information. In previous studies (Yang and Shaman, 2021c; Yang and Shaman, 2014), we have 
showed that the model ensemble posterior would remain similar if there is no substantial change 
in the system and more efficiently migrate towards new state space if there is a substantial change. 
Here, to explore potential changes in infection detection rates during the Omicron (BA.1) wave, we 
tested 4 SR settings for the infection- detection rate: (1) Use of the same baseline range as before 
(i.e., 1%–8%; uniform distribution, same for other ranges) for all weeks during the Omicron (BA.1) 
wave; (2) Use of a wider and higher range (i.e., 1%–12%) for all weeks; (3) Use of a range of 1%–15% 
for the 1st week of Omicron reporting (i.e., week starting 11/21/21), 5%–20% for the 2nd week of 
Omicron reporting (i.e., the week starting 11/28/21), and 1%–8% for the rest; and (4) Use of a range 
of 5%–25% for the 2nd week of reporting and 1%–8% for all others.

Estimated infection- detection rates in Gauteng increased substantially during the first two weeks 
of the Omicron (BA.1) wave and decreased afterwards under all four SR settings (Appendix 1—
figure 12, 1st row). This consistency suggests a general trend in infection- detection rates at the 
time in accordance with the aforementioned potential changes in testing. Without using a higher 
SR range (e.g., 1%–8% and 1%–12% in columns 1–2 of Appendix 1—figure 12 vs 5%–20% and 
5%–25% for week 2 in columns 3–4), the estimated increases in infection- detection rate were lower; 
instead, the model- inference system attributed the dramatic case increases in the first two weeks to 
higher increases in population susceptibility and transmissibility (Appendix 1—figure 12, 2nd and 3rd 
row, compare columns 1–2 vs. 3–4). However, the higher estimates for population susceptibility and 
transmissibility contradicted with the drastic decline in cases shortly afterwards such that the model- 
inference system readjusted the transmissibility to a lower level during later weeks (see the uptick 
in estimated transmissibility in Appendix 1—figure 12, 3rd row, first 2 columns). In contrast, when 
higher infection- detection rates were estimated for the first two weeks using the last two SR settings, 
the transmissibility estimates were more stable during later weeks (Appendix 1—figure 12, 3rd row, 
last 2 columns). In addition, model- inference using the latter two SR settings also generated more 
accurate retrospective predictions for the Omicron (BA.1) wave in Gauteng (Appendix 1—figure 
13).
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Given the above results, we used the 4th SR setting in the model- inference for Gauteng (i.e., 
replace a fraction of the infection detection rate using values randomly drawn from U[5%, 25%] for the 
week starting 11/28/21 and U[1%, 8%] for all other weeks during the Omicron wave). Reported cases 
in other provinces did not change as dramatically as in Gauteng; therefore, for those provinces, we 
used the baseline setting, i.e., values drawn from U[1%, 8%], for re- probing the infection- detection 
rate. Nonetheless, we note that the overall estimates for changes in transmissibility and immune 
erosion of Omicron (BA.1) were slightly higher under the first two SR settings but still consistent with 
the results presented in the main text (Appendix 1—figure 14).

Examination of posterior estimates for all model parameters
To diagnose posterior estimates for each parameter, we plotted the posterior median, 50% and 
95% credible intervals (CrIs) estimated for each week during the entire study period, for each of the 
nine provinces (Appendix 1—figure 15 – 23). As shown in Appendix 1—figure 15, the estimated 
transmission rate was relatively stable during the ancestral wave; it then increased along with the 
surge of the Beta variant around October 2020 and leveled off during the Beta wave. Similarly, 
following the initial surge of the Delta and Omicron variants, estimated transmission rates increased 
before leveling off when the new variant became predominant. Similar patterns are estimated for all 
provinces, indicating the model- inference system is able to capture the changes in transmission rate 
due to each new variant.

Estimated latent period (Appendix 1—figure 16), infectious period (Appendix 1—figure 17), 
immunity period (Appendix 1—figure 18), and the scaling factor of NPI effectiveness (Appendix 1—
figure 19) all varied somewhat over time, but to a much less extent compared to the transmission 
rate. Estimated time from infectiousness to case detection decreased slightly over time, albeit with 
larger variations in later time periods (see Appendix 1—figure 20 for the mean and Appendix 1—
figure 21 for the standard deviation). It is possible that the model- inference system could not 
adequately estimate the nuanced changes in these parameters using aggregated population level 
data.

Estimated infection- detection rates varied over time for all provinces (Appendix 1—figure 22). 
The infection- detection rate can be affected by (1) testing capacity, e.g., lower during the first weeks 
of the COVID- 19 pandemic, and sometimes lower near the peak of a pandemic wave when maximal 
capacity was reached; (2) awareness of the virus, e.g., higher when a new variant was first reported 
and lower near the end of a wave; and (3) disease severity, e.g., higher when variants causing more 
severe disease were circulating. Overall, the estimates were consistent with these expected patterns.

