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Abstract The ventral occipito-temporal cortex (VOTC) reliably encodes auditory categories 
in people born blind using a representational structure partially similar to the one found in vision 
(Mattioni et al.,2020). Here, using a combination of uni- and multivoxel analyses applied to fMRI 
data, we extend our previous findings, comprehensively investigating how early and late acquired 
blindness impact on the cortical regions coding for the deprived and the remaining senses. First, we 
show enhanced univariate response to sounds in part of the occipital cortex of both blind groups 
that is concomitant to reduced auditory responses in temporal regions. We then reveal that the 
representation of the sound categories in the occipital and temporal regions is more similar in blind 
subjects compared to sighted subjects. What could drive this enhanced similarity? The multivoxel 
encoding of the ‘human voice’ category that we observed in the temporal cortex of all sighted and 
blind groups is enhanced in occipital regions in blind groups , suggesting that the representation of 
vocal information is more similar between the occipital and temporal regions in blind compared to 
sighted individuals. We additionally show that blindness does not affect the encoding of the acoustic 
properties of our sounds (e.g. pitch, harmonicity) in occipital and in temporal regions but instead 
selectively alter the categorical coding of the voice category itself. These results suggest a func-
tionally congruent interplay between the reorganization of occipital and temporal regions following 
visual deprivation, across the lifespan.

Editor's evaluation
The study interrogates the representational structure of sound categories in the temporal cortex of 
early- and late-onset blind people. This adds two novel dimensions to the author's previous focused 
on auditory categorical representation in the visual cortex of people with early blindness onset, and 
as such will be of interest to researchers studying brain reorganisation across life. The strength of the 
study is in its methodology, which provides compelling and robust evidence to support the study's 
main conclusions.

Introduction
The occipital cortex of early blind (EB) individuals enhances its response to non-visual stimuli (Neville 
and Bavelier, 2002). For instance, it has been repetitively shown that sound processing triggers 
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enhanced occipital responses in EB people 
(Van Ackeren et al., 2018; Bedny et al., 2011; 
Collignon et  al., 2011; Dormal et  al., 1981; 
Weeks et al., 2000).

If occipital regions enhance their functional 
tuning to auditory information in EB, what is the 
impact of visual deprivation on temporal regions 
typically coding sounds? Contradictory results 
emerged from previous literature about the way 
intramodal plasticity expresses in early blindness. 
Several studies suggested that visual deprivation 
elicits enhanced response in the sensory cortices 
responsible for touch or audition (Elbert et  al., 
2002; Gougoux et al., 2009; Manjunath et al., 
1998; Naveen et al., 1998; Pascual-Leone and 
Torres, 1993; Rauschecker, 2002; Röder et al., 
2002). In contrast, some studies observed a 
decreased engagement of auditory or tactile 
sensory cortices during non-visual processing in 
EB individuals (Bedny et al., 2015; Burton et al., 
2002; Pietrini et al., 2004; Ricciardi et al., 2009; 
Stevens and Weaver, 2009; Striem-Amit et al., 
2012; Wallmeier et  al., 2015). Those opposing 
results were, however, both interpreted as showing improved processing in the regions supporting 
the remaining senses in blind people: more activity means enhanced processing and less activity 
means lower resources needed to achieve the same process; so, both more and less mean better. In 
this fallacious interpretational context, the application of multivoxel pattern analysis (MVPA) methods 
to brain imaging data represents an opportunity to go beyond comparing mere activity level differ-
ences between groups by allowing a detailed characterization of the information contained within 
brain areas (Berlot et  al., 2020; Kriegeskorte et  al., 2008b). An intriguing possibility, yet to be 
directly tested, is that early visual deprivation triggers a redeployment mechanism that would reallo-
cate part of the sensory processing typically implemented in the preserved senses (i.e. the temporal 
cortex for audition) to the occipital cortex deprived of its dominant visual input.

A few studies reported an increased representation of auditory stimuli in the occipital cortex 
concomitant to a decreased auditory representation in temporal regions in congenitally blind people 
(Battal et al., 2021; Dormal et al., 2016; Jiang et al., 2016, van den Hurk et al., 2017; Vetter 
et al., 2020). However, these studies did not focus on the link between intramodal and crossmodal 
reorganizations in blind individuals. For instance, we do not know, based on this literature, whether 
this increased/decreased representation is driven by similar or different features of the auditory stimuli 
in temporal and occipital regions. We have recently demonstrated that categorical membership is 
the main factor that predicts the representational structure of sounds in ventral occipito-temporal 
cortex (VOTC) in congenitally blind people (Mattioni et al., 2020), rather than lower-level acoustical 
attributes of sounds (i.e. pitch). Would the same categorical representation be the one that could 
be reorganized in the temporal cortex of these blind individuals? If true this would speak up for an 
interplay between the features that are reorganized in the temporal and occipital cortices of visually 
deprived people. Alternatively, the intramodal reorganization potentially observed in the temporal 
region of blind people might be driven by the acoustic properties of sounds, suggesting reorgani-
zation of independent auditory features (acoustic vs. categorical) in temporal and occipital regions. 
Representational similarity analyses (RSA) can reveal whether categorical vs. acoustic representation 
of the same set of sounds is encoded in a brain region (Giordano et al., 2013). Here, using RSA, we 
explore for the first time which features of the sounds (acoustic or categorical) are concomitantly reor-
ganized in the temporal or occipital cortex of blind compared to sighted people.

Another unsolved question relates to how the onset of blindness impacts the organization of 
cortical regions coding for the preserved and deprived senses. We have recently suggested that the 
increased representation of sound categories in the VOTC of EB people could be an extension of 

Figure 1. Experimental design. (Left) Categories of 
stimuli. (Right) Design of the fMRI experiment. (Right) 
Regions of interest (ROIs) selected from groups’ 
contrasts. β-Values from each group and ROIs for 
every main category (animal, human, manipulable, 
big objects and places) are reported in the orange 
(temporal) and green (occipital) rectangles.

https://doi.org/10.7554/eLife.79370
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the intrinsic multisensory categorical organization of the VOTC, that is therefore partially indepen-
dent from vision in sighted as well (Mattioni et al., 2020; see also Amedi et al., 2002; Ricciardi and 
Pietrini, 2011). According to this view, one should assume that late visual deprivation may extend the 
non-visual coding that is already implemented in the occipital cortex of sighted people. In contrast 
with this hypothesis, previous studies suggested that late acquired blindness triggers a reorganiza-
tion of occipital region that is less functionally organized than the one observed in early blindness 
(Bedny et al., 2012; Collignon et al., 2013; Kanjlia et al., 2009), promoting the idea that crossmodal 
plasticity in late blindness is more stochastic and functionally epiphenomenal compared to the one 
observed in EB people.

The current study aimed to carry out a comprehensive uni- and multivariate characterization of how 
early and late acquired blindness impact the processing of sounds from various categories (humans, 
animals, manipulable objects and big objects or scenes, Figure 1 ) in occipital and temporal regions.

Results
β’s extraction
We defined our regions of interest (ROIs) based on group differences of the univariate results (Figure 2 
and Figure 2—figure supplement 1). However, in these univariate contrasts, we included the sounds 
from all the different categories. Is one of our four main categories (i.e. animal, human, manipulable 
objects, and big objects and places) driving these groups’ differences (Figure 1)?

