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Abstract Schizophrenia results in part from a failure of prefrontal networks but we lack full 
understanding of how disruptions at a synaptic level cause failures at the network level. This is a 
crucial gap in our understanding because it prevents us from discovering how genetic mutations 
and environmental risks that alter synaptic function cause prefrontal network to fail in schizo-
phrenia. To address that question, we developed a recurrent spiking network model of prefrontal 
local circuits that can explain the link between NMDAR synaptic and 0-lag spike synchrony defi-
cits we recently observed in a pharmacological monkey model of prefrontal network failure in 
schizophrenia. We analyze how the balance between AMPA and NMDA components of recurrent 
excitation and GABA inhibition in the network influence oscillatory spike synchrony to inform the 
biological data. We show that reducing recurrent NMDAR synaptic currents prevents the network 
from shifting from a steady to oscillatory state in response to extrinsic inputs such as might occur 
during behavior. These findings strongly parallel dynamic modulation of 0-lag spike synchrony we 
observed between neurons in monkey prefrontal cortex during behavior, as well as the suppression 
of this 0-lag spiking by administration of NMDAR antagonists. As such, our cortical network model 
provides a plausible mechanism explaining the link between NMDAR synaptic and 0-lag spike 
synchrony deficits observed in a pharmacological monkey model of prefrontal network failure in 
schizophrenia.

Editor's evaluation
This valuable modeling study proposes a local circuit mechanism based on a network of recurrently 
connected excitatory and inhibitory neurons for the recently reported effect that NMDA receptor 
antagonists cause a drastic reduction of prefrontal neural synchronization in preparation for motor 
responses in a cognitive task. This mechanism is convincingly supported by simulations of spiking 
networks and a thorough analysis of the parameter dependency of network dynamics using mean-
field theory. The work will be of general interest to computational neuroscientists, and especially for 
those interested in computational psychiatry.
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Introduction
NMDAR synaptic malfunction has been implicated as causal in schizophrenia (Fromer et al., 2014; 
Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Timms et  al., 
2013), and loss of NMDAR synaptic function in prefrontal networks is believed to contribute to 
cognitive deficits as well as clinical symptoms in the disease (Goldman-Rakic, 1999; Javitt et al., 
2012; Wang et al., 2013). However, we do not have a complete understanding of how NMDAR 
synaptic mechanisms influence neural dynamics in prefrontal networks, nor how the disruption of 
NMDAR synaptic mechanisms might cause prefrontal networks to malfunction. To address these 
questions, we recently investigated how blocking NMDAR altered neural dynamics and effective 
communication between neurons in prefrontal cortex of monkeys performing a cognitive control 
task measuring deficits in schizophrenia (Blackman et al., 2013; Jones et al., 2010; Kummerfeld 
et al., 2020; Zick et al., 2018). We found that reducing NMDAR synaptic communication reduced 
the frequency of synchronous (‘0-lag’) spiking between neurons, as well as effective communication 
between neurons on timescales consistent with monosynaptic interactions between them (Kummer-
feld et al., 2020; Zick et al., 2022; Zick et al., 2018). Whereas these studies suggested that NMDAR 
synaptic function and spike timing in prefrontal networks were linked, they did not elucidate the 
circuit mechanisms responsible.

In the current study, we developed a spiking neural network model to understand mechanisms 
that might mediate the link between NMDAR synaptic malfunction and neural dynamics (reduced 
0-lag synchronous spiking) we observed in biological data (Kummerfeld et al., 2020; Zick et al., 
2022; Zick et al., 2018). The network is comprised of leaky integrate-and-fire neurons embedded in 
a sparsely connected recurrent network employing realistic NMDAR, GABAR, and AMPAR mediated 
synaptic currents. We use network stability and mean field analyses to investigate how the balance 
between NMDA and AMPA components of recurrent excitatory and GABA inhibitory currents influ-
ence regimes of network dynamics and spiking synchrony.

eLife digest Schizophrenia is a long-term mental health condition that can cause a person to see, 
hear or believe things that are not real. Although researchers do not fully understand the causes of 
schizophrenia, it is known to disrupt synapses, which connect neurons in the brain to form circuits that 
carry out a specific function when activated. This disruption alters the pattern of activity among the 
neurons, distorting the way that information is processed and leading to symptoms. Development of 
schizophrenia is thought to be due to interactions between many factors, including genetic makeup, 
changes in how the brain matures during development, and environmental stress.

Despite animal studies revealing how neural circuits can fail at the level of individual cells, it remains 
difficult to predict or understand the complex ways that this damage affects advanced brain functions. 
Previous research in monkeys showed that mimicking schizophrenia using a drug that blocks a partic-
ular type of synapse prevented neurons from coordinating their activity. However, this did not address 
how synaptic and cellular changes lead to disrupted neural circuits.

To better understand this, Crowe et al. developed a computational model of neural circuits to 
study how they respond to synapse disruption. To replicate the brain, the model consisted of two 
types of neurons – those that activate connecting cells in response to received signals and those that 
suppress them. This model could replicate the complex network behavior that causes brain cells to 
respond to sensory inputs. Increasing the strength of inputs to the network caused it to switch from a 
state in which the cells fired independently to one where the cells fired at the same time. As was previ-
ously seen in monkeys, blocking a particular type of synapse thought to be involved in schizophrenia 
prevented the cells from coordinating their signaling.

The findings suggest that schizophrenia-causing factors can reduce the ability of neurons to fire 
at the same instant. Disrupting this process could lead to weaker and fewer synapses forming during 
brain development or loss of synapses in adults. If that is the case, and scientists can understand 
how factors combine to trigger this process, the mechanism of coordinated activity failure revealed 
by the model could help identify treatments that prevent or reverse the synapse disruption seen in 
schizophrenia.

https://doi.org/10.7554/eLife.79352
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For cortical neurons synchrony can occur naturally due to the local recurrent network connectivity, 
even when external afferent inputs are entirely uncorrelated. Theoretical studies have shown that 
such synchrony can arise in randomly connected recurrent networks operating in asynchronous irreg-
ular (Amit, 1989; Amit and Brunel, 1997; Brunel, 2000; Renart et al., 2010; van Vreeswijk and 
Sompolinsky, 1996; Vicente et al., 2008) and synchronous irregular regimes (Brunel, 2000; Brunel 
and Hakim, 1999; Brunel and Wang, 2003; Ledoux and Brunel, 2011). In both regimes, individual 
neurons fire spikes highly irregularly at low rates, a typical situation in a cortex. The major distinction 
is that in an asynchronous regime population spike rate is steady in time, whereas in a synchronous 
regime it becomes oscillatory.

We show that simulated prefrontal networks operating near the boundary between steady (asyn-
chronous irregular) and oscillatory (synchronous irregular) regimes in the synaptic parameter space 
can explain several key experimental observations. First, such networks achieve biologically realistic 
stochastic spike trains and firing rates of excitatory and inhibitory neurons in prefrontal cortex. Second, 
increased extrinsic inputs, such as those that might occur during behavior, shift these networks from 
a steady to an oscillatory regime that causes the emergence of 0-lag spiking between neurons as 
they stochastically entrain to oscillatory population activity. Third, and perhaps most importantly, we 
show that reducing recurrent NMDAR synaptic currents prevents these networks from transitioning 
into oscillatory activity in response to extrinsic inputs, thereby preventing the emergence of 0-lag 
spike synchrony. Although prior modeling studies have addressed the relationship between NMDAR 
function and oscillatory activity in prefrontal networks (Brunel and Wang, 2003; Compte et al., 2000; 
Kirli et al., 2014; Wang, 1999), none account for this range of experimental observations. The current 
results allow us to establish strong parallels between simulated and biological data, including the 
emergence of 0-lag synchronous spiking via recurrent synaptic interactions between neurons during 
behavior, the association between synchronous spiking and oscillatory population activity, as well as 
their joint dependence on NMDAR synaptic mechanisms, both in our current simulation and in the 
neural data (Zick et al., 2018).

Results
Summary of experimental results
In this section, we summarize main experimental findings reported previously by our group (Zick 
et  al., 2018). In that study, spike trains of ensembles of single neurons were recorded simultane-
ously from PFC of monkeys while they performed the dot-pattern expectancy (DPX) task, a task that 
measures specific deficits in cognitive control in schizophrenia (Jones et al., 2010). In the DPX task, 
the correct response (left or right joystick movement) to a probe stimulus depends on a preceding cue 
followed by a delay period (Materials and methods).

In the present study, we focus on PFC population spike dynamics recorded in the DPX task under 
two conditions: drug-naive and drug. The drug naive data were collected before monkeys were 
administered drug, phencyclidine, which is an NMDA receptor antagonist. Figure 1 shows the popu-
lation average pairwise correlation between spike trains of neurons recorded in drug-naive (black) and 
drug (magenta) conditions. The strength of spike correlation was quantified by the ratio between the 
observed frequency of synchronous spikes (1ms resolution) and the frequency expected if the spike 
trains were uncorrelated (we subtracted 1 from this ratio so that correlation value is zero for uncor-
related, positive for correlated, and negative for anticorrelated spike activity, Materials and methods). 
The frequency of spike synchrony was determined from activity observed during a short (100 ms-long) 
window that was slid across time of task performance. Figure 1A shows that spike synchrony obtained 
from trials aligned to the cue onset (time 0) remained relatively weak and unchanged during the cue 
and delay periods, until the probe onset, in both drug-naive and drug conditions. The corresponding 
population average spike rates during these periods are shown in Figure 1C. Because the instant of 
response after probe presentation varied from trial to trial, to appreciate the time course of synchrony 
and spike rate after the delay period immediately preceding the response, in Figure 1B and D we 
aligned trials to response time (time 0). It is seen that synchrony started to increase sharply about 
200ms before the motor response in the drug-naive condition and reached its peak at the time of 
the response (Figure 1B, black). The spike rate also started to increase before the response but more 
gradually and starting earlier before the response (Figure 1D, black). Both spike synchrony (Figure 1B) 

https://doi.org/10.7554/eLife.79352
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and spike rate (Figure 1D) exhibited secondary peaks occurring approximately 150–250ms after the 
response. In the drug condition, however, the increase in spike synchrony at the time of the response 
was markedly weakened (Figure 1B, magenta). The increase in spike rate was also reduced, although 
less dramatically (Figure 1D, magenta). We term this effect as NMDAR blockage induced desynchro-
nization of spiking activity.

Network model and theoretical framework
To understand the phenomenon of drug-induced desynchronization of spiking activity and the role 
played by various components of synaptic currents, we considered a spiking network model repre-
senting a local circuit of monkey PFC. Details of the model and the theoretical framework are given in 
Materials and methods. Here, we only highlight their main aspects.

The network comprises excitatory and inhibitory neurons representing populations of pyramidal 
cells and interneurons, respectively. All neurons are modeled as leaky integrate-and-fire units (see, 
e.g., Dayan and Abbott, 2001). Synaptic connections are random and sparse, but the number of 
connections received by individual neurons is large. In addition to the recurrent local connections, 

Figure 1. Population average spike rate and synchrony between spike trains of neuron pairs recorded during the DPX task as a function of time. Plots 
show time evolution of spike synchrony (A, B) and spike rate (C, D) estimated with 100 ms temporal resolution for drug-naive (black) and drug (magenta) 
conditions. Spike synchrony was measured with 1 ms resolution, and only neuron pairs for which a reasonably reliable estimation of synchrony could be 
achieved contributed to the plots (see Materials and methods). (A, C): Trials are aligned to the cue onset (‍t = 0‍ ms); in all trials, the cue was presented 
until ‍t = 1, 000‍ ms (yellow shaded area), followed by a 1,000 ms delay period, after which the probe was presented at ‍t = 2, 000‍ ms for 500 ms (green 
shaded area). Color-coded horizontal error-bars indicate the mean and standard deviation of the motor response time for the corresponding drug 
condition. The numbers of contributing pairs for drug-naive and drug conditions are 524 and 195 (A), and the number of neurons are, correspondingly, 
514 and 343 (C). (B, D): Trials are aligned to the time of motor response (‍t = 0‍ ms) to show the temporal modulation of synchrony and spike rate 
during the last 600 ms immediately preceding the response. Color-coded horizontal error-bars indicate the mean and standard deviation of the probe 
presentation time for the corresponding drug condition. The numbers of contributing pairs for drug-naive and drug conditions are 661 and 223 (B), and 
the number of neurons are, correspondingly, 538 and 343 (D). Shaded grey and magenta bands show the standard errors for spike synchrony (A, B) and 
rate (C, D). Green asterisks show the instances of times when the drug-naive and drug conditions are statistically different (false discovery rate 0.05 
[Benjamini and Hochberg, 1995] using two-sample t-test p-values).

https://doi.org/10.7554/eLife.79352
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each neuron also receives external connections from excitatory neurons outside of the network that 
fire spikes with rate ‍νX‍.

Recurrent synaptic currents of excitatory connections are two-component, mediated by AMPA 
and NMDA receptors, whereas currents of inhibitory connections are mediated by GABAA recep-
tors (GABA thereafter). External currents represent the noisy inputs due to the background synaptic 
activity and are mediated by AMPA receptors. Thus, the model entails eight maximal synaptic conduc-
tance parameters ‍gX,α‍, ‍gAMPA,α‍, ‍gNMDA,α‍, ‍gGABA,α‍ corresponding to the external AMPA, recurrent 
AMPA, NMDA, and GABA currents (‍α = E, I‍ for excitatory and inhibitory neurons, respectively).

To produce a desired regime of network dynamics (asynchronous or synchronous) with a given 
firing rate of excitatory and inhibitory neurons ‍νE‍ and ‍νI‍, respectively, the values of the conductance 
parameters should be properly adjusted. For this purpose, we used mean field analysis. In this frame-
work, population mean firing rates ‍v

0
E‍ and ‍v

0
I ‍ in the asynchronous stationary state of the network can 

be effectively parametrized by three parameters expressed as ratios of component synaptic currents: 

‍IAMPA/IGABA‍, ‍INMDA/IGABA‍, and ‍IX,E/Iθ,E‍, where ‍IR‍ is the mean current of the ‍R‍-receptor mediated 
synapse (‍R = X, AMPA, NMDA, GABA‍), and ‍Iθ,E‍ is the current that is needed for an excitatory neuron 
to reach firing threshold ‍θ‍ in absence of recurrent feedback. These parameters characterize the 
balance between recurrent excitation and inhibition, and the balance between external input and 
firing threshold. Once they are specified, for a given external spike rate ‍νX‍ one can solve the mean 
field equations to obtain the underlying eight synaptic conductances providing the desired popula-
tion mean firing rates ‍v

0
E‍ and ‍v

0
I ‍ in asynchronous state of the network.

While the mean field analysis allows us to determine synaptic conductances that achieve desired 
firing rates of neurons, whether these rates remain stable over time is another issue. To address it, 
we conduct a linear stability analysis of the asynchronous state to understand if the network develops 
oscillatory instability caused by small fluctuations in population firing rates. This analysis entails two 
parameters, ‍λ‍ and ‍ω‍, describing the rate of instability growth and the oscillation frequency. The asyn-
chronous state is stable when ‍λ < 0‍; in this case small perturbations of firing rates cause exponentially 
damped oscillation of network activity. The case ‍λ = 0‍ corresponds to the onset of instability of the 
asynchronous state and the emergence of sustained sinusoidal oscillations of population average 
firing rates with frequency ‍ω‍; in the oscillatory regime spike trains remain sparse and irregular but 
at each oscillation cycle a random subset of network neurons fire synchronously giving rise to the 
synchronous irregular state. Lastly, when ‍λ > 0‍, small fluctuations in the stationary rates develop 
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Figure 2. Characteristics of the system predicted by the linear stability analysis. Parameters are as follows: prescribed firing rates of excitatory and 
inhibitory populations are 5 Hz and 20 Hz, respectively; external input spike rate is 5 Hz; and the balance between NMDA and GABA currents is fixed at 
0.15. (A:) State diagram in the ‍

(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ parameter plane showing color coded value of the rate of instability growth ‍λ‍: in the region 

of the parameter space where ‍λ < 0‍ the asynchronous state is stable, whereas the region where ‍λ > 0‍ corresponds to the synchronous oscillation state. 
The two regimes are separated by a critical line on which ‍λ = 0‍. This boundary, shown by a white line, is the locus where the stationary network dynamic 
becomes unstable, and oscillatory population activity develops. Each point in this parameter plane corresponds to a network with a specific set of eight 
synaptic conductances provided by the mean field approximation. Red and blue asterisks are the points in the state diagram corresponding to the 
steady and critical primary networks, respectively (see Selection of Primary Networks in Results). (B:) Network oscillation frequency that develops on the 
critical line as a function of the balance between AMPA component of recurrent excitation and inhibition.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Dependence of the characteristic features of the network on the balance between the NMDA and GABA currents.

https://doi.org/10.7554/eLife.79352
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oscillatory instability with the amplitude of oscillations growing exponentially in time; however, higher 
order terms neglected in linear analysis can eventually saturate the instability growth (Brunel and 
Hakim, 1999), resulting in a stable oscillation with a finite amplitude.

To examine the boundary between the regions of asynchronous and synchronous states, 
we fix the balance of tonic NMDA current relative to GABA current, ‍INMDA/IGABA‍, and vary the 
remaining two parameters: the balance between recurrent excitation and inhibition, ‍IAMPA/IGABA‍, 
and the balance between external excitation and firing threshold, ‍IX,E/Iθ,E‍. For a given point in this 

‍
(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ parameter plane we solve the mean field equations to find the underlying set 

of eight synaptic conductances that provide the prescribed rates ‍v
0
E‍ and ‍v

0
I ‍ given external spike rate 

‍νX‍, and then carry out linear stability analysis to find out if these rates are stable. Figure 2A shows a 
state diagram of the system for which external spike rate is set to ‍νX = 5‍ Hz, the rates of excitatory 
and inhibitory populations are set to ‍v

0
E = 5‍ Hz, ‍v

0
I = 20‍ Hz, and the NMDA current balance is fixed at 

‍INMDA/IGABA = 0.15‍. The diagram shows solutions for ‍λ‍ obtained from the linear stability analysis in 
the ‍

(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ parameter space. The asynchronous stationary state corresponds to the 

region where ‍λ < 0‍, whereas the synchronous oscillation state is realized in the region where ‍λ > 0‍. 
The asynchronous and synchronous states are separated by a “critical” or instability line on which 
‍λ = 0‍ (shown in white color in Figure 2A). This boundary is the locus where the stationary network 
dynamics becomes unstable, and the sinusoidal oscillation of network activity develops. The oscilla-
tion frequency on the critical line, ‍fntwrk = ω/2π‍, as a function of the balance between the recurrent 
AMPA and GABA currents, ‍IAMPA/IGABA‍, is shown in Figure 2B.

The characteristic features of the state diagram qualitatively remain unchanged when the balance 
between the NMDA and GABA currents is varied (Figure 2—figure supplement 1A). Furthermore, 
the network frequency at the onset of oscillation, ‍fntwrk‍, essentially is independent of the ‍INMDA/IGABA‍ 
balance (Figure 2—figure supplement 1B).