Lastly, estimated IFRs also varied over time and across provinces (Appendix 1—figure 23). IFR can 
be affected by multiple factors, including infection demographics, innate severity of the circulating 
variant, quality and access to healthcare, and vaccination coverage. For infection demographics, 
IFR tended to be much lower in younger ages as reported by many (e.g., Levin et al., 2020). In 
South Africa, similar differences in infection demographics occurred across provinces. For instance, 
(Giandhari et al., 2021) noted a lower initial mortality in Gauteng, as earlier infections concentrated 
in younger and wealthier individuals. For the innate severity of the circulating variant, as noted in the 
main text, in general estimated IFRs were higher during the Beta and Delta waves than during the 
Omicron wave. In addition, as shown in Appendix 1—figure 23, estimated IFRs were substantially 
higher in four provinces (i.e., KwaZulu- Natal, Western Cape, Eastern Cape, and Free State) than 
other provinces during the Beta wave. Coincidentally, the earliest surges of the Beta variant occurred 
in three of those provinces (i.e., KwaZulu- Natal, Western Cape, Eastern Cape)(Tegally et al., 2021). 
Nonetheless, and as noted in the main text and the above subsection, the IFR estimates here should 
be interpreted with caution, due to the likely underreporting and irregularity of the COVID- 19 
mortality data used to generate these estimates.

A proposed approach to compute the reinfection rates using model-infer-
ence estimates
It is difficult to measure or estimate reinfection rate directly. In this study, we have estimated the 
immune erosion potential for three major SARS- CoV- 2 variants of concern (VOCs) and the infection 
rates during each pandemic wave in South Africa. These estimates can be used to support estimation 
of the reinfection rate for a given population. In- depth analysis is needed for such estimations. Here, 
as an example, we propose a simple approach to illustrate the possibility.

https://doi.org/10.7554/eLife.78933
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Consider the estimation in the context of the four waves in South Africa in this study (i.e., 
ancestral, Beta, Delta, and Omicron BA.1 wave). Suppose the cumulative fraction of the population 
ever infected before the beta wave is  cpre_beta  (this is roughly the attack rate during the ancestral 
wave) and estimated immune erosion potential for Beta is  θbeta  . To compute the reinfection rate 
during the Beta wave, we can assume that  cpre_beta ×

(
1 − θbeta

)
  are protected by this prior immunity, 

and that the remaining  cpre_betaθbeta  (i.e. those lost their immunity due to immune erosion) have 
the same risk of infection as those never infected, such that the reinfection rate/fraction among all 
infections, zbeta, during the Beta wave (i.e., zbeta is the attack rate by Beta) would be:

 ηbeta = cpre_betaθbeta
1−cpre_beta+cpre_betaθbeta   

The reinfection rate/fraction among the entire population would be:

 η
′

beta = zbetaηbeta  

Combining the above, the cumulative fraction of the population ever infected by the end of the 
Beta wave and before the Delta wave would be:

 cpre_delta = cpre_beta + zbeta − η
′

beta  

Note that the fraction of the population ever infected, c, is updated to compute the subsequent 
fraction of the population protected by prior immunity, because the immune erosion potential here 
is estimated relative to the combined immunity accumulated until the rise of a new variant. We can 
repeat the above process for the Delta wave and the Omicron wave. See an example calculation in 
Appendix 1—table 4.

