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Abstract There is increasing awareness throughout biomedical science that many results do 
not withstand the trials of repeat investigation. The growing abundance of medical literature has 
only increased the urgent need for tools to gauge the robustness and trustworthiness of published 
science. Dichotomous outcome designs are vital in randomized clinical trials, cohort studies, and 
observational data for ascertaining differences between experimental and control arms. It has 
however been shown with tools like the fragility index (FI) that many ostensibly impactful results 
fail to materialize when even small numbers of patients or subjects in either the control or exper-
imental arms are recoded from event to non-event. Critics of this metric counter that there is no 
objective means to determine a meaningful FI. As currently used, FI is not multidimensional and is 
computationally expensive. In this work, a conceptually similar geometrical approach is introduced, 
the ellipse of insignificance. This method yields precise deterministic values for the degree of 
manipulation or miscoding that can be tolerated simultaneously in both control and experimental 
arms, allowing for the derivation of objective measures of experimental robustness. More than this, 
the tool is intimately connected with sensitivity and specificity of the event/non-event tests, and 
is readily combined with knowledge of test parameters to reject unsound results. The method is 
outlined here, with illustrative clinical examples.

Editor's evaluation
This valuable article describes a fragility index based on the geometry of chi-square tests. The result 
is linked to the concept of measurement error in outcomes, such that one can directly quantify 
how less-than-perfect sensitivity or specificity will call into question the statistical significance of a 
particular finding. The methodology rests upon solid mathematical exposition and several real-world 
examples of both interventional and observational studies. Noteworthy extensions for future consid-
erations would be the application of this approach to censored outcomes.

Introduction
Biomedical science is crucial for human well-being, but there is an increasing awareness that many 
published results are less robust than desirable (Ioannidis, 2005; Loken and Gelman, 2017; Grimes 
et al., 2018). In fields from psychology (Krawczyk, 2015) to cancer research (Errington et al., 2021), 
a substantial volume of research fails to replicate. There is an urgent need to address this, as spurious 
findings can not only obscure important research directions, but can even misinform potentially life-
or-death decisions. While there are many reasons why published research might fail trustworthiness 
(including poorly conducted experiments, publish-or-perish pressure, and overt fraud in the form of 
data and image manipulation), inappropriate or misapplied statistical methods account for a large 
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portion of misleading results. Even a properly performed statistical analysis may fail to adequately 
identify situations where data might lack robustness. p values are routinely misunderstood and misap-
plied, leading to confused research outputs (Altman and Krzywinski, 2017; Colquhoun, 2014; 
Halsey et al., 2015). Dichotomous outcome trials and studies are crucial in many avenues of biomed-
icine, from preclinical observational studies to randomized controlled trials. The essential principle is 
that they contrast experimental and control groups for some intervention, comparing the numbers 
positive for some specific endpoint in both arms. This is absolutely integral to modern medicine 
to ascertain significant differences, but some authors have voiced concern that seeming significant 
findings in these trials can often disappear with the recoding of even small numbers of patients from 
endpoint positive to negative in either arm. The fragility index (FI) is the measure of many subjects 
are required to change a trial outcome from statistical significance to not significant. It is calculated 
by recoding a patient or subject in the experimental group (or control group) from event to non-
event, and employing Fisher’s exact test until significance is lost. The number of patients requiring 
this recoding for this to occur is the FI. The concept of FI has existed in various forms since at least 
the work of Feinstein, 1990, and in general the higher the FI is, the more robust an experiment 
is deemed. Applications of FI have shown some concerning results; in a study of 399 randomized 
controlled trials (RCTs) in high-impact medical journals, Walsh et al., 2014 found that median FI was 
8 (range: 0–109), with 25% having FI ‍≤ 3‍. In 53% of these trials, numbers lost to follow-up exceeded 
FI. A meta-analysis of spinal surgery studies Evaniew et al., 2015 found a median FI of 2, with 65% 
of trials having loss to follow-up greater than FI. A review of critical care trials (Ridgeon et al., 2016) 
and 2018 review of phase 3 cancer trials (Del Paggio and Tannock, 2019a) both found median FIs of 
2, and a 2020 review of epilepsy research (Das and Xaviar, 2020) yielded a median FI of 1.5. A recent 
fragility analysis of COVID-19 trials found that had a median FI of only 4, despite the large numbers 
of patients involved (Itaya et al., 2022). This suggests that many results are not robust, and teeter on 

eLife digest Science and medicine are vital to the well-being of humankind. Yet for all the 
incredible advances science has made, the unfortunate reality is that a worrying fraction of biological 
research is not reliable. Erroneous results might arise by chance or because of scientists’ mistakes or 
ineptitude. Very occasionally, researchers may behave unethically and fabricate or inappropriately 
manipulate their data.

