Selenocyanate Derived Se-Incorporation into the Nitrogenase Fe Protein Cluster

Trixia M. Buscagan†‡*, Jens T. Kaiser†, and Douglas C. Rees††*

†Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125 USA
‡Howard Hughes Medical Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125 USA
Abstract

The nitrogenase Fe protein mediates ATP-dependent electron transfer to the nitrogenase MoFe protein during nitrogen fixation, in addition to catalyzing MoFe protein independent substrate (CO₂) reduction and facilitating MoFe protein metallocluster biosynthesis. The precise role(s) of the Fe protein Fe₄S₄ cluster in some of these processes remains ill-defined. Herein, we report crystallographic data demonstrating ATP-dependent chalcogenide exchange at the Fe₄S₄ cluster of the nitrogenase Fe protein when potassium selenocyanate is used as the selenium source, an unexpected result as the Fe protein cluster is not traditionally perceived as a site of substrate binding within nitrogenase. The observed chalcogenide exchange illustrates that this Fe₄S₄ cluster is capable of core substitution reactions under certain conditions, adding to the Fe protein’s repertoire of unique properties.
Main Text

Introduction

The nitrogenase Fe protein has multiple roles, with its most famous role being ATP-dependent electron transfer to the MoFe protein during N\textsubscript{2} fixation (Figure 1).1-3 The Fe protein also catalyzes MoFe protein-independent CO\textsubscript{2}-to-CO reduction,4 and participates in the biosynthesis of both the P-cluster and FeMo-cofactor.5,6 Unlike most Fe\textsubscript{4}S\textsubscript{4} clusters in metalloproteins which adopt two oxidation states, the Fe protein cluster can span three oxidation states (2+/1+0).7-9 While both MgATP- and MgADP-binding to the Fe protein result in lower reduction potentials of the Fe\textsubscript{4}S\textsubscript{4} cluster relative to the nucleotide-free state,1 only the MgATP bound state of the protein in the 1+ state is susceptible to rapid and complete iron chelation with bipyridine or bathophenanthroline.10-13 In the absence of nucleotide, iron chelation is slow, while MgADP inhibits chelation. Furthermore, the 2+ oxidized form of the Fe\textsubscript{4}S\textsubscript{4} cluster undergoes ATP-dependent Fe chelation, yielding an intact Fe\textsubscript{2}S\textsubscript{2} cluster.13 The origins of these unusual properties of the Fe-protein cluster are not well understood, but may reflect the solvent accessibility of the cluster and its positioning at the dimer interface.

Our group has reported a crystallographic approach for quantifying Se-incorporation into the active site FeMo-cofactor of the MoFe protein.14 Key to this study was potassium selenocyanate (KSeCN), which like thiocyanate, is an alternative substrate for nitrogenase.14,15 Within nitrogenase, the FeMo-cofactor is traditionally perceived as the site of N\textsubscript{2} (and other substrate) binding. The observation that Se-incorporation occurred at the FeMo-cofactor under KSeCN turnover, but not at the P-cluster, supported this paradigm. Herein, using these conditions, we report a novel cluster conversion at the Fe protein in which the sulfide ligands of the Fe\textsubscript{4}S\textsubscript{4} cluster exchange with “Se” from KSeCN to yield an intact Fe\textsubscript{4}X\textsubscript{4} cluster (X = Se, S).
with Se-incorporation at all chalcogenide sites. This result was unexpected as the Fe protein cluster is not traditionally considered a substrate binding site. While the generation of Fe₄Se₄-containing Fe proteins using apoproteins (proteins deficient in the native Fe₄S₄ cluster) and a (i) selenium source, iron source, and reductant or (ii) with synthetic clusters has been reported, the work described herein details a reaction distinct from reconstitution; namely, we report an exchange reaction under KSeCN turnover using native Fe₄S₄-containing Fe protein.