Work to refine the reinfection estimates (e.g., sensitivity of these estimates to assumptions and 
uncertainty intervals) is needed. Nonetheless, these example estimates (Appendix 1—table 4) are 
consistent with reported serology measures [4th column vs. e.g. ~90% seropositive in March 2022 
after the Omicron BA.1 wave reported in Bingham et  al., 2022] and reinfection rates reported 
elsewhere [5th and 6th columns vs. e.g., reported much higher reinfection rate during the Omicron 
wave in Pulliam et al., 2022]. Importantly, these estimates also show that, in addition to the innate 
immune erosive potential of a given new variant, the reinfection rate is also determined by the 
prior cumulative fraction of the population ever infected (4th column in Appendix  1—table 4) 
and the attack rate by each variant (3rd column in Appendix 1—table 4). That is, the higher the 
prior cumulative infection rate and/or the higher the attack rate by the new variant, the higher the 
reinfection rate would be for a new variant that can cause reinfection. For instance, despite the lower 
immune erosion potential of Delta than Beta, because of the high prior infection rate accumulated 
up to the Delta wave onset, the estimated reinfection rate by Delta among all Delta infections 
was higher compared to that during the Beta wave (6th column in Appendix 1—table 4). With the 
higher attack rate during the Delta wave, the reinfection rate among the entire population was 
much higher for Delta than Beta (5th column in Appendix 1—table 4). Thus, these preliminary results 
suggest that reinfection rates observed for each variant and differences across different variants 
should be interpreted in the context of the innate immune erosion potential of each variant, the 
prior cumulative infection rate of the study population, and the attack rate of each variant in the 
same population.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 1. Model- fit to case and death data in each province. Dots show reported SARS- CoV- 2 cases 
and deaths by week. Blue lines and surrounding area show model estimated median, 50% (darker blue) and 95% 
(lighter blue) credible intervals. Note that reported mortality was high in February 2022 in some provinces with no 
clear explanation.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 2. Model validation using hospitalization and excess mortality data. Model estimated 
infection rates are compared to COVID- related hospitalizations (left panel) and excess mortality (right panel) 
during the Ancestral (A), Beta (B), Delta (C), and Omicron (D) waves. Boxplots show the estimated distribution for 
Appendix 1—figure 2 continued on next page
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each province (middle bar = mean; edges = 50% CrIs and whiskers = 95% CrIs). Red dots show COVID- related 
hospitalizations (left panel, right y- axis) and excess mortality (right panel, right y- axis); these are independent 
measurements not used for model fitting. Correlation (r) is computed between model estimates (i.e., median 
cumulative infection rates for the nine provinces) and the independent measurements (i.e., hospitalizations in 
the nine provinces in left panel, and age- adjusted excess mortality in the right panel), for each wave. Note that 
hospitalization data begin from 6/6/20 and excess mortality data begin from 5/3/20 and thus are incomplete for 
the ancestral wave.

Appendix 1—figure 3. Model validation using retrospective prediction, for the remaining 5 provinces. Model- 
inference was trained on cases and deaths data since March 15, 2020 until 2 weeks (1st plot in each panel) or 
1 week (2nd plot) before the Delta or Omicron wave (see timing on the x- axis); the model was then integrated 
forward using the estimates made at the time to predict cases (left panel) and deaths (right panel) for the 
remaining weeks of each wave. Blue lines and surrounding shades show model fitted cases and deaths for weeks 
before the prediction (line = median, dark blue area = 50% CrIs, and light blue = 80% CrIs). Red lines show model 
projected median weekly cases and deaths; surrounding shades show 50% (dark red) and 80% (light red) CIs of 
the prediction. For comparison, reported cases and deaths for each week are shown by the black dots; however, 
those to the right of the vertical dash lines (showing the start of each prediction) were not used in the model. 
For clarity, here we show 80% CIs (instead of 95% CIs, which tend to be wider for longer- term projections) and 
predictions for the five least populous provinces (Limpopo in A and B; Mpumalanga in C and D; North West in E 
and F; Free State in G and H; and Northern Cape in I and J). Predictions for the other 4 provinces are shown in 
Figure 2.

Appendix 1—figure 2 continued
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Appendix 1—figure 4. Model inference estimates for KwaZulu- Natal. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 5. Model inference estimates for Western Cape. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 6. Model inference estimates for Eastern Cape. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 7. Model inference estimates for Limpopo. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 8. Model inference estimates for Mpumalanga. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 9. Model inference estimates for North West. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 10. Model inference estimates for Free State. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 11. Model inference estimates for Northern Cape. (A) Observed relative mobility, vaccination 
rate, and estimated disease seasonal trend, compared to case and death rates over time. Key model- inference 
estimates are shown for the time- varying effective reproduction number Rt (B), transmissibility RTX (C), population 
susceptibility (D, shown relative to the population size in percentage), infection- detection rate (E), and infection- 
fatality risk (F). Grey shaded areas indicate the approximate circulation period for each variant. In (B) – (F), blue 
lines and surrounding areas show the estimated mean, 50% (dark) and 95% (light) CrIs; boxes and whiskers show 
the estimated mean, 50% and 95% CrIs for estimated infection rates. Note that the transmissibility estimates (RTX in 
C) have removed the effects of changing population susceptibility, NPIs, and disease seasonality; thus, the trends 
are more stable than the reproduction number (Rt in B) and reflect changes in variant- specific properties. Also note 
that infection- fatality risk estimates were based on reported COVID- 19 deaths and may not reflect true values due 
to likely under- reporting of COVID- 19 deaths.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 12. Comparison of posterior estimates for Gauteng during the Omicron (BA.1) wave, under 
four different settings for infection- detection rate. Four space reprobing (SR) settings for the infection- detection 
rate were tested and results are shown in the 4 four columns: (1) Use of the same baseline range as before (i.e., 
1%–8%) for all weeks during the Omicron (BA.1) wave; (2) Use of a wider and higher range (i.e., 1%–12%) for all 
weeks; (3) Use of a range of 1%–15% for the 1st week of Omicron detection, 5%–20% for the 2nd week of Omicron 
detection, and 1%–8% for the rest; and (4) Use of a range of 5%–25% for the 2nd week of detection and 1%–8% for 
all other weeks. Estimated infection- detection rates are shown in the 1st row, population susceptibility estimates 
are shown in the 2nd row, and transmissibility estimates are shown in the 3rd row. In each plot, blue lines and 
surrounding areas show the median, 50% and 95% CrIs of the posterior (left y- axis) for each week (x- axis). For 
comparison, reported cases for corresponding weeks are shown by the grey bars (right y- axis).

