
Chen et al. eLife 2022;11:e79655. DOI: https://doi.org/10.7554/eLife.79655  1 of 23

Non- coding RNAs in drug and radiation 
resistance of bone and soft- tissue 
sarcoma: a systematic review
Huan- Huan Chen1, Tie- Ning Zhang2, Fang- Yuan Zhang3*, Tao Zhang2*

1Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 
China; 2Department of Pediatrics, Shengjing Hospital of China Medical University, 
Shenyang, China; 3Department of General Surgery, Shengjing Hospital of China 
Medical University, Shenyang, China

Abstract
Background: Sarcomas comprise approximately 1% of all human malignancies; treatment resistance 
is one of the major reasons for the poor prognosis of sarcomas. Accumulating evidence suggests 
that non- coding RNAs (ncRNAs), including miRNAs, long ncRNAs, and circular RNAs, are important 
molecules involved in the crosstalk between resistance to chemotherapy, targeted therapy, and 
radiotherapy via various pathways.
Methods: We searched the PubMed (MEDLINE) database for articles regarding sarcoma- associated 
ncRNAs from inception to August 17, 2022. Studies investigating the roles of host- derived miRNAs, 
long ncRNAs, and circular RNAs in sarcoma were included. Data relating to the roles of ncRNAs in 
therapeutic regulation and their applicability as biomarkers for predicting the therapeutic response 
of sarcomas were extracted. Two independent researchers assessed the quality of the studies using 
the Würzburg Methodological Quality Score (W- MeQS).
Results: Observational studies revealed the ectopic expression of ncRNAs in sarcoma patients who 
had different responses to antitumor treatments. Experimental studies have confirmed crosstalk 
between cellular pathways pertinent to chemotherapy, targeted therapy, and radiotherapy resis-
tance. Of the included studies, W- MeQS scores ranged from 3 to 10 (average score = 5.42). Of the 
12 articles that investigated ncRNAs as biomarkers, none included a validation cohort. Selective 
reporting of the sensitivity, specificity, and receiver operating curves was common.
Conclusions: Although ncRNAs appear to be good candidates as biomarkers for predicting treat-
ment response and therapeutics for sarcoma, their differential expression across tissues complicates 
their application. Further research regarding their potential for inhibiting or activating these regula-
tory molecules to reverse treatment resistance may be useful.
Funding: This study’s literature retrieval was supported financially by the 345 Talent Project of 
Shengjing Hospital of China Medical University (M0949 to Tao Zhang).

Editor's evaluation
Sarcomas comprise approximately 1% of all human malignancies; treatment resistance is one of the 
major reasons for the poor prognosis of sarcomas. The authors searched the PubMed (MEDLINE) 
database for articles regarding sarcoma- associated non- coding RNAs from inception to August 
17, 2022. Data regarding the roles of ncRNAs in therapeutic regulation and their applicability as 
biomarkers for predicting the therapeutic response of sarcomas were extracted. The conclusions 
reached are valuable and solid and should be of interest to the field.
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Introduction
Sarcomas constitute a heterogeneous group of rare tumors representing more than 60 malignan-
cies within a wider range of over 160 different bone and soft tissue neoplasms. Sarcomas include 
bone sarcoma (osteosarcoma [OS], chondrosarcoma, Ewing’s sarcoma [EWS]) and soft- tissue sarcomas 
(Kaposi’s sarcoma, rhabdomyosarcoma [RMS], gastrointestinal stromal tumor [GIST]; Nacev et  al., 
2020). Epidemiologically sarcomas are uncommon, comprising only approximately 1% of human 
malignancies (Siegel et al., 2018), with an estimated annual incidence rate of 2.4 cases per 100,000 
population (Ritter and Bielack, 2010; Wibmer et al., 2010). Treatment strategies include surgical 
resection, chemotherapy, targeted therapy, immunotherapy, and radiotherapy. Nevertheless, primary 
or acquired resistance to drugs or radiation eventually leads to treatment failure and poor outcomes 
in sarcoma patients (Chen et al., 2016b; Wisdom et al., 2020). The precise mechanisms involved in 
drug or radiation resistance in sarcoma remain unclear. A better understanding of the mechanisms of 
sarcoma resistance to drugs or radiation is needed to improve therapeutic efficacy and to prolong the 
overall survival of patients.

Recently, several lines of evidence have demonstrated that non- coding RNAs (ncRNAs), including 
miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in the resistance to 
a variety of therapies against bone and soft- tissue sarcomas, including chemotherapy reagents (Fu 
et al., 2019), targeted therapy drugs (Cao et al., 2016), immune checkpoint inhibitors (ICIs; Pang and 
Hao, 2021), and radiation (He et al., 2020).

miRNAs, which are typically 18–25 nucleotides long, are the most frequently studied short ncRNAs 
(Cho, 2010). Mature miRNAs inhibit target gene expression through mRNA degradation or repression 
of translation (Vicente et al., 2016). By targeting the repressors of specific genes, miRNAs can be 
used to upregulate the expression of these genes indirectly by alleviating their repression (Hulshoff 
et al., 2019). Increasing evidence has also described a non- canonical role for miRNAs in transcrip-
tional regulation; however, the underlying mechanisms remain largely unknown. ncRNAs comprising 
over 200 nucleotides are classified as lncRNAs. lncRNAs modulate gene transcription and translation 
in the cytoplasm through multiple mechanisms (Chillón and Marcia, 2020). They can act as recruiters, 
tethers, and scaffolds for other regulatory factors involved in epigenetic modifications or can regu-
late gene transcription by acting as decoys, coregulators, or polymerase- II inhibitors. They are also 
involved in the organization of different components of the transcriptional and splicing machinery 
and the subnuclear structures. Moreover, lncRNAs can control processes such as mRNA processing, 
stability, and translation by acting as sponges for miRNAs to block their effects (Kung et al., 2013). 
Finally, circRNAs comprise 1–5 introns or exons and are highly stable molecules that form a covalently 
closed continuous loop (Hentze and Preiss, 2013; Wilusz and Sharp, 2013). Similar to lncRNAs, 
circRNAs also function as miRNA sponges, RNA- binding protein- sequestering factors, and regulators 
of gene expression by controlling mRNA transcription (Li et al., 2015; Hansen et al., 2013). Further-
more, circRNAs can control gene transcription by interacting with phosphorylated polymerase- II or by 
competing with the pre- mRNA splicing machinery (Zhang et al., 2013; Ashwal- Fluss et al., 2014).