Results

We initially observed Se-incorporation into the Fe protein cluster using our group’s previously reported KSeCN turnover conditions, which include KSeCN as the selenium source, dithionite as the reductant, and an ATP regenerating system. Crystallization of the nitrogenase proteins from the concentrated reaction mixture was achieved by selecting conditions that favor either MoFe protein or Fe protein crystals. The crystal structure at 1.51 Å resolution of the Se-incorporated Fe protein isolated from this reaction mixture is shown in Figure 2. The crystal form is isomorphous to the previously reported MgADP bound state of the Fe protein, with the Fe protein molecular two-fold axis coincident with a crystallographic two-fold axis so that the asymmetric unit contains one subunit and half the cluster. The unique Fe1 and Fe2 sites are coordinated to Cys 97A and Cys 132A, respectively, while the unique chalcogenide sites 3 and 4 are buried and surface exposed, respectively. The locations of the Se ions within the protein structure were identified by collecting two sets of anomalous diffraction data: one above (12,668 eV) and one below (12,643 eV) the Se K-edge. Well-defined density was observed at both chalcogenide positions of the Fe₄S₄ cluster in the double difference anomalous Fourier map (Δanom12668eV-Δanom12643eV). Modeling the cluster exclusively as either
the Fe₄S₄ or Fe₄Se₄ form resulted in substantial positive or negative difference density in the corresponding \(F_{\text{obs}} - F_{\text{calc}} \) difference Fourier maps, respectively (Figure 2-figure supplement 1). Likewise, B-factors with lower or higher values at the core chalcogenide positions, relative to the iron cluster positions, were observed when the cluster was modeled exclusively as the all-sulfide vs all-selenide form, suggesting an under- vs over-modeling of electron density, respectively (Supplementary file 1). By fixing the chalcogenide B-factor values to a value similar to that of the Fe ions, satisfactory mixed cluster models were obtained (see Methods for refinement details, Supplementary file 2, and Figure 2-figure supplement 2). The Se occupancies at the X3 and X4 positions are shown in Table 1, entry 1, with the buried X3 position exhibiting a greater extent of Se-incorporation relative to the surface exposed X4 position.

To discern the essential components for Se-incorporation at the Fe protein cluster, control reactions were performed and the resultant protein crystallized and subjected to X-ray diffraction (XRD). To determine whether the MoFe protein was required for Se-incorporation at the Fe protein cluster, the MoFe protein was omitted from the reaction (Table 1, entry 2). Se-incorporation at the Fe protein cluster occurred in the absence of the MoFe protein as observed in the \(\Delta \text{anom}_{12668\text{eV}} - \Delta \text{anom}_{12643\text{eV}} \) difference Fourier map. To rule out small amounts of contaminating MoFe protein, an EPR spectrum of the Fe protein used in the no MoFe protein control reaction was acquired (Figure 2-figure supplement 3); no signal corresponding to the \(S = 3/2 \) state of the FeMo-cofactor is observed. Additionally, the Fe protein used in the control was subjected to acetylene turnover conditions with no added MoFe protein. No ethylene formation was detected by gas chromatography, consistent with the absence of the MoFe protein. Performing the no MoFe protein reaction at lower KSeCN concentrations (11 and 1 mM KSeCN) resulted in a significant decrease in the intensities of the anomalous signals.
corresponding to the chalcogenide positions in the higher energy (12,668 eV) anomalous difference Fourier map, reflecting less Se-incorporation at the cluster (Figures 2e and 2f, and Table 1, entries 3 and 4). Having established that the MoFe protein is not required for Se-incorporation at the Fe protein, the nucleotide dependence of the reaction was examined. Omitting both the MoFe protein and ATP regeneration system from the reaction did not yield crystals suitable for XRD studies. To obtain suitable crystals for XRD, the control reaction was repeated, followed by addition of MgADP during the reaction work-up to form the MgADP bound state for crystallization. No Se-incorporation is observed in the anomalous difference Fourier map calculated from data collected at 12,668 eV, when the Fe protein and KSeCN are the sole components of the reaction (See Supplementary file 2, PDB ID 7TPY and Figure 2-figure supplement 2d). Additionally, when MgADP and KSeCN, but no MoFe protein or ATP regeneration system, are mixed with the Fe protein, no Se-incorporation at the Fe₄S₄ cluster occurs (Supplementary file 2, PDB ID 7TPZ and Figure 2-figure supplement 2e). Finally, in an attempt to observe a potential ligand-bound form of the Fe₄S₄ cluster, the MgADP bound crystal form was soaked with KSeCN; no density corresponding to `-SeCN, either near the Fe₄S₄ cluster or anywhere else in the protein structure, was observed (Figure 2-figure supplement 4).