Appendix 1—figure 13. Comparison of retrospective prediction of the Omicron (BA.1) wave in Gauteng with the 
four different settings of infection- detection rate. Four space reprobing (SR) settings for the infection- detection 
rate were tested, and the results are shown in the 4 panels: (1) Use of the same baseline range as before (i.e., 
Appendix 1—figure 13 continued on next page
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1%–8%) for all weeks during the Omicron (BA.1) wave; (2) Use of a wider and higher range (i.e., 1%–12%) for all 
weeks; (3) Use of a range of 1%–15% for the 1st week of Omicron detection, 5%–20% for the 2nd week of Omicron 
detection, and 1%–8% for the rest; and (4) Use of a range of 5%–25% for the 2nd week of detection and 1%–8% for 
all other weeks. Blue lines and show model fitted cases for weeks before the prediction. Red lines show model 
projected median weekly cases and deaths; surrounding shades show 50% (dark red) and 80% (light red) CIs of the 
prediction. For comparison, reported cases for each week are shown by the black dots; however, those to the right 
of the vertical dash lines (showing the start of each prediction) were not used in the model.

Appendix 1—figure 14. Comparison of the estimated increase in transmissibility and immune erosion for the 
Omicron (BA.1) variant in Gauteng, under four different settings of the infection- detection rate. Four space 
reprobing (SR) settings for the infection- detection rate were tested: (1) Use of the same baseline range as before 
(i.e., 1%–8%) for all weeks during the Omicron (BA.1) wave; (2) Use of a wider and higher range (i.e., 1%–12%) for all 
weeks; (3) Use of a range of 1%–15% for the 1st week of Omicron detection, 5%–20% for the 2nd week of Omicron 
detection, and 1%–8% for the rest; and (4) Use of a range of 5%–25% for the 2nd week of detection and 1%–8% 
for all other weeks. Boxplots in left panel show the estimated distribution of increases in transmissibility, relative 
to the Ancestral SARS- CoV- 2 (middle bar = median; edges = 50% CIs; and whiskers = 95% CIs); boxplots in the 
right panel show the estimated distribution of immune erosion to all adaptive immunity gained from infection and 
vaccination prior to the surge of Omicron (BA.1) wave.

Appendix 1—figure 13 continued
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Appendix 1—figure 15. Posterior estimates for the transmission rate ( βt  in Equation 1) by week. Thick black lines 
show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For reference, the 
dashed vertical black lines indicate three dates (mm/dd/yy), that is 10/15/20, 5/15/21, and 11/15/21, roughly the 
start of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 16. Posterior estimates for the latent period ( Zt  in Equation 1) by week. Thick black lines 
show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For reference, the 
dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start 
of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 17. Posterior estimates for the infectious period ( Dt  in Equation 1) by week. Thick black lines 
show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For reference, the 
dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start 
of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933


 Research article      Epidemiology and Global Health

Yang and Shaman. eLife 2022;11:e78933. DOI: https://doi.org/10.7554/eLife.78933  40 of 50

Appendix 1—figure 18. Posterior estimates for the immunity period ( Lt  in Equation 1) by week. Thick black lines 
show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For reference, the 
dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start 
of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 19. Posterior estimates for the scaling factor of NPI effectiveness ( et  in Equation 1) by week. 
Thick black lines show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For 
reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, 
roughly the start of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 20. Posterior estimates for the mean of time from infectiousness to detection ( Td, mean  in 
the observation model) by week. Thick black lines show the median, dark blue areas show the 50% CrIs, and light 
blue areas show the 95% CrIs. For reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 
10/15/20, 5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 21. Posterior estimates for the standard deviation of time from infectiousness to detection 
( Td, sd   in the observation model) by week. Thick black lines show the median, dark blue areas show the 50% CrIs, 
and light blue areas show the 95% CrIs. For reference, the dashed vertical black lines indicate three dates (mm/dd/
yy), i.e., 10/15/20, 5/15/21, and 11/15/21, roughly the start of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 22. Posterior estimates for infection- detection rate ( rt  in the observation model) by week. 
Thick black lines show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For 
reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, 
roughly the start of the Beta, Delta, and Omicron waves, respectively.

https://doi.org/10.7554/eLife.78933
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Appendix 1—figure 23. Posterior estimates for infection- fatality risk ( IFRt  in the observation model) by week. 
Thick black lines show the median, dark blue areas show the 50% CrIs, and light blue areas show the 95% CrIs. For 
reference, the dashed vertical black lines indicate three dates (mm/dd/yy), i.e., 10/15/20, 5/15/21, and 11/15/21, 
roughly the start of the Beta, Delta, and Omicron waves, respectively.