Figure 2. Regions of interest (ROIs).  
 (A) ROIs selected from groups’ contrasts at the univariate level. Note that, for illustration purpose, we report here 
the groups univariate contrasts including all subjects, but to avoid circular analyses we actually created ad hoc 
ROIs using a leave-one-subject-out approach (i.e. for each subject we excluded himself/herself from the univariate 
contrast). (B) β-Values from each group and ROIs for every main category (animal, human, manipulable, big objects 
and places) are reported in the red (temporal) and blue (occipital) rectangles. Black bars show standard error 
(sample size: Early Blind=16; Late Blind=15; Sighted Controls=20).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Univariate whole brain analyses.

https://doi.org/10.7554/eLife.79370


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Mattioni et al. eLife 2022;11:e79370. DOI: https://doi.org/10.7554/eLife.79370 � 4 of 24

To address this point we extracted the β-values in each ROI from every subject for every main cate-
gory (see Supplementary file 3 and Figure 2B) and we looked if there was a significant interaction 
Group*Category.

For the EB/sighted control (SC) comparisons, we run two separate ANOVA, one in the occipital ROI 
and one in the temporal ROI.

In the occipital ROI (from the univariate contrast EB > SC), we observed a significant main effect of 
Group (F(1,34)=11.91; p=0.001) while the main effect of Category (F(3,102)=1.22; p=0.31) and the interac-
tion Group*Category (F(3,102)=0.76; p=0.52) were both non-significant.

In the temporal ROI (from the univariate contrast SC > EB), we observed a significant main effect of 
Group (F(1,34)=8.23; p=0.007) and a significant main effect of Category (F(3,102)=12.29; p<0.001), while 
the interaction Group*Category (F(3,102)=1.93; p=0.13) was not significant. The post hoc comparisons 
for the main effect of Category revealed that the β-values for the human category were significantly 
higher compared to the β-values of all the other three categories (p≤0.005 for all comparisons).

For the late blind (LB)/SC comparisons, we run two separate ANOVA, one in the occipital ROI and 
one in the temporal ROI.

In the occipital ROI (from the univariate contrast LB > SC), we observed a significant main effect of 
Group (F(1,33)=16.88; p=0.0002) while the main effect of Category (F(3,99)=0.26; p=0.85) and the interac-
tion Group*Category (F(3,99)=0.82; p=0.48) were both not significant.

In the temporal ROI (from the univariate contrast SC > LB), we observed a significant main effect 
of Group (F(1,33)=8.85; p=0.005) and a significant main effect of Category (F(3,99)=23.93; p<0.001), while 
the interaction Group*Category (F(3,99)=1.25; p=0.3) was not significant. The post hoc comparisons 
for the main effect of Category revealed that the β-values for the human category were significantly 
higher compared to the β-values of all the other three categories (p<0.001 for all comparisons).

Figure 3. Multivoxel pattern (MVP) classification results in the regions of interest (ROIs). Eight-way decoding results from the early blind/sighted 
control (EB/SC) groups (left) and late blind (LB)/SC groups (right). Black bars show standard error (sample size: Early Blind=16; Late Blind=15; Sighted 
Controls=20).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Multivoxel pattern (MVP) classification results at the searchlight level.

Figure supplement 2. Multivoxel pattern analysis (MVPA) results for the late blind/sighted control (LB/SC) (age matched).

https://doi.org/10.7554/eLife.79370
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Note that in this analysis the groups’ difference 
was expected, since the ROIs have been selected 
based on that and we will not further interpret this 
main effect of Group.

Interestingly, we did not find any significant 
interaction Group*Category, suggesting that the 
univariate data cannot point out the role of one 
specific category in driving the group differences 
between blind and sighted.

Does this mean that all the categories are 
equally represented in our ROIs in sighted and 
in blind groups? To better address this point and 
to look at the categorical representation of the 
different sounds at a finer-grained scale in both 
sighted and blind individuals, we run a further set 
of multivariate fMRI analyses.

MVP eight-way classification
MVPA results for the EB/SC groups are represented 
in Figure 3A (left panel). In the SC group the mean 
decoding accuracy (DA) of the eight categories is 
significantly different from chance level (12.5%) in 
the temporal (DA = 23.71%; p<0.001) but not in 
the occipital (DA = 12.21%; p=0.67) ROIs. In the 
EB group the mean decoding accuracy is signif-
icant in both temporal (DA = 20.94%; p<0.001) 
and occipital cortex (DA = 15.78%; p<0.001). 
Importantly, a permutation test also revealed a 
significant difference between groups in both 
regions. In the occipital cortex the decoding accu-
racy value is significantly higher in EB than the SC 
(p<0.001, Cohen’s d=1.25), while in the temporal 
ROI the accuracy value is significantly higher in SC 
than EB (p=0.01, Cohen’s d=0.79). Importantly, 
the adjusted rank transform test (ART) 2 Groups 
× 2 ROIs revealed a significant group by region 
interaction (F(1,34)=11.05; p=0.002).

MVPA results for the LB/SC groups are repre-
sented in Figure  3A (right panel). In the SC 
group the decoding accuracy is significant in the 
temporal (DA = 25.75%; p<0.001) but not in the 
occipital (DA = 12.87%; p=0.31) ROI. In the LB 
group the decoding accuracy is significant in both 
occipital (DA = 15.56%; p<0.001) and temporal 
(DA = 20.75%; p<0.001) regions.

A permutation test also revealed a significant 
difference between groups in both regions. In the 
occipital cortex the decoding accuracy value is 
significantly higher in LB than the SC (p<0.001, 
Cohen’s d=0.73), while in the temporal ROI the 
accuracy value is significantly higher in SC than LB 
(p<0.001, Cohen’s d=0.96). Importantly, the ART 
2 Groups × 2 ROIs revealed a significant group by 
region interaction (F(1,33)=7.154; p=0.01). We obtained similar results also when comparing the 15 late 

Figure 4. Dissimilarity matrices (DSMs) correlations. 
 (A) Spearman’s correlation between occipital and 
temporal DSMs. (B) Spearman’s correlation between 
brain DSMs (occipital and temporal) and the human 
model. Black bars show standard error (sample size: 
Early Blind=16; Late Blind=15; Sighted Controls=20).

The online version of this article includes the following 
figure supplement(s) for figure 4:

Figure supplement 1. Correlation of brain dissimilarity 
matrices (DSMs) with behavioral models.

https://doi.org/10.7554/eLife.79370
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blind individuals with a subgroup of 15 age-matched sighted controls (Figure 3—figure supplement 
2).

In addition, we also report the same analysis performed with a searchlight approach (Figure 3—
figure supplement 1) for each group vs. baseline (p<0.05 FWE) and for each groups’ comparison 
(p<0.005 unc) including the direct comparison of EB and LB. The results from this whole brain analysis 
support our ROI results. Indeed, we generally observed an enhanced decoding accuracy in the fronto-
temporal areas in SC compared to blind groups (both EB and LB) and a decreased decoding accuracy 
in the occipito-parietal regions in SC compared to blind groups (both EB and LB).