Discussion

The ability of iron-sulfur cluster containing metalloproteins to undergo a variety of cluster conversions and exchange reactions involving exogenous iron and sulfur species has been recognized since the pioneering work of Beinert.²¹⁻²⁴ An orthogonal method for monitoring S-exchange in clusters uses selenium as a structural surrogate of sulfur.²⁵,²⁶ Our group’s previously reported Se-incorporation results coupled with the results described herein highlight both the utility of this approach with nitrogenase and the selectivity of this process, under KSeCN
turnover conditions. While the Fe protein cluster and the two-coordinate sulfides of the FeMo-cofactor undergo Se-incorporation, the P-cluster, which has been reported to undergo redox-dependent structural changes,\(^{27,28}\) has not yet been observed to undergo exchange of any of the constituent sulfides.

In line with the proposal that MgATP-binding results in a conformational change that renders the cluster more accessible to ligand binding relative to the nucleotide free or MgADP bound states,\(^{29}\) Se-incorporation at the Fe\(_{4}\)S\(_{4}\) cluster is only observed in the presence of MgATP. The accessibility of the Fe protein cluster\(^ {19,30–32}\) contrasts with most Fe\(_{4}\)S\(_{4}\) containing proteins that feature buried clusters, with only a few exceptions.\(^ {31,33}\) It should be noted that although the Fe protein cluster remains relatively exposed in the absence of nucleotide or in the presence of MgADP (Figure 2a and 2b), incubation with KSeCN does not result in S/Se-exchange under these conditions (Figure 2-figure supplement 2d and 2e). Consequently, the position of the cluster near the surface of the protein is not a sufficient condition for KSeCN-derived Se-incorporation. These observations highlight the MgATP-dependent nature of the Fe protein as a means of regulating the physiological properties of the cluster and cluster atom exchange.

While the crystallographic observations described herein unambiguously establish the occurrence of chalcogenide exchange at the Fe protein cluster, the mechanism of this reaction remains open. The ability of Fe protein to reduce CO\(_{2}\)-to-CO\(_{4}\), in the absence of the MoFe protein, suggests that the Fe\(_{4}\)S\(_{4}\) cluster may coordinate CO\(_{2}\).\(^ {34}\) Furthermore, the first observed instance of N\(_{2}\) bound to a synthetic cluster (a MoFe\(_{3}\)S\(_{4}\) cubane) was recently reported,\(^ {35}\) demonstrating that relatively simple FeS clusters can coordinate exogenous ligands.\(^ {36}\) In the context of MoFe protein-independent CO\(_{2}\) reduction and ligand-binding to synthetic clusters, KSeCN can be viewed as a substrate analogue to CO\(_{2}\), with the Se-exchange mechanism
proceeding by initial SeCN binding to an Fe center, followed by Se-C bond cleavage, and chalcogenide exchange. Finally, while we have not probed the catalytic properties of the (partially) Se-incorporated Fe protein, Ribbe et al. recently described the redox and catalytic properties of a fully Fe₄Se₄-reconstituted Fe protein. In short, the Fe₄Se₄-reconstituted Fe protein exhibited poorer catalytic activity relative to the native protein, which is consistent with the poor KSeCN reduction activity previously reported by our group given the likelihood that Se-incorporated Fe protein was also being generated under these conditions. As highlighted in this work, any future models of substrate reduction by nitrogenase should consider the possibility that the Fe protein cluster is non-innocent with respect to substrate binding.
Table 1. Summary of crystallographically determined Se occupancies for KSeCN derived Se-incorporation at the Fe protein cluster under various conditions. The occupancies for the X3 and X4 chalcogenide positions were determined in triplicate\(^\text{§}\) by analyzing three crystals prepared from a specified set of reaction conditions. For occupancy values corresponding to individual crystals, please see Supplementary file 3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Brief Description of reaction conditions*</th>
<th>X3 Occupancy (Average + Standard Deviation)</th>
<th>X4 Occupancy (Average + Standard Deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22 mM KSeCN, w/ MoFe protein</td>
<td>0.51 ± 0.09</td>
<td>0.43 ± 0.06</td>
</tr>
<tr>
<td>2</td>
<td>22 mM KSeCN</td>
<td>0.58 ± 0.03</td>
<td>0.38 ± 0.05</td>
</tr>
<tr>
<td>3</td>
<td>11 mM KSeCN</td>
<td>0.07 ± 0.02</td>
<td>0.06 ± 0.03</td>
</tr>
<tr>
<td>4</td>
<td>1 mM KSeCN</td>
<td>0.02 ± 0.01</td>
<td>0.02 ± 0.01</td>
</tr>
</tbody>
</table>