Integration of DPX task context and drug condition into the model
To study spike synchrony in asynchronous and synchronous networks in the context of the DPX task 
performed in drug-naive and drug conditions (Zick et al., 2018), we make two assumptions regarding 
neural and synaptic activity: (1) the increase in spike synchronization observed before the monkey’s 
response in Zick et al., 2018 is due to task-specific external afferent signals received by PFC neurons 
after probe presentation; (2) administration of NMDAR antagonist results in blocking NMDAR medi-
ated synaptic currents. In the framework of our model, we implemented these assumptions as follows: 
task specific external signals were accounted for by an increase in the external spike rate from its 
background level ‍νX‍, whereas the effect of drug administration was modeled by setting NMDAR 
conductances ‍gNMDA,E‍ and ‍gNMDA,I‍ to zero.

Next, to investigate how spike synchrony in asynchronous and synchronous networks depends on 
the modulations of ‍vX‍ and ‍gNMDA,α‍, for each network regime we proceed with the following three 
steps. First, we choose proper values for conductances, so that the underlying network operates in a 
desired regime providing the prescribed population firing rates ‍v

∗
E‍ and ‍v

∗
I ‍ for a given external spike 

rate ‍v
∗
X‍. We shall designate this network as the primary network relating to the underlying regime and 

distinguish the corresponding values of all its parameters by the asterisk (*). Second, we carry out 
a series of network simulations, in which external spike rate ‍vX‍ and NMDAR conductance ‍gNMDA,α‍ 
are varied relative to their standard values ‍v

∗
X‍ and ‍g

∗
NMDA,α‍, respectively. Lastly, for each simulated 

network, we compute population average pairwise correlation between spike trains of neurons and 
analyze how this correlation depends on the external spike rate and NMDAR conductance.

Selection of primary networks
To perform a comparison between the primary networks, we need to choose appropriate values for 
their parameters. We begin with the parameters that are common to both networks. First, we set 
the excitatory and inhibitory population mean firing rates to ‍v

∗
E = 5‍ Hz and ‍v

∗
I = 20‍ Hz, respectively, 

which are on the order of magnitude of spontaneous rates observed for PFC neurons. Second, since 
external inputs represent activity of excitatory neurons outside the PFC circuit model, we choose the 
background external rate ‍v

∗
X‍ to be the same as the excitatory population rate ‍v

∗
E‍ inside the model 

and, thus, set ‍v
∗
X = 5‍ Hz. Lastly, for both networks, we fix the balance between NMDA and GABA 

currents at ‍I
∗
NMDA/I∗GABA = 0.15‍. Note that the state diagram in the ‍

(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ space 

https://doi.org/10.7554/eLife.79352
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shown in Figure 2A was obtained exactly for these values of the above listed parameters. We use this 
state diagram for selecting the primary networks and determining the remaining parameters that are 
network specific.

In this regard, we note that each point in the ‍
(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ plane corresponds to a network 

with a specific set of synaptic conductances. For synchronous regime, we look for a network on the 
critical line (‍λ = 0‍, white line in Figure 2A), at the onset of oscillatory instability with a frequency in 
the ‍γ‍-band (a frequency band associated with the LFPs recorded from prefrontal areas [Bastos et al., 
2018; Lundqvist et al., 2016]). For instance, the point marked by a blue asterisk in Figure 2A located 
at ‍

(
I∗AMPA/I∗GABA = 0.4, I∗X,E/I∗θ,E = 1.09

)
‍ corresponds to such a network with oscillation frequency 

‍f
∗
ntwrk ∼ 58‍ Hz (Figure  2B). In the following, we refer to this network as the critical state primary 

network.
Correspondingly, for the asynchronous regime, we need to select a network that is far from the crit-

ical line and deep in the region of stable network dynamics (‍λ < 0‍). The point marked by a red asterisk 
in Figure  2A located at ‍

(
I∗AMPA/I∗GABA = 0.2, I∗X,E/I∗θ,E = 1.09

)
‍ is an example of such a network. We 

shall refer to this network as the steady state primary network. For each primary network, we obtain 
the underlying set of eight synaptic conductance parameters ‍g

∗
GABA,α, g∗NMDA,α, g∗AMPA,α, g∗xAMPA,α‍ 

(‍α = E, I‍) by numerically solving the mean field equations.

Correlation of spiking activity and synchrony in the asynchronous and 
synchronous states
To investigate characteristic features of spiking dynamics in asynchronous and synchronous regimes, 
we carried out direct simulations of the primary networks. Both networks comprise ‍N = 5, 000‍ neurons, 
of which ‍NE = 4, 000‍ are excitatory and ‍NI = 1, 000‍ inhibitory. Neurons are connected randomly with a 
probability ‍p = 0.2‍. Figure 3 illustrate the behavior of simulated networks with synaptic conductance 
parameters corresponding to the steady and critical primary networks indicated by the red and blue 
asterisks, respectively, in the state diagram presented in Figure 2A. The dynamic behavior is shown at 
the level of individual cell activity (spike rasters, top of panels in Figure 3), as well as whole population 
activity (bottom of panels in Figure 3).

In simulations shown in Figure 3 panels A1 and A2 external spike rate ‍νX‍ was fixed at the level of 

‍v
∗
X = 5‍ Hz chosen for the primary networks. It is seen that excitatory and inhibitory neurons exhibit 

highly irregular firing with average rates, ‍νE‍ and ‍νI‍, about 5.2 Hz and 20 Hz in the steady state primary 
network (Figure 3A1) and 5.5 Hz and 21 Hz in the critical state primary network (Figure 3A2). These 
observed in simulations rates ‍νE‍ and ‍νI‍ are in good agreement with the prescribed rates ‍v

∗
E = 5‍ 

Hz and ‍v
∗
I = 20‍ Hz that were used to derive the synaptic conductance parameters of the simu-

lated networks. Moreover, Figure 3A1 demonstrates that population activity of the steady state 
primary network is rather stationary in time, whereas activity of the critical primary network shown in 
Figure 3A2 exhibits signs of developing of oscillatory instability (compare Figure 3—figure supple-
ment 1A1 vs Figure 3—figure supplement 1A2). Thus, spiking dynamics observed in the simulated 
steady state primary network displays basic characteristics of the asynchronous regime—irregular 
firing of individual neurons and stationary population activity. Correspondingly, the behavior of 
the simulated critical state primary network exhibits similarity with the boundary regime on which 
the asynchronous stationary state destabilizes and oscillatory behavior of the population activity 
emerges.

Panels B1 and B2 in Figure 3 demonstrate results of simulations in which external spike rate ‍νX‍ was 
increased by 5% relative to the rate ‍v

∗
X‍ used in simulations illustrated in Figure 3 panels A1 and A2. 

For the steady state primary network (Figure 3B1), the firing rates of excitatory and inhibitory neurons 
increase with the external drive. However, the regime of network dynamics qualitatively does not 
change and remains asynchronous (compare Figure 3—figure supplement 1A1 vs Figure 3—figure 
supplement 1B1). In contrast, stronger external inputs received by the critical state primary network 
synchronize population activity (Figure 3B2). It is seen that while individual neurons continue to fire 
irregularly, population activity now clearly exhibits oscillatory behavior, indicating that the network is 
in synchronous irregular regime in which the average firing frequency of neurons is low, about 20 Hz, 
compared to the frequency of network oscillation, which is about 50 Hz (see Figure 3—figure supple-
ment 1B2). This frequency is close to the theoretically predicted network frequency of 58 Hz near the 
onset of oscillation.

https://doi.org/10.7554/eLife.79352
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Figure 3. Simulations of networks composed of 4,000 excitatory and 1,000 inhibitory neurons connected randomly with probability 0.2. Conductance 
parameters are solutions of mean field equations for the steady state primary network (A1, B1) and the critical state primary network (A2, 
B2) corresponding to the red and blue asterisks, respectively, in the ‍

(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ state plane shown in Figure 2A and inset. (A1, B1), 

(A2, B2): Top, spike rasters (sorted by rate) of 200 excitatory (black) and 50 inhibitory (green) neurons. Bottom, time-varying activity (1ms resolution) of 
excitatory (black) and inhibitory (green) populations. (A1, A2): External input spike rate ‍νX = 5‍ Hz. Excitatory and inhibitory neurons display average 
firing rates of, respectively, 5.3 Hz and 20 Hz (A1), and 6.3 Hz and 22 Hz (A2). (B1, B2): In these simulations ‍νX‍ was increased by 5%. Excitatory and 
inhibitory neurons display average firing rates of, respectively, 7.5 Hz and 25 Hz (B1), and 12 Hz and 34 Hz (B2).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Power spectra of population spiking activity observed in network simulations.

https://doi.org/10.7554/eLife.79352
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Thus, direct simulations confirm that analytically derived network parameters for both steady and 
critical primary networks provide the anticipated regimes of network dynamics.

To facilitate the comparison of characteristic features exhibited by a simulated network with exper-
imentally measurable quantities, we compute temporal correlation of spiking activity that quantifies 
average pairwise correlation between spike trains of excitatory neurons. In the context of the DPX 
task performed in drug-naive and drug conditions studied in Zick et al., 2018 and with the purpose 
of elucidating the mechanism of drug-induced desynchronization of spiking activity, we investigated 
how temporal correlations depend on the strength of external drive and the NMDAR mediated 
synaptic current. To this end, we varied external input rate ‍vX‍ and the NMDAR conductance param-
eters ‍gNMDA,E‍ and ‍gNMDA,I‍ relative to their respective standard values ‍v

∗
X‍, and ‍g

∗
NMDA,E‍ and ‍g

∗
NMDA,I‍ , 

while keeping all other system parameters fixed, and performed simulations of the ensuing networks. 
Conductances for excitatory and inhibitory neurons were scaled with the same factor and, therefore, 
their relative values ‍gNMDA,E/g∗NMDA,E‍ and ‍gNMDA,I/g∗NMDA,I‍ are the same; in the following we drop the 

‍E, I‍ designation.
Figure 4 displays correlation of spiking activity (panels A1, A2, C1, C2) and synchrony (0-lag correla-

tion, panels B1, B2, D1, D2) obtained from spike trains of simulated steady (panels A1, B1, C1, D1) and 
critical (panels A2, B2, C2, D2) networks for a range of ‍vX/v∗X‍ (panels A1, A2, B1, B2) and ‍gNMDA/g∗NMDA‍ 
(panels C1, C2, D1, D2) values. It is seen that in the steady state primary network correlations are weak 
and insensitive to the modulations of external input rate or NMDAR conductance (Figure 4 panels A1, 
B1, C1, D1). In contrast, in the critical state primary network temporal correlations show sharp depen-
dence on these parameters (Figure 4 panels A2, C2), and with decreasing external drive or decreasing 
NMDAR conductance profoundly attenuating spike synchrony (Figure 4 panels B2, D2).

Circuit mechanisms of spike synchronization modulation
What are the network mechanisms of external drive and NMDA conductance dependent spike 
synchronization? Why in the network close to the boundary between asynchronous and synchronous 
regimes, are spike correlations strongly affected by the modulations of external inputs and recurrent 
NMDA currents, but in the network far from this boundary and deep in the region of the asynchro-
nous regime, correlations are essentially independent of these modulations? How does the inter-
play between synchronous and asynchronous regimes at their boundary lead to spike synchronization 
when external input rate ‍νX‍ increases, and to desynchronization when the NMDA conductance ‍gNMDA‍ 
decreases?

To answer these questions and to illuminate the role of asynchronous and synchronous regimes in 
the shaping of network-wide synchronization of spiking activity, we carried out linear stability analysis 
in the ‍

(
vX/v∗X, gNMDA/g∗NMDA

)
‍ parameter plane while keeping the remaining parameters fixed. For both 

steady and critical state primary networks, stability is investigated in the vicinity of the standard values 
of the external input spike rate and NMDAR conductances corresponding to the respective networks.

Figure 5 illustrates state diagrams in the ‍
(
vX/v∗X, gNMDA/g∗NMDA

)
‍ plane in the neighborhood of the 

steady (Figure 5A) and critical (Figure 5B) state primary networks. As in Figure 2A, the critical line 
(‍λ = 0‍) separating the asynchronous stationary (‍λ < 0‍) and synchronous oscillatory (‍λ > 0‍) states is 
shown in white color. Asterisks correspond to the loci of the steady (Figure 5A) and critical (Figure 5B) 
state primary networks in these parameter planes. It is seen that the modulations of ‍νX‍ and ‍gNMDA‍ in 
the steady state primary network (Figure 5A) do not change the network state; these modulations 
have no impact on the spike correlation and the strength of synchrony (Figure  4B1 and D1 and 
Figure 5A insets).

In contrast, the modulations of ‍νX‍ and ‍gNMDA‍ in the critical state primary network (Figure 5B) 
induce transitions between the network states. Specifically, as the external input spike rate ‍νX‍ increases 
(horizontal yellow arrow in Figure 5B) the system crosses the boundary between asynchronous and 
synchronous regimes and the network state changes from stationary to oscillatory; this transition is 
accompanied by a sharp increase in spike synchrony (Figure 4B2 and Figure 5B bottom inset). The 
decrease of NMDAR conductance ‍gNMDA‍ (vertical magenta arrow in Figure 5B) causes the system to 
cross the boundary again, and the network state changes now from oscillatory to stationary; this tran-
sition is accompanied by a sharp decrease in spike synchrony (Figure 4D2 and Figure 5B right inset).

Thus, this analysis reveals that networks that are close to the boundary between asynchronous and 
synchronous regimes, in contrast to asynchronous networks that are far from this boundary, have a rich 

https://doi.org/10.7554/eLife.79352
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Figure 4. Spiking activity correlation and synchrony computed from spike trains of simulated networks. 
Conductance parameters are solutions of mean field equations for the steady state primary network (A1, B1, 
C1, D1) and the critical state primary network (A2, B2, C2, D2) corresponding to the red and blue asterisks, 
respectively, in the ‍

(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ state plane shown in Figure 2A and inset. For the steady state 

network, correlation and synchrony are weak and insensitive to the modulation of external input spike rate ‍νX‍ 
(A1, B1) and NMDAR conductance ‍gNMDA‍ (C1, D1). In contrast, for the critical state network spike correlation 
depends strongly on the external spike rate (A2) and NMDAR conductance (C2) and the degree of spike synchrony 
could be modulated from relatively weak to strong (B2, D2). Results shown in (C1, D1, C2, D2) are obtained from 

Figure 4 continued on next page
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dynamic behavior. The dynamic states of these networks could be easily switched around by modu-
lations in the external drive and the strength of recurrent excitation by NMDAR mediated currents. 
Switching between the network states, in turn, results in sharp changes in the degree of network-wide 
synchronization of spiking activity in response to these modulations.

Explaining the effects of blocking of NMDAR observed in primate PFC 
by the prefrontal circuit model
As illustrated in Figure 1B, spiking activity observed in monkey PFC in the DPX task (Zick et al., 2018) 
remains practically desynchronized after probe presentation for about 200ms but it begins to increase 
sharply about 200ms before the motor response. To get a deeper insight into the properties of spike 
timing dynamics, we show in Figure  6 temporal correlations of spiking activity during the 200ms 
period following probe presentation (Figure 6A1) and during the 200ms period preceding the motor 
response (Figure 6B1) in drug-naive (black) and drug (magenta) conditions. It can be now appreci-
ated that in drug-naive condition, population activity during the pre-response period develops char-
acteristics of synchronized oscillation behavior, as signaled by the appearance of time lagged peaks 
of correlation (blue arrows, Figure 6B1, black). However, administration of a drug blocking NMDAR 
desynchronizes neuronal activity during this period (Figure 6B1, magenta).

The presence of strong spike synchrony (0ms lag) together with the correlation peaks at ±18 ms 
lags in the pre-response period (Figure 6B1), and the absence of these characteristics in the initial 
probe period (Figure 6A1) suggest that after probe presentation but before motor response network 
dynamics switches from the asynchronous stationary state to the synchronous oscillation state with 
a ‍γ‍-frequency around 55 Hz. Desynchronization of neuronal activity produced by drug administra-
tion implies that NMDAR blockage prevents PFC circuits operating in the asynchronous regime from 
switching to synchronous dynamics.

These experimental findings could be readily explained by a prefrontal network model that oper-
ates on the boundary between asynchronous and synchronous regimes. We start by recalling that in 
the framework of our approach the pre-response afferent signals, which we assume are received by 
PFC neurons before the monkey’s response, are modeled as an increase in the external spike rate 
from its background level ‍νX‍. This assumption is supported by the increase in the population spike 
rate preceding the monkey’s response observed in neural data shown in Figure 1D. Secondly, the 
effect of drug administration is modeled by setting NMDAR conductances ‍gNMDA,E‍ and ‍gNMDA,I‍ to 
zero. The capacity of the prefrontal network model to provide a circuit mechanism for the emer-
gence of synchrony in spiking activity and drug-dependent desynchronization can be illustrated 
by considering the system’s behavior in the ‍

(
vX/v∗X, gNMDA/g∗NMDA

)
‍ state plane around the point 

‍
(
vX/v∗X = 1, gNMDA/g∗NMDA = 1

)
‍ corresponding to the critical state primary network (Figure 6C). In this 

space, the effects of probe presentation on the spiking dynamics of the prefrontal circuit model under 
drug-naive (‍gNMDA/g∗NMDA = 1.25‍) and drug (‍gNMDA/g∗NMDA = 0‍) conditions are represented, respec-
tively, by black and magenta horizontal arrows (Figure 6C). The arrows are pointing from the state 
of the network corresponding to the initial probe period (‍vX/v∗X = 0.97‍) to the network state corre-
sponding to the pre-response period (‍vX/v∗X = 1.03‍).

In drug-naive condition, increase in the external spike rate ‍vX‍ switches the circuit model from asyn-
chronous to synchronous regime (Figure 6C, black arrow crosses the boundary between the regimes). 
The oscillation frequency is about 50 Hz, which is manifested in the temporal correlations of spiking 
activity as a sharp increase in synchrony and appearance of peaks at ±20 ms lags (Figure 6A2 vs B2, 
black line). This is very similar to what is observed in monkey PFC during the initial probe and pre-
response periods in the DPX task (Fig. 6A1 vs A2 and B1 vs B2, black line). In the drug condition, 
setting NMDAR conductance to zero prevents the circuit model from switching to the synchronous 
regime in response to an increase in the external spike rate ‍vX‍ (Figure 6C, magenta arrow does not 
cross the boundary between the regimes). This, in turn, considerably reduces the degree of spike 

simulations in which ‍νX‍ is increased by 5%. The magnitudes of modulation of ‍νX‍ and ‍gNMDA‍ are normalized by 
their standard values ‍v

∗
X‍ and ‍g

∗
NMDA‍, respectively. The numbers next to color-coded lines for spike correlation 

plots show the normalized magnitudes of external input spike rates, ‍vX/v∗X‍, (A1, A2) and NMDAR conductance, 

‍gNMDA/g∗NMDA‍, (C1, C2).