The primary aim of this systematic review was to discuss new paradigms of the roles of regulatory 
ncRNAs in the molecular mechanisms that underlie the resistance of sarcomas to treatment. The 
secondary aim of this review was to identify the applicability of ncRNAs as biomarkers for predicting 
treatment responses, as well as their potential as therapeutic targets.

Methods
Search strategy
We searched for relevant articles in PubMed using following Medical Subject Headings: ([non- 
coding RNA] OR [ncRNA] OR [long non- coding RNA] OR [lncRNA] OR [circular RNA] OR [circRNA] 
OR [miRNA]) AND ([sarcoma] OR [OS] OR [chondrosarcoma] OR [synovial sarcoma] OR [leiomyosar-
coma] OR [liposarcoma] OR [fibrosarcoma] OR [Kaposi’s sarcoma] OR [RMS] OR [EWS] OR [angiosar-
coma] OR [hemangiosarcoma] OR [GIST] OR [epithelioid sarcoma] OR [alveolar soft part sarcoma] OR 
[clear cell sarcoma] OR [intimal sarcoma] OR [undifferentiated sarcoma] OR [undifferentiated spindle 
cell sarcoma] OR [undifferentiated pleomorphic sarcoma] OR [undifferentiated round cell sarcoma] 
OR [epithelioid inflammatory myofibroblastic sarcoma] OR [myxoinflammatory fibroblastic sarcoma] 
OR [myofibroblastic sarcoma] OR [ectomesenchymoma] OR [malignant solitary fibrous tumor] OR 

https://doi.org/10.7554/eLife.79655


 Research article Cancer Biology | Medicine

Chen et al. eLife 2022;11:e79655. DOI: https://doi.org/10.7554/eLife.79655  3 of 23

[malignant tenosynovial giant cell tumor] OR [epithelioid hemangioendothelioma] OR [malignant 
glomus tumor] OR [malignant peripheral nerve sheath tumor] OR [malignant granular cell tumor] OR 
[malignant perineurioma] OR [Neurotrophic tyrosine receptor kinase (NTRK)- rearranged spindle cell 
neoplasm] OR [desmoplastic small round cell tumor] OR [rhabdoid tumor] OR [desmoid tumor] OR 
[malignant perivascular epithelioid tumor] OR [malignant ossifying fibromyxoid tumor] OR [myoepi-
thelial carcinoma] OR [malignant mixed tumor] OR [hyalinizing spindle cell tumor] OR [malignant Triton 
tumor] OR [malignant mesenchymoma]) AND ([resistance] OR [drug resistance] OR [chemoresistance] 
OR [chemotherapy resistance] OR [radioresistance] OR [radiotherapy resistance] OR [sensitivity]). The 
reports selected up to August 17, 2022 were included. There were no restrictions with regard to the 
type of studies or the language used.

Inclusion and exclusion criteria
Studies fulfilling the following criteria were included: (1) original research studies in which the role 
of host- derived regulatory ncRNAs (miRNA, lncRNA, or circRNA) in bone or soft- tissue sarcoma was 
investigated; and (2) studies examining the role of ncRNAs in therapeutic drug or radiation resistance. 
Investigations on exogenous regulatory RNAs or non- original research articles, such as review articles, 
conference proceedings, editorials, and book chapters, were excluded.

Titles and abstracts were independently screened for relevance by the two authors of this study 
(HHC and TZ), while disagreements were resolved through discussions with a third author (FYZ).

Data extraction
The following data were extracted: first author and year of publication, pathological type of sarcoma, 
type of study, ncRNA class investigated, therapeutic agents used, methods used to detect the corre-
sponding ncRNA, number of replicates/specimens (for in vitro and in vivo studies) or patients (for 
clinical studies), gene or cellular pathways involved, and major conclusions.

Quality assessment
The quality of the included studies was assessed using the Würzburg Methodological Quality Score 
(W- MeQS; Uçeyler et al., 2011). W- MeQS consists of 12 items that are relevant for assessing the 
quality of a laboratory method. This tool contains 12 items that assess selection bias, performance 
bias, attrition bias, detection bias, reporting bias, reagents status, charts status, and measurements 
status. These factors are commonly involved in vitro and in vivo studies. The higher the W- MeQS 
score, the better the quality of the study. For each item fulfilled, one point is given, and the score is 
the total sum of all points achieved, so the maximum score achievable is 12. If the target of interest 
was measured by just one method, this score marks the end score. If more than one method was used, 
a sub- score is calculated for each method as described, and the end score is calculated as the mean 
of the sub- scores. The quality assessment was independently screened for relevance by two authors 
(HHC and TZ), and disagreements were resolved through discussions with a third author (FYZ).

Results
Summary of included studies and article quality
Our search strategy yielded 930 records. After eliminating duplicates, 927 records remained. Titles 
and abstracts were screened for content, and 738 underwent a full- text evaluation. The excluded 
studies were neither original articles nor directly related to sarcoma or lacked evidence of dereg-
ulation of the studied ncRNAs in sarcoma (Supplementary file 3). The reasons for exclusion and a 
flowchart of the processing steps are shown in Figure 1. A total of 212 original studies investigating 
miRNAs, lncRNAs, or circRNAs in sarcomas were included. The selected studies were published 
between 2012 and 2022, with the exception of one published in 2009 and one published in 2010; 
our selection included in vitro, in vivo, and human studies. Of these, 178 articles examined the role 
of ncRNAs in chemotherapy- resistant sarcoma, 14 studied the role of ncRNAs in targeted therapy- 
resistant sarcoma, one focused on immune checkpoint inhibitor (ICI) resistance, six investigated radio-
therapy resistance, and 13 evaluated the value of ncRNAs as biomarkers for predicting treatment 
response in sarcoma. Of the 212 included studies, 179 examined the role of ncRNAs in OS, 4 focused 
on chondrosarcoma, 3 on EWS, 2 on synovial sarcoma, and 16 on GIST. Moreover, 135, 54, and 23 
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studies were focused on miRNAs, lncRNAs, and circRNAs, respectively. Supplementary file 1 lists 
all the ncRNAs investigated in different studies. The W- MeQS scores ranged from 3 to 10, with an 
average score of 5.42 (Supplementary file 2), implying that the study quality was compromised for 
most of the included articles. 95% of the articles had a quality score below 9; only 10 articles had a 
score of 9 or above. As most of the articles were based on animal or cell experiments, they exhibited 
obvious distribution bias, selection bias, and reporting bias. A summary of the molecular mechanisms 
underlying the actions of the ncRNAs associated with therapeutic resistance in sarcoma is shown in 
Figure 2 and Figure 3.