Inevitably, this can lead to untrustworthy research that misleads scientists and the public on ques-
tions integral to our health. Indeed, a recent study showed the results of several high-profile cancer 
papers could not be fully replicated. This problem is not unique to cancer, and studies on various 
other diseases have also not stood up to scrutiny from outside investigators. Finding ways to detect 
dubious results is therefore essential to protect the public’s well-being and maintain public trust in 
science.

Here, Grimes demonstrates a new tool called the ‘Ellipse of Insignificance’ for measuring the reli-
ability of dichotomous studies which are commonly used in many branches of biomedical sciences, 
including clinical trials. These studies typically compare two groups: one which was subjected to a 
specific treatment, and a control group which was not. Statistical methods are then applied to esti-
mate how likely it is that differences in the number of observed events between the groups are real 
or due to chance.

The tool created by Grimes explores what would happen to seemingly strong results if some of the 
events in both the control and experimental arm of the study are recoded. It then assesses how much 
nudging is needed to change the statistical outcome of the experiment: the more interventions the 
result can withstand, the more robust the experiment. Grimes tested the tool and showed that a study 
suggesting a link between miscarriage and magnetic field exposure was likely unreliable because 
shifting the outcomes of less than two participants would change the result.

Scientists could use the Ellipse of Insignificance tool to quickly identify misleading published results 
or potential research fraud. Doing this could benefit researchers and protect the public from potential 
harm. It may also help preserve research integrity, increase transparency, and bolster public trust in 
science.

https://doi.org/10.7554/eLife.79573
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the edge of statistical significance. While a very useful metric, FI has some substantial faults. There 
is considerable debate over whether is it appropriate for time-to-event cases (Bomze and Meirson, 
2019; Desnoyers et  al., 2019; Machado et  al., 2019; Del Paggio and Tannock, 2019b). More 
directly, there is no simple FI cut-off metric that designates studies as either robust or fragile, though 
some authors suggest the fragility quotient (FQ) as an extension, the fraction of FI over sample size 
(Tignanelli and Napolitano, 2019). In addition, FI and FQ can also be computationally expensive 
to run, typically requiring multiple iterations of Fisher’s exact test to converge. As Fisher’s exact test 
relies on factorials, it is typically not suited to larger trials or studies. It is also implicitly considers 
only either control or experimental groups in isolation, even though it is possible that miscoding can 
occur in both cohorts. Nor does FI relate directly to test parameters between non-events and events, 
such as sensitivity or specificity. Many of these objections and counterpoints to them are discussed 
in recent work by Baer et  al., 2021a. With FI and FQ becoming increasingly commonly reported 
in the literature, it is worthwhile to introduce a related, refined metric with new application. In this 
work, I introduce a geometric refinement of the concept underpinning FI which overcomes some 
difficulties associated with FI analysis, considering recoding in both control and experimental groups 
in tandem. This ellipse of insignificance (EOI) approach is exact and computationally inexpensive, 
yielding objective measures of experimental robustness. There are two major differences and situa-
tional advantages to such a formulation; firstly, it can handle huge data sets with ease and consider 
both control and experimental arms simultaneously, which traditional fragility analysis cannot. Previ-
ously, fragility has been typically considered in the case of relatively small numbers in RCTs, which as 
previous commentators have noted are often fragile by design. The method outlined here handles 
massive numbers with ease, rendering it suitable for analysis of observational trials, cohort studies, 
and general preclinical work, to detect dubious results and fraud. This sets it apart in both intention 
and application to existing measures, and makes it unique in this regard. Secondly, this methodology 
is not solely a new, robust FI; it also goes further by linking the concept of fragility to test sensitivity 
and specificity. This a priori allows an investigator to probe not only whether a result is arbitrarily 
fragile, but to truly probe whether consider certain results are even possible. This renders it less 
arbitrary than existent measures, as it ties directly statistically measurable quantities to stated results, 
and is sufficiently powerful to rule out suspect findings in many dichotomous trials and studies. It can 
accordingly be used to detect likely fraud or inappropriate manipulation of results if the statistical 
properties of the tests used are known. This is unfortunately highly relevant, as unsound or otherwise 
manipulated results have become an increasingly recognized problem in biomedical research, and 
means to detect them are vital. The EOI analysis outlined here for any ‍2 × 2‍ dichotomous outcome 
trial or study, with an experimental arm consisting of ‍a‍ subjects with endpoint positive outcomes and 
‍b‍ without, and a control arm with ‍c‍ subjects with endpoint positive versus ‍d‍ without. The EOI analysis 
outlined in the methodology section allows rapid determination of the effects of recoding in all arms 
simultaneously, and ties this explicitly to test sensitivity and specificity, with illustrative examples of 
application demonstrated.