Figure 4 continued

https://doi.org/10.7554/eLife.79352
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Figure 5. Network state diagrams in th e ‍
(
vX/v∗X, gNMDA/g∗NMDA

)
‍ plane. The critical line (‍λ = 0‍, white line) 

separates the parameter plane into regions of asynchronous stationary (‍λ < 0‍) and synchronous oscillatory (‍λ > 0‍) 
regimes. In the state diagram for the steady state network (A) the critical line is beyond the area covered by the 
diagram. Asterisks correspond to the steady (A) and critical (B) state primary networks in these planes. Color-
coded arrows show the range of modulation of ‍νX‍ (yellow) and ‍gNMDA‍ (magenta) corresponding to the range of 
modulation of these parameters for which temporal correlations of spiking activity and synchrony are shown in 
Figure 4. The insets show how spike synchrony changes along the corresponding arrows in the state diagrams. 
These insets display the same plots for spike synchrony that are shown in panels B1 and B2 (bottom insets in 
A and B, correspondingly) and D1 and D2 (right insets in A and B, correspondingly) in Figure 4.

https://doi.org/10.7554/eLife.79352


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Crowe et al. eLife 2024;13:e79352. DOI: https://doi.org/10.7554/eLife.79352 � 13 of 46

CC

⁄
N
M
D
A

N
M
D
A

∗

⁄X X
∗

Asynchronous

Synchronous

* , s
-1

-20 0 20
-0.1

0

0.1

0.2 NMDA = 0

Sp
ik

e
Co

rr
el

a�
on

A2

Time Lag, ms

Asynchronous State Model PFC Network

-20 0 20
-0.1

0

0.1

0.2 NMDA = 0

Sp
ik

e
Co

rr
el

a�
on

B2

Time Lag, ms

Synchronous State

Primate PFC Network

-20 0 20
-0.1

0

0.1

0.2

Sp
ik

e
Co

rr
el

a�
on

Ini�al Probe Period
NMDAR blockedA1

Time Lag, ms
-20 0 20

-0.1

0

0.1

0.2

Sp
ik

e
Co

rr
el

a�
on

Pre-response Period
NMDAR blockedB1

Time Lag, ms

Figure 6. Comparison of the effects of blocking of NMDAR in primate PFC and in the prefrontal circuit model. (A1, B1) Plots show population average 
temporal correlations between spiking activity of neuron pairs recorded from PFC during the 200 ms period immediately following probe presentation 
(A1) and the 200 ms period immediately preceding the motor response (B1) in the DPX task (Zick et al., 2018). In the drug-naive condition (black line), 
population activity during the pre-response period develops characteristics of synchronous oscillation with a frequency of ∼55 Hz (peaks at time lags 
±18 ms, blue arrows, B1). Administration of a drug blocking NMDAR (magenta line) desynchronizes neuronal activity during the pre-response period 
(B1). (A2, B2, C) Temporal correlations (A2, B2) computed from spike trains of simulated networks corresponding to four conditions shown in the 

‍
(
νX/v∗X, gNMDA/g∗NMDA

)
‍ state plane (C) by bold dots and arrow heads: initial probe ( ‍vX/v∗X = 0.97‍, A2) and pre-response ( ‍vX/v∗X = 1.03‍, B2) periods 

for drug-naive ( ‍gNMDA/g∗NMDA = 1.25‍, black line) and drug ( ‍gNMDA/g∗NMDA = 0‍, magenta line) conditions. The critical line (‍λ = 0‍, white line in panel 
C) separates the parameter plane into regions of asynchronous stationary (‍λ < 0‍) and synchronous oscillation (‍λ > 0‍) regimes. The locus of the blue 
asterisk corresponds to the critical state primary network in this plane.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Dependence of spike synchrony on the network size.

Figure supplement 2. Dependence of spike synchrony on the fraction of neurons receiving increased external input.

https://doi.org/10.7554/eLife.79352
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synchrony compared to drug-naive condition 
(Figure  6B2, magenta vs black line), similar to 
the desynchronizing effect of NMDAR antagonist 
administration on spiking activity in monkey PFC 
(Figure 6 B1, magenta vs black line).

In the consideration above, we investigated 
the network spiking dynamics in the asynchro-
nous and synchronous states during stationary 
external input at a decreased (‍vX/v∗X = 0.97‍) and 
increased (‍vX/v∗X = 1.03‍) external rate. To simu-
late a more biologically realistic scenario, we also 
examined the network behavior in response to 
transient external input. In this analysis, external 
input rate had a trapezoid-like temporal profile 
(Figure  7A). First, external rate was fixed at a 
lower level (‍vX/v∗X = 0.97‍) setting the network 
in the asynchronous state. Then, throughout 
100ms period the rate was linearly increased to 
a higher level (‍vX/v∗X = 1.05‍) and kept constant for 
400ms, pushing the network across the boundary 
to the synchronous state. Finally, the rate was 
decreased to the initial level during the next 
100ms to switch the network back to the asyn-
chronous state. Figure 7 shows time evolution of 
population spike rate (Figure 7B) and synchrony 
(Figure 7C) in response to such transient external 
input (Figure 7A) for ‍gNMDA/g∗NMDA = 1.25‍ (black) 
and ‍gNMDA/g∗NMDA = 0‍ (magenta) corresponding 
to drug-naive and drug conditions, respec-
tively. These simulated temporal profiles can 
be compared with the temporal profiles shown 
in Figure  1 for population average spike rate 
(Figure 1D) and synchrony (Figure 1B) obtained 
from experimental data. Parallels between the 
simulated and recorded neural data are evident. 
Spike synchrony and spike rate peak at about the 
same time both in simulated (Figure 7B and C) 
and recorded (Figure 1B and D) neural activity. 
Further, the increase in spike rate is early and 
gradual in comparison to the increase in spike 
synchrony which is delayed and abrupt both 
in simulated (Figure  7B and C) and recorded 
(Figure 1B and D) neural activity. While our rela-
tively simple model qualitatively is consistent 
with dynamical features of the firing rate and 
synchrony observed in primate PFC, there are, 
however, some quantitative discrepancies in firing 
rates. In addition, recorded neural activity exhibits 
complex dynamics following the response 
(Figure  1B and D), that are not evident in the 
simulation (Figure  7B and D). This presumably 
reflects temporal modulation of synaptic inputs to 
the recorded neurons in the biological data that 
are more complex than the ramp transient we 
implemented in the simulation.
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Figure 7. Network spiking dynamics in response 
to transient input. (A) Temporal profile of external 
rate. Initially, external rate is fixed at a lower level 
(‍vX/v∗X = 0.97‍) and the network is in the asynchronous 
state. At time ‍t = 0‍ the rate begins to increase and 
in the next 100 ms it crosses the boundary between 
the asynchronous and synchronous states reaching a 
higher level (‍vX/v∗X = 1.05‍). The rate is kept constant 
for the next 400 ms and, afterwards, it decreases within 
100 ms and returns to its initial level corresponding 
to the asynchronous state. (B, C) Average population 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.79352


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Crowe et al. eLife 2024;13:e79352. DOI: https://doi.org/10.7554/eLife.79352 � 15 of 46

In summary, the analyses of simulations with 
stationary and transient external inputs suggest 
that when the prefrontal network model operates 
close to the boundary between asynchronous 
stationary and synchronous oscillatory regimes 
it has a considerable capacity to capture experi-
mentally observed aspects of spike synchrony in 
both drug-naive and drug conditions.

Role of the balance between 
NMDAR mediated recurrent 
excitation and GABA inhibition

So far, in most of our analyses, we did not vary the balance between the tonic component of recur-
rent excitation mediated by NMDA and GABA inhibition, keeping it fixed at ‍I

∗
NMDA/I∗GABA = 0.15‍. We 

have only shown that the network frequency at the onset of oscillation essentially is independent 
of the ‍INMDA/IGABA‍ balance (Figure 2—figure supplement 1B), and that the characteristic features 
of the ‍

(
IAMPA/IGABA, IX,E/Iθ,E

)
‍ state diagram qualitatively remain unchanged when this balance is 

varied (Figure 2—figure supplement 1A). Could, however, the ‍I
∗
NMDA/I∗GABA‍ balance be crucial for 

the prefrontal circuit model capacity to provide the underlying mechanism for external input and 
NMDA conductance dependent spike synchronization? To investigate this issue, we analyzed how 
characteristic features of the ‍

(
vX/v∗X, gNMDA/g∗NMDA

)
‍ state diagram shown in Figure 6C depend on the 

‍I
∗
NMDA/I∗GABA‍ balance.

Figure 8 shows state diagrams in the ‍
(
vX/v∗X, gNMDA/g∗NMDA

)
‍ plane obtained for several ‍I

∗
NMDA/I∗GABA‍ 

balance values. It is seen that the orientation of the critical line in the state space depends on the 

‍I
∗
NMDA/I∗GABA‍ balance. When the balance is shifted toward stronger inhibition (‍I

∗
NMDA/I∗GABA < 0.15‍, 

Figure 8A), the critical line becomes too steep: in the drug condition, blocking NMDA current may 
not necessarily lead to spike desynchronization because the external spike modulation could trigger 
the network to switch to the synchronous regime (magenta arrow in Figure 8A). On the other hand, 
when the balance is shifted toward stronger tonic excitation (‍I

∗
NMDA/I∗GABA > 0.15‍, Figure 8C), the crit-

ical line becomes too flat: in the drug-naive condition the external spike modulation may not be able 
to produce strong enough synchrony because the system would be too close to the critical line, and 
not shift deep enough into the region of the synchronous regime (black arrow in Figure 8C).

Dependence of oscillatory instability growth rate on synaptic 
parameters
Further insights into how synaptic conductances and external rate affect synchrony can be achieved 
by obtaining an analytic expression describing the dependence of the rate of oscillatory instability 

spike rate (B) and synchrony (C) obtained from spike 
trains of 100 network simulations that received the 
transient external input shown in A for drug-naive 
(‍gNMDA/g∗NMDA = 1.25‍, black line) and drug conditions 
(‍gNMDA/g∗NMDA = 0‍, magenta line). Shaded grey and 
magenta bands show the standard errors for spike rate 
(B) and synchrony (C). (D) Population average temporal 
correlations between spiking activity of neuron pairs 
obtained in simulations during the 200 ms period 
shown in (C) by yellow shaded area.
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(
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Notations are the same as in Figure 6C. (A) ‍I
∗
NMDA/I∗GABA = 0.05‍; (B) ‍I

∗
NMDA/I∗GABA = 0.15‍; (C) ‍I

∗
NMDA/I∗GABA = 0.25‍. Note that the critical line 

orientation depends on the ‍I
∗
NMDA/I∗GABA‍ balance.
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growth ‍λ‍ on these parameters near the boundary between the asynchronous and synchronous states. 
Such expression can be derived by linearizing the stability analysis equations in the limit of small rela-
tive changes ‍∆gAMPA/g∗AMPA‍, ‍∆gNMDA/g∗NMDA‍, ‍∆gGABA/g∗GABA‍, and ‍∆vX/v∗X‍ of the synaptic parameters 

around the critical point 
‍

{
g∗AMPA,

{
E,I

}, g∗NMDA,
{

E,I
}, g∗GABA,

{
E,I

}, v∗X
}

‍
 corresponding to the onset of 

oscillatory instability where ‍λ = 0‍ (conductances ‍gR,E‍ and ‍gR,I‍ of excitatory and inhibitory neurons 
(‍R = AMPA, NMDA, GABA‍) are again scaled with the same factors and, thus, their relative changes are 
equal: ‍∆gR,E/g∗R,E = ∆gR,I/g∗R,I‍). The calculation is detailed in the Materials and methods section. The 
result is that ‍λ‍ in the vicinity of the critical point on the boundary between the steady and oscillatory 
states can be approximated by

	﻿‍
λ = ΛAMPA


∆gAMPA

g∗AMPA
+

∆ϕ
′
Isyn,E

ϕ
′
Isyn,E


+ΛNMDA


∆gNMDA

g∗NMDA
+

∆ϕ
′
Isyn,E

ϕ
′
Isyn,E


−ΛGABA


∆gGABA

g∗GABA
+

∆ϕ
′
Isyn,I

ϕ
′
Isyn,I


 ,

‍�
(1)

where ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍ are quantities defined by the parameters of the critical state network 
around which the equations are linearized, ‍ϕ

′

Isyn,α‍ is the slope of the neuron’s current-frequency response 
function at the critical state, and ‍∆ϕ

′

Isyn,α‍ is the change in the slope of the response function due to 
the deviations of the synaptic parameters from their critical values (‍α = E, I‍ for excitatory and inhibi-
tory neurons, respectively). The deviations of the synaptic conductances ‍∆gAMPA‍, ‍∆gNMDA‍, ‍∆gGABA‍, 
and external rate ‍∆vX‍ give rise to the changes in the corresponding average recurrent ‍IAMPA‍, ‍INMDA‍, 

‍IGABA‍ and external ‍IX‍ synaptic currents. This produces the change ‍∆Isyn‍ in the average total current 

‍Isyn = IX + IAMPA + INMDA − IGABA‍ and shifts the operating point of the current-frequency response 
function ‍v = ϕ

(
Isyn

)
‍ that describes the relationship between the average total input current ‍Isyn‍ and 

the output firing frequency of the neuron ‍v‍. For the leaky integrate-and-fire neuron model, ‍ϕ‍ is a 
monotonically increasing non-linear function (see, e.g., Renart et al., 2003). Thus, the shift of the 
operating point of the neuron’s response function ‍ϕ‍ due to the change ‍∆Isyn‍ in the total average 
synaptic current results not only in the change of the firing rate (i.e. ‍∆ϕ‍), but also in the change of the 
slope of the response function ‍∆ϕ

′

Isyn‍. The latter can be calculated by linearizing the self-consistent 
mean field equations (see Materials and methods). As a result, ‍∆ϕ

′

Isyn‍ is approximated as

	﻿‍

∆ϕ
′

Isyn,α

ϕ
′
Isyn,α

= Uα

(
IX

IGABA

∆vX
v∗X

+ IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

− ∆gGABA
g∗GABA

)
, α = E, I,

‍�
(2)

where ‍Uα‍ is a positive constant defined by the parameters of the critical state network around which 
the mean field equations are linearized. The analytical expression for ‍λ‍ given by Equation 1, 2 provides 
a very good approximation of the exact relationship (see Appendix 1).

Within the linear approximation, the change ‍∆ϕ
′

Isyn‍ is proportional to the change ‍∆Isyn‍ :

	﻿‍

∆ϕ
′

Isyn,α

ϕ
′
Isyn,α

= Uα
∆Isyn

I0
,
‍�

(3)

where ‍I0‍ is a positive constant. Hence, from Equation 2 it follows that ‍∆Isyn‍ is proportional to the 
expression in the brackets:

	﻿‍
∆Isyn = I0

(
IX

IGABA

∆vX
v∗X

+ IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

− ∆gGABA
g∗GABA

)
.
‍�

(4)

From Equation 1 it follows that the rate of oscillatory instability growth ‍λ‍ directly depends on the 
changes in the synaptic conductances but does not explicitly depend on the external rate variation 

‍∆vX‍. However, ‍λ‍ depends on ‍∆vX‍ indirectly via the terms involving the change in the slope ‍∆ϕ
′

Isyn‍ due 
to the change in the average total synaptic current ‍∆Isyn‍ (Equations 3, 4). In fact, ‍∆Isyn‍ is affected 
by the variations of the synaptic conductances as well. Thus, the rate of instability growth ‍λ‍ not only 
directly depends on the synaptic conductances, but also indirectly via the effect of the recurrent excit-
atory and inhibitory currents mediated by them on the average total synaptic current and, therefore, 
the operating point of the current-frequency response function.

https://doi.org/10.7554/eLife.79352
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The factors ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍ govern the strength of the direct and indirect contributions 
of the changes in the synaptic conductances ‍∆gAMPA‍, ‍∆gNMDA‍, and ‍∆gGABA‍ to the oscillatory insta-
bility. By inspecting Equation 1, one can see that the strength of the direct contribution of the change 

‍∆gR‍ (‍R = AMAPA, NMDA, GABA‍) is determined only by the corresponding factor ‍ΛR‍ via the term 

‍ΛR∆gR/g∗R‍. However, the strength of its indirect contribution is determined by all three factors, ‍ΛAMPA‍, 

‍ΛNMDA‍, and ‍ΛGABA‍, through the changes in the slopes ‍∆ϕ
′

Isyn,E‍ and ‍∆ϕ
′

Isyn,I‍, which depend on ‍∆gR‍ 
(Equation 2). For example, the strength of direct contribution to ‍λ‍ due to the change in the GABAR 
conductance ‍∆gGABA‍ is determined only by ‍ΛGABA‍ via the term ‍ΛGABA∆gGABA/g∗GABA‍ in Equation 1. 
However, the strength of indirect contribution from ‍∆gGABA‍ is determined by all three factors ‍ΛAMPA‍, 

‍ΛNMDA‍, and ‍ΛGABA‍ via the terms ‍ΛAMPA∆ϕ
′

Isyn,E /ϕ
′

Isyn,E‍, ‍ΛNMDA∆ϕ
′

Isyn,E /ϕ
′

Isyn,E‍, and ‍ΛGABA∆ϕ
′

Isyn,I /ϕ
′

Isyn,I‍ in 

Equation 1 because ‍∆ϕ
′

Isyn,E‍ and ‍∆ϕ
′

Isyn,I‍ themselves depend on ‍∆gGABA‍ (Equation 2). As noted above, 
this indirect contribution is due to the change in the average total synaptic current and, therefore, the 
change in the operating point of the current-frequency response function.

Figure 9 illustrates the contributions of individual terms involving ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍ in 
Equation 1 to the oscillatory instability growth rate ‍λ‍. The panels display separately four cases in 
which one of the synaptic parameters is varied while the remaining three are kept constant at their 
critical values. It is seen that in all four cases the dominant contribution to ‍λ‍ is coming from the term 
involving ‍ΛAMPA‍. The contribution related to ‍ΛNMDA‍ is nearly zero, whereas the contribution from 

‍ΛGABA‍ term is much smaller than the one from ‍ΛAMPA‍. While both ‍ΛNMDA‍ and ‍ΛGABA ≪ ΛAMPA‍, the 
primary reasons are different (see Appendix 2).