ncRNAs participated in chemotherapy drug resistance
Osteosarcoma
Of the 179 articles that studied the role of ncRNAs in chemotherapy- resistant sarcoma, 166 
focused on OS. Of these, 43 investigated the molecular regulatory mechanisms of lncRNAs in 
chemotherapeutic drug resistance in OS, 101 focused on miRNAs, 21 on circRNAs, and one study 
reported on both lncRNA MEG3 and hsa_circ_0001258 (Zhu et al., 2019). Moreover, 19 overlap-
ping ncRNAs were reported in more than one study, including four lncRNAs (lncRNA SNHG15 [Sun 
et al., 2022; Zhang et al., 2020a], lncRNA OIP5- AS1 [Song et al., 2019; Liu and Wang, 2020; 
Sun et al., 2020; Kun- Peng et al., 2019], lncRNA TUG1 [Zhou et al., 2020; Hu et al., 2019], and 

Figure 1. Flow diagram for Preferred Reporting Items for Systematic Reviews showing the literature selection process used to identify the studies 
included in the review. The last group of boxes show the number of studies on different pathological types of sarcomas. Among them, the box 
‘sarcoma’ represents three studies focused on the role of non- coding RNAs in multiple pathological types of sarcoma. Moreover, the box ‘other 
sarcomas’ represents five studies focused on rhabdomyosarcoma, uterine leiomyosarcoma, fibrosarcoma, malignant fibrous histiocytoma, and atypical 
teratoid/rhabdoid tumor. Abbreviations: EWS, Ewing’s sarcoma; GIST, gastrointestinal stromal tumor.
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lncRNA ANRIL [Li and Zhu, 2019b; Lee et al., 2021]), 13 miRNAs (miR- 29b [Luo et al., 2019; Li 
et al., 2020], miR- 21 [Vanas et al., 2016; Ziyan and Yang, 2016], miR- 22 [Wang et al., 2019c; 
Li et al., 2014; Meng et al., 2020a; Meng et al., 2020b; Zhou et al., 2018b], miR- 199a- 3p [Lei 
et al., 2018; Gao et al., 2015], miR- 34a- 5p [Pu et al., 2016; Pu et al., 2017b; Pu et al., 2017a], 
miR- 34a [Li et al., 2017; Novello et al., 2014; Chen et al., 2016a], miR- 140- 5p [Wei et al., 2016; 
Meng et al., 2017], miR- 203 [Chen et al., 2016a; Huang et al., 2021], miR- 19a- 3p [Zhang et al., 
2019; Wang et al., 2022a], miR- 140 [Song et al., 2009; Zhi et al., 2022], miR- 29 [Osaki et al., 
2016; Xu et al., 2018b], miR- 221 [Yu et al., 2019; Zhao et al., 2013], and miR- 100 [Xiao et al., 
2017; Liu et al., 2016]), and two circRNAs (circPTV1 [Li et al., 2021c; Kun- Peng et al., 2018a; 
Wang et al., 2022c] and circRNA_0004674 [Ma et al., 2021; Bai et al., 2021]) (Table 1). The OS 
studies primarily focused on the molecular mechanisms of ncRNAs in cisplatin resistance (n=79), 
adriamycin/doxorubicin resistance (n=49), and multidrug resistance (MDR, n=27). The remaining 
11 studies evaluated the role of ncRNAs in methotrexate (n=7), etoposide (n=1), paclitaxel (n=1), 
5- flurouracil (n=1), and gemcitabine (n=1) resistance in OS. From the 166 studies, we identified 82 
ncRNAs that play important roles in enhancing chemoresistance in OS cells and/or animal models. 
Conversely, 84 ncRNAs had the opposite effect, contributing to chemotherapeutic sensitivity in OS 
(Supplementary file 4).

Figure 2. A summary diagram of miRNAs, long non- coding RNAs (lncRNAs), and circular RNAs (circRNAs) that participate in drug or radiation resistance 
in sarcoma. Several miRNAs, lncRNAs, and circRNAs have been found to be involved in sarcoma treatment resistance by influencing apoptosis, DNA 
repair, the cell cycle, glucose metabolism, autophagy, epithelial- mesenchymal transition, drug efflux, multiple drug resistance, and cancer stem cell 
behavior, through regulating the expression of potential target genes and related signaling pathways. These phenotypes are disordered in one or more 
sarcomas of different histological types, including osteosarcoma, chondrosarcoma, Ewing’s sarcoma, synovial sarcoma, gastrointestinal stromal tumor, 
rhabdomyosarcoma, uterine leiomyosarcoma, fibrosarcoma, malignant fibrous histiocytoma, and atypical teratoid/rhabdoid tumors. Specially, these 
phenotypes are all disordered in osteosarcoma. Abbreviations: 5- Fu, 5- flurouracil; CBP, carboplatin; DDP, cisplatin; DOC, docetaxel; DOX, doxorubicin; 
GEM, gemcitabine; MTX, methotrexate; PTX, paclitaxel; VCR, vincristine; VP- 16, etoposide.
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EWS and chondrosarcoma
Four studies reported the effects of miRNAs on chemotherapy treatment in EWS. Among these, one 
study demonstrated that miRNA- 193a- 5p controls cisplatin chemoresistance in both OS and EWS 
(Jacques et al., 2016). Two studies reported that miRNAs (miR- 34a [Nakatani et al., 2012] and miR- 
708 [Robin et al., 2012]) increased tumor sensitivity to multiple drugs, including vincristine, doxoru-
bicin, and etoposide, in EWS cells. One study showed that miR- 125b overexpression reduced drug 
sensitivity in EWS cells (Iida et al., 2013). In addition, three studies investigated the role of miRNAs 
in the resistance of chondrosarcoma cells to chemotherapy; the results showed that miR- 100 (Zhu 
et al., 2014), miR- 23b (Huang et al., 2017), and miR- 125b (Tang et al., 2016) increased cisplatin or 
doxorubicin sensitivity in chondrosarcoma cells.