Methods
The EOI approach is based upon the principles of a chi-squared analysis. Consider an experimental 
group containing ‍a‍ participants with a given endpoint and ‍b‍ participants without that endpoint. In 
the control group, there are ‍c‍ participants with the given endpoint, and ‍d‍ without. The total number 
of participants is given by ‍n = a + b + c + d‍. For a 2 by 2 contingency table, the chi-squared statistic 
is given by

	﻿‍
χ2

c =
n
(
ad − bc

)2

(a + b)(c + d)(a + c)(b + d)
.
‍�

(1)

When this statistic is greater than a specified threshold, results are deemed significant and differ-
ences between the control and experimental groups considered indicative of real differences. The 
initial question this work concerns itself with is ascertaining how many patients or subjects would have 
to be recoded to transform an ostensibly significant result into one where the null hypothesis was not 
rejected. This recoding can be achieved two ways: by subtracting ‍x‍ participants from ‍a‍ (experimental 

https://doi.org/10.7554/eLife.79573
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group, endpoint positive) or by adding ‍y‍ participants to ‍c‍ (control group, endpoint positive). These 
configurations are given in Table 1.

Applying the same statistic outlined in Equation 1, with a threshold critical value for significance 
of ‍νc‍, the resulting identity is

	﻿‍

n
((

a − x
)(

d − y
)
−

(
b + x

)(
c + y

))2

(a + b)(c + d)(a + c − x + y)(b + d + x − y)
− νc = 0.

‍�

(2)

This form can be expanded, with the resultant equation being a conic section (Grimes and Currell, 
2018) of the form ‍Ax2 + Bxy + Cy2 + Dx + Ey + F = 0‍. This corresponds specifically to an inclined 
ellipse, with coefficients A–F given by

	﻿‍ A = (c + d)
(
(c + d)n + (a + b)νc

)
‍� (3)

	﻿‍ B = 2(a + b)(c + d)(n − νc)‍� (4)

	﻿‍ C = (a + b)
(
(a + b)n + (c + d)νc

)
‍� (5)

	﻿‍ D = (c + d)
(
2(bc − ad)n + (a + b)(b − a + d − c)νc

)
‍� (6)

	﻿‍ E = (a + b)
(
2(bc − ad)n + (c + d)(a − b + c − d)νc

)
‍� (7)

	﻿‍ F = (bc − ad)2n − (a + b)(a + c)(b + d)(c + d)νc.‍� (8)

Any points on or in inside this EOI will fall below the threshold to reject the null hypothesis, and 
the ellipse is effectively the bound of all values of ‍x‍ and ‍y‍ sufficient to cause a loss of significance at 
a threshold critical value of ‍νc‍, calculated from the chi-squared distribution at a given level of signifi-
cance with one degree of freedom.

FECKUP point and vector
Finding the minimum distance from the origin to the EOI allows us to ascertain the minimal error 
which would render results insignificant. To find this, we take the implicit derivative of the distance 
vector from the origin to this unknown point, and the implicit derivative of the equation of the inclined 
ellipse whose coefficients are given in Equations 3–8. Setting ‍y′‍ equal in both equations leads to the 
pair of simultaneous equations for the unknown point ‍(xe, ye)‍ of

	﻿‍ (2Axe + Bye + D)ye − xe(Bxe + 2Cye + E) = 0‍� (9)

	﻿‍ Ax2
e + Bxeye + Cy2

e + Dxe + Eye + F = 0.‍� (10)