Appendix 1—table 1. Model estimated infection- detection rate during each wave.
Numbers show the estimated percentage of infections (including asymptomatic and subclinical 
infections) documented as cases (mean and 95% CI in parentheses).

Province Ancestral wave Beta wave Delta wave Omicron wave

Gauteng 4.59 (2.62, 9.77) 6.18 (3.29, 11.11) 6.27 (3.44, 12.39) 4.16 (2.46, 9.72)

KwaZulu- Natal 4.33 (2.01, 11.02) 7.4 (3.89, 13.67) 5.69 (2.69, 12.34) 3.25 (1.84, 7.81)

Western Cape 5.62 (3, 10.93) 7.1 (3.99, 12.78) 6.83 (3.71, 13.08) 4.26 (2.49, 9.37)

Eastern Cape 3.79 (1.98, 9.39) 6.1 (3.35, 11.27) 5.58 (2.63, 11.52) 2.91 (1.4, 7.99)

Limpopo 2.13 (0.79, 6.46) 4.57 (1.89, 10.01) 3.4 (1.53, 9.3) 2.9 (1.2, 7.55)

Mpumalanga 3.42 (1.42, 9.1) 6.28 (2.85, 12.51) 5.71 (2.58, 12.96) 3.13 (1.54, 7.24)

North West 3.37 (1.62, 7.88) 5.79 (2.77, 11.14) 5.26 (2.8, 10.8) 3.73 (1.78, 8.62)

Free State 5.02 (2.83, 10.63) 6.69 (3.69, 11.97) 6.5 (3.16, 13.23) 4.03 (2.12, 8.95)

Northern Cape 4.96 (2.75, 10.34) 6.49 (3.72, 11.44) 6.69 (3.74, 12.32) 3.71 (1.97, 8.21)

Appendix 1—table 2. Model estimated attack rate during each wave.
Numbers show estimated cumulative infection numbers, expressed as percentage of population size 
(mean and 95% CI in parentheses).

Appendix 1—table 2 Continued on next page
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Province Ancestral wave Beta wave Delta wave Omicron wave

Gauteng 32.83 (15.42, 57.59) 21.87 (12.16, 41.13) 49.82 (25.22, 90.79) 44.49 (19.01, 75.3)

KwaZulu- Natal 24.06 (9.45, 51.91) 26.36 (14.28, 50.18) 27.15 (12.52, 57.39) 38.11 (15.87, 67.56)

Western Cape 28.44 (14.61, 53.17) 37.09 (20.61, 66.04) 47.29 (24.68, 87.1) 44.1 (20.02, 75.4)

Eastern Cape 32.85 (13.27, 62.95) 27.44 (14.86, 49.95) 25.59 (12.4, 54.34) 26.38 (9.59, 54.69)

Limpopo 13.78 (4.55, 37.21) 17.12 (7.82, 41.41) 28.22 (10.33, 62.74) 18.62 (7.15, 45.01)

Mpumalanga 18.99 (7.14, 45.83) 17.33 (8.7, 38.21) 27.18 (11.97, 60.14) 27.67 (11.96, 56.13)

North West 24.57 (10.51, 51.09) 16.04 (8.34, 33.49) 37.21 (18.13, 70.02) 26.17 (11.33, 54.71)

Free State 39.31 (18.54, 69.57) 24.23 (13.54, 43.92) 30.85 (15.16, 63.38) 32.79 (14.76, 62.32)

Northern Cape 34.92 (16.77, 63.13) 26.98 (15.3, 47.09) 55.59 (30.18, 99.32) 36.87 (16.65, 69.34)

Appendix 1—table 3. Model estimated infection- fatality risk during each wave.
Numbers are percentages (%; mean and 95% CI in parentheses). Note that these estimates were 
based on reported COVID- 19 deaths and may be biased due to likely under- reporting of COVID- 19 
deaths. In addition, due to data irregularities, we computed the IFR using two methods. Estimates 
per Method 1 are the ratio of the total reported COVID- 19 related deaths to the model- estimated 
cumulative infection rate during each wave. Estimates per Method 2 are the weighted average of 
the weekly IFR estimates during each wave. See details in Section 1 of the Supplemental text.