Soft-tissue sarcoma
Among the remaining six studies, five reported that miRNAs (miR- 27a [Bharathy et al., 2018], miR- 
22- 3p [Xu et al., 2018a], miR- 34a [Zhang et al., 2020b], miR- 197- 5 p [Jain et al., 2022], and miR- 206 
[Li et  al., 2021a]) enhanced sensitivity to the chemotherapeutic drugs vincristine, cisplatin, doxo-
rubicin or gemcitabine in RMS, GIST, uterine leiomyosarcoma, and malignant fibrous histiocytoma 
(MFH), both in vitro and in vivo. By contrast, one study indicated that miR- 17 promotes doxorubicin 
resistance in synovial sarcoma both in vitro and in vivo (Minami et al., 2014).

Figure 3. Long non- coding RNAs (lncRNAs), circular RNAs (circRNAs), and miRNAs in osteosarcoma chemoresistance. The main molecular mechanisms 
by which dysregulated ncRNAs (lncRNAs, circRNAs and miRNAs) mediate chemotherapy drug resistance in osteosarcoma are summarized. miRNAs 
usually bind directly to target genes and regulate their expression and related signaling pathways. LncRNAs and circRNAs can bind directly to target 
genes or can serve as miRNA sponges to regulate the expression of target genes and related signaling pathways, thereby mediating osteosarcoma 
chemoresistance. Abbreviations: ABCB1, ATP- binding cassette, subfamily B, member 1; AKT, protein kinase B; CCN2, CTGF, connective tissue growth 
factor; CCND1, cell cycle- related cyclin D1; ERK, extracellular signal- regulated kinase; EZH2, enhancer of zeste 2 polycomb repressive complex 
2; FBN1, fibrillin- 1; FOXC2, forkhead box C2; HES1, hairy and enhancer of split- 1; HIF- 1α, hypoxia- inducible factor- 1; LPAATβ, lysophosphatidic 
acid acyltransferase; MCL1, myeloid cell leukemia 1; MMP- 9, matrix metalloproteinase 9; MRP1, multidrug resistance- associated protein- 1; MTDH, 
metadherin; NF-κB, nuclear factor- kappa B; PI3K, phosphoinositide 3- kinase; STAT3, signal transducer and activator of transcription 3.
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ncRNAs participated in resistance to targeted therapy drugs
Of the 14 studies that investigated role of ncRNAs in targeted therapy resistance, three focused on the 
role of miRNAs in OS resistance to targeted therapy drugs. Their in vitro and in vivo results showed 
that miR- 34a (Wang et al., 2021), miR- 596 (Wang et al., 2019a), and miR- 499a (Wang et al., 2019b) 
enhanced the sensitivity of OS to cabozantinib, anlotinib, and erlotinib, respectively. In addition, ten 
studies illustrated the effects of ncRNAs in GISTs treated with imatinib. Four of the 10 studies demon-
strated that the lncRNA CCDC26 (Cao et al., 2018; Yan et al., 2019) reduced the resistance, whereas 
HOTAIR (Zhang et al., 2021a) and RP11- 616M22.7 (Shao et al., 2021) enhanced the resistance of 
GISTs to imatinib in vitro and/or in vivo by regulating different downstream targets (the c- KIT, ATG2B, 
IGF- 1R, and Hippo signaling pathways). The other six studies reported the roles of different miRNAs 
in GISTs treated with imatinib: four miRNAs (miR- 218 [Fan et al., 2015], miR- 30a [Chen et al., 2020a], 
miR- 518- 5p [Shi et al., 2016], and miR- 21 [Cao et al., 2016]) sensitized GIST cells and/or animal models 
to imatinib, whereas two miRNAs (miR- 125- 5p [Huang et al., 2018; Akçakaya et al., 2014] and miR- 
107 [Akçakaya et al., 2014]) enhanced imatinib resistance in GIST cells. Two overlapping ncRNAs, 
lncRNA CCDC26 (Cao et al., 2018; Yan et al., 2019) and miR- 125- 5p (Huang et al., 2018; Akçakaya 
et al., 2014), were reported in more than one study. Moreover, the remaining studies showed that miR- 
761 enhanced pazopanib resistance in synovial sarcoma cells (Shiozawa et al., 2018).

lncRNAs participated in ICI resistance
Only one study met our criteria for ncRNAs in sarcoma resistance to immunotherapy. One bioinfor-
matic analysis reported that the overexpression of the lncRNAs ADAM6, C5orf58, CXCR2P1, FCGR2C, 
HCP5, HLA- H, NAPSB, NCF1B, and NCF1C reduced the sensitivity of sarcoma to ICIs (Pang and Hao, 
2021).

ncRNAs participated in radioresistance
Among the six studies focused on the radiosensitivity of sarcoma, four focused on the sensitivity of 
OS to X- rays. One study demonstrated that LINC00210 (He et al., 2020) reduced the sensitivity of 

Table 1. The targets of non- coding RNAs (ncRNAs) that regulate therapeutic resistance in sarcoma.