Solving this results in a quartic equation, resulting in four solutions, one pair of which will be the 
minimum distance point ‍(xe, ye)‍. This can be readily checked, and the solution pair will correspond to 
the absolute minimum pair value to lose significance at a given threshold. This resultant point and 
vector denotes the Fewest Experimental/Control Knowingly Uncoded Participants (FECKUP), with 
length ‍fmin‍. An illustration of this is shown in Figure 1a. Accordingly, the points xe and ye can be 
understood as the resolution of vector ‍fmin‍ in the experimental and control directions, respectively. If 
both experimental and control participants can be miscoded, the theoretical minimum number that 
could be miscoded before a seemingly significant result dissipated, ‍dmin‍, is the sum of the opposite 
and adjacent lengths of the right-angled triangle formed by hypotenuse ‍fmin‍. As there are only integer 
numbers of participants, it thus follows that

	﻿‍ dmin = ⌊|xe| + |ye|⌋.‍� (11)

Table 1. Reported groups and related variables.

Endpoint positive Endpoint negative

Experimental group ‍a − x‍ ‍b + x‍

Control group ‍c + y‍ ‍d − y‍

https://doi.org/10.7554/eLife.79573
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If we instead only consider inaccuracies in the experimental group as possible, we may set ‍y = 0‍ 
and ‍x = xi‍ for the equation of the ellipse, yielding the quadratic identity ‍Ax2 + Dx + F = 0‍, readily 
solvable to determine xi. This is the point nearest the origin where the ellipse intercepts the x-axis. 
Conversely, we may consider a situation where only inaccuracies in the control group may exist. 
By similar reasoning, considering only inaccuracies in the control group yields a similar quadratic, 

‍Cy2 + Ey + F‍ to yield yi, the intercept of the ellipse with the y-axis. All these vectors are illustrated in 
Figure 1b, and are the maximum limits of miscoding theoretically possible before significance is lost.

Metrics for fragility of results
To ascertain if a trial or study is robust against the miscoding of patients or subjects, we introduce 
metrics to quantify this. Considering only inaccuracies in the experimental group, we define the toler-
ance threshold for error in experimental group as the fraction of subjects that must be correctly allo-
cated in the experimental group to maintain significance, given by

	﻿‍
ϵE = 1 − a + b − |xi|

a + b
.
‍�

(12)

This identity is intimately related to the existent FI, yielding the traditional FQ. For example, an 
experiment with ‍ϵE = 0.1‍ after EOI analysis would inform us that up to 10% of experimental participants 
could be miscoded before the result lost significance. By similar reasoning, the tolerance threshold for 
error allowable in the control group is then

	﻿‍
ϵC = 1 − c + d − |yi|

c + d
.
‍�

(13)

Finally, errors in both the coding of the experimental and control groups can be combined with 
FECKUP point knowledge. While ‍fmin‍ gives a minimum vector distance to the ellipse, we instead take 
the length of the vector components to reflect to yield an absolute accuracy threshold of

	﻿‍
ϵA = 1 − n − |dmin|

n
.
‍�

(14)

yi

xi

xe

ye

Figure 1. Ellipse of insignificance example. (a) An example ellipse of insignificance for the ‍a = 50‍, ‍b = 50‍, ‍c = 10‍, ‍d = 90‍ at a significance level 
of ‍α = 0.05‍. All points bounded by the ellipse depict ‍(x, y)‍ combinations which would not lead to the null being rejected. (b) Relevant vectors 
for ascertaining misconding thresholds. In this example, the Fewest Experimental/Control Knowingly Uncoded Participants (FECKUP) point is 

‍(xe, ye) = (12.8, 14.4)‍, ‍fmin = 19.3‍, and ‍(xi, yi) = (30.1, 26.3)‍. See text for details.

https://doi.org/10.7554/eLife.79573
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Relating test sensitivity and specificity to miscoding thresholds
The identities derived thus far give a measure of the absolute accuracy required for confidence in the 
robustness of stated results. If details of the specific tests employed to determine endpoints in the 
experimental and control cohorts are known, then robustness can be directly related to the sensitivity 
and specificity of the tests employed. If the sensitivity (‍sne‍) and specificity (‍spe‍) of the test used to ascer-
tain cases in the experimental group are known, then the observed number of cases with endpoint 
positive is related to the true number of endpoint positive cases, ao, by ‍a = aosne + (a + b − ao)(1 − spe)‍. 
It follows that the minimum miscoded cases in the experimental group are given by