It should be noted that even though ‍ΛNMDA‍ and ‍ΛGABA‍ are negligibly small, this does not mean 
that changes in the NMDAR and GABAR conductances do not affect oscillatory instability (black lines, 
panels C and D, Figure 9). The fact that ‍ΛNMDA‍ and ‍ΛGABA‍ are small only means that ‍∆gNMDA‍ and 

‍∆gGABA‍ do not affect the oscillatory instability directly. However, the changes in the NMDAR and 
GABAR conductances still affect the instability growth rate ‍λ‍ indirectly via the term involving the 
product of ‍ΛAMPA‍ and ‍∆ϕ

′

Isyn,E /ϕ
′

Isyn,E‍ in Equation 1, as mentioned above (and summarized below).
Since ‍ΛNMDA,ΛGABA ≪ ΛAMPA‍, we can neglect the terms involving ‍ΛNMDA‍ and ‍ΛGABA‍ in Equation 

1 for the oscillatory instability growth rate ‍λ‍. With this approximation, the equation for ‍λ‍ simplifies to

	﻿‍

λ

ΛAMPA
= ∆gAMPA

g∗AMPA
+

∆ϕ
′
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ϕ
′
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.
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(5)
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Figure 9. Contributions from various terms in the analytical approximation of the oscillatory instability growth rate ‍λ‍. The plots show separately the 
rate ‍λ‍ and its individual terms ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍ (Equation 1) as functions of the relative deviations from the critical value of external 
rate (A), AMPAR conductance (B), NMDAR conductance (C), and GABAR conductance (D). The comparison is performed by varying the underlying 
parameter while keeping the other parameters at their critical values. Black lines correspond to the rate ‍λ‍, whereas red, green, and blue lines 
correspond to the terms involving ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍, respectively. In each plot, the values corresponding to red, blue, and green lines add 
up to the values of black lines. Note that red lines run very close to black lines, and blue and green lines are nearly horizontal. This indicates that the 
term ‍ΛAMPA‍ alone approximates the dependence of ‍λ‍ on the synaptic parameters rather accurately and that the contributions from the remaining 
terms ‍ΛNMDA‍ and ‍ΛGABA‍ are rather small.
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Inserting the expression for ‍∆Isyn‍ from Equation 4, we obtain

	﻿‍

λ

ΛAMPA
= ∆gAMPA

g∗AMPA
+ UE

(
IX

IGABA

∆vX
v∗X

+ IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

− ∆gGABA
g∗GABA

)
,
‍�

(6)

Thus, the instability growth rate ‍λ‍, in essence, directly depends only on the AMPAR conductance via 
the first term in Equation 6. The term in the brackets describes the dependence on the NMDAR medi-
ated excitation, GABAR mediated inhibition, and external rate ‍vX‍ that affect ‍λ‍ only indirectly through 
their effect on the operating point of the response function. In addition, ‍λ‍ also depends indirectly on 
the AMPAR conductance. For the critical state network ‍UE = 2.5‍ and ‍IAMPA/IGABA = 0.4‍. Therefore, 
half of the contribution to ‍λ‍ is due to the indirect and the second half due to the direct dependence 
on the AMPAR conductance. A more detailed consideration of the direct and indirect pathways by 
which modulations of synaptic conductances and external rate affect synchrony is given in Appendix 
3.

Since in our network model we vary only the NMDAR conductance and external rate, Equation 6 
for ‍λ‍ simplifies to

	﻿‍

λ

ΛAMPA
= UE

(
IX

IGABA

∆vX
v∗X

+ INMDA
IGABA

∆gNMDA
g∗NMDA

)
.
‍�

(7)

The expression in the brackets is proportional to the change in the average total synaptic current ‍Isyn‍ 
(Equation 4). The transition to synchrony in the model simulations is achieved by increasing external 
input (drug-naive condition in Zick et al., 2018), whereas reducing the NMDAR conductance prevents 
the network from such transition (drug condition in Zick et al., 2018). These simulation results and the 
mechanism implemented in our model for the transition between the steady and oscillatory states, 
and the lack thereof when the NMDAR conductance is blocked can be explained in terms of Equation 
7 for the instability growth rate ‍λ‍. As explained above, changes in external rate ‍∆vX‍ and NMDAR 
conductance ‍∆gNMDA‍ both affect synchrony via indirect mechanism by changing the excitatory drive 

‍Isyn‍ and, therefore, shifting the operating point of the neuron’s response function. In the drug-naive 
condition, increase in external rate (‍∆vX > 0‍) increases the excitatory drive. As a result, ‍λ‍ becomes 
positive (see Equation 7) and the network switches to the synchronous regime. However, in the drug 
condition, when NMDAR is blocked (‍∆gNMDA < 0‍), the initial excitatory drive is reduced compared 
to the drug-naive condition, and now the same increase in external rate ‍∆vX‍ becomes insufficient to 
offset the reduced excitatory drive caused by the NMDAR blockage. As a result, ‍λ‍ stays negative and 
the network remains in asynchronous regime.

A more formal consideration of the mechanism implemented in our model for the transition 
between the steady and oscillatory states as well as an analytical approximation for the critical line 
separating these two states are given in Appendix 4. In Appendix 5, we provide theoretical explana-
tions in terms of the equation for the oscillatory instability growth rate ‍λ‍ for some other simulation 
results obtained earlier.

Discussion
To better understand how synaptic mechanisms influence neural synchrony in recurrent local circuits 
in monkey prefrontal cortex, we developed a theoretical framework employing a sparsely connected 
recurrent network model accounting for AMPAR, NMDAR, and GABAR mediated synaptic currents. 
This allowed us to examine how varying combinations of synaptic transmission in the recurrent 
network influenced spike timing at the level of pairs of neurons and oscillatory dynamics at the level 
of neural populations. Our motivation to pursue this question derives from recent neurophysiolog-
ical experiments investigating the impact of pharmacological NMDAR blockade on spike timing 
dynamics in monkey prefrontal cortex (Kummerfeld et al., 2020; Zick et al., 2022; Zick et al., 2018). 
These studies were initiated to investigate how risk factors associated with schizophrenia alter neural 
dynamics in prefrontal cortex. Those studies found that pharmacological and genetic factors associ-
ated with schizophrenia convergently reduce 0-lag synchronous spiking between pairs of prefrontal 
neurons in monkeys and mice (Zick et  al., 2022). The spiking network model we develop in the 
present study provides a circuit mechanism capable of explaining the biological data. The principal 

https://doi.org/10.7554/eLife.79352
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features of this circuit mechanism are as follows: (i) synaptic conductance parameters of the underlying 
circuit are such that it is in an asynchronous state near a critical boundary in the (NMDAR conductance 
– external input) parameter plane separating asynchronous and synchronous network states, (ii) small 
increases in extrinsic inputs push the circuit past this critical boundary into the region of a synchro-
nous state, causing emergence of gamma oscillations in population activity, (iii) 0-lag synchronous 
spiking between neurons emerges as they stochastically entrain to the gamma population rhythm, (iv) 
blocking NMDAR currents prevents the circuit from switching to a synchronous regime in response to 
external inputs, (v) thereby precluding emergence of 0-lag synchronous spiking in neurons.

This circuit mechanism offers a reasonable explanation accounting for the task-locked increase in 
0-lag spike synchrony that occurs in monkey prefrontal cortex just before the motor response in the 
cognitive control task (Zick et al., 2018): the increase in synchrony could reflect increased synaptic 
input to prefrontal networks at around this time, potentially from mediodorsal nucleus of thalamus 
(DeNicola et al., 2020). It also explains why pharmacological blockade of NMDAR attenuates 0-lag 
spike synchrony before the motor response: the deficit in NMDAR mediated synaptic currents prevents 
prefrontal networks from switching to a synchronous regime in response to external inputs.

In the circuit model, the balance between the AMPA component of recurrent excitation and GABA 
inhibition controls the network frequency at the onset of oscillation, consistent with results in Brunel 
and Wang, 2003. This frequency is virtually independent of the balance between the tonic component 
of recurrent excitation mediated by the NMDAR and GABA inhibition. However, the balance between 
the NMDA and GABA currents determines the strength of modulation of the external synaptic input 
needed for switching between the asynchronous stationary and synchronous oscillatory states in the 
absence and presence of NMDAR antagonist.

Firing rate and synaptic mechanisms jointly influence synchronous 
spiking
To gain further insights into how specifically synaptic conductances and external rate affect emer-
gence of synchronous oscillations, we obtained an analytic approximation for the oscillatory insta-
bility growth rate ‍λ‍ describing the dependence on these parameters near the boundary between the 
asynchronous and synchronous states where ‍λ = 0‍. We showed that ‍λ‍, in essence, directly depends 
only on the AMPAR synaptic conductance; it is virtually independent of the NMDAR conductance 
due to the slow synaptic decay time constant, while the dependence on the GABAR conductance is 
much weaker compared to AMPAR because of nearly 90° effective phase lag introduced by synaptic 
filtering. However, ‍λ‍ depends on the NMDAR, GABAR as well as AMPAR conductances and external 
rate indirectly via their effect on the operating point of the neuron’s input current-output frequency 
response function. The direct dependence manifests the essential influence of the AMPAR synaptic 
conductance on the strength of an excitatory-inhibitory feedback loop via fast excitatory to excitatory 
and excitatory to inhibitory recurrent connections. The indirect dependence manifests the influence 
of the synaptic conductances and external rate on the location of the operating point on the current-
frequency response curve and, therefore, the slope of the response function. The steepness of the 
slope, in turn, determines the amplitude of the neuron’s response to dynamically varying input current 
and, therefore, affects the strength of excitatory feedback.

The analytic expression for the oscillation growth rate ‍λ‍ also reveals the differences and similarities 
in how AMPAR and NMDAR, both of which mediate recurrent excitation, influence the stability of 
asynchronous state and transition to synchronous oscillations. Both AMPAR and NMDAR conduc-
tances affect ‍λ‍ indirectly by influencing the amplitude of the neuron’s response to varying input 
current. However, because AMPA currents are much faster than NMDA currents, unlike NMDAR, 
AMPAR conductance also affects ‍λ‍ directly by influencing the strength of fast excitatory feedback.

Relation to prior studies of NMDAR function and oscillatory dynamics
Previous work (Wang, 1999) suggested that NMDAR mediated recurrent currents have a stabilizing 
effect on the network activity. Compte and colleagues (Compte et al., 2000) carried out spiking 
network simulations with different relative contributions of the NMDAR and AMPAR mediated 
currents to the recurrent excitation and showed that with less NMDA but more AMPA currents, 
the asynchronous steady state becomes unstable and neurons begin to synchronize, leading to 
network oscillations in the gamma band. At first glance, these simulation results seem to contradict 
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the experimental findings in Zick et al., 2018. Indeed, in the neural recording experiments blocking 
NMDAR caused desynchronization of neurons, whereas in the simulations (Compte et al., 2000) the 
reduction of NMDAR currents provoked strong synchronization. Our model and theoretical analysis 
allows to explain this apparent paradox. In general, the asynchronous state becomes unstable and 
oscillation emerges when an excitatory feedback from the fast AMPA currents becomes sufficiently 
strong and is followed by a strong inhibitory feedback from the slower GABA currents (Brunel and 
Wang, 2003; Compte et al., 2000; Tsodyks et al., 1997; Wang, 1999). As explained above, the 
excitatory feedback can be enhanced via different mechanisms involving direct and indirect influ-
ence of synaptic parameters on the instability growth rate. In Compte et  al., 2000, the concur-
rent increasing AMPAR and decreasing NMDAR conductances nullifies the indirect effect because 
contributions from the changes in the NMDAR and AMPAR mediated currents to the average total 
synaptic current, in essence, cancel each other. As a result, the operating point of the response func-
tion, defined by the average total current, does not change. However, due to the direct effect of the 
AMPAR on the instability growth rate ‍λ‍, increasing AMPAR conductance enhances the excitatory-
inhibitory feedback loop leading to the destabilization of the asynchronous activity and emergence 
of synchronous oscillations. In our model, by contrast, there is no direct effect on the instability 
growth rate because the AMPAR conductance is kept fixed, and the enhancement of recurrent excit-
atory feedback is entirely due to the indirect mechanism. It is achieved through external rate increase 
at a certain strength of the NMDAR conductance resulting in the neuron’s operating point shift 
toward a steeper slope above the point of the critical network. This induces network oscillation and 
synchronization of neurons as observed in monkey PFC when NMDAR is not blocked (Zick et al., 
2018). However, when the NMDAR conductance is set to zero, the average total synaptic current 
is reduced, and the operating point moves down to such locus that it cannot be shifted above the 
point of the critical network by the same increase in external rate. As a result, external rate increase 
no longer provides a strong enough excitatory feedback, the network remains in asynchronous state, 
and no increase in synchrony occurs, consistent with observations in Zick et al., 2018 when NMDAR 
is blocked.

Relation to prior studies of NMDAR function and working memory
In monkeys performing a memory-guided saccade task, prefrontal neurons exhibit persistent activity 
that is associated with the maintenance of information in working memory (Chafee and Goldman-
Rakic, 1998; Funahashi et al., 1989; Goldman-Rakic, 1995). Prior theoretical studies have investi-
gated circuit and synaptic mechanisms that can generate persistent activity in recurrent prefrontal 
networks, specifically addressing how reducing NMDAR function destabilizes attractor states (patterns 
of stable neural activity) in these networks during a delay period (when the memory of the stimulus 
must be retained) leading to working memory deficits (Calvin and Redish, 2021; Compte et  al., 
2000; Funahashi et al., 1989; Goldman‐Rakic, 1987; Loh et al., 2007; Murray et al., 2014). In one 
seminal study by Compte et al., 2000, the authors investigated the robustness of working memory 
storage against external synaptic noise and distraction stimuli in attractor networks. They showed that 
a concomitant increase of NMDAR- and GABAR-mediated currents leads to an increase of persistent 
activity and to a decrease of spontaneous activity, thereby enhancing the resistance of the network 
to distractors (Brunel and Wang, 2001; Compte et al., 2000). In another prominent work, Murray 
et al., 2014, employing an attractor network model, investigated the neural and behavioral effects 
of synaptic disinhibition induced by the malfunction of NMDAR mediated synapses targeting inhib-
itory neurons. They demonstrated that disinhibition resulted in a broadening of stimulus selective 
persistent activity at the neural level, with a concomitant loss of precision, increase in variability over 
time, and increase in distractibility of stored information at the behavioral level. Although these 
modeling studies provide important mechanistic insight into prefrontal network dynamics underlying 
working memory, and potentially, working memory deficits in schizophrenia (Goldman-Rakic, 1999), 
they do not address the topic of the current study, which is how slow NMDAR recurrent excitation and 
external input received by the network jointly influence spike timing dynamics at the neuron level and 
oscillatory dynamics at the population level in the presence of fast AMPA excitation and GABA inhibi-
tion. Thus, no prior modeling study captures the relationship between NMDAR synaptic mechanisms, 
spike timing, and network oscillations that we have observed in neural recordings (Kummerfeld et al., 
2020; Zick et al., 2018), and for which we provide a theoretical explanation in the current report.
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Spike timing disruptions and rewiring of prefrontal local circuits via 
STDP
We previously hypothesized that reduced synchrony at the level of spiking neurons (Zick et al., 2022; 
Zick et al., 2018) could disconnect prefrontal local circuits via spike-timing dependent synaptic plas-
ticity (STDP; Dan and Poo, 2004; Feldman, 2012), contributing to the reduction in dendritic spine 
density that has been observed in postmortem analysis of prefrontal cortex in schizophrenia (Glantz 
and Lewis, 2000; MacDonald et al., 2017). However, the interaction between neural synchrony and 
synaptic connectivity in networks incorporating STDP is hard to predict, as changes in connectivity 
patterns and neural dynamics are mutually dependent and interact in complex ways as connectivity 
and synchrony influence each other over time. Perhaps for this reason, prior theoretical studies incor-
porating STDP into spiking networks have obtained divergent results with respect to how STDP 
changes the pattern of synaptic connections between neurons in networks, and whether synchronous 
inputs to the neurons are required for STDP to influence the pattern of synaptic connections. For 
example, STDP operating on random spiking in neurons can either lead to the formation of structured 
stable connections between neurons in the absence of synchronous inputs (forming neural ‘groups’) 
(Izhikevich et al., 2004), or not (Morrison et al., 2007), depending on the assumptions incorpo-
rated into the models. Similarly, correlated external input to recurrent networks incorporating STDP 
can either fail to produce structured synaptic connections between neurons (Morrison et al., 2007), 
or it can lead to the formation of such structured connections (Litwin-Kumar and Doiron, 2014) 
depending on the specifics of the simulations. Key parameters that could influence the diversity of 
outcomes among studies include whether (Izhikevich et al., 2004) or not (Morrison et al., 2007) 
axonal conduction delays and the geometry of recurrent connections are incorporated into the models 
(since circuit architecture and associated signal conduction delays powerfully influences when action 
potentials arrive at pre- and postsynaptic elements), as well as the specific form of the STDP rule 
employed (Babadi and Abbott, 2013; Bono and Clopath, 2017; Izhikevich et al., 2004; Morrison 
et al., 2007). Based on these results, it seems reasonable that distortions of spike timing dynamics in 
prefrontal networks may alter the pattern of neural connections via STDP in schizophrenia. However, 
the diversity of results obtained from theoretical studies of STDP outlined above make it difficult to 
conclude that the reduction in synchronous spiking we observed would lead to synaptic disconnec-
tion via STDP, imposing important constraints on our prior hypothesis (Zick et al., 2022; Zick et al., 
2018), although this remains a possibility. Network simulations that accurately incorporate as many of 
these biological variables as possible may be useful in predicting how spike timing changes that may 
emerge downstream of schizophrenia risk factors would be likely to influence synaptic connectivity 
in the human cortex. In addition, as noted, genetic linkage studies have implicated altered NMDAR 
function in schizophrenia (Fromer et al., 2014; Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014). Since NMDAR play a central role in the molecular mechanisms that 
implement STDP in the brain, disruption of NMDAR synaptic transmission in schizophrenia may alter 
STDP directly, independently of the impact of disrupted NMDAR function on neural spiking dynamics 
in the disease state.

Potential U-shaped relation between NMDAR function and spike 
synchrony
We had previously reported that blocking NMDAR in monkeys (Zick et  al., 2018) and deleting a 
schizophrenia risk gene (Dgcr8) in mice (Zick et al., 2022), both reduced the frequency of synchro-
nous, 0-lag spiking between prefrontal neurons. Dgcr8 encodes a protein involved in the synthesis 
of miRNA, which in turn bind to mRNA and suppress their translation into proteins, including mRNA 
coding for NMDAR subunits (Corbel et al., 2015). Deleting Dgcr8 would therefore be expected to 
reduce miRNA synthesis and increase translation of mRNA coding for NMDAR subunits. Given these 
considerations, the convergent spike desynchronization we observed in monkey drug and mouse 
genetic models could be explained by an inverted U-shaped relationship wherein either too little 
NMDAR function (as produced by NMDAR blockade in monkeys) or too much NMDAR function (as 
predicted to result from deletion of Dgcr8 in mice) decreases the frequency of 0-lag spiking between 
prefrontal neurons (Zick et al., 2022; Zick et al., 2018). An inverted U-shaped relationship has been 
reported between the level of D1 dopamine receptor stimulation and the strength of persistent neural 
activity in prefrontal neurons during working memory tasks wherein small doses of an agonist amplify 
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persistent activity, and larger doses degrade it (Vijayraghavan et  al., 2007). However, additional 
experimental data are needed to establish that spike synchrony exhibits a similar inverted U-shaped 
relation to NMDAR function, insofar as our prior neural recording studies did not test a U-shaped 
relationship directly (Zick et al., 2022; Zick et al., 2018). These studies did not for example contrast 
the effect of low versus high doses of an NMDAR agonist (such as NMDA) on spike synchrony in the 
monkey model, nor relate reduction in spike synchrony specifically to the upregulation of NMDAR 
subunit expression in the mouse model (rather than the many other proteins regulated by miRNA that 
are dependent on Dgcr8).