Therapeutic strategies Themes
No. of 
studies ncRNA frequently involved Key genes or pathways involved

Chemotherapy

Osteosarcomas (OS)

Studies of long 
ncRNAs (lncRNAs) 43

lncRNA SNHG15, lncRNA OIP5- AS1, 
lncRNA TUG1, and lncRNA ANRIL

NF-κB, STAT3, PI3K/AKT, Bax, Bcl- 2, caspase3, 
cleaved caspase3, ABCB1, and MCL1

Studies on miRNAs 101

miR- 29b, miR- 21, miR- 22, miR- 199a- 3p, 
miR- 34a- 5p, miR- 34a, miR- 140–5 p, miR- 203, 
miR- 19a- 3p, miR- 140, miR- 29, miR- 221, and 
miR- 100

MMP- 9, KRAS, Bcl- 2, PI3K/AKT, NF-κB, c- Myc, 
LC3-Ⅰ, LC3-Ⅱ, HIF- 1α, MCL1, North1, Wnt/β-
catenin, mTOR, p53, and SOX2

Studies on circular 
RNAs (circRNAs) 21 circPTV1 and circRNA_0004674 Wnt/β-catenin, EZH2

Other sarcomas Studies on ncRNAs 13 Various p53, and AKT

targeted therapy

Gastrointestinal stromal 
tumors (GIST)

Studies on lncRNAs 4 lncRNA CCDC26

VariousStudies on miRNAs 6 miR- 125a- 5p

Other sarcomas Studies on miRNAs 4 Various Various

Immunotherapy

Sarcomas Studies on lncRNAs 1 Various N/A

Radiotherapy

Sarcomas Studies on ncRNAs 6 Various Various

Biomarker

Sarcomas Studies on ncRNAs 13 Various N/A
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OS cells to this therapy, and another study showed that miR- 214 (Li et al., 2019a) induced OS radio-
resistance both in vitro and in vivo. Two studies found that miRNAs (miR- 328- 3p [Yang et al., 2018] 
and miR- 513a- 5p [Dai et al., 2018]) could directly lead to the radiosensitization of OS cells and animal 
tumor models. Furthermore, one study reported that rapamycin combined with an miR- 34 mimic may 
overcome the carbon ion irradiation resistance of high- grade chondrosarcoma (Vares et al., 2020). 
The remaining study demonstrated that miR- 142–3 p overexpression significantly increased the radio-
sensitivity of atypical teratoid/rhabdoid tumor (ATRT) cells (Lee et al., 2014).

ncRNAs as biomarkers for predicting treatment response
Twelve articles evaluated ncRNAs as biomarkers but none of them included an external validation 
cohort. Six studies identified the role of ncRNAs (lncRNA growth arrest- specific 5 [Polvani et  al., 
2022], lncRNA ENST00000563280 [Zhu et al., 2015], miR- 21 [Yuan et al., 2012], miR- 125b [Luo et al., 
2016], hsa_circ_0008336 [Han et al., 2020], hsa_circ_0004664 [Han et al., 2020], hsa_circ_0003302 
[Han et  al., 2020], and hsa_circ_0004674 [Kun- Peng et  al., 2018b]) as biomarkers for predicting 
chemotherapeutic response in OS. Among the ncRNAs in these studies, the presence of circulating 
miR- 125b was able to distinguish chemotherapy- resistant OS from chemotherapy- sensitive OS with 
an AUC value of 0.793, and sensitivity and specificity levels of 76.9 and 79.1%, respectively (Luo 
et al., 2016). Moreover, five studies in patients with GISTs focused on differences in the expression of 
lncRNAs and miRNAs between pre- imatinib/imatinib- sensitive serum or tissues and imatinib- resistant 
serum or tissues. One of the five reported miR- 518e- 5p as a potential biomarker for secondary imatinib 
resistance with an AUC value of 0.9938 and sensitivity and specificity values of 99.8 and 82.1%, respec-
tively (Kou et al., 2018). Finally, one study reported that the expression level of the lncRNA HAR1B 
was higher in pazopanib responders among patients with bone and soft- tissue sarcomas, indicating 
that HAR1B may serve as a predictive biomarker for response to pazopanib treatment (Yamada et al., 
2021).

Target genes, signaling pathways, and functions of ncRNAs
The genes and molecular pathways targeted by ncRNAs that are involved in the regulation of ther-
apeutic resistance in sarcoma are summarized in Table 1. The majority of targets identified in the 
literature search were members of the phosphoinositide 3- kinase/protein kinase B (PI3K/AKT), 
Wnt/β-catenin, and NF-κB signaling pathways. The most commonly identified targets were ABCB1 
(lncRNA LUCAT1 [Han and Shi, 2018], lncRNA ODRUL [Zhang et al., 2016], lncRNA ROR [Cheng 
et al., 2019b]), lncRNA FENDRR (Kun Peng et al., 2017), lncRNA FOXC2- AS1 (Zhang et al., 2017b), 
STAT3 (lncRNA ANRIL [Li and Zhu, 2019b]), lncRNA HOTAIR (Guo et al., 2020), Bax and Bcl- 2 (lncRNA 
FOXD2- AS1 [Zhang et al., 2021b]), lncRNA NCK- AS1 (Cheng et al., 2019a), and lncRNA NEAT1 
(Hu et al., 2018). In addition, ncRNAs targeted MCL1 both directly (lncRNA SNHG12 [Zhou et al., 
2018a], miR‐29 [Osaki et al., 2016], and miR- 26a [Li and Ma, 2021b]) and indirectly (LINC00641 
[Tang et al., 2022b] via miR- 320d), targeted EZH2 both directly (miR- 138 [Zhu et al., 2016]) and 
indirectly (circ_ANKIB1 [Tang et al., 2022a] via miR- 26b- 5p), and targeted p53 both directly (miR- 34a 
[Nakatani et al., 2012], miR- 504 [Chen et al., 2019], and miR- 125b [Iida et al., 2013]) and indirectly 
(miR‐590 [Long and Lin, 2019] via ATM). ncRNAs also targeted MMP- 9 (miR- 29b [Luo et al., 2019] 
and miR- 192 [Bazavar et al., 2020]), KRAS (miR- 192 [Bazavar et al., 2020] and miR- 217 [Zhang et al., 
2015]), c- Myc (miR- 192 [Bazavar et al., 2020] and miR- 34a [Li et al., 2017]), LC3-Ⅰ and LC3-Ⅱ (miR- 
101 [Chang et al., 2014], miR- 155 [Chen et al., 2014], and miR- 199a- 5p [Li et al., 2016a]), HIF- 1α 
(miR- 199a [Keremu et al., 2019] and miR- 216b [Yang et al., 2020]), North1 (miR- 34c [Xu et al., 2014] 
and miR- 92a [Liu et al., 2018]), SOX2 (miR- 429 [Zhang et al., 2020e] and miR‐29b- 1 [Di Fiore et al., 
2014]), and caspase 3 (LINC00426 [Wang et al., 2020a] and the lncRNA NEAT1 [Hu et al., 2018]). 
The majority of commonly expressed ncRNAs were involved in epithelial- to- mesenchymal transition 
(EMT), cancer stem cells (CSCs), cell cycle dysregulation, glucose metabolism, multi- drug resistance 
(MDR)- related genes, DNA repair abnormality, apoptosis, autophagy, and drug efflux transporters 
(Figure 2 and Figure 3).