	﻿‍
xm =

b(1 − spe) − a(1 − sne)
sne + spe − 1

.
‍�

(15)

A similar relationship can be derived for the control groups, with sensitivity ‍snc‍ and specificity ‍spc‍, 
and the minimum miscoded cases in the control group are given by

	﻿‍
ym =

c(1 − snc) − d(1 − spc)
snc + spc − 1

.
‍�

(16)

The values ‍(xm, ym)‍ denote the minimum miscoding that exists in reported figures because of 
inherent test limitations, and it follows that if this pair value lies within the EOI, then any ostensible 
results of the study are not robust. The forms given in Equations 15 and 16 are general forms. In 
many cases, when the same test is used in endpoint determination in the experimental and control 
groups, ‍sne = snc‍ and ‍spe = spc‍. However, there are instances when in observational and cohort trials in 
particular, accrued data will derive from different tests on various cohorts, an example of which will be 
introduced later in this work.

Method inversion
It is important to note that the analysis presented here can be used not only to ascertain miscoding 
between endpoint positive and negative situations, but also can be inverted for situations where, for 
example, endpoint positive or negative might be known with high certainty but there are concerns 
over miscoding between control and experimental groups. In this case, simply reassigning endpoint 

yi

xe

ye

Figure 2. Application of ellipse of insignificance analysis to existent data. (a) Ellipses of insignificance analysis for a published study (n = 913) for 
illustrative example 1 of published data. The shaded region denotes the ellipse of insignificance, the red line shows the Fewest Experimental/Control 
Knowingly Uncoded Participants (FECKUP) vector (the minimum vector from the origin to the ellipse).

https://doi.org/10.7554/eLife.79573
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positive, experimental and control groups, respectively, as (‍a, b‍) and endpoint negative experimental 
and control groups as (‍c, d‍) allows straightforward application of EOI analysis as outlined.

Polygon of insignificance
The EOI yields a continuously valued boundary. As only integer values are generally of concern, 
we can also define an irregular polygon of insignificance by considering the largest integer-valued 
polygon encompassing the EOI. Similarly, we can also take the floor values of ‍xe, ye, xi‍, and yi in such 
an approach. This is readily derived from EOI analysis, and code to produce such a shape is included 
in the supplementary material.

Results
Illustrative example 1 – EOI analysis of published data
A previously published study claimed higher rates of miscarriage in a cohort with high magnetic 
field exposure (‍a = 164, b = 530‍) versus a low exposure cohort (‍c = 36, d = 183‍), significant at ‍α = 0.05‍. 
An EOI analysis shows that a displacement of less than two subjects would be enough to undo this 
seeming significance as shown in Figure  2, and that the absolute tolerance threshold was only 

‍ϵA = 0.22%‍ as given in Table 2. This rendered the actual result highly fragile, given the demonstrable 

Table 2. Ellipse of insignificance (EOI) derived metrics for published data.

EOI statistic (‍α = 0.05‍) Derived value

Experimental group tolerance xi 6.9 subjects

Control group tolerance yi 1.9 subjects

FECKUP vector length 1.9 subjects

Tolerance threshold for error (experimental group)‍ϵE‍ 0.99%

Tolerance threshold for error (control group)‍ϵC‍ 0.89%

Absolute tolerance threshold for error (all subjects)‍ϵA‍ 0.22%

Figure 3. Illustrative example 2. (a) Ellipses of insignificance analysis for two studies with same ‍χ2‍ statistic. (b) Fewest Experimental/Control Knowingly 
Uncoded Participants (FECKUP) vectors for both studies. Experiment 1 is given by orange ellipse and red dotted line, Experiment 2 by the blue ellipse 
and dotted line.

https://doi.org/10.7554/eLife.79573
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fact that inspection of the supplied tables in the paper in question demonstrated that at least nine 
subjects had been miscoded in the initial analysis. These weaknesses, coupled with the lack of a plau-
sible biophysical hypothesis and non-physical dose–response curve, suggests such findings were likely 
spurious (Grimes and Heathers, 2021a).