Representational similarity analysis
RSA – correlation between the representational structure of occipital and 
temporal ROIs
The results of this analysis are represented in Figure 4A. We looked at whether the representation 
of the eight sound categories shares any similarity between the occipital and the temporal parcels 
within each blind and sighted subject, with particular interest at group differences. The permutation 
test revealed a significant correlation between the representational structure of occipital ROI and the 
representational structure of the temporal region only in blind groups (EB: r=0.12, p<0.01; LB: r=0.14, 
p<0.01), but not in SC group (r=0.02 in between both ROIs). When we look at the differences of correla-
tions values between groups, we found a significant difference between the EB and the SC groups 
(p<0.01, FDR corrected), highlighting an increased similarity between the occipital and the temporal 
dissimilarity matrices (DSMs) in the EB when compared to the SC group (Figure 4A). The difference 
between the LB and the SC (Figure 4A) was also significant (p<0.001, FDR corrected), showing an 
increased similarity between the occipital and the temporal DSMs in the LB when compared to the 
SC group (Figure 4A).

Comparison between brain DSMs and different representational models 
based on our stimuli space
Is there a specific feature that makes the structure of the occipital DSMs of blind closer to their 
temporal ROI DSMs?

Based on which dimensions (high or low level) are the sounds represented in the temporal and in 
the occipital parcels in our groups? The RSA comparisons with representational models, based either 
on low-level acoustic properties of the sounds or on high-level representations, can give us some 
important information about which representational structure could drive the observed decoding and 
correlation results.

The correlations’ results with representational models are represented in Figure 5C and D.
In Figure 5D we reported the ranked correlation between the occipital DSMs in each group and 

each of the seven representational models. The human model showed the highest correlation with the 
DSM of the occipital ROIs in the blind groups (EB: r=0.20, p=0.0012; LB: r=0.16, p<0.014). In the SC 
group, none of the models shows a significant correlation with the occipital DSM. The r values and the 
p-values for each model and group are reported in Supplementary file 4. See also Figure 5A and B 
to visualize the complete set of models and the correlation between them.

In Figure 5C we reported the ranked correlation between the temporal DSM in each group and 
each of the seven representational models. For the temporal ROIs, the human model was the winning 
model in each group (in the SC > EB temporal ROI, SC: r=0.24, p<0.00002; EB: r=0.14, p<0.001; in 
the SC > LB temporal ROI, SC: r=0.26, p<0.00002; LB: r=0.18, p<0.001), explaining the functional 
profile of the temporal regions more than all other models with the exception of the behavioral model 
(see Figure 5C). In each group, the amount of correlation between the behavioral model and every 
temporal DSMs was quantitatively, but not significantly, lower compared to the human model (for the 
behavioral model in the SC > EB temporal ROI, SC: r=0.18, p<0.001; EB: r=0.13, p<0.001; in the SC > 
LB temporal ROI, SC: r=0.22, p<0.001; LB: r=0.16, p<0.001).

The r values and the p-values for each model and group are reported in Supplementary file 5.
Since the human model is the only one that significantly correlates with the occipital DSM in blind 

groups and that explains most of the variance of our data in the temporal ROI of each group, we ran 
further analyses for this model. That is, we directly investigated whether there was a statistical differ-
ence between groups in the correlation with the human model, both in occipital and in temporal ROIs. 

https://doi.org/10.7554/eLife.79370
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Figure 5. Representational similarity analysis (RSA) – correlations with representational models. (A) Representation 
of the seven models. (B) Matrix including the linear correlations between each pair of models. Yellow indicates 
high correlations, blue indicates low correlation. (C) Correlations between temporal dissimilarity matrix (DSM) 
of each group and the seven representational models. (D) Correlation between occipital DSM of each group 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.79370
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RSA results with the human model for the EB/SC groups are represented in Figure 4B (top panel). In 
the occipital ROI, the permutation test revealed a significantly higher correlation in EB compared to 
the SC (p=0.019, Cohen’s d=0.65). In the temporal ROI, the permutation test revealed a significantly 
lower correlation in EB compared to the SC (p=0.013, Cohen’s d=0.76). Finally, ART analysis 2 Groups 
× 2 ROIs did reveal a significant effect of interaction group by region (p=0.007).

RSA results with the human model for the LB/SC groups are represented in Figure 4B (bottom 
panel). In the occipital ROI, the permutation test revealed a significantly higher correlation in LB 
compared to the SC (p<0.01, Cohen’s d=0.72), while in the temporal ROI there was a significantly 
lower correlation in LB compared to the SC (p=0.012, Cohen’s d=0.65). The ART analysis 2 Groups × 
2 ROIs revealed a significant interaction between groups and regions (p<0.001).

To be sure that the behavioral model was not showing a similar trend as the human model, we 
perform an additional statistical analysis also for this model. With this supplemental analysis, we 
investigated whether there was a statistical difference between groups in the correlation with the 
behavioral model (see Figure 4—figure supplement 1). This analysis did not reveal any significant 
difference between groups nor an interaction Group*Region.

RSA – additional whole brain searchlight analyses
We performed these analyses to show empirically that our stimuli are at least partially independent 
from the representation of low-level auditory properties in the temporal cortex and that they are suit-
able for investigating categorical auditory representation.

First, we used RSA with partial correlation to look whether we could segregate the representation 
of categorical vs. low-level auditory properties of our stimuli. In Figure 6 it is shown how we could 
segregate in every group the portion of the temporal cortex representing the pitch regressing out 
human coding (on the right Heschl gyrus), a specific portion of right STG coding for harmonicity-to-
noise ratio (HNR) in the three groups also regressing out human coding and finally the representation 
of the human model regressing out both pitch and HNR (bilateral superior lateral temporal region).

Second, we also run a split-half analysis to show that our auditory stimuli produce a stable pattern 
of activity in the temporal cortex (see Figure 6—figure supplement 1). Our data show that in all the 
groups (i.e. SC, EB, and LB) a big portion of the temporal cortex (including the superior temporal 
gyrus [STG], part of the middle temporal gyrus, and the Heschl gyrus both in the left and in the right 
hemispheres) show a highly significant stability of the patterns, suggesting that these portions of 
the temporal cortex have a stable representation of the sounds we selected. Interestingly, we also 
observed that the split-half correlation is increased in the occipital cortex of both EB and LB groups 
compared to the SC and it is, concomitantly, decreased in the temporal cortex of both blind groups 
(EB and LB) when compared to sighted subjects. A result that goes in line with our main decoding 
results.

Discussion
Our study provides a comprehensive exploration of how blindness at different age of acquisition 
induces large-scale reorganization of the representation of sound categories in the brain. More 

and the seven representational models. Bars show mean Spearman’s correlations across participants; error 
bars show standard error and each dot represents one participant (Sample size: Early Blind=16; Late Blind=15; 
Sighted Controls=20). Horizontal thick gray lines show the lower bound of the noise ceiling, which represents the 
reliability of the correlational patterns and provides an approximate bound of the observable correlations between 
representational models and neural data (Bracci and Op de Beeck, 2016; Nili et al., 2014). An asterisk below 
the bar indicates that correlations with that model were significantly higher than zero. Correlations with individual 
models are sorted from highest to lowest. Horizontal black lines above bars show significant differences between 
the correlations of the two end points (FDR corrected for multiple comparisons): we only reported the statistical 
difference between models showing a positive significant correlation and all other models.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Representational similarity analysis (RSA) results with the human model for the late 
blind/sighted control (LB/SC) (age matched).