*See Methods for full description

\(^\text{§}\)With the exception of entry 2 for which four crystals were analyzed.
Figure Legends

Figure 1. The nitrogenase Fe protein contains a Fe$_4$S$_4$ cluster with unique properties and participates in multiple reactions.

Figure 2. Pymol representation of the Se-incorporated Fe protein cluster at 1.51 Å resolution (PDB ID 7T4H), where the cluster chalcogenide (X) positions (green) feature a mixture of S and Se ions. (a) Protein overview (b) with overlaid electron density ($2F_{\text{obs}}-F_{\text{calc}}$) map around the Fe$_4S_4$ cluster contoured at 1.5 σ (blue mesh) viewed with the dimer two-fold axis coincident with, and perpendicular to the plane of the paper, respectively. Anomalous difference Fourier maps calculated from diffraction data collected at (c) 12,668 eV contoured at 11.0 σ (magenta mesh), (d) 12,643 eV contoured at 11.0 σ (purple mesh), and (e) double difference ($\Delta F_{\text{anom}12668eV}-\Delta F_{\text{anom}12643eV}$) anomalous map contoured at 11.0 σ (teal mesh). (f-g) Anomalous difference Fourier maps calculated from diffraction data collected at 12,668 eV (magenta mesh) corresponding to crystals derived from reactions containing 22 (PDB ID 7TNE), 11 (PDB ID 7TPN), and 1 mM KSeCN (PDB ID 7TPO) contoured at 11.0, 7.0, and 5.0 σ, respectively.

Figure 2 supplement 1. Comparison of $2F_{\text{obs}}-F_{\text{calc}}$ and $F_{\text{obs}}-F_{\text{calc}}$ maps for cluster modeled as exclusively S- vs Se-containing forms.

Figure 2 supplement 2. Anomalous difference Fourier maps calculated from diffraction data collected at 12,668 eV for Se-free Fe protein crystals.
Figure 2 supplement 3. EPR spectrum of Fe protein used in control reaction with no MoFe protein.

Figure 2 supplement 4. Anomalous difference Fourier map calculated from diffraction data collected at 12,668 eV for ADP-bound Fe protein crystal soaked with KSeCN.

Figure 2 supplement 5. Double difference (Δanom$_{12668\text{eV}}$–Δanom$_{12643\text{eV}}$) anomalous map for Se-incorporated MoFe protein (FeMo-cofactor).

Figure 2 supplement 6. Fluorescence scan collected around Se K-edge energy for Se-incorporated Fe protein crystal.

Figure 2 supplement 7. EPR spectrum of purified Se-incorporated Fe protein.
Methods

Key Resources Table

<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>strain, strain background (Azotobacter vinelandii, Lipman)</td>
<td>OP</td>
<td>ATCC</td>
<td>13705</td>
<td></td>
</tr>
</tbody>
</table>

General considerations. All protein manipulations were carried out using standard Schlenk or anaerobic tent techniques under an atmosphere of Ar or 97/3% Ar/H₂ mixture, respectively. Potassium selenocyanate (KSeCN) was purchased from Sigma Aldrich. All other reagents were purchased from commercial vendors and used without further purification unless otherwise stated.