Results we present in the current study establish a theoretical basis and circuit mechanism explaining 
how reduction of NMDAR synaptic function implicated in schizophrenia could lead to the desynchro-
nization of neural activity in prefrontal recurrent circuits. We provide evidence that spiking networks 
situated close to a boundary in the synaptic parameter space separating asynchronous and synchro-
nous activity states can explain a variety of biological observations. These include the emergence of 
0-lag synchronous spiking between individual prefrontal neurons when external inputs to the network 
push it across this state boundary, and failure of synchronous spiking to emerge between prefrontal 
neurons when NMDAR synaptic currents are reduced, as we have observed in neural recordings in 
primate prefrontal cortex (Kummerfeld et al., 2020; Zick et al., 2022; Zick et al., 2018).

Materials and methods
Experimental data
For the present theoretical study, we used experimental data obtained in our previous work (Zick 
et  al., 2018). Here, we provide brief descriptions of the experimental task, NMDAR antagonist 
regimen, and neurophysiological recording methodology employed in that work; details have been 
reported in Blackman et al., 2016; Zick et al., 2018.

Experimental task
Male rhesus macaque monkeys (8–10 kg) were trained to perform the dot-pattern expectancy (DPX) 
task. This task is closely related to the AX-CPT (continuous performance task) except that dot patterns 
replace letters as stimuli. During each trial of the DPX tasks, monkeys maintained gaze fixated on a 
central target as a cue stimulus (1,000ms), followed by a delay period (1,000ms), and a probe stimulus 
(500ms) were presented. Monkeys were rewarded for moving a joystick to the left if the cue-probe 
sequence had been AX (69% of trials), or to the right if any other cue-probe sequence had been 
presented (AY, BX, BY, collectively 31% of trials). Since the correct response to the X-probe depended 
on the preceding cue (A or B), the task required both working memory and cognitive control. Both 
The DPX and AX-CPT measure specific cognitive control impairments in schizophrenia (Barch et al., 
2003; Jones et al., 2010).

Neurophysiological recording
In our previous study (Zick et al., 2018), we recorded neural activity from the region of the prin-
cipal sulcus (centered on Brodmann’s areas 46) in the dorsolateral prefrontal cortex of two macaques 
performing the DPX task. We found that 0-lag synchrony while present in both monkeys was much 
stronger in one than the other animal. For comparison to spiking dynamics in the present neural 
network simulation, we used neurophysiological recording data from the monkey that exhibited the 
strongest 0-lag spike correlation during task performance (Zick et al., 2018). For neurophysiolog-
ical recording, we used a computer-controlled electrode drive (System Eckhorn, Thomas Recording, 
GmbH) advancing 16, closely spaced, independently movable glass coated platinum/tungsten micro-
electrodes into the prefrontal cortex. Electrodes were spaced 400  µm apart, and interelectrode 
distances in the array spanned 400–1,400 µm. Moving the electrodes in depth and the position of the 
array within recording chambers over days made it possible to isolate the spiking activity of different 
neural ensembles, each containing 15–30 individually isolated, simultaneously recorded neurons. The 
database included in the present study consisted of 47 neural ensembles containing a total of 893 
prefrontal neurons. Spike correlation was evaluated within ensembles of simultaneously recorded 
ensembles using spike trains recorded during DPX task performance (Zick et al., 2018).
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NMDAR antagonist regimen
We examined the effect of systemic administration of an NMDAR antagonist (phencyclidine, 0.25–
0.30 mg/kg IM) on spike timing dynamics in prefrontal local circuits. Neural activity was recorded 
in a Naive condition (before first exposure to drug), and a Drug condition (following systemic drug 
administration) (Zick et al., 2018).

Spike correlation and synchrony
To estimate correlation between spiking activity of simultaneously recorded neuron pairs as a func-
tion of time, we used a similar approach described in Zick et al., 2018. Correlation is evaluated from 
spiking activity observed during a time window ‍∆T ‍ around a given instant of time ‍t‍. The window size 
‍∆T ‍, thus, defines the temporal resolution of time resolved correlation. The interval ‍∆T ‍ is subdivided 
into small time bins of width ‍∆t‍. Activity of neuron ‍i‍ in a given trial at a time bin ‍t′‍ is represented 
by a binary variable ‍ξi(t′)‍ that can take on two values: 1 if in the time bin ‍t′‍ one or more spikes are 
present, and 0 if there are no spikes. Correspondingly, time-lagged joint spike activity of neurons ‍i‍ 
and ‍j‍ is described by the product ‍ξi(t′) × ξj(t′ + τ )‍: it is 1 if neuron ‍i‍ fired a spike in the time bin ‍t′‍ 
and neuron ‍j‍ fired a spike in the time bin ‍t′ + τ ‍; otherwise, it is 0. The duration of the bin ‍∆t‍, thus, 
defines the spike coincidence window. We assume that spike firing statistics of neurons do not change 
during the interval ‍∆T ‍, so that low order moments of the binary variables, such as the mean spike 
frequencies ‍νi = ξi(t′)‍ and ‍νj = ξj(t′)‍ and the mean joint spike frequency ‍ρij(τ ) = ξi(t′) × ξj(t′ + τ )‍, can 
be reliably estimated by averaging over ‍∆T/∆t‍ time bins (bars ‍−· ‍ above the expressions denote time 
averaging operation). To avoid a contribution to correlation from possible cross-trial non-stationarity 
(slow covariation) of neural activity, for each neuron pair correlation is estimated from single trials and 
then averaged over all trials. Spiking correlation between neurons ‍i‍ and ‍j‍ in a single trial is character-
ized by the observed frequency of joint spikes ‍ρij(τ )‍ normalized by the expected joint spike frequency 

‍νi × νj‍ if activity of the neurons were independent: ‍ρij(τ )/(νi × νj)‍. We then average this ratio over the 
trials to obtain time-lagged correlation of spiking activity as ‍cij(τ ) =

⟨
ρij(τ )/(νi × νj)

⟩
‍, where angular 

brackets ‍⟨·⟩‍ denote trial averaging operation. Finally, ‍cij(τ )‍ is averaged over the population of simul-
taneously recorded pairs resulting in the population average spike correlation ‍C(τ )‍. Spike synchrony 
is defined as 0-lag correlation.

To accurately estimate spike synchrony and time-lagged correlation in PFC circuits, it is neces-
sary to keep the value of time bin ‍∆t‍, controlling the spike coincidence window, sufficiently small, 
within 1–2ms (no more than one spike occurred in a bin). On the other hand, the firing rates of PFC 
neurons are relatively low, on the order of 10 Hz. Therefore, to increase the number of counts of joint 
spike events and improve the estimate of spike synchrony while keeping ‍∆t‍ small (and, thus, spike 
synchrony resolution sufficiently high), one needs to increase the duration of time window ‍∆T ‍ and/
or the number of trials ‍K ‍ However, ‍∆T ‍ should be kept sufficiently short so that during this interval 
spiking activity remains nearly stationary, whereas ‍K ‍ cannot be made arbitrarily large because it is 
limited by practical considerations.

These experimental restrictions, as a result, impose constraints on the firing rates of the neurons 
in the pair. To derive a meaningful criterion for selecting ‘good’ neuron pairs, we note that for a 
reliable estimation of the mean joint spike firing frequency, which is a second order statistic, one 
needs quadratically more experimental samples than for a reliable estimation of the mean spike 
frequency, which is a first order statistic. We also note that the expected joint spike frequency if 
neurons in the pair were independent is simply given as the product of their mean spike frequen-
cies. It is this quantity that is used as a reference (normalization) for the quantification of spike 
correlation strength. Therefore, to reliably estimate the joint spike firing frequency from avail-
able samples of a given pair, one should be confident that at least when assuming that neurons 
fire independently, a sufficiently accurate estimation of the expected joint spike frequency from 
these samples is possible. This, in turn, means that, given the neuron firing rates ‍vi‍ and ‍vj‍, the 
average total number of counts of joint spikes ‍(vi∆t)(vj∆t)(∆T/∆t)K ‍ observed in ‍∆T/∆t‍ bins in ‍K ‍ 
trials predicted under the assumption of independence and calculated from experimental samples 
should be ‘detectable’, that is, it should be at least greater than 1. This condition results in a 
constraint for the geometric mean, ‍

−v ij = √vivj ‍, of the firing rates of neuron pairs: ‍vij > 1/
√

K∆T∆t‍. 
The typical values for the time window and spike coincidence window are ‍∆T ∼ 100‍ ms and ‍∆t ∼ 1‍ 
ms. Given that the number of correct trials in the DPX task were on the order of ‍K ∼ 200‍, this 
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means that the geometric mean firing rate of neuron pairs, for which a reliable estimation of 
synchrony can be achieved, should be at least 7 Hz.

Network model
The network consists of ‍N ‍ leaky integrate and fire neurons (see, e.g., Dayan and Abbott, 2001), of 
which ‍NE = 0.8N ‍ are excitatory and ‍NI = 0.2N ‍ are inhibitory (Abeles, 1991; Braitenberg and Schüz, 
1998). Neurons are connected randomly with a probability ‍p‍, so that, on average, each neuron 
receives ‍CE = pNE‍ connections from excitatory and ‍CI = pNI‍ from inhibitory neurons. In the framework 
of mean field consideration, the network is large (‍N ≫ 1‍) and connections are sparse (‍p ≪ 1‍) but 
the average number of connections received by individual neurons, ‍C‍, is large (‍C = pN ≫ 1‍). In most 
simulations, networks consisted of ‍N = 5 · 103‍ neurons that were randomly connected with the proba-
bility ‍p = 0.2‍ and, therefore each neuron, on average, received ‍C = 103‍ connections. In addition, each 
neuron also receives ‍CX‍ external connections from excitatory neurons outside of the network that fire 
spikes independently according to a Poisson process with rate ‍νX‍.

The dynamics of the membrane potential ‍V(t)‍ of a neuron below the spike firing potential threshold 
‍θ‍ obeys the standard leaky integrate and fire equation:

	﻿‍
Cm

dV(t)
dt

= −gm
(
V(t) − VL

)
− isyn(t),

‍�
(8)

where ‍Cm‍ is the cell membrane capacitance, ‍gm‍ is the membrane leak conductance, ‍VL‍ is the resting 
potential, and ‍isyn(t)‍ is the total synaptic current. When the membrane potential reaches the threshold 
‍θ‍, the neuron fires a spike, the potential is reset to ‍Vrst‍, and the neuron becomes insensitive to its input 
for the duration of a refractory period ‍τrp‍. Both excitatory and inhibitory neurons have ‍θ = −50‍ mV, 

‍VL = −70‍ mV, and ‍Vrst = −55‍ mV. For excitatory neurons ‍Cm = 0.5‍ nF, ‍gm = 25‍ nS, ‍τrp = 2‍ ms, and for 
inhibitory neurons ‍Cm = 0.2‍ nF, ‍gm = 20‍ nS, ‍τrp = 1‍ ms (see, e.g., Koch, 2004).

The total synaptic input for each neuron is a linear sum of four components:

	﻿‍ isyn(t) = iAMPA(t) + iNMDA(t) + iGABA(t) + iX(t),‍� (9)

where ‍iAMPA‍ and ‍iNMDA‍ correspond to recurrent excitatory currents mediated by AMPA and NMDA 
receptors, respectively, ‍iGABA‍ corresponds to inhibitory currents mediated by GABA receptors, and 

‍iX‍ corresponds to external currents mediated by AMPA receptors. The purpose of external currents 
is twofold: (i) to represent the noisy inputs due to the background synaptic activity and (ii) to convey 
neural signals from outside of the network.

The description of component synaptic currents of a postsynaptic neuron follows Wang, 1999:

	﻿‍
iAMPA(t) = gAMPA

(
V(t) − VE

)∑
j

sAMPA,j(t)
‍�

(10)

	﻿‍
iNMDA(t) =

gNMDA
(
V(t) − VE

)

1 +
[
Mg2+

]
/γ exp

(
−βV(t)

)∑
j

sNMDA,j(t)
‍�

(11)

	﻿‍
iGABA(t) = gGABA

(
V(t) − VI

)∑
j

sGABA,j(t)
‍�

(12)

	﻿‍
iX(t) = gX

(
V(t) − VE

)∑
j

sX,j(t),
‍�

(13)

where synaptic reversal potentials ‍VE = 0‍ mV and ‍VI = −70‍ mV. NMDAR mediated currents have 
voltage dependence controlled by the extracellular magnesium concentration (Jahr and Stevens, 
1990): ‍β = 0.062 mV−1

‍ , ‍γ = 3.57‍ mM, ‍[Mg2+] = 1‍ mM. The gating variable ‍sR,j(t)‍, describes the 
temporal course of postsynaptic currents received from the presynaptic neuron ‍j‍ mediated by the 
receptor ‍R‍, where ‍R =‍ X, AMPA, NMDA, GABA. For a spike train generated by a presynaptic neuron 
with emission times ‍{tk}‍, the temporal dynamics of the gating variable obeys the equations

	﻿‍




τr
dx(t)

dt
= −x(t) + τ∗

∑
k
δ(t − tk − τl)

τd
ds(t)

dt
= −s(t) + x(t)

,

‍�

(14)
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where ‍τl‍, ‍τr‍ and ‍τd‍ are, respectively, latency, rising, and decay time constants. Their values are 

‍τAMPA,l = 1‍ mS, ‍τAMAP,r = 0.2‍ ms, ‍τAMPA,d = 2‍ ms for AMPAR mediated currents (Zhou and Hablitz, 
1998), ‍τNMDA,l = 1‍ mS, ‍τNMDA,r = 2‍ ms, ‍τNMDA,d = 100‍ ms for NMDAR mediated currents (Hestrin 
et  al., 1990), and ‍τGABA,l = 1‍ mS, ‍τGABA,r = 0.5‍ ms, ‍τGABA,d = 5‍ ms for GABAR-mediated currents 
(Gupta et al., 2000). The time integral of ‍s(t)‍ in response to a presynaptic spike equals ‍τ∗‍ and, thus, is 
independent of the temporal shape of ‍s(t)‍, which is determined by the rising and decay time constants 
that are specific to each receptor type. Because the charge flowing to the cell is determined by the 
product of the time integral of ‍s(t)‍ and the maximal conductance, we set ‍τ∗‍ to be the same for all types 
of receptors, so that the charge entry mediated by each type of receptor is parametrized, in essence, 
solely by the corresponding maximal conductance parameter.

Network simulations
In all direct network simulations, the numerical integration of the coupled differential equations 
describing the dynamics of membrane potentials and synaptic variables of all cells and synapses were 
carried out using a custom MATALAB (The MathWorks) code implementing a second order Runge-
Kutta method with interpolation of spike firing times between integration time steps ‍∆t‍ (Hansel 
et al., 1998). In most simulations ‍∆t = 0.1‍ ms.

Mean field approximation
To derive maximal synaptic conductance parameters ‍gX,α‍, ‍gAMPA,α‍, ‍gNMDA,α‍, ‍gGABA,α‍ (‍α = E, I‍) 
providing prescribed neural firing rates ‍νE‍ and ‍νI‍, we used mean field analysis (Amit and Brunel, 1997; 
Brunel, 2000; van Vreeswijk and Sompolinsky, 1996) extended to networks of neurons with realistic, 
conductance based synapses (Brunel and Wang, 2001; Renart et al., 2003). For simplicity, we disre-
gard the heterogeneity of synaptic connectivity and assume that each neuron receives ‍CE‍ excitatory 
and ‍CI‍ inhibitory connections. In the mean field approximation synaptic inputs are described in terms 
of their average and their fluctuations arising from both external and recurrent inputs. To this end, the 
sums of gating variables in Equations 10–13 are replaced by their respective population averages 

‍τ∗S0
R‍, where ‍R‍ designates the type of the synapse, and

	﻿‍ S0
X = CXνX, S0

AMPA = CEνE, S0
NMDA = CEνE, S0

GABA = CIνI.‍� (15)

The voltage dependence of NMDAR conductance is linearized around the mean value of the potential 

‍⟨V⟩‍:

	﻿‍

(
V(t) − VE

)

1 +
[
Mg2+

]
/γexp

(
−βV(t)

) ≈ V(t) − VE
κ

+ β

(
V(t) − ⟨V⟩

) (
⟨V⟩ − VE

) (
κ− 1

)

κ2 ,
‍�

(16)

where 
‍
κ = 1 +

[
Mg2+

]
/γexp

(
−β ⟨V⟩

)
‍
. After these simplifications, average components of synaptic 

currents for excitatory (‍α = E‍) and inhibitory (‍α = I‍) populations can be written as

	﻿‍ I0
X,α = gX,α

(
⟨Vα⟩ − VE

)
τ∗S0

X = JX,αS0
X‍� (17)

	﻿‍ I0
AMPA,α = gAMPA,α

(
⟨Vα⟩ − VE

)
τ∗S0

AMPA = JAMPA,αS0
AMPA‍� (18)

	﻿‍ I0
NMDA,α = gNMDA,α/κ

(
⟨Vα⟩ − VE

)
τ∗S0

NMDA = JNMDA,αS0
NMDA‍� (19)

	﻿‍ I0
GABA,α = gGABA,α

(
⟨Vα⟩ − VI

)
τ∗S0

GABA = JGABA,αS0
GABA,‍� (20)

where ‍⟨Vα⟩‍ is the average membrane potential, and ‍JR,α‍ is the effective strength of the ‍R‍-receptor 
mediated synapse, expressed as the total charge entering the postsynaptic neuron due to a single 
presynaptic spike. In this framework, the system of equations describing the dynamics of membrane 
potentials for each of ‍NE‍ excitatory and ‍NI‍ inhibitory neurons is reduced to equations describing the 
dynamics of membrane potentials ‍VE(t)‍ and ‍VI(t)‍ of just two neurons representing, respectively, excit-
atory, ‍E‍, and inhibitory, ‍I‍, populations (Brunel and Wang, 2001; Renart et al., 2003):

	﻿‍
τα

dVα(t)
dt

= −
(
Vα(t) − VL

)
+ µα + σα

√
ταηα(t), α = E, I,

‍�
(21)
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where ‍VL‍ is the resting potential, ‍τα‍ is the effective membrane time constant, ‍µα‍ is the effective mean 
synaptic input, ‍σα‍ is the magnitude of the fluctuations in the synaptic input, and ‍ηα(t)‍ is the time 
course of these fluctuations:

	﻿‍
τα = Cm,α

gm,αSα ‍�
(22)

	﻿‍ Sα = 1 + TX,ανX + TAMPA,ανE +
(
TNMDA1,α + TNMDA2,α

)
νE + TGABA,ανI‍� (23)

	﻿‍
TX,α =

gX,αCXτ∗
gm,α ‍�

(24)

	﻿‍
TAMPA,α =

gAMPA,αCEτ∗
gm,α ‍�

(25)

	﻿‍
TNMDA1,α =

gNMDA,αCEτ∗
gm,α κ ‍�

(26)

	﻿‍
TNMDA2,α = β

gNMDA,αCEτ∗
(
⟨Vα⟩ − VE

) (
κ− 1

)

gm,α κ2 ‍�
(27)

	﻿‍
TGABA,α =

gGABA,αCIτ∗
gm,α ‍�

(28)

	﻿‍

µα =
(
TX,ανX + TAMPA,ανE + TNMDA1,ανE

) (
VE − VL

)
Sα

+
TNMDA2,ανE

(
⟨Vα⟩ − VL

)
+ TGABA,ανI

(
VI − VL

)
Sα

.