Figure 5 continued

https://doi.org/10.7554/eLife.79370
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precisely, compared to our previous paper on which we build on Mattioni et al., 2020, the present 
study sheds new lights on at least two fundamental issues: (1) How does the reorganization of occipital 
regions in blind people impact on the response profile of temporal regions typically coding for sounds, 
and (2) how does the age of blindness onset impact on those large-scale brain (re)organization.

First, we looked whether brain regions show a different level of activation for sounds in blind 
compared to sighted subjects. We observed that, indeed, a ventral occipital region in the right hemi-
sphere showed enhanced activation for sounds in both EB and LB compared to sighted individuals 
while some portions of the temporal regions decrease their activation in EB and LB compared to the 
sighted group (see Figure 2A). However, univariate analyses did not allow to reveal neither if the 
different categories were discriminated one from each other in these regions, nor if one or multiple 
categories were more/less represented in those brain regions of blind vs. sighted (see Figure 2B).

To address these questions, we looked more in detail at the patterns of activity generated by the 
different sound categories in those reorganized occipital and temporal regions that emerged from 
the univariate group contrasts (EB vs. SC and LB vs. SC). Do these ROIs discriminate the different 
categories across sensory experiences (i.e. sighted, EB, LB)? If so, could we observe a difference 
between blind subjects and SC? Results from the eight-way MVP classification analysis show enhanced 
decoding accuracies in the occipital ROI of EB when compared to SC that was concomitant to reduced 
decoding accuracy in the temporal cortex of EB people (see Figure 3). Like what was observed in EB, 
LB also showed enhanced representation of sound categories in the occipital ROI compared to SC 
while the temporal cortex showed lower decoding in LB.

Figure 6. Representational similarity analysis (RSA) searchlight results with human, pitch, and harmonicity-to-noise 
ratio (HNR) models (including partial correlation).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Splithalf searchlight results.

https://doi.org/10.7554/eLife.79370
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A dominant view in the field is that the reorganization of occipital regions is less functionally orga-
nized in late blindness than the one observed in early blindness (Bedny et al., 2012; Collignon et al., 
2013; Kanjlia et al., 2009). Our results overturn this view by showing functionally specific coding of 
sound categories that is present in LB and increased compared to SC (see Figure 3A and Appendix 
1). This has broad implications since it supports the idea that the increased representation of sound 
categories in the VOTC of EB and LB people could be an extension of the intrinsic multisensory cate-
gorical organization of the VOTC, that is therefore partially independent from vision in sighted as well 
(Mattioni et al., 2020; see also Amedi et al., 2002; Ricciardi and Pietrini, 2011; Striem-Amit and 
Amedi, 2014). Indeed, for such conceptual view to be true, late visual deprivation should maintain 
or even extend the non-visual coding that is already implemented in the occipital cortex of sighted 
people. Our data support this hypothesis, helping to fill this gap in the literature.

Importantly, the eight-way decoding analysis revealed differences in the categorical representation 
between sighted and blind subjects both in the temporal and in the occipital regions. We observed 
enhanced decoding accuracies in the occipital ROI of blind subjects when compared to controls and 
this enhanced representation of sound categories in the occipital cortex was concomitant to reduced 
decoding accuracy in the temporal cortex of blind people (see Figure 3).

Would this redistribution of computational load across temporal and occipital regions predict a 
representation of auditory categories in the occipital ROI that is more similar to the representation of 
the same auditory categories in the temporal regions in blind when compared to sighted? Our results 
suggest that this is indeed the case. In fact we show that within each blind subject, the correlation 
between the occipital and the temporal categorical representations is significantly higher compared 
to the SC (Figure 4A).

Which dimension of our stimuli does determine the response properties of the temporal and occip-
ital regions to sounds? Is one category, among the others, driving these differences between groups? 
Moreover, is this alteration in the decoding explained by some higher-level representations (e.g. cate-
gorical, humanness) or by low-level acoustic features (pitch or HNR) specific to our sounds?

We addressed these questions by looking at which model, among several types based on different 
categorical (e.g. behavioral similarity judgment, human model, object model, etc.) and acoustic (e.g. 
harmonicity, pitch) dimensions, would better account for the representation of the auditory categories 
in the occipital and temporal regions in both sighted and blind subjects (Figure 5). In the temporal 
cortex, we found that in every group the best model was a ‘human’ model, in which human stimuli 
were considered similar between themselves and different from all other animate and inanimate 
stimuli (Figure 5A and C).

Interestingly, we also found that the human model, when compared to other models, showed the 
highest correlation with the representation of the auditory categories in the occipital ROI of both our 
blind groups but not of the SC (see Figure 4B and Figure 5D). This finding is well compatible with the 
spatial location of our ROIs which correspond to regions known to be involved in the processing of 
faces and voices, respectively (Benetti et al., 2017). Indeed, the two occipital ROIs are located within 
the fusiform gyrus/infero-temporal cortex, partially overlapping with the fusiform face area (Julian 
et al., 2009), while the two temporal ROIs are located within the STG, extending over the left and 
right temporal voice area (Belin et al., 2004).

We also show that it is only the representational structure of our ‘human’ model that is reduced in 
both LB and EB groups in temporal regions, but not the encoding of other categorical and low-level 
acoustic features which is similar across groups (Figure 5C). Interestingly, this result relates to the 
reversed group difference observed in the occipital regions where we find enhanced representation 
of the ‘human’ model in EB and LB people but no alteration in the representation of other categorical 
or acoustic features of the sounds (Figure 5D).

Importantly, we additionally show how our stimuli are well suited to address such question 
(Figure 6) by demonstrating, in all groups, that models of some acoustic features of our sounds (pitch, 
HNR) correlate more with the representational structure implemented in the Heschl gyrus (pitch) and 
in a specific portion of the right STS (HNR) while the ‘human’ model correlates more with the repre-
sentational structure of an extended bilateral portion of STS (see also Giordano et al., 2013).

Why is that important? It shows for the first time that acoustic features of sound processing are 
not altered in the auditory region and not represented in the occipital cortex of EB and LB people. In 
contrast, the representation of a higher-level category ‘Human/Voice’ is reduced in temporal regions 

https://doi.org/10.7554/eLife.79370


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Mattioni et al. eLife 2022;11:e79370. DOI: https://doi.org/10.7554/eLife.79370 � 11 of 24

and enhanced in occipital regions (Figure 4B). Showing that the same feature of our sounds is concom-
itantly reorganized in temporal and occipital cortices of both blind groups is filling in an important 
gap in the literature about how changes in the deprived and remaining senses relate to each other in 
case of early and late visual deprivation, providing a mechanistic view on the way plasticity expresses 
following blindness.

Could such a difference be driven by general factors like group differences in perceptual abilities, 
learning, and/or attention? If the different profile of the temporal cortex between blind and sighted 
individuals was driven by such general factors, one could have expected a difference not only for the 
representation of the human model but also for other representational models (e.g. sounds of objects 
or animals or low-level acoustic properties of the sounds). Our results show that this is not the case 
(see RSA correlations with representational models: Figure 5). Whether such specific alteration in the 
representation of voices relates to difference in the way blind and sighted people process voices (Bull 
et al., 1983; Hölig et al., 2014; Klinge et al., 2009) remains to be explored in future studies.