Growth of A. vinelandii and nitrogenase purification. Azotobacter vinelandii Lipman (ATCC 13705, strain designation OP) growth and nitrogenase purification were performed based on previously published methods with the following modifications. All protein buffers (pH 7.8) were deoxygenated, kept under an argon atmosphere, and contained 5 mM dithionite (Na₂S₂O₄). The supernatant from the centrifuged cell lysate was loaded onto a Q Sepharose fast flow column (GE Healthcare). In vitro nitrogenase activity was determined by monitoring acetylene reduction to ethylene as previously described. Ethylene and acetylene were quantified using gas chromatography (activated alumina 60/90 mesh column, flame ionization detector). MoFe protein had a specific activity of 2940 ± 30 nmol min⁻¹ mg⁻¹ (V_max) and Fe protein had a specific activity of 1880 ± 90 nmol min⁻¹ mg⁻¹ (V_max) when measured by acetylene reduction at saturation of each component.
Preparation of Se-Incorporated Nitrogenase Proteins Using KSeCN. The Se-incorporated proteins were prepared using a previously reported protocol,14 with the following modifications. To generate sufficient material for EPR spectroscopy or crystallization, two parallel 12 mL reactions (each containing 1.5 mg of MoFe protein and 1.65 mg of Fe protein [component ratio of 2]) were combined and concentrated under argon overpressure using an Amicon filtration cell with a molecular weight cut-off of 100 kDa. The resultant concentrated protein was used to crystallize Se-incorporated MoFe protein. The corresponding 100 kDa filtrate was collected, and re-subjected to concentration under argon overpressure using an Amicon filtration cell with a molecular weight cut-off of 30 kDa. The latter batch of concentrated protein was used to crystallize Se-incorporated Fe protein. Note that the filter membranes did not completely separate the Se-incorporated proteins (as determined by SDS-PAGE); regardless, selective crystallization of either protein was successful (\textit{vide infra}).

Control KSeCN reactions with no MoFe protein. The procedure for the various control reactions were identical to that of the preparation of Se-incorporated nitrogenase proteins described above with the following changes noted. No MoFe protein was included in the control reactions. Because the MoFe protein was absent in these reactions, a 30 kDa filter membrane was used to concentrate the reaction mixture for crystallization. In addition, for the no-nucleotide control, the components of the ATP regeneration system were excluded and the resultant concentrated protein was rinsed with a 5 mM MgADP solution (3 X 8 mL) for crystallization purposes. Finally, for the MgADP control, the ATP regeneration system was replaced with a 5 mM MgADP solution.

Crystallization and data collection of Se-incorporated MoFe protein. The Se-incorporated MoFe protein was crystallized by the sitting-drop vapor diffusion method at ambient temperature
in an inert gas chamber. The reservoir solution contained 15-20% polyethylene glycol (PEG)
4000, 0.5-0.8 M NaCl, 0.2 M imidazole/malate (pH 8.0), and 5 mM dithionite. Additionally,
native MoFe protein crystals (crushed using a seed bead Eppendorf tool with either a plastic bead
or glass beads) were used as seeds to accelerate the crystallization process and improve the
overall crystal quality. For flash-cooling, 2-methyl-2,4-pentanediol (MPD) was either added
directly to the crystal droplet, yielding 10% MPD, or the crystals were transferred into a
harvesting solution consisting of the reservoir solution and 10% MPD. Complete sets of
diffraction data were collected at the Synchrotron Radiation Lightsource (SSRL) beamline 12-2
equipped with a Dectris Pilatus 6M detector. Two sets of anomalous diffraction data were
collected above and below the Se K-edge at 12,668 eV (0.978690 Å) and 12,643 eV (0.980620
Å), respectively. Data were indexed, integrated, and scaled using iMosflm, XDS, and Aimless.39–
Phase information were obtained using the available 1.00 Å resolution structure (PDB: 3U7Q)
as a molecular replacement model, omitting the metalloclusters and water from 3U7Q. Structural
refinement, and rebuilding were accomplished by using REFMAC5/ PHENIX, and COOT,
respectively.42–44 Neutral atomic scattering factors were used in the refinement. Anomalous
difference Fourier maps were calculated using CAD/FFT in the CCP4 suite. The double
difference anomalous Fourier maps were calculated using SFTOOLS (CCP4). Protein structures
were displayed in PYMOL.