‍�

(29)

In the absence of spiking and fluctuations, the average membrane potential would equal ‍µα + VL‍ 
(Equation 21). The average membrane potential ‍⟨Vα⟩‍ of spiking neuron in the presence of synaptic 
noise can be calculated from the distribution of potentials obtained in Brunel and Hakim, 1999 and 
is given by (Renart et al., 2003)

	﻿‍ ⟨Vα⟩ = µα + VL −
(
θ − Vrst

)
vατα −

(
µα + VL − Vrst

)
vατrp,α.‍� (30)

The total synaptic noise ‍σ
2
α‍ characterizing fluctuations in the input that result from random arrival of 

spikes is approximated as the sum of the fluctuations in the external and recurrent inputs (Fourcaud 
and Brunel, 2002):

	﻿‍ σ2
α = σ2

X,α + σ2
AMPA,α + σ2

NMDA,α + σ2
GABA,α,‍� (31)

where

	﻿‍
σ2

R,α =
J2

R,αS0
Rτα

C2
m,α

, R = X, AMPA, NMDA, GABA.
‍�

(32)

‍ηα(t)‍ is a Gaussian process with zero mean, ‍⟨ηα(t)⟩ = 0‍, and an exponentially decaying correlation 
function, ‍

⟨
ηα(t)ηα(t′)

⟩
∝ exp

(
−
��t − t′

�� /τsyn,α
)
‍, which is due to synaptic filtering with effective time 

constant ‍τsyn,α‍ (Fourcaud and Brunel, 2002):

	﻿‍

τsyn,α = σ2
α

σ2
X,α

τAMPA
+

σ2
AMPA,α
τAMPA

+
σ2

NMDA,α
τNMDA

+
σ2

GABA,α
τGABA

,

‍�

(33)

where ‍τAMPA = τAMPA,l + τAMPA,r + τAMPA,d‍, ‍τNMDA = τNMDA,l + τNMDA,r + τNMDA,d‍, 

‍τGABA = τGABA,l + τGABA,r + τGABA,d‍ are effective synaptic time constants for AMPAR, NMDAR, and 
GABAR-mediated currents, respectively. In addition, because of sparse connectivity, the correla-
tion of the fluctuations in the synaptic inputs of excitatory and inhibitory populations is neglected: 

‍
⟨
ηE(t)ηI(t′)

⟩
= 0‍. The firing rate ‍να‍ of a neuron, whose potential is governed by Equation 21, is given 

by a current-frequency relationship ‍ϕα
(
µα,σα

)
‍ that is a function of the mean and fluctuating part of 

synaptic input (Brunel and Sergi, 1998; Fourcaud and Brunel, 2002):
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	﻿‍
ϕα

(
µα,σα

)
=

(
τrp,α + τα

ˆ b
(
µα,σα

)

a
(
µα,σα

) dx
√
π exp(x2)

(
1 + erf(x)

))−1

,
‍�

(34)

where

	﻿‍
a
(
µα,σα

)
= Vrst − VL − µα

σα ‍�
(35)

	﻿‍
b
(
µα,σα

)
= θ − VL − µα

σα

(
1 + 0.5

τsyn,α
τα

)
+ 1.03

√
τsyn,α
τα

− 0.5
τsyn,α
τα

.
‍�

(36)

Since ‍µα‍ and ‍σα‍ themselves depend on the population firing rates ‍νE‍ and ‍νI‍, the two coupled 
frequency-current equations

	﻿‍




νE = ϕE
(
µE

(
νE, νI

)
,σE

(
νE, νI

))

νI = ϕI
(
µI

(
νE, νI

)
,σI

(
νE, νI

))
‍�

(37)

provide a self-consistent description of the network in stationary states, that is regimes of network 
dynamics when the population average quantities such as firing rates and synaptic inputs are constant 
in time. In the framework of our model, synaptic conductances ‍gX,α‍, ‍gAMPA,α‍, ‍gNMDA,α‍, ‍gGABA,α‍ 
(‍α = E, I‍) and the external spike rate ‍νX‍ are system parameters controlling the regime of network 
dynamics; they enter to the mean field analysis through expressions for ‍µα‍, and ‍σα‍,. If these param-
eters are given, one can solve the self-consistent equations to obtain predicted by the mean field 
approximation population firing rates ‍v

0
E‍ and ‍v

0
I ‍ in a stationary state of the network. Conversely, once 

external ‍νX‍ and population spike rates ‍v
0
E‍ and ‍v

0
I ‍ are specified, the self-consistent equations could 

be solved to find the values of synaptic conductance parameters ‍gX,α‍, ‍gAMPA,α‍, ‍gNMDA,α‍, ‍gGABA,α‍ 
(‍α = E, I‍) that correspond to these spike rates. However, because there are eight unknown parameters 
and only two equations, to find a unique solution one would need six additional equations imposing 
constraints on conductance parameters.

Model parametrization
We derive three of these equations by implementing a commonly used constraint (e.g. Brunel and 
Wang, 2003; Compte et al., 2000) that equalizes the ratio of synaptic conductance parameters for 
component currents in excitatory and inhibitory neurons. Since each component current is propor-
tional to its respective synaptic conductance, this constraint implies that the balance between different 
components of average synaptic currents ‍I

0
X,α‍, ‍I

0
AMPA,α‍, ‍I

0
NMDA,α‍, ‍I

0
GABA,α‍ for excitatory (‍α = E‍) and 

inhibitory (‍α = I‍) populations is the same, thus providing the following three equations:

	﻿‍

I0
NMDA,E
I0
GABA,E

=
I0
NMDA,I
I0
GABA,I

,
I0
AMPA,E

I0
GABA,E

=
I0
AMPA,I

I0
GABA,I

,
I0
X,E

I0
GABA,E

=
I0
X,I

I0
GABA,I

.
‍�

(38)

As a result, whenever the ratio of synaptic conductances and/or component currents is involved, the 
index ‍α‍ designating the type of the neuron can be dropped.

Two additional equations are obtained by fixing the balance between inhibition and two-component 
recurrent excitation at certain values:

	﻿‍

I0
NMDA
I0
GABA

= q1,
I0
AMPA

I0
GABA

= q2
‍�

(39)

The last constraint is provided in terms of the relative magnitude of average external current of excit-
atory neurons, ‍I

0
X,E‍:

	﻿‍

I0
X,E

I0
θ,E

= q3,
‍�

(40)

where ‍I
0
θ,E‍ is the current that is needed for an excitatory neuron to reach firing threshold ‍θ‍ in absence 

of recurrent feedback. This approach allowed to parametrize network dynamics in terms of three 
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parameters expressed as ratios of absolute values of average synaptic currents, ‍IAMPA/IGABA‍, 

‍INMDA/IGABA‍, and ‍IX,E/Iθ,E‍, characterizing the balance between components of recurrent excitation 
and inhibition, and the balance between external input and firing threshold. For a given external spike 
rate ‍νX‍ and fixed values of these three parameters, we are now able to solve the self-consistent equa-
tions for the eight synaptic conductances that provide the prescribed population firing rates ‍v

0
E‍ and ‍v

0
I ‍ 

in a stationary state of the network.
We are interested in the asynchronous stationary state in which neurons fire spikes irregularly and 

at low rates, like neurons in prefrontal cortex. When mean synaptic inputs ‍µα‍ are well below threshold 
‍θ‍, firing is driven by the synaptic fluctuations ‍σα‍ around the mean input, therefore, resulting in irreg-
ular spike trains and low rates (Renart et al., 2003). Given that the number of synaptic connections 
received by individual neurons is large and network connectivity is sparse, solutions of self-consistent 
equations providing the subthreshold regime for ‍µα‍ and, thus, low rate asynchronous network 
dynamics, arise when inhibition strongly dominates recurrent excitation and the mean external inputs 
are around or above threshold ‍θ‍ (Brunel, 2000; Renart et al., 2003; van Vreeswijk and Sompo-
linsky, 1996). Thus, for the network to be in asynchronous irregular state the three system parameters 
characterizing the balance between recurrent excitation and inhibition, and the relative strength of 
external inputs should be within certain bounds: ‍IAMPA/IGABA + INMDA/IGABA < 1‍, and ‍IX,E/Iθ,E ≳ 1‍.

Linear stability analysis
We perform a linear stability analysis of the asynchronous state (Abbott and van Vreeswijk, 1993; 
Brunel and Hakim, 1999) on the basis of an analytical consideration in Brunel and Wang, 2003. 
To understand if the network develops instability caused by fluctuations in population firing rates, 
we consider small deviations from the stationary population rates ‍v

0
E‍ and ‍v

0
I ‍. In order to analyze the 

resulting network behavior, the mean field approach and self-consistent equations providing popula-
tion mean firing rates ‍v

0
E‍ and ‍v

0
I ‍ are extended to describe the dynamics of population rates ‍νE(t)‍ and 

‍νI(t)‍.
In the framework of mean field approximation, each component of synaptic current is determined 

by the product of effective synaptic strength ‍J ‍ and average gating variable ‍S‍ (Equations 17–20 for 
the steady state consideration). The dynamics of ‍S‍ is governed by the same type of equations as for 
the gating variable ‍s‍ of an individual synapse in a given postsynaptic neuron (Equation 14), except 
that the instantaneous rate of spikes 

‍

∑
k
δ
(
t − tk − τl

)
‍
 arriving from the presynaptic cell is replaced by 

the instantaneous average rate of spikes, ‍CαRναR

(
t − τl

)
‍, arriving from all presynaptic cells making the 

same type of synapse in the postsynaptic neuron:

	﻿‍




τr
dx(t)

dt
= −x(t) + CαRναR

(
t − τl

)

τd
dSR(t)

dt
= −SR(t) + x(t)

,

‍�

(41)

where ‍R‍ designates the type of the synapse (‍R = X,AMPA, NMDA, GABA‍), and ‍αR‍ designates the 
presynaptic population establishing these synapses (‍αR = X, E‍ for glutamatergic and ‍αR = I‍ for 
GABAergic synapse). Since external firing rate ‍νX‍ is stationary, the gating variable for external current 
is constant in time: ‍SX = CXνX‍ . For recurrent currents, the temporal course of ‍SR‍ is dependent on the 
instantaneous presynaptic population activity ‍ναR (t)‍. Consequently, the total synaptic input current 

‍Isyn(t)‍, given as a sum of contributions from external and recurrent components

	﻿‍ Isyn(t) = JXSX + JAMPASAMPA(t) + JNMDASNMDA(t) + JGABASGABA(t),‍� (42)

depends on the population firing rates ‍νE(t)‍ and ‍νI(t)‍. The output firing rate of population neurons, 
in turn, is determined by the input current and can be modeled in terms of an input-output response 
function ‍F‍.

In general, the input-output relationship ‍v(t) = F
(
Isyn(t)

)
‍ depends on the spectral characteristics 

of the input current, resulting in frequency dependent phase shifts and/or amplitude modulations 
between the oscillatory components of ‍Isyn‍ and ‍v‍. However, it has been shown (Brunel et al., 2001; 
Fourcaud and Brunel, 2002) that the output rate in the leaky integrate and fire neuron model follows 
instantaneously the temporal variations in its synaptic input current given that synaptic noise is suffi-
ciently strong and synaptic time constant is comparable with membrane time constant. That is, in 
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these conditions, the response does not exhibit a phase shift, and its amplitude is independent of 
the frequency of oscillatory components of the input current. As a result, even if the input current is 
varying in time, the input-output function ‍F‍ can be approximated by the current-frequency response 
function ‍ϕ‍, given by Equation 34, describing the output due to the steady input current.

In the framework of mean field approximation, the output rates ‍ϕE
(
Isyn,E(t)

)
‍ and ‍ϕI

(
Isyn,I(t)

)
‍ for 

excitatory and inhibitory populations must be the same as the instantaneous presynaptic population 
rates ‍νE(t)‍ and ‍νI(t)‍ because both presynaptic and output rates are of the same populations. This 
requirement results in two self-consistent equations:

	﻿‍




νE(t) = ϕE
(
Isyn,E

(
νE(t), νI(t)

))

νI(t) = ϕI
(
Isyn,I

(
νE(t), νI(t)

)) .
‍�

(43)

Since the amplitudes of firing rate deviations from the rates in asynchronous steady state are small, 

‍ϕ
(
Isyn(t)

)
‍ can be linearized about the input current ‍I

0
syn‍ in asynchronous state as:

	﻿‍
ϕ
(
Isyn(t)

)
≈ ϕ

(
I0
syn

)
+

dϕ
(

I0
syn

)

dIsyn

(
Isyn(t) − I0

syn
)

.
‍�

(44)

With this approximation, the self-consistent equations for excitatory and inhibitory populations 
become

	﻿‍




νE(t) = v0
E

(
1 + AE

Isyn,E(t) − I0
syn,E

I0
syn,E

)

νI(t) = v0
I

(
1 + AI

Isyn,I(t) − I0
syn,I

I0
syn,I

) ,

‍�

(45)

where 
‍
Aα = I0

syn,α
v0
α

dϕα

(
I0
syn,α

)

dIsyn,α ‍
 is the dimensionless slope of the current-frequency response function at 

the current value in asynchronous state, expressed as the ratio between the relative changes in the 
firing rate and the input current (Brunel and Wang, 2003).

The self-consistent equations Equation 45 together with Equation 41 for the gating variables and 
Equation 42 for the total synaptic current describe approximate firing rate dynamics of excitatory and 
inhibitory populations. To determine if the network develops oscillatory instability caused by small fluc-
tuations in population firing rates, we seek solutions for the rates ‍νE(t)‍ and ‍νI(t)‍ in which initially small 
(with relative amplitudes ‍

∣∣εE
∣∣ ≪ 1‍ and ‍

∣∣εI
∣∣ ≪ 1‍) oscillatory perturbations that can change exponentially 

with time are added to the stationary rates ‍v
0
E‍ and ‍v

0
I ‍ such that: ‍να(t) = v0

α

(
1 +

��εα
�� exp(λt)cos(ωt + φα)

)
‍ 

or, equivalently, in complex form

	﻿‍ να(t) = v0
α

(
1 + εα exp(λt + iωt)

)
, α = E, I,‍� (46)

where ‍λ‍ is the rate of perturbation growth, ‍ω‍ is the oscillation frequency, and ‍εα‍ is complex accounting 
for a possible shift in oscillation phase ‍φα‍ between the two populations. We can now replace the firing 
rates in Equation 41 with these expressions to solve the two equations and determine the synaptic 
variables ‍SR(t)‍ for recurrent currents mediated by ‍R = AMPA, NMDA, GABA‍ receptors:

	﻿‍ SR(t) = S0
R
[
1 + εαR QR(λ,ω) exp

(
λt + iωt − iΦR(λ,ω)

)]
,‍� (47)

where

	﻿‍

QR(λ,ω) =
exp(−λτR,l)√(

(1 + λτR,r)2 + ω2τ2
R,r

)(
(1 + λτR,d)2 + ω2τ2

R,d

)
‍�

(48)

and

	﻿‍
ΦR(λ,ω) = ωτR,l + atan

(
ωτR,r

1 + λτR,r

)
+ atan

(
ωτR,d

1 + λτR,d

)
.
‍�

(49)
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The components of synaptic currents and the total currents ‍Isyn,E(t)‍ and ‍Isyn,I(t)‍ can now be calculated 
and inserted into the linearized self-consistent Equation 45 for population firing rates. Taking into 
account that the balance between the components of synaptic currents in excitatory and inhibitory 
populations is equal, we arrive at the following set of two equations

	﻿‍




XAMPA(λ,ω) cos
(
ΦAMPA(λ,ω)

)
+ XNMDA(λ,ω) cos

(
ΦNMDA(λ,ω)

)
− XGABA(λ,ω) cos

(
ΦGABA(λ,ω)

)
= 1

XAMPA(λ,ω) sin
(
ΦAMPA(λ,ω)

)
+ XNMDA(λ,ω) sin

(
ΦNMDA(λ,ω)

)
− XGABA(λ,ω) sin

(
ΦGABA(λ,ω)

)
= 0 ‍

� (50)

and the relationship between the relative amplitudes:

	﻿‍ εEAI = εIAE,‍� (51)

where

	﻿‍
XAMPA(λ,ω) = AE

IAMPA
Isyn

QAMPA(λ,ω)
‍�

(52)

	﻿‍
XNMDA(λ,ω) = AE

INMDA
Isyn

QNMDA(λ,ω)
‍�

(53)

	﻿‍
XGABA(λ,ω) = AI

IGABA
Isyn

QGABA(λ,ω).
‍�

(54)

Solving Equation 50, we obtain the rate of perturbation growth ‍λ‍ and the oscillation frequency 
‍ω‍. Because both ‍AE‍ and ‍AI‍ are real, the linear relationship between the amplitudes ‍εE‍ and ‍εI‍ given 
by Equation 51 means that there is no phase lag between firing rates of excitatory and inhibitory 
populations.

Analytical consideration of the dependence of oscillation growth rate 
on network parameters
To further elucidate how specifically synaptic conductances ‍gAMPA‍, ‍gNMDA‍, ‍gGABA‍, and external rate 

‍vX‍ affect synchrony, we linearize the mean field equations Equation 37 and equations Equation 50 
for the stability analysis around the point 

‍
{g∗AMPA,

{
E,I

}, g∗NMDA,
{

E,I
}, g∗GABA,

{
E,I

}, v∗X }
‍
 corresponding 

to the critical state network where ‍λ = 0‍. We then derive an analytical approximation for the oscillation 
growth rate ‍λ‍ describing its dependence on the synaptic conductances and external rate in the vicinity 
of this point.