To summarize, we discovered that in both EB and LB the enhanced coding of sound categories in 
occipital regions is coupled with lower coding in the temporal regions compared to sighted people. 
The brain representation of the voice category is the one mostly altered in both EB and LB when 
compared to sighted people. This brain reorganization in blind people is mostly explained by the 
categorical aspects of the voice category and not by their acoustic features (pitch or harmonicity). An 
intriguing possibility raised by our results is that visual deprivation may actually trigger a redeploy-
ment mechanism that would reallocate part of the processing typically tagging the preserved senses 
(i.e. the temporal cortex for the auditory stimulation) to the occipital cortex deprived of its most 
salient visual input.

Method
Participants
Fifty-two participants involved in our auditory fMRI study: 17 EB (10 Female (F), 15 LB (4 F) and 20 SC 
6 F).

EB participants were congenitally blind or lost their sight very early in life and all of them reported 
not having visual memories and never used vision functionally (Supplementary file 1). One EB partici-
pant was able to only perform two out of the five runs and was excluded from the analyses. The EB and 
SC were age (range 20–67 years, mean ± SD: 33.31±10.57 for EB subjects, range 23–63 years, mean 
± SD: 35.1±8.83 for SC subjects; t(34)=–0.55, p=0.58) and gender (X2 (1,36)=2.6; p=0.11) matched.

LB participants acquired blindness after functional visual experience (age of acquisition ranging 
6–45  years old and number of years of deprivation ranging 5–43  years). All of them reported 
having visual memories and having used vision functionally (Supplementary file 1). The LB and SC 
were gender (X2 (1,35)=0.03; p=0.87) matched but not age matched (range 25–68 years, mean ± 
SD: 44.4±11.56 for LB subjects, range 30–63 years, range 23–63 years, mean ± SD: 35.1±8.83 for 
SC subjects; t(33)=2.70, p=0.01). For this reason, in every parametric test in which we statistically 
compared the groups we included the age as regressor of non-interest. For the permutation test, we 
report in the main paper the results including all subjects but in the supplemental material we included 
the results or the same test including only a subset of 15 sighted subjects age and gender matched 
with the LB group (Figure 3—figure supplement 1 and Figure 5—figure supplement 1) We did not 
find any relevant change in the results when the sighted were all included or when we included only 
a subset of them.

All the EB and 17 of the SC subjects were the same participants included in Mattioni et al., 2020, 
and in the current study we are re-analyzing these data used in our previous work. Importantly, the LB 
group and the three additional SC subjects were acquired in the same MRI scanner and in the same 
time period (July 2015–April 2016).

All participants were blindfolded during the task. Participants received a monetary compensation 
for their participation. The ethical committee of the University of Trento approved this study (protocol 
2014-007) and participants gave their informed consent before participation.

https://doi.org/10.7554/eLife.79370
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Materials and methods
Since this paper is submitted as a Research Advances format, it represents a substantial development 
that directly build upon a Research Article published previously by eLife (Mattioni et al., 2020). As 
for the journal recommendation, no extensive description of material and methods will appear when 
directly overlapping with our previous publication.

Stimuli
A preliminary experiment was carried out to select the auditory stimuli. The detailed procedure is 
described in Mattioni et al., 2020.

The final acoustic stimulus set included 24 sounds from eight different categories (human vocal-
ization, human non-vocalization, birds, mammals, tools, graspable objects, environmental scenes, big 
mechanical objects) that could be reduced to four superordinate categories (human, animals, manip-
ulable objects, big objects/places) (see Figure 1 and Supplementary file 2).

Procedure
Before entering the scanner, each participant was familiarized with the stimuli to ensure perfect recog-
nition. In the fMRI experiment each trial consisted of the same stimulus repeated twice. Rarely (8% 
of the occurrences), a trial was made up of two different consecutive stimuli (catch trials). Only in 
this case, participants were asked to press a key with the right index finger if the second stimulus 
belonged to the living category and with their right middle finger if the second stimulus belonged 
to the non-living category. This procedure ensured that the participants attended and processed the 
stimuli. Each pair of stimuli lasted 4 s (2 s per stimulus) and the inter-stimulus interval between one 
pair and the next was 2 s long for a total of 6 s for each trial. Within the fMRI session, participants 
underwent five runs. Each run contained three repetitions of each of the 24 stimuli, eight catch trials 
and two 20-s-long periods (one in the middle and another at the end of the run). The total duration 
of each run was 8 min and 40 s. The presentation of trials was pseudo-randomized: two stimuli from 
the same category (i.e. animals, humans, manipulable objects, non-manipulable objects) were never 
presented in subsequent trials. The stimuli delivery was controlled using MATLAB R2016b (https://
www.mathworks.com) Psychophysics toolbox (http://psychtoolbox.org).

fMRI data acquisition and analyses
fMRI data acquisition and pre-processing
We acquired our data on a 4T Bruker Biospin MedSpec equipped with an eight-channel birdcage head 
coil. Functional images were acquired with a T2*-weighted gradient-recalled echo-planar imaging 
(EPI) sequence (TR, 2000 ms; TE, 28 ms; flip angle, 73°; resolution, 3×3 mm; 30 transverses slices in 
interleaved ascending order; 3 mm slice thickness; field of view (FoV) 192×192 mm2). The four initial 
scans were discarded to allow for steady-state magnetization. Before each EPI run, we performed an 
additional scan to measure the point-spread function (PSF) of the acquired sequence, including fat 
saturation, which served for distortion correction that is expected with high-field imaging.

A structural T1-weighted 3D magnetization prepared rapid gradient echo sequence was also 
acquired for each subject (MP-RAGE; voxel size 1 × 1 × 1 mm3; GRAPPA acquisition with an accelera-
tion factor of 2; TR 2700 ms; TE 4.18 ms; TI (inversion time) 1020 ms; FoV 256; 176 slices).

To correct for distortions in geometry and intensity in the EPI images, we applied distortion correc-
tion on the basis of the PSF data acquired before the EPI scans (Zeng and Constable, 2002). Raw func-
tional images were pre-processed and analyzed with SPM12 (Welcome Trust Centre for Neuroimaging 
London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm/) implemented in MATLAB (MathWorks). 
Pre-processing included slice-timing correction using the middle slice as reference, the application of 
temporally high-pass filtered at 128 Hz, and motion correction.

To achieve maximal accuracy in the coregistration and normalization in a common volumetric 
space, we relied on the DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie 
Algebra; Ashburner, 2007) toolbox. DARTEL normalization takes the gray and white matter templates 
from each subject to create an averaged template based on our own sample that will be used for the 
normalization. The creation of a study-specific template using DARTEL was performed to reduce 
deformation errors that are more likely to arise when registering single subject images to an unusually 
shaped template (Ashburner, 2007). This is particularly relevant when comparing blind and sighted 
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subjects given that blindness is associated with significant changes in the structure of the brain itself, 
particularly within the occipital cortex (Dormal et al., 2016; Jiang et al., 2009; Pan et al., 2007; Park 
et al., 2009).

General linear model
The pre-processed images for each participant were analyzed using a general linear model (GLM). For 
each of the five runs we included 32 regressors: 24 regressors of interest (each stimulus), 1 regressor 
of no-interest for the target stimuli to be detected, 6 head-motion regressors of no-interest, and 1 
constant. From the GLM analysis we obtained a β-image for each stimulus (i.e. 24 sounds) in each run, 
for a total of 120 (24 × 5) β-maps.