https://doi.org/10.7554/eLife.79655


 Research article Cancer Biology | Medicine

Chen et al. eLife 2022;11:e79655. DOI: https://doi.org/10.7554/eLife.79655  9 of 23

Discussion
This systematic review summarized the reports on the molecular mechanisms underlying the involve-
ment of ncRNAs in drug and radiotherapy resistance in bone and soft- tissue sarcomas published over 
the past decade. Our aim, to identify common factors in the dysregulation of ncRNAs that are asso-
ciated with therapeutic resistance in sarcoma, may provide clues about the the mechanisms under-
lying this resistance. However, only a few overlapping ncRNAs were reported in two or more studies 
focusing on chemotherapy resistance in OS and targeted therapy resistance in GIST. Moreover, we 
found that the downstream targets of ncRNAs were predominantly found in the PI3K/AKT, Wnt/β-cat-
enin, and NF-κB pathways. We also described the differential expression of ncRNAs between chemo-
resistant and chemosensitive sarcoma tissues and/or cells, which may support the potential of ncRNAs 
as biomarkers for predicting the sarcoma effect. Here, we further discuss some of the key findings 
from the studies included in this review and delineate some major limitations and potential prospects.

ncRNAs in chemoresistance of OS
High- dose methotrexate with leukovorin- rescue, ifosfamide, doxorubicin, and cisplatin are consid-
ered the most active agents for OS treatment (Cortes et al., 1974; Smrke et al., 2021), but drug 
resistance is still the main cause of disease progression and recurrence. Resistance to chemotherapy 
in sarcoma can be linked to perturbations of the mechanisms that underlie signal transduction, cell 
death (apoptosis and autophagy), MDR- related gene expression, and transcriptional factor regula-
tion (Lilienthal and Herold, 2020). There is evidence supporting the role of perturbed signal trans-
duction pathways, such as the PI3K/AKT, Wnt/β-catenin, and NF-κB pathways, in the development 
of chemotherapy resistance in OS. It has been shown that components of the PI3K/AKT signaling 
pathway are frequently altered in human cancers and that these changes may contribute decisively 
to the resistant phenotype (Fresno Vara et al., 2004). ncRNAs affect the sensitivity of OS cells by 
targeting PI3K/AKT signaling directly or indirectly. c- MET, a receptor for hepatocyte growth factor, 
has been reported to promote tumorigenicity in a variety of cancers (Wu et al., 2017). For instance, 
lncRNAPTV1 promoted gemcitabine resistance in OS cells by activating PI3K/AKT signaling via c- MET 
(Sun et al., 2019). MiR- 221 also promoted cisplatin resistance in OS cells by directly activating PI3K/
AKT (Zhao et al., 2013). Spindlin 1 (spin1), a new member of the SPIN/SSTY family, has been shown 
to promote tumorigenesis in human cancers (Fang et  al., 2018). By contrast, miR- 29b increased 
doxorubicin sensitivity in OS through inhibition of PI3K/AKT signaling by regulating spin1 expres-
sion (Li et al., 2020). Moreover, aberrant activation of Wnt/β-catenin signaling is tightly linked with 
therapy response in various cancers (Zhang and Wang, 2020c). Studies included in our review also 
demonstrated that ncRNAs regulate resistance to chemotherapy drugs by regulating Wnt/β-catenin 
signaling. For example, lncRNA HOTTIP (Li et al., 2016b), circ_001569 (Zhang et al., 2018), and 
circPRKAR1B (Feng et al., 2021) promoted drug resistance by activating Wnt/β-catenin signaling. 
Among these ncRNAs, the lncRNA HOTTIP (Li et al., 2016b) and circ_001569 (Zhang et al., 2018) 
targeted Wnt/β-catenin directly. Frizzled class receptor 4 (FZD4), a class Frizzled G- protein- coupled 
receptor (GPCR), is also a WNT receptor (El- Sehemy et al., 2020). CircPRKAR1 activated Wnt/β-cat-
enin by sponging miR- 361–3 p, and thus upregulated the expression of FZD4 (Feng et al., 2021). By 
contrast, miR- 342–5 p sensitized OS cells to doxorubicin by inhibiting the expression of both Wnt7b 
and β-catenin (Liu et al., 2019). In addition, emerging studies indicate that dysregulation of the NF-κB 
pathway causes cancers (Yu et al., 2020) and enhances drug resistance in tumor cells (Mirzaei et al., 
2022). The ncRNAs can potentially function as upstream mediators and modulate NF-κB in OS. At the 
molecular level, Xie et al., 2020 indicated that the lncRNA NORAD (Non- coding RNA- activated by 
DNA damage) promoted the cisplatin resistance of OS by sponging miR- 410–3 p and thus activating 
NF-κB. By contrast, miR- 410–3 p promoted the drug sensitivity in OS cells by downregulating high- 
mobility group box- 1 (HMGB1) and, subsequently, inhibiting NF-κB activity (Wang et al., 2020b).