Linearization of mean field equations
Approximate analytic description of the changes in the population firing rates ‍∆vE‍ and ‍∆vI‍ due to 
small changes in the synaptic conductances and external rate can be obtained by linearizing the 
current-frequency response function ‍ϕ‍, providing population firing rates ‍vE‍ and ‍vI‍ as a function of 
synaptic conductances and external rate. We note that the function ‍ϕ‍ (Equations 34–36) explicitly 
depends on the mean effective synaptic input μ, synaptic noise ‍σ‍, membrane time constant ‍τ ‍, and 
synaptic time constant ‍τsyn‍, which in turn depend on the synaptic conductances and external rate 
(Equations 22–33). Thus, changes in the firing rates ‍∆vE‍ and ‍∆vI‍ in response to small changes in the 
synaptic conductances ‍∆gAMPA‍, ‍∆gNMDA‍, ‍∆gGABA‍, and external rate ‍∆vX‍ can be approximated as:

	﻿‍
∆vα = dϕα

dµα
∆µα + dϕα

dσα
∆σα + dϕα

dτα
∆τα + dϕα

dτsyn,α
∆τsyn,α, α = E, I.

‍� (55)

The dominant contribution to ‍∆vα‍ is due to the change in synaptic input, ‍∆µα‍. Contributions from 
the remaining terms are relatively small, with the largest contribution being due to the change in 
the effective membrane time constant, ‍∆τα‍. Therefore, the expression for ‍∆vα‍ can be simplified by 
retaining only the terms involving ‍∆µα‍ and ‍∆τα‍:

	﻿‍
∆vα ≈ dϕα

dµα
∆µα + dϕα

dτα
∆τα, α = E, I.

‍� (56)
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‍∆µα‍ and ‍∆τα‍ are expressed through the relative changes in synaptic conductances ‍∆gAMPA/g∗AMPA‍, 

‍∆gNMDA/g∗NMDA‍, ‍∆gGABA/g∗GABA‍, external rate ‍∆vX/v∗X‍, and the changes in population rates ‍∆vE‍ and 

‍∆vI‍:

	﻿‍
∆µα = aµαE∆νE + aµαI∆vI + bµX,α

∆vX
v∗X

+
∑

R
bµR,α

∆gR
g∗R ‍�

(57)

	﻿‍
∆τα = aταE∆νE + aταI∆vI + bτX,α

∆vX
v∗X

+
∑

R
bτR,α

∆gR
g∗R

,
‍�

(58)

where ‍R =
{

AMPA, NMDA, GABA
}
‍, and

	﻿‍

aµαE =
(
TAMPA,α + TNMDA1,α

) (
VE − VL

)
+ TNMDA2,α

(
V0 − VL

)
Sα

−
µα

(
TAMPA,α + TNMDA1,α + TNMDA2,α

)
Sα ‍� (59)

	﻿‍
aµαI =

TGABA,α
(
VI − µα − VL

)
Sα ‍�

(60)

	﻿‍
bµAMPA,α =

TAMPA,α
(
VE − µα − VL

)
Sα

νE
‍�

(61)

	﻿‍
bµNMDA,α =

TNMDA1,α
(
VE − µα − VL

)
+ TNMDA2,α

(
V0 − µα − VL

)
Sα

νE
‍�

(62)

	﻿‍
bµGABA,α =

TGABA,α
(
VI − µα − VL

)
Sα

νI
‍�

(63)

	﻿‍
bµX,α =

TX,α
(
VE − µα − VL

)
Sα

νX
‍�

(64)

	﻿‍
aταE = −

TAMPA,α + TNMDA1,α + TNMDA2,α
Sα

τα
‍�

(65)

	﻿‍
aταI = −

TGABA,α
Sα

τα
‍�

(66)

	﻿‍
bτAMPA,α = −

TAMPA,α
Sα

τανE
‍�

(67)

	﻿‍
bτNMDA,α = −

TNMDA1,α + TNMDA2,α
Sα

τανE
‍� (68)

	﻿‍
bτGABA,α = −

TGABA,α
Sα

τανI
‍� (69)

	﻿‍
bτX,α = −TX,α

Sα
τανX.

‍� (70)

Inserting expressions for ‍∆µα‍ and ‍∆τα‍ into Equation 56, we obtain a closed system of linear equations 
for the changes in the firing rates of excitatory and inhibitory populations in response to small changes 
in the synaptic conductances and external rates. In matrix form these equations can be written as

	﻿‍ ∆v = a∆v + b∆p,‍� (71)

where

	﻿‍

a=


 ϕ

′

µ,EaµEE + ϕ
′

τ ,EaτEE ϕ
′

µ,EaµEI + ϕ
′

τ ,EaτEI

ϕ
′

µ,Ia
µ
IE + ϕ

′

τ ,Ia
τ
IE ϕ

′

µ,Ia
µ
II + ϕ

′

τ ,Ia
τ
II


 , ∆v =


 ∆νE

∆vI



‍� (72)
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	﻿‍

bT =




ϕ
′

µ,EbµX,E + ϕ
′

τ ,EbτX,E ϕ
′

µ,Ib
µ
X,I + ϕ

′

τ ,Ib
τ
X,I

ϕ
′

µ,EbµAMPA,E + ϕ
′

τ ,EbτAMPA,E ϕ
′

µ,Ib
µ
AMPA,I + ϕ

′

τ ,Ib
τ
AMPA,I

ϕ
′

µ,EbµNMDA,E + ϕ
′

τ ,EbτNMDA,E ϕ
′

µ,Ib
µ
NMDA,I + ϕ

′

τ ,Ib
τ
NMDA,I

ϕ
′

µ,EbµGABA,E + ϕ
′

τ ,EbτGABA,E ϕ
′

µ,Ib
µ
GABA,I + ϕ

′

τ ,Ib
τ
GABA,I




, ∆p =




∆vX/v∗X
∆gAMPA/g∗AMPA

∆gNMDA/g∗NMDA

∆gGABA/g∗GABA




.

‍
� (73)

Here, the elements of matrices ‍a‍ and ‍b‍ are constants defined by the point in the network parameter 
space around which the mean field equations are linearized. Components of the vector ‍∆v‍ are the 
changes in the firing rates of excitatory and inhibitory populations due to the changes in the synaptic 
conductances and external rate given by the components of vector ‍∆p‍. Taking into account that 

‍ϕ
′
τ ,αbτR,α ≪ ϕ

′
µ,αbµR,α‍ and that ‍µα + VL ≈ ⟨Vα⟩‍, we neglect the ‍ϕ

′
τ ,αbτR,α‍ terms in ‍b‍ and replace ‍µα + VL‍ 

with ‍⟨Vα⟩‍. With these approximations ‍b‍ simplifies to:

	﻿‍

b≈ b0




IX/IGABA

IAMPA/IGABA

INMDA/IGABA

−1




T

, b0 =


 ϕ

′

µ,EIGABA,E/gm,ESE

ϕ
′

µ,IIGABA,I/gm,ISI


 .

‍� (74)

Equation Equation 71 can now be rewritten as

	﻿‍

(
a − I

)
∆v + b0




IX/IGABA

IAMPA/IGABA

INMDA/IGABA

−1




T

∆p = 0,

‍� (75)

where ‍I‍ is the identity matrix. Solving this equation for ‍∆v‍ we obtain

	﻿‍

∆v = W




IX/IGABA

IAMPA/IGABA

INMDA/IGABA

−1




T

∆p,

‍� (76)

or in component form

	﻿‍
∆vE = WE

(
IX

IGABA

∆vX
v∗X

+ IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

− ∆gGABA
g∗GABA

)

‍� (77)

	﻿‍
∆vI = WI

(
IX

IGABA

∆vX
v∗X

+ IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

− ∆gGABA
g∗GABA

)
,
‍� (78)

where 
‍
W=

[
WE WI

]T

‍
 is given by

	﻿‍ W = −
(
a − I

)−1 b0.‍� (79)

In summary, equations Equations 77, 78 describe changes in the excitatory, ‍∆vE‍, and inhib-
itory, ‍∆vI‍, population firing rates due to the small relative changes in the synaptic conductances 

‍∆gAMPA/g∗AMPA‍, ‍∆gNMDA/g∗NMDA‍, ‍∆gGABA/g∗GABA‍, and external rate ‍∆vX/v∗X‍.

Linearization of equations for oscillatory instability analysis
Changes in synaptic parameters result not only in the changes of population firing rates, but also 
affect the stability of population dynamics. To understand the precise role played by the synaptic 
conductances and external input in the destabilization of the steady dynamics and emergence of 
network oscillation near the boundary between asynchronous and synchronous states, we derive an 
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approximate analytic description of the change in the rate of oscillatory instability growth ‍∆λ‍ and 
the change in the oscillation frequency ‍∆ω‍ caused by small changes in the synaptic conductances 
and external rate. For this purpose, we linearize equations Equation 50 for ‍λ‍ and ‍ω‍ around the point 

‍
{g∗AMPA,

{
E,I

}, g∗NMDA,
{

E,I
}, g∗GABA,

{
E,I

}, v∗X }
‍
 corresponding to the critical state network that is on the 

boundary between steady and oscillatory states where ‍λ = 0‍. We do this by taking the differentials 
with respect to the synaptic variables ‍ΦR‍ and ‍XR‍, (‍R = AMPA, NMDA, GABA‍) that, in turn, depend on 
‍λ‍ and ‍ω‍:

	﻿‍




∆XAMPA cos
(
ΦAMPA

)
− XAMPA sin

(
ΦAMPA

)
∆ΦAMPA + ∆XNMDA cos

(
ΦNMDA

)

−XNMDA sin
(
ΦNMDA

)
∆ΦNMDA −∆XGABA cos

(
ΦGABA

)
+ XGABA sin

(
ΦGABA

)
∆ΦGABA = 0

∆XAMPA sin
(
ΦAMPA

)
+ XAMPA cos

(
ΦAMPA

)
∆ΦAMPA + ∆XNMDA sin

(
ΦNMDA

)

+XNMDA cos
(
ΦNMDA

)
∆ΦNMDA −∆XGABA sin

(
ΦGABA

)
− XGABA cos

(
ΦGABA

)
∆ΦGABA = 0

,

‍�(80)

The parameter ‍XR‍ (see Equations 52–54) characterizes the relative attenuation in the strength of the 
underlying synapse due to the ‍R‍-current dynamics. In addition to the dependency on ‍λ‍ and ‍ω‍ through 

‍QR‍ (Equation 48), ‍XR‍ depends directly on its corresponding synaptic conductance ‍gR‍ and indirectly 
on all the synaptic conductances and external rate through its dependency on the slope ‍ϕ

′

Isyn,αR‍ of the 
current-frequency response function. The change ‍∆XR‍ due to small variations in the synaptic conduc-
tances and external rate is given by

	﻿‍

∆XR = XR


∆gR

g∗R
+

∆ϕ
′

Isyn,αR

ϕ
′
Isyn,αR

+ ∆QR
QR


 ,

‍� (81)

where ‍ϕ
′

Isyn,αR‍, ‍XR‍, ‍QR‍, and ‍ΦR‍ are constants whose values are defined by the point 

‍
{g∗AMPA,

{
E,I

}, g∗NMDA,
{

E,I
}, g∗GABA,

{
E,I

}, v∗X }
‍
 in the synaptic parameter space around which the stability 

analysis equations are linearized.
The relative change ‍∆QR/QR‍ can be obtained from Equation 48:

	﻿‍

∆QR
QR

= −τ
(

1
)

R ∆λ− τ
(

2
)

R ∆ω,
‍� (82)

and the change in ‍ΦR‍ from Equation 49:

	﻿‍ ∆ΦR = τ
(

1
)

R ∆ω − τ
(

2
)

R ∆λ,‍� (83)

where

	﻿‍
τ
(

1
)

R = τR,l +
τR,r

1 +
(
ωτR,r

)2 +
τR,d

1 +
(
ωτR,d

)2
‍� (84)

	﻿‍
τ
(

2
)

R = ω

(
τ2

R,r

1 +
(
ωτR,r

)2 +
τ2

R,d

1 +
(
ωτR,d

)2

)
,
‍� (85)

and ‍ω‍ is the oscillation frequency at the critical state. Inserting expressions for ‍∆QR/QR‍ into equations 
Equation 81 for ‍∆XR‍ and, subsequently, expressions for ‍∆ΦR‍ and ‍∆XR‍ into equations Equation 80, 
we obtain a system of two linear equations for ‍∆λ‍ and ‍∆ω‍:

	﻿‍




T+∆ω + T−∆λ = ∆ξAMPA + ∆ξNMDA −∆ξGABA

T−∆ω − T+∆λ = ∆ζAMPA + ∆ζNMDA −∆ζGABA
,
‍� (86)

where

	﻿‍ T+ = XAMPAτ
+
AMPA + XNMDAτ

+
NMDA − XGABAτ

+
GABA‍� (87)
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	﻿‍ T− = XAMPAτ
−
AMPA + XNMDAτ

−
NMDA − XGABAτ

−
GABA‍� (88)

	﻿‍ τ+
R = τ (1)

R sin
(
ΦR

)
+ τ (2)

R cos
(
ΦR

)
‍� (89)

	﻿‍ τ−R = τ (1)
R cos

(
ΦR

)
− τ (2)

R sin
(
ΦR

)
‍� (90)

	﻿‍

∆ξR = XRcos
(
ΦR

)

∆gR

g∗R
+

∆ϕ
′

Isyn,αR

ϕ
′
Isyn,αR




‍� (91)

	﻿‍

∆ζR = −XRsin
(
ΦR

)

∆gR

g∗R
+

∆ϕ
′

Isyn,αR

ϕ
′
Isyn,αR




‍� (92)

and ‍R = AMPA, NMDA, GABA‍. Solving the system of equations Equation 86 for ‍∆λ‍ and ‍∆ω‍ we 
obtain:

	﻿‍
∆λ = ΛAMPA


∆gAMPA

g∗AMPA
+

∆ϕ
′
Isyn,E

ϕ
′
Isyn,E


+ΛNMDA


∆gNMDA

g∗NMDA
+

∆ϕ
′
Isyn,E

ϕ
′
Isyn,E


−ΛGABA


∆gGABA

g∗GABA
+

∆ϕ
′
Isyn,I

ϕ
′
Isyn,I




‍
� (93)

	﻿‍
∆ω = ΩAMPA


∆gAMPA

g∗AMPA
+

∆ϕ
′
Isyn,E

ϕ
′
Isyn,E


+ΩNMDA


∆gNMDA

g∗NMDA
+

∆ϕ
′
Isyn,E

ϕ
′
Isyn,E


−ΩGABA


∆gGABA

g∗GABA
+

∆ϕ
′
Isyn,I

ϕ
′
Isyn,I


 .

‍
� (94)

Here, ‍ΛR‍ and ‍ΩR‍ are constants defined by the parameters of the critical state network around which 
the stability analysis equations are linearized:

	﻿‍
ΛR = XR

T2
+ + T2

−

(
T+ sin

(
ΦR

)
+ T− cos

(
ΦR

))
‍� (95)

	﻿‍
ΩR = XR

T2
+ + T2

−

(
T+ cos

(
ΦR

)
− T− sin

(
ΦR

))
,
‍� (96)

or, equivalently,

	﻿‍
ΛR = XR

T0
cos

(
ΦR + Φ0

)
‍� (97)

	﻿‍
ΩR = −XR

T0
sin

(
ΦR + Φ0

)
,
‍� (98)

where 
‍
T0 =

√
T2

+ + T2
− ‍

 and ‍Φ0 = −atan
(
T+/T−

)
‍.

Note that while ‍∆λ‍ and ‍∆ω‍ given by equations Equations 93 and 94 depend directly on the 
changes in the synaptic conductances, they also depend indirectly on these parameters and the 
change in external rate through the terms involving ‍∆ϕ

′

Isyn,E‍ and ‍∆ϕ
′

Isyn,I‍ characterizing changes in the 
slopes of the current-frequency response functions of excitatory and inhibitory neurons. To calculate 
these changes due to the changes in the synaptic conductances and external rate, we note that

	﻿‍

∆ϕ
′

Isyn

ϕ
′
Isyn

=
∆

(
dϕ
dµ

dµ
dIsyn

)

dϕ
dµ

dµ
dIsyn

=

dµ
dIsyn

∆

(
dϕ
dµ

)
+ dϕ

dµ
∆

(
dµ

dIsyn

)

dϕ
dµ

dµ
dIsyn

=
∆ϕ

′
µ

ϕ
′
µ

+
∆

(
dµ

dIsyn

)

dµ
dIsyn

.

‍� (99)

Taking into account the linear relationship ‍µ ∼ −Isyn/gmS‍ between the effective synaptic input μ and 
total synaptic current ‍Isyn‍, we arrive at

	﻿‍

∆ϕ
′

Isyn,α

ϕ
′
Isyn,α

=
∆ϕ

′
µ,α

ϕ
′
µ,α

− ∆Sα
Sα

, α = E, I.
‍� (100)

As in the case of the change in the current-frequency response function ‍∆ϕµ,α‍, the dominant contri-
bution to the change in the slope of the response function ‍∆ϕ

′
µ,α‍ is coming from the change in the 
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synaptic input ‍∆µα‍, while the change in the effective membrane time constant ‍∆τα‍, similarly, is the 
next largest contribution. Therefore, ‍∆ϕ

′
µ,α‍ can be approximated as

	﻿‍
∆ϕ

′
µ,α ≈ d2ϕα

dµ2
α
∆µα + d2ϕα

dταdµα
∆τα.

‍� (101)

Note also that using Equation 22 one can express the relative change ‍∆Sα/Sα‍ through the change 
‍∆τα‍ as ‍∆Sα/Sα = −∆τα/τα‍. Inserting expressions for ‍∆ϕ

′
µ,α‍ and ‍∆Sα/Sα‍ into Equation 100 we obtain

	﻿‍

∆ϕ
′

Isyn,α

ϕ
′
Isyn,α

=
ϕ

′′
µµ,α

ϕ
′
µ,α

∆µα +

(
ϕ

′′
τµ,α

ϕ
′
µ,α

+ 1
τα

)
∆τα.