Regions of interest
We used univariate analyses to select our ROIs.

First, we contrasted all the sounds vs. the baseline in each group and then we looked at groups’ 
comparisons to find the regions that were more active for sounds vs. baseline in 1. EB more than SC; 
2. SC more than EB; 3. LB more than SC; 4. SC more than LB.

To foreshadow the results (Figure 2A) we found a region in the right VOTC, mostly in the infero-
temporal cortex and in the fusiform gyrus (group peak coordinates in MNI space: 48 –60–14) more 
active in EB compared to SC and a region in the right STG (group peak coordinates in MNI space: 58 
–18–10) more active in SC than in EB.

Similarly, we found a region in the left VOTC, mostly in the fusiform gyrus and in the infero-temporal 
cortex (group peak coordinates in MNI space: 44 –76–18) more active in LB than in SC and a region in 
the left STG (group peak coordinates in MNI space: –48–14 0) more active in SC than in LB. The two 
regions in the left VOTC were partially but not completely overlapping so we created two different 
ROIs. Therefore in total we created four different ROIs, two of them from the comparison of EB and 
SC: occipital EB-SC and temporal SC-EB and the other two from the comparison of LB and SC: occip-
ital LB-SC and temporal SC-LB. In the further multivariate analyses we computed, we used the first 
two ROIs to compare the EB and SC groups and the last two ROIs to compare the LB and SC groups.

Importantly, to avoid any form of circularity, we applied a leave-one-subject-out approach: for each 
subject we run the just mentioned univariate contrasts excluding the subject himself/herself from the 
analysis (e.g. for the EB1 the occipital ROI is defined as the contrast [all EB but EB1>all SC]).

Since the univariate analyses highlighted only a small portion of VOTC (i.e. part of the fusiform 
gyrus and the infero-temporal cortex) in the contrasts EB > SC and LB > SC, we decided to run a 
topographical univariate functional preference analysis, as a supplemental analysis, to have a more 
comprehensive view on the reorganization of the VOTC following blindness and the impact of blind-
ness’s onset on such reorganization (see Appendix 1 for detailed description of this analysis).

β’s extraction
Is one among our four main categories (i.e. animal, human, manipulable objects, and big objects and 
places) driving the group differences of the univariate results? To address this point we extracted the 
β-values in each ROI and group for every main category. Then, for each ROI we entered the β-values 
in a repeated measures ANOVA 2(Groups)*4(Categories). Note that in this analysis the groups’ differ-
ence is expected, since the ROIs have been selected based on that and we will not further interpret 
the main effect of Group. We run this analysis to see if there is a significant interaction Group*Cat-
egory, which would highlight the role of one category among the others in explaining the groups’ 
differences.

MVP eight-way classification
MVP classification analysis was performed using the CoSMoMVPA (Oosterhof et al., 2016) toolbox, 
implemented in MATLAB R2016b (MathWorks). We tested the discriminability of patterns for the 
eight categories using a support vector machine analysis. We performed a leave-one-run-out cross-
validation procedure using β-estimates from four runs in the training set, and the β-estimates from the 
remaining independent run to test the classifier, with iterations across all possible training and test 
sets. This procedure was implemented in our ROIs (defined with a leave-one-subject-out procedure): 
in each cross-validation fold, we first defined from the training data the 40 most discriminative voxels 
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according to our eight categories (De Martino et al., 2008; Mitchell et al., 2004) and then we ran 
the MVP classification on this subset of voxels in the test data using the parameters described above.

The number of selected voxels (i.e. n=40) is based on the number of voxels of the smaller ROI (i.e. 
temporal SC-EB n=42 voxels). In this way, we could select the same number of voxels in each ROI and 
group.

Statistical significance of the classification results within each group was assessed using a non-
parametric technique by combining permutations and bootstrapping (Stelzer et al., 2013). For each 
subject, the labels of the different categories’ conditions were permuted, and the same decoding 
analysis was performed. The previous step was repeated 100 times for each subject. A bootstrap 
procedure was applied to obtain a group-level null distribution that is representative of the whole 
group. From each subject’s null distribution, one value was randomly chosen (with replacement) and 
averaged across all participants. This step was repeated 100,000 times resulting in a group-level 
null distribution of 100,000 values. The statistical significance of our MVP classification results was 
estimated by comparing the observed result to the group-level null distribution. This was done by 
calculating the proportion of observations in the null distribution that had a classification accuracy 
higher than the one obtained in the real test. To account for the multiple comparisons, all p-values 
were corrected using false discovery rate (FDR) (Benjamini and Hochberg, 1995).

The statistical difference between each group of blind (EB and LB) and the SC group was assessed 
using a permutation test. We built a null distribution for the difference of the accuracy values of the 
two groups by computing them after randomly shuffling the group labels. We repeated this step 
10,000 times. The statistical significance was estimated by comparing the observed result (i.e. the 
real difference of the accuracy between the two groups) to the null distribution. This was done by 
calculating the proportion of observations in the null distribution that had a difference of classification 
accuracy higher than the one obtained in the real test. To account for the multiple comparisons, all 
p-values were corrected using FDR (Benjamini and Hochberg, 1995).

To analyze the interaction between groups and regions, we also performed a non-parametric test: 
the ART (Leys and Schumann, 2010). ART is an advisable alternative to a factorial ANOVA when the 
requirements of a normal distribution and of homogeneity of variances are not fulfilled (Leys and 
Schumann, 2010), which is often the case of multivariate fMRI data (Stelzer et al., 2013). Importantly, 
we used the adjusted version of the original rank transformation (RT) test (Conover and Iman, 1981). 
In fact, the classical RT method loses much of its robustness as soon as the main effects occur together 
with one or several interactions. To avoid this problem, in the adjusted version the scores are adjusted 
by deducting the main effects and then analyzing separately the interactions (Leys and Schumann, 
2010).

We performed two separate ART tests, one for each blind group. The first ART with regions (occip-
ital and temporal) as within-subject factor and with SC and EB groups as between-subjects factor. The 
second ART with regions (occipital and temporal) as within-subject factor and with SC and LB groups 
as between-subjects factor.

RSA – brain DSM
We further investigated the functional profile of the ROIs using RSA. This analysis goes a step further 
compared to the decoding analysis revealing how each region represents the different stimuli cate-
gories and whether the results obtained in the decoding analyses are mostly driven by several cate-
gorical/high-level properties of the stimuli or by their low-level acoustic features such as pitch or 
harmonicity. RSA is based on the concept of DSM: a square matrix where the columns and rows 
correspond to the number of the conditions (8×8 in this experiment) and it is symmetrical about a 
diagonal of zeros. Each cell contains the dissimilarity index between two stimuli (Kriegeskorte and 
Kievit, 2013). This abstraction from the activity patterns themselves represents the main strength 
of RSA, allowing a direct comparison of the information carried by the representations in different 
brain regions, different groups, and even between brain and models (Kriegeskorte and Mur, 2012; 
Kriegeskorte et al., 2008b).

First, we computed the brain DSMs for each ROI and in each subject. We extracted the DSM 
(Kriegeskorte et al., 2008a) in each ROI, computing the dissimilarity between the spatial patterns 
of activity for each pair of conditions. To do so, we first extracted in each participant and in every 
ROI the stimulus-specific BOLD estimates from the contrast images (i.e. SPM T-maps) for all the eight 
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conditions separately. Then, we used Pearson’s correlation to compute the distance between each 
pair of patterns. Since the DSMs are symmetrical matrices, for all the RSA we use the upper triangular 
DSM (excluding the diagonal) to avoid inflating correlation values.