Consistent with our previously published MoFe protein structures containing Se-
incorporated FeMo-cofactor,14,45 this structure revealed that (1) the belt sulfides were labile, with
Se-incorporation predominantly at the 2B site, but also at the 5A and 3A sites (Figure 2-figure
supplement 5) and (2) no Se-incorporation occurs at the P-cluster.
Preparation, crystallization and data collection of Se-incorporated Fe protein. Se-incorporated Fe protein was crystallized by the sitting-drop vapor diffusion method at ambient temperature in an inert gas chamber. The reservoir solution contained 36-41% PEG 400, 0.1-0.3 M NaCl, 0.1 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.5), 2.5 mM dithionite, and 0.17 mM 7-cyclohexyl-1-heptyl-β-D-maltoside (Cymal 7). The same parameters for data collection and refinement as Se-incorporated MoFe protein were used, with the following modifications: phase information was obtained using PDB coordinate set 6N4L as the Fe protein molecular replacement model, with the cluster, MgADP, and water molecules omitted. Cluster modeling was accomplished by modeling individual X (X = Se, S) and Fe ions at the respective cluster positions and by inputting bond distance and bond angle restraints, based on the core cluster metrics determined for synthetic clusters (SIMNOR10 and COZXUK), into the PHENIX.REFINE configuration. The \(f' = -6.00 \) and \(f'' = 4.00 \) values for Se were used, with the latter value matching well with the fluorescence scans of Se-incorporated Fe protein crystals (see Figure 2-figure supplement 6 for sample fluorescence scan). Se occupancies were determined by fixing the cluster atom B-factors to the value the Fe atoms refined to during an initial refinement. Given that B-factors and occupancies are correlated and the fact that there is minimal difference between the S and Fe cluster atom B-factors in Se-free crystals (see Figure 2-figure supplement 2 and Supplementary file 2), this approach is reasonable. Neutral atomic scattering factors were used in the refinement. Anomalous difference Fourier maps were calculated using CAD/FFT in the CCP4 suite. The double difference anomalous Fourier maps were calculated using SFTOOLS (CCP4). Protein structures were displayed in PYMOL. Given restrictions regarding cluster notation as determined by the PDB, the individual atom notation in our models was converted to the cluster (SFS or SF4) format for the purposes of depositing the
structures into the PDB. While the two-cluster model accurately reflects the occupancies at the distinct chalcogenide sites (X3 and X4) determined upon refinement with the individual atom cluster notation, we recognize that the two-cluster model does not realistically reflect the data and that a mixture of partially occupied Se-incorporated clusters is likely, i.e. Fe₄S₄, Fe₄S₃Se, Fe₄S₂Se₂, Fe₄SSe₃, and Fe₄Se₄ may all be present to yield the crystallographically determined occupancies.

The structural models and structure factors have been deposited with the Protein Data Bank (PDB) under accession codes 7TPW, 7TPX, 7TPY, 7TPZ, 7T4H, 7TQ0, 7TQ9, 7TQC, 7TNE, 7TQE, 7TQF, 7TPN, 7TQH, 7TQI, 7TPO, 7TQJ, 7TQK, and 7TPV. For tables with data collection and refinement statistics, please see Supplementary files 4-9.

KSeCN-soaking of Fe protein crystals. The MgADP bound crystal form of the Fe protein was soaked with KSeCN (5 mM) by adding KSeCN directly to a crystal well, re-sealing, and allowing the well to sit for various lengths of time. The particular dataset provided here was obtained after the crystals had been soaked with KSeCN for one week.

Purified Se-incorporated Fe protein EPR sample preparation. Se-labeled protein from three KSeCN reaction sets were combined and loaded onto an anaerobic 1 mL HiTrap Q anion exchange column (previously equilibrated with 50 mM tris/HCl buffer (pH = 7.8) which contained 150 mM NaCl [low salt] and 5 mM dithionite). Se-incorporated MoFe protein and Se-incorporated Fe protein eluted with a linear NaCl gradient at 280 and 430 mM NaCl, respectively. Se-incorporated Fe protein was concentrated to approximately 16 mg/ml under argon overpressure using an Amicon filtration cell with a molecular weight cut-off of 30 kDa. The EPR sample was prepared as an approximately 50 μM frozen glass of Se-incorporated Fe
protein in a 50:50 mixture of buffer:ethylene glycol. The buffer solution consisted of 200 mM NaCl and 50 mM tris/HCl (pH = 7.8) and contained 25 mM dithionite (7.5 mM dithionite in EPR sample overall).