In addition to the abnormal activation of key signal transduction pathways, alterations in cell 
death signaling may also contribute to chemotherapy resistance in OS. ncRNAs have been found 
to participate in OS chemoresistance by regulating apoptosis- related proteins, such as Bcl- 2, Bax, 
caspase 3, and MCL1. It has been reported that overexpression of the anti- apoptotic protein Bcl- 2 in 
malignant cells fortifies their drug- resistance capacity (Hafezi and Rahmani, 2021). Conversely, the 
upregulation of the pro- apoptotic proteins Bax and caspase- 3, and of the activated form cleaved 
caspase- 3, plays the opposite role in human cancers (Hafezi and Rahmani, 2021; Fulda, 2015). 

https://doi.org/10.7554/eLife.79655
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For instance, the lncRNA NCK- AS1 was found to be upregulated in cisplatin- resistance OS cell 
lines. At the molecular level, the lncRNA NCK- AS1 enhanced drug resistance in OS by upregulating 
Bcl- 2 and downregulating Bax and cleaved caspase- 3 through the sponging of miR- 137 (Cheng 
et al., 2019a). Hu et al., 2018 reported that the lncRNA NEAT1 also promoted cisplatin- resistance 
in both OS cells and a xenograft model by upregulating Bcl- 2 and downregulating Bax via miR- 
34c. Myeloid cell leukemia- 1 (MCL1), an antiapoptotic member of the BCL2 family, contributes to 
cell survival and resistance to diverse chemotherapeutic agents in human cancers (Sancho et al., 
2022). The study conducted by Zhou et al., 2018a showed that the lncRNA SNHG12 enhanced 
doxorubicin- resistance in OS cells by positively regulating the expression of MCL1 by sponging 
miR- 320a. Moreover, circ_0004674 facilitated OS progression and doxorubicin resistance by upreg-
ulating MCL1 via miR- 142- 5p (Ma et al., 2021). By contrast, miR- 26a reversed MDR in OS cells, and 
when xenografted in nude mice, it directly inhibited the expression of MCL1 (Li and Ma, 2021b). In 
addition, the regulation of autophagy- related proteins, including HMGB1, LC3-Ⅰ, and LC3-Ⅱ, by 
ncRNAs also played important roles in OS chemoresistance. The chromatin- binding nuclear protein 
HMGB1 plays a role in facilitating autophagy following the administration of cytotoxic agents (Tang 
et al., 2010). It has been reported that overexpression of HMGB1 in OS cell lines allowed them to 
resist autophagy when treated with doxorubicin, cisplatin, and methotrexate (Huang et al., 2012). 
In addition, the overexpression of miR- 22 hindered doxorubicin and cisplatin resistance in OS by 
inhibiting HMGB1- promoted autophagy in vitro (Li et al., 2014). LC3 and LC3 homologs enable 
autophagosomes that have the ability to bind autophagic substrates and/or proteins that mediate 
cargo selectivity (Galluzzi and Green, 2019), and it has been proved that the overexpression of 
LC3-Ⅱ promoted autophagy and caused drug resistance in cancers (Wang et al., 2022b). Chen 
et al., 2014 found that overexpression of miR- 155 significantly enhanced the conversion of LC3- I 
to LC3- II, promoted autophagy, and enhanced chemoresistance in OS. Conversely, miR- 199–5 p 
reduced cisplatin resistance in OS cells by downregulating LC3-Ⅱ and reducing the ratio of LC3-Ⅱ 
to LC3-Ⅰ (Li et al., 2016a).

Furthermore, abnormal expression of MDR- related proteins plays an important role in OS chemo-
resistance. The studies included in our review described the regulatory effect of ncRNAs on drug- 
resistance- related proteins, especially ATP- binding cassette subfamily B member 1 (ABCB- 1), in 
OS. ABCB- 1, a member of the ABC family of efflux transporters, is a classical MDR- related protein 
(Franke et al., 2010). The lncRNA FOXC2- AS1 may promote doxorubicin resistance in OS by facil-
itating ABCB1 expression via increasing the expression of the transcription factor FOXC2 (Zhang 
et al., 2017b). Overexpression of circPVT1 contributed to the doxorubicin and cisplatin resistance 
of OS cells by positively regulating ABCB- 1 (Kun- Peng et al., 2018a). Conversely, miR- 34b reversed 
drug resistance in OS by directly lowering the expression of ABCB- 1 (Zhou et al., 2016). In addi-
tion, transcription factors such asp53 and HIF- 1α could be present downstream of ncRNAs and have 
been found to be involved in OS chemoresistance. Wild- type p53 is central for maintaining genomic 
stability and preventing oncogenesis, whereas mutant p53 is tightly associated with late- stage malig-
nance and drug resistance in cancers (Zhou et al., 2019). Wild‐type p53‐induced phosphatase 1 
(WIP1), an oncogene that is overexpressed in diverse cancers, has been regarded as a critical inhib-
itor of the ataxia telangiectasia mutated (ATM)/radiation resistance gene 3 related (ATR)‐p53DNA 
damage signaling pathway (Lu et al., 2008). In OS cells, miR- 590 inhibited doxorubicin resistance by 
negatively regulating WIP1, and subsequently reduced the expression of both ATM and p53 (Long 
and Lin, 2019). It has been proved that the HIF family of hypoxia- inducible transcription factors 
is widely upregulated in human cancers. HIF- 1α has been associated with chemotherapy failure in 
various cancers (Rohwer and Cramer, 2011). Histone demethylase jumonji C domain- containing 2 C 
(JMJD2C) has been shown to serve as a co- activator for HIF- 1α in cancer progression (Luo et al., 
2012). Yang et al., 2020 found that miR- 216b enhanced cisplatin sensitivity in OS cells by down-
regulating JMJD2C and HIF- 1α, inhibiting the expression of the hairy and enhancer of split- 1 (HES1) 
gene.