RSA – correlation between occipital and temporal ROIs in each subject and 
group
When the sounds of our eight categories are presented, brain regions create a representation of these 
sounds, considering some categories more similar and others more different. Would visual deprivation 
have an impact on the structure of representation for sound categories in the occipital and temporal 
regions? Our hypothesis was that the similarity between the representation of the eight sound catego-
ries between temporal and occipital regions was enhanced in blind individuals compared to their SC. 
To test this hypothesis, we compared the correlation between the DSMs of the occipital and temporal 
ROIs in each group.

In each individual, we computed the Spearman’s correlation between the occipital and temporal 
DSMs. We then averaged the values across subjects from the same group to have a mean value per 
group (Figure 4A).

For statistical analysis, we followed the procedure suggested by Kriegeskorte et al., 2008a. For 
each group, the statistical difference from zero was determined using permutation test (10,000 iter-
ations), building a null distribution for these correlation values by computing them after randomly 
shuffling the labels of the matrices. Similarly, the statistical difference between groups was assessed 
using permutation test (10,000 iterations) building a null distribution for these correlation values 
by computing them after randomly shuffling the group labels. The p-values are reported after FDR 
correction (Benjamini and Hochberg, 1995).

RSA – comparison between brain DSMs and representational models based 
on our stimuli space
Based on which dimensions (high-level/categorical or low-level acoustic properties) are the eight 
sound categories represented in the temporal and in the occipital ROIs in our groups? To address 
this question, we compared the representation of the sound categories in the two ROIs in each group 
with different representational models based either on low-level acoustic properties of the sounds 
or on high-level representations. Which of these models would better describe the representation of 
the sound stimuli in each region and group? Would the winning model (i.e. the model eliciting the 
highest correlation) be the same in the occipital and in the temporal region in (EB and LB) blind and 
in sighted subjects?

First of all, we built several representational models (see Figure 5A) based on different categorical 
ways of clustering the stimuli or on specific acoustic features of the sounds (computed using Praat, 
https://praat.en.softonic.com/mac).

Five models are based on high-level properties of the stimuli (models from 1 to 5) and two models 
are based on low-level properties of the sounds (models from 6 to 7) for a total of seven represen-
tational models (see Figure 5A and B to visualize the complete set of models and the correlation 
between them):

1.	 Behavioral model: it is based on the subject’s ratings of similarity, which were based on categor-
ical features. We included one behavioral model for each group.

2.	 Human model: it is a combination of a model that assumes that the human categories cluster 
together and all other categories create a second cluster and a model that assumes that the 
human categories cluster together and all other categories are different from humans and 
between themselves (Contini et al., 2020; Spriet et al., 2022).

3.	 Animal model: it is a combination of a model that assumes that the animal categories cluster 
together and all other categories create a second cluster and a model that assumes that the 
animals categories cluster together and all other categories are different from humans and 
between themselves.

4.	 Manipulable model: it is a combination of a model that assumes that the manipulable categories 
cluster together and all other categories create a second cluster and a model that assumes that 
the manipulable categories cluster together and all other categories are different from humans 
and between themselves.

https://doi.org/10.7554/eLife.79370
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5.	 Big and place model: it is a combination of a model that assumes that the big and place model 
categories cluster together and all other categories create a second cluster and a model that 
assumes that the big and place model categories cluster together and all other categories are 
different from humans and between themselves.

6.	 HNR model: the HNR represents the degree of acoustic periodicity of a sound.
7.	 Pitch model: the pitch, calculated with the autocorrelation method (see Mattioni et al., 2020), 

represents the measure of temporal regularity of the sound and corresponds to the perceived 
frequency content of the stimulus.

Then, we computed the Spearman’s correlation between each model and the DSM of each subject 
from the occipital and from the temporal ROIs, using a GLM approach. For each region separately, we 
finally averaged the correlation values of all subjects from the same group (Figure 4C and D).

Statistical significance of the correlation results within each group was assessed using a non-
parametric technique by combining permutations and bootstrapping (Stelzer et al., 2013), as we did 
for the decoding analyses (for further details about this statistical analysis, see the section above: MVP 
eight-way classification).

To account for the multiple comparisons, all p-values were corrected using FDR correction across 
the seven comparisons for each ROI (Benjamini and Hochberg, 1995).

To partially foreshadow the results, this analysis revealed that the human model is the winner model 
in the temporal ROI of each group and in the occipital ROI of blind groups. Therefore, only for the 
human model we performed statistical analyses to look at the comparison between groups (EB vs. SC 
and LB vs. SC) in both temporal and occipital ROIs (Figure 4B).

The statistical difference between each group of blind (EB and LB) and the SC group was assessed 
using a permutation test. We built a null distribution for the difference of the correlation values of 
the two groups by computing them after randomly shuffling the group labels. We repeated this step 
10,000 times. The statistical significance was estimated by comparing the observed result (i.e. the 
real difference of the correlations between the two groups) to the null distribution. This was done by 
calculating the proportion of observations in the null distribution that had a difference of correlation 
higher than the one obtained in the real test.

Similar to the MVP eight-way classification analysis, we performed the non-parametric ART to 
analyze the interaction between groups and regions (Leys and Schumann, 2010).

RSA – additional whole brain searchlight analyses
We run some further analyses to show empirically that our stimuli are suitable for investigating cate-
gorical auditory representation and that this categorical representation is at least partially indepen-
dent from the representation of low-level auditory properties in the temporal cortex.

First, we used RSA with partial correlation to look whether we could segregate the representation 
of human model vs. low-level auditory properties (pitch and HNR) of our stimuli. To do so, we compute 
the correlation between the brain representation of our stimuli with either a human, a pitch, or an HNR 
model regressing out the partial correlation shared between these models (Figure 6).

Second, we run a split-half analysis combined with a searchlight approach to show that our auditory 
stimuli produce a stable pattern of activity in the temporal cortex (see Figure 6—figure supplement 
1). We split the data in two halves, and we computed in each sphere of the brain a value of stability of 
the pattern of activity produced by the sounds. To do so we created for each voxel a matrix including 
for each stimulus the correlation between the patter of activity that such a stimulus produced with 
the pattern of activity produced by all other stimuli. In our case it is a 24*24 matrix, since we have 24 
sounds in total. Then, we computed the average of the on-diagonal values minus the average of the 
off-diagonal values and we use the obtained value as the ‘stability value’.
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Appendix 1

Topographical univariate functional preference maps
Methods
Since the univariate analyses highlighted only a small portion of VOTC (i.e. part of the fusiform 
gyrus and the infero-temporal cortex), we decided to run this supplemental analysis to have a more 
comprehensive view on the impact of blindness’ onset on the reorganization of the VOTC.

In the topographical analysis, we also used additional data from a visual version of the experiment.
We created a visual version of the stimuli set. The images for the visual experiment were colored 

pictures collected from Internet and edited using GIMP (https://www.gimp.org). Images were placed 
on a gray 400×400 pixels background.

An additional group of 16 sighted participants (SCv) took part in this visual version of the 
experiment (see Mattioni et al., 2020, for further details).