Province Ancestral wave Beta wave Delta wave Omicron wave

Estimates per Method 1 (i.e., use reported COVID- 19 deaths as the numerator):

Gauteng 0.09 (0.05, 0.2) 0.19 (0.1, 0.33) 0.11 (0.06, 0.21) 0.03 (0.02, 0.06)

KwaZulu- Natal 0.09 (0.04, 0.24) 0.27 (0.14, 0.49) 0.14 (0.06, 0.29) 0.03 (0.02, 0.08)

Western Cape 0.21 (0.11, 0.41) 0.3 (0.17, 0.54) 0.25 (0.14, 0.48) 0.06 (0.04, 0.14)

Eastern Cape 0.11 (0.06, 0.27) 0.5 (0.27, 0.91) 0.2 (0.1, 0.42) 0.08 (0.04, 0.22)

Limpopo 0.06 (0.02, 0.17) 0.18 (0.08, 0.4) 0.1 (0.04, 0.27) 0.05 (0.02, 0.12)

Mpumalanga 0.07 (0.03, 0.18) 0.1 (0.05, 0.2) 0.04 (0.02, 0.1) 0.21 (0.11, 0.5)

North West 0.05 (0.02, 0.11) 0.21 (0.1, 0.4) 0.16 (0.08, 0.32) 0.05 (0.03, 0.12)

Free State 0.13 (0.08, 0.28) 0.42 (0.23, 0.75) 0.26 (0.13, 0.52) 0.09 (0.05, 0.2)

Northern Cape 0.06 (0.03, 0.13) 0.21 (0.12, 0.37) 0.17 (0.1, 0.32) 0.22 (0.12, 0.48)

Estimates per Method 2 (i.e., weighted average of weekly IFR estimates):

Gauteng 0.09 (0.02, 0.18) 0.18 (0.05, 0.38) 0.12 (0.04, 0.25) 0.06 (0.01, 0.16)

KwaZulu- Natal 0.16 (0.02, 0.4) 0.28 (0.07, 0.69) 0.21 (0.06, 0.55) 0.08 (0.01, 0.23)

Western Cape 0.23 (0.06, 0.4) 0.3 (0.11, 0.68) 0.28 (0.09, 0.56) 0.13 (0.02, 0.32)

Eastern Cape 0.15 (0.03, 0.33) 0.39 (0.13, 0.8) 0.3 (0.07, 0.65) 0.15 (0.02, 0.39)

Limpopo 0.15 (0.01, 0.31) 0.19 (0.02, 0.6) 0.2 (0.03, 0.54) 0.11 (0.01, 0.31)

Mpumalanga 0.14 (0.01, 0.29) 0.16 (0.02, 0.39) 0.1 (0.01, 0.29) 0.1 (0.01, 0.2)

North West 0.12 (0.01, 0.27) 0.21 (0.04, 0.45) 0.17 (0.05, 0.37) 0.1 (0.01, 0.26)

Free State 0.18 (0.05, 0.45) 0.46 (0.15, 0.87) 0.32 (0.09, 0.65) 0.14 (0.03, 0.34)

Northern Cape 0.12 (0.02, 0.27) 0.22 (0.07, 0.44) 0.18 (0.05, 0.34) 0.1 (0.02, 0.22)

Appendix 1—table 4. Example estimation of reinfection rates.
As an example, to compute reinfection rates, assume Beta is estimated   θbeta  = 65% immune erosive, 
Delta is estimated   θdelta  = 40% immune erosive, and Omicron BA.1 is estimated   θomicron  = 65% 
immune erosive, relative to the combined immunity accumulated until the rise of each of these 
variants (2nd column); and the attack rates (3rd column) are c1=z1=30%, z2=20%, z3=50%, and z4=40% 
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during the ancestral, Beta, Delta, and Omicron BA.1 waves, respectively. Note these numbers 
roughly align with our estimates for Gauteng. The cumulative percentage of the population ever 
infected (including reinfections; 4th column), the percentage of reinfection during each VOC wave 
among the entire population (5th column) or among those infected by that variant (6th column) can 
be computed using the approach described in the supplemental text, sub- section “A proposed 
approach to compute reinfection rates using the model- inference estimates.”

Variant Immune erosion, θ Attack rate, z Cumulative % ever infected, c

Percentage reinfection this wave, among

entire population, η’ those infected this wave, η

Ancestral - 30.0% 30.0% - -

Beta 65.0% 20.0% 45.6% 4.4% 21.8%

Delta 40.0% 50.0% 83.1% 12.6% 25.1%

Omicron (BA.1) 65.0% 40.0% 92.6% 30.5% 76.1%

Appendix 1—table 5. Prior ranges for the parameters used in the model- inference system.
All initial values are drawn from uniform distributions using Latin Hypercube Sampling.

Parameter/ 
variable Symbol Prior range Source/rationale

Initial 
exposed E(t=0)

1–500 times of reported cases during the Week of 
March 15, 2020 for Western Cape and Eastern Cape; 
1–10 times of reported cases during the Week of March 
15, 2020, for other provinces

Low infection- detection rate in 
first weeks; earlier and higher 
case numbers reported in 
Western Cape and Eastern 
Cape than other provinces.