Illustrative example 2 – EOI robustness analysis of similar results
Consider two hypothetical experiments that yield highly similar ‍χ

2
‍ statistics. Experiment 1 has 

‍(a1, b1, c1, d1) = (770, 230, 550, 450)‍ and Experiment 2 gives ‍(a2, b2, c2, d2) = (144, 856, 20, 980)‍, both of 
which correspond to ‍χ

2 ≈ 100‍, and p values <0.00001. We can employ EOI analysis to ascertain how 
robust these seemingly strong respective results are for different values of ‍α‍. The EOI analysis and 
FECKUP vectors are illustrated in Figure 3 for ‍α = 0.05‍, and relevant statistics for various values of 
‍α‍ are given in Table 3. It can be seen from this that despite the similar test statistics, Experiment 1 
is consistently more robust, and would require the miscoding of at least 178 participants (8.9% of 
the entire sample) to lose significance, relative to 99 (‍≈ 5%‍ of the entire sample) in Experiment 2 at 
‍α = 0.05‍, a trend that continues even with lower values of ‍α‍.

Illustrative example 3 – sensitivity and specificity in cancer screening 
statistics
Consider an application of EOI analysis where sensitivity and specificity of different tests are being 
implicitly compared. Screening results derived from two hypothetical cities are listed in Table 4. City 
A uses standard Liquid-based cytology (LBC) analysis whereas City B’s programme uses a HPV(human 
papillomavirus)reflex scheme, where subjects are first tested for high-risk HPV. With ‍p < 0.00001‍, it 
would seem highly significant that these two cities have markedly different rates of CIN2+. The EOI 
analysis reveals that FECKUP vector details, as shown in Figure 4. Yet as the sensitivity and spec-
ificity of the respective tests are known (LBC: ‍sn = 0.75‍, ‍sp = 0.90‍, HPV-reflex: ‍sn ≈ 0.68‍, ‍sp ≈ 0.99‍) 
application of Equation 14 yields ‍xm ≈ 93‍. This exceeds xi and lies within the EOI, meaning we can 
immediately discount the ostensibly highly significant result despite its seeming strength. Further 
application of EOI analysis informed by sensitivity and specificity allows us to ascertain that the two 
cities actually have the same prevalence of CIN2, at 20 cases per 1000, a real problem encountered 
when comparing national screening programmes (Grimes et al., 2021c).

Table 3. Experimental metrics for similar test statistics.

Significance level Data ‍ϵE‍ ‍ϵC‍ ‍ϵA‍

‍α = 0.05‍ Experiment 1 17.7% 18.2% 8.9%

Experiment 2 11% 9.5% 5.0%

‍α = 0.01‍ Experiment 1 16.3% 17.0% 8.3%

Experiment 2 10.4% 8.6% 4.6%

‍α = 0.001‍ Experiment 1 14.8% 15.5% 7.5%

Experiment 2 9.8% 7.6% 4.1%

‍α = 0.0001‍ Experiment 1 13.5% 14.3% 6.9%

Experiment 2 9.2% 6.8% 3.8%

Table 4. Results of different analysis.

CIN2 + positive
No CIN2 + 
detected Methodology

City A (measured) 113 887 LBC only

City B (measured) 24 976 HPV screening/LBC reflex

True values (both 
cities) 20 980 N/A

https://doi.org/10.7554/eLife.79573
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Discussion
The analysis presented here is a deterministic way to ascertain the fragility of a given dichotomous 
outcome study by considering experimental and control groups in concert. This method is geomet-
rical in origin and computationally inexpensive. It also explicitly can relate outcome fragility to the 
sensitivity and specificity of tests employed when known, aiding clinicians and meta-researchers in 
interpreting the trustworthiness of a given study. Sample OCTAVE and MATLAB code and stand-alone 
Windows applications are provided to run the analysis outlined in this work, available in the elec-
tronic supplementary material. There are a number of limitations of this work that should be explicitly 
discussed, and caveats to be elucidated. The EOI analysis handles potential miscoding, but cannot 
be used to infer anything about patients or subjects lost to follow-up. This is a weakness of all FI/FQ 
methods, as it is not a priori knowable from reported data alone why patients dropped out, or why 
they might have atrophied from particular subgroups. Redaction bias (Grimes and Heathers, 2021b) 
can occur if subjects leave a particular subset at an elevated rate, and while beyond the scope of this 
work, it is important to realize that explicit connections between EOI/FI/FQ analysis and numbers 
lost to follow-up cannot be directly made. The method outlined is deterministic and rapid, but only 
currently applicable to dichotomous outcome trials and studies, and should be applied very cautiously 
to time-to-event data, where it may not be suitable. FI itself is also typically calculated using Fisher’s 

yi

xi

Figure 4. Illustrative example 3. An ellipse of insignificance (EOI) analysis on the data supplied in the City A/City 
B screening comparison yields a Fewest Experimental/Control Knowingly Uncoded Participants (FECKUP) vector 
(in red) of 46.2 subjects, corresponding to a minimum tolerance of 66.5 total subjects after resolving the vector. As 