‍� (102)

Equations for ‍∆µα‍ and ‍∆τα‍ in terms of the changes in the synaptic conductances, external rate, and 
the resulting changes in the population firing rates ‍∆vE‍ and ‍∆vI‍ have been already derived and are 
given by Equations 57 and 58. We replace ‍∆vE‍ and ‍∆vI‍ in these equations with the solution obtained 
from the linearization of the mean field equations given, respectively, by Equations 77, 78. Next, by 
inserting the resulting ‍∆µα‍ and ‍∆τα‍ into Equation 102, we obtain expressions describing the relative 
changes in the slopes of the response functions for excitatory and inhibitory neurons due to the small 
changes in the synaptic conductances and external rate. In matrix form, these expressions can be 
written as

	﻿‍




∆ϕ
′

Isyn,E

ϕ
′
Isyn,E

∆ϕ
′

Isyn,I

ϕ
′
Isyn,I




= −∼aW




IX/IGABA

IAMPA/IGABA

INMDA/IGABA

−1




T

∆p +
∼
b∆p,

‍� (103)

where

	﻿‍

∼a =




ϕ
′′

µµ,E

ϕ
′
µ,E

aµEE +

(
ϕ

′′

τµ,E

ϕ
′
µ,E

+ 1
τE

)
aτEE

ϕ
′′

µµ,E

ϕ
′
µ,E

aµEI +

(
ϕ

′′

τµ,E

ϕ
′
µ,E

+ 1
τE

)
aτEI

ϕ
′′

µµ,I

ϕ
′
µ,I

aµIE +

(
ϕ

′′

τµ,I

ϕ
′
µ,I

+ 1
τI

)
aτIE

ϕ
′′

µµ,I

ϕ
′
µ,I

aµII +

(
ϕ

′′

τµ,I

ϕ
′
µ,I

+ 1
τI

)
aτII



‍� (104)

	﻿‍

∼
b T =




ϕ
′′

µµ,E

ϕ
′
µ,E

bµX,E +

(
ϕ

′′

τµ,E

ϕ
′
µ,E

+ 1
τE

)
bτX,E

ϕ
′′

µµ,I

ϕ
′
µ,I

bµX,I +

(
ϕ

′′

τµ,I

ϕ
′
µ,I

+ 1
τI

)
bτX,I

ϕ
′′

µµ,E

ϕ
′
µ,E

bµAMPA,E +

(
ϕ

′′

τµ,E

ϕ
′
µ,E

+ 1
τE

)
bτAMPA,E

ϕ
′′

µµ,I

ϕ
′
µ,I

bµAMPA,I +

(
ϕ

′′

τµ,I

ϕ
′
µ,I

+ 1
τI

)
bτAMPA,I

ϕ
′′

µµ,E

ϕ
′
µ,E

bµNMDA,E +

(
ϕ

′′

τµ,E

ϕ
′
µ,E

+ 1
τE

)
bτNMDA,E

ϕ
′′

µµ,I

ϕ
′
µ,I

bµNMDA,I +

(
ϕ

′′

τµ,I

ϕ
′
µ,I

+ 1
τI

)
bτNMDA,I

ϕ
′′

µµ,E

ϕ
′
µ,E

bµGABA,E +

(
ϕ

′′

τµ,E

ϕ
′
µ,E

+ 1
τE

)
bτGABA,E

ϕ
′′

µµ,I

ϕ
′
µ,I

bµGABA,I +

(
ϕ

′′

τµ,I

ϕ
′
µ,I

+ 1
τI

)
bτGABA,I




.

‍
� (105)

The elements of matrices ‍
∼a ‍ and ‍

∼
b‍ are constants defined by the parameters of the critical state network. 

Noting that 
‍

(
ϕ
′′
τµ,α

ϕ′
µ,α

+ 1
τα

)
bτR,α ≪ ϕ

′′
µµ,α

ϕ′
µ,α

bµR,α
‍
, we neglect the 

‍

(
ϕ
′′
τµ,α

ϕ′
µ,α

+ 1
τα

)
bτR,α

‍
 terms in ‍

∼
b‍ and, as in 

the calculation of the change in the current-frequency response function, replace ‍µα + VL‍ with ‍⟨Vα⟩‍. 
With these approximations ‍

∼
b‍ simplifies to:
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	﻿‍

∼
b ≈

∼
b0




IX/IGABA

IAMPA/IGABA

INMDA/IGABA

−1




T

,
∼
b0 =




ϕ
′′

µµ,E

ϕ
′
µ,E

IGABA,E
gm,ESE

ϕ
′′

µµ,I

ϕ
′
µ,I

IGABA,I
gm,ISI




.

‍�

(106)

Equation Equation 103 can now be written as

	﻿‍




∆ϕ
′

Isyn,E

ϕ
′
Isyn,E

∆ϕ
′

Isyn,I

ϕ
′
Isyn,I




= U




IX/IGABA

IAMPA/IGABA

INMDA/IGABA

−1




T

∆p,

‍�

(107)

or in component form

	﻿‍

∆ϕ
′

Isyn,E

ϕ
′
Isyn,E

= UE

(
IX

IGABA

∆vX
v∗X

+ IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

− ∆gGABA
g∗GABA

)

‍�
(108)

	﻿‍

∆ϕ
′

Isyn,I

ϕ
′
Isyn,I

= UI

(
IX

IGABA

∆vX
v∗X

+ IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

− ∆gGABA
g∗GABA

)
,
‍�

(109)

where 
‍
U=

[
UE UI

]T

‍
 is given by

	﻿‍ U = −ãW + b̃0.‍� (110)

Equations Equations 108 and 109 describing the relative changes in the slopes of the response 
functions for excitatory and inhibitory neurons can now be combined with Equations 93 and 94 to 
account for both direct and indirect dependence of the change in the oscillation growth rate ‍∆λ‍ and 
change in the oscillation frequency ‍∆ω‍ on the small relative changes in the synaptic conductances 
and external rate.

Numerical solutions
Self-consistent mean field equations for the eight conductance parameters, and linear stability equa-
tions for the perturbation growth rate ‍λ‍ and the oscillation frequency ‍ω‍ were both solved numerically 
using custom codes written in MATLAB (The MathWorks) with the aid of fsolve function.
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Appendix 1
Accuracy of analytical approximation for the instability growth rate
Appendix 1—figure 1shows the comparison of the exact value of ‍λ‍ obtained by numerically solving 
the mean field and stability analysis equations, with the analytical approximation given by Equations 
1, 2. The comparison is performed separately for each of the three synaptic conductances and 
external rate by varying one of the underlying parameters while the remaining three keeping 
constant at their critical values. It is seen that in all cases, the analytical expression for ‍λ‍ provides a 
very good approximation of the exact relationship.
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Appendix 1—figure 1. Comparison between exact solution and analytical approximation for the oscillatory 
instability growth rate ‍λ‍. The comparison is performed separately for each of the three synaptic conductances 
and external rate by varying one of the underlying parameters while the remaining three keeping constant at 
their critical values. It is seen that in all cases, the analytical expression for ‍λ‍ provides a very good approximation 
of the exact relationship. The plots show the rate ‍λ‍ as a function of the relative deviation from the critical value 
of external rate (A), AMPAR conductance (B), NMDAR conductance (C), and GABAR conductance (D). The 
comparison is performed by varying the underlying parameter while keeping the other parameters at their critical 
values. The solid lines show analytical approximations for ‍λ‍ given by Equations 1, 2, and the dotted lines are the 
exact solutions obtained from the mean field and stability analysis equations.
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Appendix 2
Contributions from ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍ terms to the instability 
growth rate
The reasons of why ‍ΛNMDA,ΛGABA ≪ ΛAMPA‍ can be understood by considering analytical expressions 
of the factors ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍. These quantities have a form ‍ΛR = XRcos

(
ΦR + Φ0

)
/T0‍, 

where ‍XR‍ characterizes the relative attenuation in the strength of the corresponding synapse due 
to the ‍R‍-current dynamics, ‍ΦR‍ is the phase lag introduced by ‍R‍-current synaptic filtering, and ‍T0‍ 
and ‍Φ0‍ are constants (see Materials and methods). For illustration purposes, it is convenient to use 
a geometric interpretation of ‍ΛR‍ in which it is associated with a vector emanating from the origin of 
a cartesian plane, with the length ‍XR/T0‍, and the angle ‍ΦR + Φ0‍ between the vector and the ‍x‍-axis. 
Then, the projection of this vector on the ‍x‍-axis (i.e. its ‍x‍-component) is ‍ΛR‍.

Appendix 2—figure 1 shows vectors ‍LAMPA‍, ‍LNMDA‍, and ‍LGABA‍ corresponding to the values of 

‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍ in the crttical network. It is seen that the length of the vector ‍LNMDA‍ is 
nearly zero and, therefore, its projection ‍ΛNMDA‍ is nearly zero as well. The length of ‍LNMDA‍ being 
very short means that the relative attenuation in the strength of NMDA synapse ‍XNMDA ≪ 1‍. This 
is because the characteristic synaptic time constant ‍τNMDA ∼ 100‍ ms of NMDA synapse is much 
longer than the period of the ‍γ‍-band oscillation ‍1/fntwrk ∼ 15‍ ms emerging in the critical network at 
the boundary between the steady and oscillatory states. This results in a strong attenuation of the 
oscillatory component of NMDAR mediated current that is quantified by the ‍XNMDA‍ numeric value 
(Equations 48, 53).

The vector ‍LGABA‍, in contrast, has a length comparable with the length of ‍LAMPA‍. However, 
because its angle ‍ΦGABA + Φ0‍ is close to 90°, the ‍LGABA‍ projection ‍ΛGABA‍ is much smaller than 
the projection ‍ΛAMPA‍ of the vector ‍LAMPA‍. This occurs because the phase shift ‍ΦGABA‍ introduced 
by GABA-current synaptic filtering is lagging the phase shift ‍ΦAMPA‍ introduced by AMPA-current 
filtering. This difference in the phase delays, in turn, is due to the fact that the GABA synapse 
(‍τGABA ∼ 5‍ ms) is slower than the AMPA synapse (‍τAMPA ∼ 2‍ ms). Thus, while both ‍ΛNMDA‍ and 

‍ΛGABA‍ are much smaller than ‍ΛAMPA‍, the primary reasons are different.
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Appendix 2—figure 1. Geometric interpretation of the factors ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍. For illustration 
purposes, the factors ‍ΛAMPA‍, ‍ΛNMDA‍, and ‍ΛGABA‍ (Equation 1) are associated with corresponding vectors 

‍LAMPA‍, ‍LNMDA‍, and ‍LGABA‍ (see text for details). The projections of these vectors on the ‍x‍-axis are equal to 
their respective factors. The vectors ‍LAMPA‍ and ‍LGABA‍ corresponding to the values of ‍ΛAMPA‍ and ‍ΛGABA‍ in the 
critical network are shown in red and blue, respectively. The green arrowhead at the origin relates to the vector 

‍LNMDA‍ corresponding to ‍ΛNMDA‍. Due to the small size of the vector, it cannot be depicted in scale on this plot. 
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Appendix 3
Direct and indirect pathways for synaptic conductances and external 
rate affecting synchrony
Equation 6 for the oscillatory instability growth rate ‍λ‍ illuminates specific pathways by which 
modulations of synaptic conductances and external rate affect synchrony. In general, when fast 
excitatory feedback becomes sufficiently strong and is followed by slow and powerful inhibition 
the asynchronous state becomes unstable and synchronous oscillation emerges (Brunel and Wang, 
2003; Compte et al., 2000; Tsodyks et al., 1997; Wang, 1999). The intuitive explanation is as 
follows. An increase of activity in the excitatory population caused by a fluctuation rapidly surges 
due to the fast excitatory feedback. The buildup of excess excitation, in turn, activates the inhibitory 
population. The growth of excitation continues until slow rising inhibition eventually suppresses 
excitatory population activity. As a result, activity of inhibitory population decays as well, and 
the next oscillation cycle starts. Equation 5 explicitly shows that the strong excitatory feedback 
necessary to induce oscillation can emerge via two pathways. One is manifested in the indirect 
dependence of ‍λ‍ on the synaptic parameters via their effect on the operating point of the current-
frequency response function. Changes in the synaptic conductances and external rate producing 
an increase in the average total synaptic current (‍∆Isyn > 0‍) shift the operating point of excitatory 
population toward a steeper slope of the current-frequency response function (‍∆ϕ

′

Isyn > 0‍). As a 
result, the amplitude of the neuron’s response to dynamically varying input increases, giving rise to 
stronger excitatory feedback. If AMPAR conductance is fixed, ‍∆Isyn > 0‍ results in ‍λ > 0‍ (Equation 5). 
Therefore, changes in the synaptic parameters that increase the average total synaptic currents, in 
general, have a destabilizing effect on the asynchronous activity and favor synchronous oscillations.

It should be noted that the change in the slope with a shift in the operating point is critical for the 
indirect mechanism functionality. If the response function were linear and, thus, the slope is constant, 
independent of ‍Isyn‍ (‍UE = 0‍, Equation 5), a change in the operating point ‍∆Isyn‍ will still affect the 
neuron’s average firing frequency. However, the neuron’s response amplitude to dynamically varying 
input will be independent of the operating point, i.e., the average input current ‍Isyn‍ . As a result, shifts 
in the operating point will not change the strength of excitatory feedback. In the case of integrate-
and-fire neurons, the input current-output frequency relationship is a monotonically increasing non-
linear function (‍UE > 0‍). Consequently, when the operating point shifts due to increasing average 
input current (‍∆Isyn > 0‍), the amplitude of the neuron’s response to the same variation in the input 
current increases since the slope of the response function becomes steeper, giving rise to stronger 
excitatory feedback.

The second pathway is manifested in the direct dependence of ‍λ‍ on the AMPAR conductance. An 
increase in the conductance results in stronger excitatory to excitatory connections and excitatory 
to inhibitory connections that, in turn, amplify fast AMPAR mediated excitatory feedback and slow 
GABAR mediated inhibition. If other parameters remain unchanged, ‍∆gAMPA > 0‍ also results in 

‍∆Isyn > 0‍ (Equation 4). This means that because of the AMPAR conductance increase, both direct 
and indirect pathways tend to make ‍λ > 0‍ (Equation 5). Thus, increased fast excitation, due to the 
stronger AMPAR mediated current, and enhanced response to varying input, due to the shift in the 
operating point, destabilize the asynchronous dynamic and push the network toward synchronous 
oscillations.

https://doi.org/10.7554/eLife.79352
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Appendix 4
The mechanism by which NMDAR influences network synchronization
In this section we provide a more formal consideration of the mechanism for the transition between 
the steady and oscillatory states, and the lack thereof when the NMDAR is blocked. For convenience, 
we rewrite here Equation 7 for the instability growth rate ‍λ‍:

	﻿‍

λ

ΛAMPA
= UE

(
IX

IGABA

∆vX
v∗X

+ INMDA
IGABA

∆gNMDA
g∗NMDA

)
.
‍� (111)

The expression in the brackets is proportional to the change ‍∆Isyn‍ in the average total synaptic current 
(Equation 4). Without loss of generality, we assume that the drug-naive condition corresponds to 
the network for which ‍∆gNMDA = 0‍ and ‍∆vX = −δ < 0‍. Thus, initially ‍∆Isyn < 0‍ and the response 
function operating point is below the point of the critical network. As a result, ‍λ < 0‍ and the network 
is in the asynchronous steady state. When external input increases by ‍2δ‍, so that ‍∆vX = +δ > 0‍, the 
total synaptic current increases as well, so that ‍∆Isyn‍ becomes positive and the operating point shifts 
above the point of the critical network. This results in ‍λ > 0‍ and, therefore, the network transitions 
to the synchronous oscillatory state. This transition is due to the indirect dependence of ‍λ‍ on the 
external rate change ‍∆vX‍ via its effect on the operating point of the current-frequency response 
function. In the drug condition, the NMDAR conductance is reduced and, if it becomes sufficiently 
small so that 

‍
∆gNMDA
g∗NMDA

< − δ
v∗X

IX
INMDA ‍

, the same increase in external rate will not result in positive ‍λ‍. As a 
result, no oscillatory instability develops, and the network remains in the asynchronous steady state. 
This is because the decrease in the NMDAR conductance, which like ‍∆vX‍ influences ‍λ‍ indirectly, 
reduces the average total synaptic current ‍Isyn‍ and brings down the operating point to such locus 
that it cannot be shifted above the operating point of the critical network by the same ‍2δ‍ increase 
in the external rate.

When the oscillatory instability growth rate ‍λ‍ on the left-hand side of Equation 111 is fixed at 
zero, it becomes the equation for the critical hyperplane in the synaptic parameter space separating 
the asynchronous and synchronous states. In the context of our model, we are interested in the 
network states within the ‍

(
vX/v∗X, gNMDA/g∗NMDA

)
‍ subspace and, thus, Equation 111 becomes the 

equation for the line

	﻿‍
0 = IX

∆vX
v∗X

+ INMDA
∆gNMDA
g∗NMDA

.
‍� (112)

This critical line is the analytical approximation of the exact critical line shown in the state diagram 
depicted in Figure 6C that was obtained by solving the mean field and stability analysis equations 
numerically. Appendix 4—figure 1 shows the comparison between the exact critical line (dotted 
line) and its approximation given by Equation 112 (solid line). It is seen that these lines virtually 
overlap and, thus, the accuracy of approximation is very good.
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Appendix 4—figure 1. Comparison between exact and analytical approximation of the critical line separating 
asynchronous and synchronous states. The solid line shows the analytical approximation of the critical line given 
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by Equation 112. The dotted line corresponds to the exact solution obtained from the mean field and stability 
analysis equations. On the scale of this plot, the two curves virtually overlap.

https://doi.org/10.7554/eLife.79352


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Crowe et al. eLife 2024;13:e79352. DOI: https://doi.org/10.7554/eLife.79352 � 46 of 46

Appendix 5
Special case of the zero net effect of the variation of synaptic 
parameters on the average total synaptic current
Here we consider an interesting case (see a specific example below) when variations in the synaptic 
conductances and external rate are such that they have no net effect on the average total synaptic 
current because the sum of their contributions cancels out. In this case, ‍∆Isyn = 0‍ and there will be no 
shifts in the operating points and, therefore, no change in the firing rates and slopes of the response 
functions (Equation 3). As a result, despite the synaptic parameter changes there will not be any 
indirect contribution to ‍λ‍ (Equation 1). However, even though the background firing rates remain 
unchanged, the oscillatory instability growth rate ‍λ‍ will be affected via its direct dependence on the 
changes in the synaptic conductances.

Such case was studied in Compte et al., 2000. Specifically, Compte and colleagues observed in 
simulations that the concurrent increase in the AMPAR and decrease in the NMDAR conductances, 
so that the total strength of excitation remains fixed, leads to the destabilization of the asynchronous 
steady state and emergence of synchronous oscillations. Assuming that the network is close to the 
boundary between the asynchronous and synchronous states, this phenomenon can be explained in 
terms of Equation 6 for the oscillatory instability growth rate ‍λ‍. In this case, it simplifies to

	﻿‍

λ

ΛAMPA
= ∆gAMPA

g∗AMPA
+ UE

(
IAMPA
IGABA

∆gAMPA
g∗AMPA

+ INMDA
IGABA

∆gNMDA
g∗NMDA

)
.
‍� (113)

The expression in the brackets is proportional to the change ‍∆Isyn‍ in the average total synaptic current 
(Equation 4). It can be seen that decreasing the NMDAR conductance by ‍∆g0

NMDA < 0‍ and simultaneously 

increasing the AMPAR conductance in the amount of 
‍
∆g0

AMPA = −∆g0
NMDA

INMDA
IAMPA

g∗AMPA
g∗NMDA

> 0
‍
 results 

in zero for the expression in the brackets. This means that the contributions from the changes in 
the NMDAR and AMPAR mediated currents to the average total synaptic current ‍Isyn‍ cancel each 
other and ‍∆Isyn = 0‍. Thus, in this case, although the AMPAR and NMDAR conductances change, the 
operating point of the response function does not. However, because ‍λ‍ also depends directly on 
the AMPAR conductance (the first term in the r.h.s. of Equation 113) and ‍∆g0

AMPA > 0‍, the instability 
growth rate ‍λ‍ becomes positive and synchronous oscillations emerge due to the stronger excitatory-
inhibitory feedback loop.

https://doi.org/10.7554/eLife.79352
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