Initial 
infectious I(t=0) Same as for E(t=0)   

Initial 
susceptible S(t=0) 99%–100% of the population

Almost everyone is susceptible 
initially

Population 
size N N/A

Based on population data from 
COVID19ZA (Data Science for 
Social Impact Research Group 
at University of Pretoria, 
2021)

Variant- 
specific 
transmission 
rate β

For all provinces, starting from U[0.4, 0.7] at time 0 and 
allowed to increase over time using space re- probing 
(Yang and Shaman, 2014) with values drawn from 
U[0.5, 0.9] during the Beta wave, U[0.7, 1.25] during the 
Delta wave, and U[0.7, 1.3] during the Omicron wave.

For the initial range at model 
initialization, based on R0 
estimates of around 1.5–4 for 
SARS- CoV- 2. (Li et al., 2020a; 
Wu et al., 2020; Li et al., 
2020b) For the Beta, Delta and 
Omicron variants, we use large 
bounds for space re- probing 
(SR)(Yang and Shaman, 2014) 
to explore the parameter state 
space and enable estimation of 
changes in transmissibility due 
to the new variants. Note that 
SR is only applied to 3%–10% 
of the ensemble members and 
β can migrate outside either 
the initial range or the SR 
ranges during EAKF update.

Scaling of 
effectiveness 
of NPI e   [0.5, 1.5], for all provinces

Around 1, with a large bound 
to be flexible.

Latency 
period Z [2, 5] days, for all provinces

Incubation period: 5.2 days 
(95% CI: 4.1, 7) (Li et al., 
2020a); latency period is likely 
shorter than the incubation 
period

Appendix 1—table 5 Continued on next page
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Parameter/ 
variable Symbol Prior range Source/rationale

Infectious 
period D [2, 5] days, for all provinces

Time from symptom onset 
to hospitalization: 3.8 days 
(95% CI: 0, 12.0) in China, 
(Zhang et al., 2020) plus 
1–2 days viral shedding before 
symptom onset. We did not 
distinguish symptomatic/
asymptomatic infections.

Immunity 
period L [730, 1,095] days, for all provinces

Assuming immunity lasts for 
2–3 years

Mean of time 
from viral 
shedding to 
diagnosis Tm [5, 8] days, for all provinces

From a few days to a week from 
symptom onset to diagnosis/
reporting,(Zhang et al., 2020) 
plus 1–2 days of viral shedding 
(being infectious) before 
symptom onset.

Standard 
deviation 
(SD) of time 
from viral 
shedding to 
diagnosis Tsd [1, 3] days, for all provinces

To allow variation in time to 
diagnosis/reporting

Infection- 
detection 
rate r

Starting from U[0.001, 0.01] at time 0 for Western Cape 
and Eastern Cape as these two provinces had earlier 
and higher case numbers during March – April 2020 
than other provinces, suggesting lower detection rate at 
the time; for the rest starting from U[0.01, 0.06]. For all 
provinces, allowed r to increase over time using space 
re- probing (Yang and Shaman, 2014) with values drawn 
from uniform distributions with ranges between roughly 
0.01–0.12.

Large uncertainties; therefore, 
in general we use large prior 
bounds and large bounds for 
space re- probing (SR). Note 
that SR is only applied to 3%–
10% of the ensemble members 
and r can migrate outside 
either the initial range or the SR 
ranges during EAKF update.

Appendix 1—table 5 Continued

Appendix 1—table 5 Continued on next page

https://doi.org/10.7554/eLife.78933


 Research article      Epidemiology and Global Health

Yang and Shaman. eLife 2022;11:e78933. DOI: https://doi.org/10.7554/eLife.78933  49 of 50

Parameter/ 
variable Symbol Prior range Source/rationale

Infection 
fatality risk 
(IFR)   