‍xi = 73.7‍ (shown in green) with ‍yi = 62.7‍ (shown in blue), but as the sensitivity and specificity of the tests used 
in City A are known, it can be shown that ‍xm ≈ 93‍, exceeding the limits of xi, placing the point within the ellipse 
and rendering any seeming significance void. Note that only a part of the EOI (denoted by the blue solid shape) is 
shown for clarity.
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exact test, which well approximates a chi-squared test. However, for small trials, the p value derived 
from Fisher’s exact test can be discrepant from chi-squared result. When Fisher’s exact test produces 
a non-significant p value without any recoding, an FI of 0 results, suggesting a distinct lack of robust-
ness of the underlying data. As EOI analysis is built upon chi-squared statistics, it is possible in edge 
cases of small numbers to have discordant results between EOI and Fisher’s exact test also. The chief 
advantage of the method outlined here, however, is that it handles extremely large data sets with 
ease. In large data sets, Fischer’s exact test breaks down due to its dependence on factorials, and a 
chi-squared approximation is more appropriate. This is fitting, given EOI is built upon the chi-square 
distribution. But the important caveat is that for rare events in small trials, an FI approach built upon 
Fisher’s exact test may be more appropriate (Baer et al., 2021a). The usage of FI/FQ itself remains 
contested in the literature, and one frequent objection is that the mere existence of a small FI might 
be an artefact of trial design (Walter et al., 2020). With clinical RCTs in particular, experimenters often 
design trials to minimize exposure of patients or subjects to as of yet unknown harms, while seeking 
to ensure enough of them participate so that clinically relevant causal effects can be reliably detected. 
From this vantage point, RCTs might be fragile ‘by design’. This view is countered by other authors 
Baer et al., 2021a who argue that there are no evidence p value distributions tend to cluster around 
the significance threshold after a sample size calculation, and that the FI in well-designed studies is 
not always low (Baer et al., 2021b). This work does not comment on the absolute applicability of the 
FI, but offers new metrics for quantification of results in context. More importantly, EOI analysis has 
definite application for dichotomous outcome results not derived just from fragile-by-design RCTs, 
but from ecological studies, cohort trials, and preclinical work which should in principle be far more 
resilient to investigation than RCTs. There is a less edifying but important reason why EOI analysis 
might be conducted – the detection of questionable research practices and fraud. While most scien-
tists and clinicians operate ethically, poor conduct and inappropriate statistical manipulation can and 
do occur. By some estimates, up to three quarters of all biomedical science are affected by poor 
practice (Fanelli, 2009), casting doubt on results to the detriment of science and the public, often a 
consequence of publish-or-perish pressure (Grimes et al., 2018). During the COVID-19 pandemic, a 
number of dubious high-profile results have come to light, particularly on drugs like Ivermectin (Hill 
et al., 2022; Besançon et al., 2022). EOI analysis has a potential role in detecting manipulations that 
nudge results towards significance, and identifying inconsistencies in data. EOI analysis is perhaps 
ideal for this purpose, as it explicitly relates known test sensitivity and specificity to projected error 
tolerance, allowing detection of suspect results in even large data sets, as illustrated by the real exam-
ples in this work. Despite its caveats on usage, the FI has seen growing application in analysis of trial 
outcomes, and the EOI system presented here should allow this to be applied more thoroughly in a 
multidimensional way. Regardless of whether appropriate research practice has been observed or not, 
it is important to be able to estimate the soundness of results in biomedical science, to ascertain what 
level of confidence once can ascribe to them. This need has seen the recent resurgence of FI anal-
ysis, and the EOI analysis presented here can help undercover questionable results and experimental 
inconsistencies, with wide potential application in meta-research and reproducible research.
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