We created a topographical functional preference map for VOTC ROI for each group. We also 
included the maps from the additional group of sighted that performed a visual version (SCv) of 
the same experiment. The VOTC ROI included the Fusiform, the Parahippocampal, and the Infero-
Temporal cortices.

To create the topographical functional preference map (Figure 2), we extracted in each participant 
the β-value for each of our four main conditions (animals, humans, manipulable objects, and places) 
from each voxel inside each mask and we assigned to each voxel the condition producing the highest 
β-value (winner takes all). This analysis resulted in specific clusters of voxels that spatially distinguish 
themselves from their surround in terms of preference for a particular condition (van den Hurk 
et al., 2017; Mattioni et al., 2020).

Finally, to compare how similar are the topographical functional preference maps in the four 
groups we followed, for each pair of groups [(1) SCv-EB; (2) SCv-SC; (3) SCv-LB; (4) SC-EB; (5) SC-
LB; (6) EB-LB] these steps: (1) We computed the Spearman’s correlation between the topographical 
functional preference map of each subject from Group 1 with the averaged topographical functional 
preference map of Group 2 and we computed the mean of these values. (2) We computed the 
Spearman’s correlation between the topographical functional preference map of each subject from 
Group 2 with the averaged functional preference map of Group 1 and we computed the mean 
of these values. (3) We averaged the two mean values obtained from Steps 1 and 2, to have one 
mean value for each group comparison. To test statistical differences, we used a permutation test 
(10,000 iterations). (4) We randomly permuted the conditions of the vector of each subject from 
Group 1 and of the mean vector of Group 2 and we computed the correlation (as in Step 1). (5) We 
randomly permuted the conditions of the vector of each subject from Group 2 and of the mean 
vector of Group 1 and we computed the correlation (as in Step 2). Importantly, we constrained the 
permutation performed in the Steps 4 and 5 to take into consideration the inherent smoothness/
spatial dependencies in the univariate fMRI data. In each subject, we individuated each cluster of 
voxels showing preference for the same category and we kept these clusters fixed in the permutation, 
assigning randomly a condition to each of these predefined clusters. In this way, the spatial structure 
of the topographical maps was kept identical to the original one, making very unlikely that a 
significant result could be explained by the voxels’ spatial dependencies. We may however note that 
this null distribution is likely overly conservative since it assumes that size and position of clusters 
could be created only from task-independent spatial dependencies (either intrinsic to the acquisition 
or due to smoothing). We checked that each subject has at least seven clusters in his topographical 
map, which is the minimal number to reach the 10,000 combinations needed for the permutation 
given our four categories tested (possible combinations = n_categoriesn_clusters; 47=16,384). (6) We 
averaged the two mean values obtained from Steps 4 and 5. (7) We repeated these steps 10,000 
times to obtain a distribution of correlations simulating the null hypothesis that the two vectors are 
unrelated (Kriegeskorte et al., 2008a). If the actual correlation falls within the top α×100% of the 
simulated null distribution of correlations, the null hypothesis of unrelated vectors can be rejected 
with a false-positives rate of α. The p-values are reported after FDR correction (for six comparisons).

To test the difference between the group pairs’ correlations (we only test if in VOTC the correlation 
between the topographical maps of SCv and EB was different from the correlation of SCv and SC 
and if the correlation between SCv and LB was different from the correlation of SCv and SC) we used 

https://doi.org/10.7554/eLife.79370
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a permutation test (10,000 iterations). (8) We computed the difference between the correlation of 
Pair 1 and Pair 2: mean correlation Pair 1 – mean correlation Pair 2. (9) We kept fixed the labels of 
the group common to the two pairs and we shuffled the labels of the subjects from the other two 
groups (e.g. if we are comparing SCv-EB vs. SCv-SC, we keep the SCv group fixed and we shuffle 
the labels of EB and SC). (10) After shuffling the groups’ labels, we computed again the point 1-2-3 
and 8. (11) We repeated this step 10,000 times to obtain a distribution of differences simulating the 
null hypothesis that there is no difference between the two pairs’ correlations. If the actual difference 
falls within the top α×100% of the simulated null distribution of difference, the null hypothesis of 
absence of difference can be rejected with a false-positives rate of α.

Results
Appendix 1—figure 1 represents the topographical functional preference maps, which show the 
voxel-wise preferred stimulus condition based on a winner-takes-all approach (for the four main 
categories: animals, humans, small objects, and places) in VOTC.

We found that the topographical auditory preference maps of the EB (r=0.16, p=0.0001) and SC 
(r=0.09, p=0.0002) partially matched the visual map obtained in SC during vision. The correlation 
was also significant between the auditory maps in sighted and in EB (r=0.10, p=0.0001). These 
results replicate our previous results in Mattioni et al., 2020.

Importantly for the goal of the present study, we found similar results also in the LB group. The 
auditory topographic map of the LB subjects partially matched the visual topographic map obtained 
in SC during vision (r=0.17, p=0.0001) and correlated with the auditory topographic map observed 
in EB (r=0.11, p=0.0001).

The magnitude of the correlation between EB and SCv topographical category selective maps was 
significantly higher when compared to the correlation between SC in audition and SCv (p=0.003). 
Also in the case of late acquired blindness, the magnitude of correlation between LB and SCv was 
higher than the correlation between SC in audition and SCv (p=0.002).

As an additional information, we also computed a noise ceiling that could be useful to evaluate 
the correlation between the topographical maps of the different groups (Bracci and Op de Beeck, 
2016; Nili et al., 2014). We calculated the Spearman’s correlation of the topographical maps in 
the visual experiment between sighted subjects (r=0.42) and in the auditory experiment between 
sighted (r=0.10), EB (r=0.08), and LB subjects (r=0.14). These values represent the reliability of the 
correlational patterns and provide an approximate noise ceiling for the observable correlations 
between the topographical maps. As expected (since we are looking at the categorical preference 
in VOTC), the highest correlation is the one within the sighted subjects in the visual modality. It is not 
surprising that this reliability value is much lower in the three groups for the auditory modality. Indeed, 
the representation of sounds in VOTC was expected to be more variable than the representations of 
visual stimuli. This additional information is helpful in the interpretation of the correlation between 
groups. Even if they are modest, they, indeed, explain most of the variance under these noise ceilings.

https://doi.org/10.7554/eLife.79370
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Appendix 1—figure 1. Topographical functional preference maps. Averaged ‘winner take all’ topographical 
functional preference maps for our four main categories (animals, humans, manipulable, big non-manipulable) in 
the auditory modality in the sighted controls (SC, top left), early blind (EB, bottom left), and late blind (LB, bottom 
right). In the top right we also reported the map from an additional group of sighted that performed the visual 
version of the experiment. These maps visualize the functional topography of ventral occipito-temporal cortex 
(VOTC) to the main four categories in each group. These group maps are created for visualization purpose only 
since statistics are run from single subject maps (see Materials and methods). To obtain those group maps, we 
first averaged the β-values among participants of the same group in each voxel inside the VOTC for each of our 
four main conditions (animals, humans, manipulable objects, and places) separately and we then assigned to 
each voxel the condition producing the highest β-value. For each group we also computed a noise ceiling value, 
computing the correlation of the map between subjects from the same group.

https://doi.org/10.7554/eLife.79370
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