For Gauteng: starting from [0.0001, 0.002] at time 0 and 
allowed to change over time using space re- probing 
(Yang and Shaman, 2014) with values drawn from 
U[0.0001, 0.005] during 12/13/2020 – 5/15/21 (due to 
Beta), U[0.0001, 0.002] during the Delta wave, and 
U[0.00001, 0.00075] starting 9/1/21 (Omicron wave).
For KwaZulu- Natal: starting from U[0.0001, 0.003] at 
time 0 and allowed to change over time using space 
re- probing (Yang and Shaman, 2014) with values 
drawn from U[0.0001, 0.005] during 4/19/20 –10/31/20 
(ancestral wave), U[0.0001, 0.01] during 11/1/20 – 
5/15/21 (Beta wave), U[0.0001, 0.002] during the Delta 
wave, and U[0.00001, 0.00075] starting 10/1/21 (Omicron 
wave).
For Western Cape: starting from U[0.00001, 0.003] at 
time 0 and allowed to change over time using space 
re- probing (Yang and Shaman, 2014) with values drawn 
from U[0.00001, 0.0004] during 4/19/20 – 10/31/20 
(ancestral wave), U[0.00001, 0.01] during 11/1/20 – 
5/15/21 (Beta wave), U[0.00001, 0.005] during 5/16/21 
– 9/30/21 (Delta wave) and U[0.00001, 0.002] starting 
10/1/21 (Omicron wave).
For Eastern Cape: starting from U[0.0001, 0.003] at 
time 0 and allowed to change over time using space 
re- probing (Yang and Shaman, 2014) with values 
drawn from U[0.0001, 0.004] during 4/19/20 – 9/30/20 
(Ancestral wave), U[0.0001, 0.01] during 10/1/20 – 
40/30/21 (Beta wave), [0.0001, 0.005] during the Delta 
wave, and U[0.00001, 0.002] or starting 10/16/21 
(Omicron wave).
For Limpopo and Mpumalanga: starting from U[0.0001, 
0.003] at time 0 and allowed to change over time using 
space re- probing (Yang and Shaman, 2014) with 
values drawn from U[0.0001, 0.01] during the Beta wave, 
U[0.0001, 0.005] during the Delta wave, U[0.00001,.002] 
for the Omicron wave.
For Free State: starting from U[0.0001, 0.003] at time 
0 and allowed to change over time using space re- 
probing (Yang and Shaman, 2014) with values drawn 
from U[0.0001, 0.006] during 3/16/20 – 10/31/20, 
U[0.0001, 0.01] during the Beta wave, U[0.0001, 0.008] 
during the Delta wave, and U[0.00001, 0.002] starting 
10/1/21 (Omicron wave).
For North West and Northern Cape: starting from 
U[0.0001, 0.003] at time 0 and allowed to change over 
time using space re- probing (Yang and Shaman, 2014) 
with values drawn from U[0.0001, 0.005] during the 
Beta wave, U[0.0001, 0.003] during the Delta wave, and 
U[0.00001, 0.0015] starting 10/1/21 (Omicron wave).

Based on previous estimates 
(Verity et al., 2020) but 
extend to have wider ranges. 
Note that SR is only applied 
to 3%–10% of the ensemble 
members and IFR can migrate 
outside either the initial range 
or the SR ranges during EAKF 
update.
Western Cape had earlier and 
higher case numbers during 
March – April 2020 than other 
provinces, suggesting lower 
detection rate at the time.
Initial mortality rate in Gauteng 
was relatively low because 
initial infections occurred 
mainly among middle- aged, 
returning holiday makers.
(Giandhari et al., 2021)
Earlier spread of Beta in 
Eastern Cape, KwaZulu- Natal, 
and Northern Cape, higher 
numbers of deaths per capita 
reported.
Free State reported higher 
number of deaths per capita.

Appendix 1—table 6. Approximate epidemic timing (mm/dd/yy) for each wave in each province, 
used in the study.
Note 3/5/22 is the last date of the study period.

Province Variant Start date
End 
date

Gauteng Ancestral 3/15/20 10/31/20

Gauteng Beta 11/1/20 5/15/21

Gauteng Delta 5/16/21 8/31/21

Gauteng Omicron 9/1/21 3/5/22

KwaZulu- Natal Ancestral 3/15/20 9/15/20

KwaZulu- Natal Beta 9/16/20 5/15/21

Appendix 1—table 5 Continued
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Province Variant Start date
End 
date

KwaZulu- Natal Delta 5/16/21 9/30/21

KwaZulu- Natal Omicron 10/1/21 3/5/22

Western Cape Ancestral 3/15/20 9/15/20

Western Cape Beta 9/16/20 5/15/21

Western Cape Delta 5/16/21 9/30/21

Western Cape Omicron 10/1/21 3/5/22

Eastern Cape Ancestral 3/15/20 8/15/20

Eastern Cape Beta 8/16/20 4/30/21

Eastern Cape Delta 5/1/21 10/15/21

Eastern Cape Omicron 10/16/21 3/5/22

Limpopo Ancestral 3/15/20 10/31/20

Limpopo Beta 11/1/20 5/15/21

Limpopo Delta 5/16/21 9/30/21

Limpopo Omicron 10/1/21 3/5/22

Mpumalanga Ancestral 3/15/20 10/31/20

Mpumalanga Beta 11/1/20 5/15/21

Mpumalanga Delta 5/16/21 9/30/21

Mpumalanga Omicron 10/1/21 3/5/22

North West Ancestral 3/15/20 10/31/20

North West Beta 11/1/20 5/15/21

North West Delta 5/16/21 9/30/21

North West Omicron 10/1/21 3/5/22

Free State Ancestral 3/15/20 10/31/20

Free State Beta 11/1/20 5/31/21

Free State Delta 6/1/21 9/30/21

Free State Omicron 10/1/21 3/5/22

Northern Cape Ancestral 3/15/20 10/31/20

Northern Cape Beta 11/1/20 5/15/21

Northern Cape Delta 5/16/21 9/30/21

Northern Cape Omicron 10/1/21 3/5/22

Appendix 1—table 6 Continued
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