CW EPR Spectroscopy. X-band EPR spectra were obtained on a Bruker EMX spectrometer equipped with an ER 4116DM Dual Mode resonator operated in perpendicular mode at 10 K using an Oxford Instruments ESR900 helium flow cryostat. Bruker Win-EPR software (ver. 3.0) was used for data acquisition. Spectra were simulated using the EasySpin48 simulation toolbox (release 5.2.28) with Matlab 2020b.

Discussion of EPR data: The Fe protein features an $S = 1/2$ signal corresponding to the $[\text{Fe}_4\text{S}_4]^{1+}$ state of the cluster with $g = [2.05, 1.94, 1.88]$.29 While the Fe protein can exist in the $S = 3/2$ and $S = 1/2$ states, the population of the spin state depends on the sample conditions, including the presence of nucleotide and solvent. In 50% ethylene glycol, used as a cryoprotectant, most of the Fe protein cluster is in the $S = 1/2$ state.49

The mixture of S/Se-labeled Fe protein could be separated from the MoFe protein using anion exchange chromatography and subjected to electron paramagnetic resonance (EPR) spectroscopy. Based on the crystallographic data, we anticipate that the Se-labeled Fe protein exists in a mixture of Se-containing cluster states (i.e. Fe$_4$S$_4$, Fe$_4$S$_3$Se, Fe$_4$S$_2$Se$_2$, Fe$_4$SSe$_3$, and Fe$_4$Se$_4$ may all be present). As such, a familiar $g = 2$ signal corresponding to the $[\text{Fe}_4\text{S}_4]^{1+}$ cluster of the Fe protein was observed (Figure 2-figure supplement 7). While there are slight differences in the EPR spectra between the all-S vs Fe$_4$X$_4$ (X = S, Se) mixture of the Fe protein cluster, the signal of the -S/-Se mixture could be successfully simulated using the same parameters as the all-S containing Fe protein cluster.50 One plausible interpretation of our EPR data is that the various Fe$_4$X$_4$ states yield nearly identical, overlapping, signals consistent with the observation that EPR
spectra of Fe₄S₄ vs Fe₄Se₄ clusters are nearly identical. Alternatively, it has been recently reported that an Fe protein with an Fe₄Se₄ cluster is reduced to the all ferrous state in the presence of dithionite, rendering it EPR silent in perpendicular mode EPR. In this context, the signal observed in Figure 2-figure supplement 7 may correspond to the [Fe₄S₄]⁺ state while the [Fe₄Se₄]⁰ state is not observed. Our results cannot distinguish between these two possible interpretations.
AUTHOR INFORMATION

Corresponding Authors

Douglas C. Rees; orcid.org/0000-0003-4073-1185; E-mail: dcrees@caltech.edu

Trixia M. Buscagan; orcid.org/0000-0001-8242-9203; E-mail: tbuscaga@caltech.edu

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We dedicate this paper to Prof. James B. Howard and are grateful for our extensive exchanges on cluster atom exchanges—Jim really shaped the way we thought about the Fe protein cluster and our journeys with nitrogenase. We also thank Dr. Javier Fajardo Jr. for insightful discussions, Jeffrey Lai for growing *Azotobacter vinelandii*, and Dr. Paul Oyala for EPR training and support. The authors are grateful to the Gordon and Betty Moore Foundation, Don and Judy Voet, and the Beckman Institute at Caltech for their generous support of the Molecular Observatory at Caltech. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The Caltech EPR Facility is supported by NSF-1531940. This work was supported by the National Institute of Health (NIH Grant GM45162) and the Howard Hughes Medical Institute (HHMI). This article is subject to HHMI’s Open Access to Publications policy. HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their research articles. Pursuant
to those licenses, the author-accepted manuscript of this article can be made freely available under a CC BY 4.0 license immediately upon publication.
References

Map Legend:
Blue: $2F_{\text{obs}}-F_{\text{calc}}$ map
anomalous difference Fourier maps calculated from diffraction data collected at:
Pink: 12.668 eV, Purple: 12.643 eV
Teal: double difference anomalous map ($\Delta\text{anom}_{12668\text{eV}}-\Delta\text{anom}_{12643\text{eV}}$)