Collectively, ncRNAs play a key role in regulating OS chemoresistance, and therapeutic strategies 
that are based on small- molecule activator or inhibitor ncRNAs have the potential to rescue thera-
peutic resistance in patients with OS. Nevertheless, only a limited number of studies have illustrated 
the molecular mechanisms underlying the roles of ncRNAs in regulating OS chemoresistance; this 
aspect needs further research.

https://doi.org/10.7554/eLife.79655


 Research article Cancer Biology | Medicine

Chen et al. eLife 2022;11:e79655. DOI: https://doi.org/10.7554/eLife.79655  11 of 23

miRNAs in chemoresistance in EWS, chondrosarcoma, and soft-tissue 
sarcomas
EWS is an aggressive sarcoma of the bone and soft tissue that occurs at any age and has a 5- year 
overall survival rate of 65–75% for patients with localized disease and of <30% for those with metas-
tases, except for those with isolated pulmonary metastasis for whom the 5- year survival rate is approx-
imately 50% (Gaspar et al., 2015). Recent evidence highlighted that miRNAs were involved in various 
tumor processes related to chemoresistance in EWS, especially in regulating p53. For example, over-
expression of miR- 125b is associated with the downregulation of the pro- apoptotic molecules p53 and 
Bak, resulting in enhanced drug resistance in EWS (Iida et al., 2013). By contrast, a study performed 
by Nakatani et al., 2012 demonstrated that overexpression of miR- 34a in wild- type p53 EWS cells 
decreased malignancy and increased tumor sensitivity in response to doxorubicin and vincristine.

Chondrosarcoma is the second most common primary malignant bone sarcoma, and usually exhibits 
resistance to chemotherapy (Zając et al., 2021). miRNAs have been associated with reduced drug 
resistance in chondrosarcoma. For instance, the study conducted by Huang et al., 2017 showed that 
miR- 23b increased cisplatin sensitivity in chondrosarcoma by inhibiting the Src- Akt pathway. More-
over, Tang et al., 2016 demonstrated that miR- 125b acted as a tumor suppressor in chondrosarcoma 
cells by increasing doxorubicin sensitization by directly targeting the oncogene ErbB2, leading to the 
inhibition of glucose metabolism.

Soft- tissue sarcomas are rare tumors that account for 1% of all adult malignancies, with over 100 
different histologic subtypes occurring predominately in the trunk, extremities, and retroperitoneum 
(Gamboa et al., 2020). The studies included in this review found that miRNAs participated in regu-
lating chemoresistance in several soft- tissue sarcomas, such as RMS, fibrosarcoma and MFH. For 
instance, the PAX3:FOXO1 fusion oncogene mediated tolerance to chemotherapy in RMS (Singh 
et al., 2022). Bharathy et al., 2018 reported that overexpression of miR- 27a led to PAX3:FOXO1 
mRNA destabilization and chemotherapy sensitization in RMS both in vitro and in vivo. In fibrosar-
coma, miR- 197–5 p sensitizes HT1080 cells to doxorubicin by suppressing the expression of MDR 
genes, ABCC1, and major vault protein (MVP; Jain et al., 2022). Furthermore, miR- 206 showed low 
levels of expression in docetaxel- resistant MFH cells. Mechanistically, miR- 206 significantly inhibited 
MFH proliferative activity by regulating the properties of CSCs (Li et al., 2021a).

In summary, several biological mechanisms underlying bone and soft- tissue sarcomas involve 
ncRNAs, indicating that ncRNAs may be targets for therapies intended to overcome or prevent 
chemoresistance in sarcomas. For example, the inhibition of oncogenic ncRNAs and the activation of 
tumor- suppressive ncRNAs are promising therapeutic strategies for sarcoma treatment. Furthermore, 
a combination of targeted ncRNA therapy with conventional chemotherapy may effectively reverse 
sarcoma drug resistance and significantly improve the effects of chemotherapeutics, subsequently 
improving prognosis. Nevertheless, the studies focused on the regulatory role of ncRNAs in soft- tissue 
sarcoma are very limited. Thus, the implementation of therapies targeting specific ncRNAs to over-
come drug resistance in sarcomas remains a challenge, and most ncRNAs have not been characterized 
for potential clinical applications. Therefore, further investigation and clinical trials are required to 
develop novel ncRNA- related therapeutic strategies to overcome drug resistance in sarcoma.

ncRNAs in resistance to targeted therapies in GIST and OS
GISTs are the most common subtype of soft- tissue sarcoma (Ducimetière et al., 2011). The targeted 
therapy drug imatinib is the gold standard therapy for GIST. This treatment has been found to prolong 
patient survival effectively, especially in the high- risk GIST group, as shown by a randomized trial 
study that included follow- up of 9.1 years (Casali, 2021). Therefore, imatinib resistance in GISTs is 
an important factor in disease progression and relapse. Recent studies have identified a vital role 
for ncRNAs in imatinib resistance in GIST. For example, ncRNAs may serve upstream of autophagy- 
related proteins (autophagy- related protein 2 homolog B [ATG2B] and Beclin1) in GIST and thus regu-
late drug sensitivity. At the molecular level, the lncRNA HOTAIR activated autophagy and promoted 
the imatinib resistance of GIST cells by increasing the expression of ATG2B via miR- 130a (Zhang 
et al., 2021a). Inversely, miR- 30a inactivated autophagy and sensitized GIST cells to imatinib by down-
regulating Beclin1 (Chen et  al., 2020a). Moreover, it has been shown that members of the non- 
receptor protein tyrosine phosphatase (PTPN) family are differentially expressed in digestive tract 
cancers and are closely associated with improved disease prognosis (Chen et al., 2020b). With regard 
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to GIST, Akçakaya et al., 2014 found that miR- 125a- 5p enhanced imatinib resistance by suppressing 
the expression of PTPN18.

In addition to the use of imatinib in GIST, targeted therapeutic drugs, the antiangiogenic agents 
anlotinib (Wang et al., 2019a), cabozantinib (Wang et al., 2021), and pazopanib (Shiozawa et al., 
2018), and the epidermal growth factor receptor (EGFR) inhibitor erlotinib (Wang et al., 2019b) have 
also been used as rescue drugs after chemotherapy failure in OS. Several studies have investigated 
the mechanisms of resistance to targeted therapy involving ncRNAs in OS. For example, the Notch 
pathway is major regulator in human malignancies and also mediates drug resistance in cancer cells 
(Zhang et al., 2017a). Wang et al., 2021 reported that miR- 34a overexpression promoted the sensi-
tivity of OS to cabozantinib by suppressing the Notch pathway. Moreover, SH3KBP1- binding protein 
1 (SHKBP1) is an upstream molecule of EGFR that prevents EGFR degradation (Liu et al., 2022). The 
study conducted by Wang et al., 2019b found that the TGFβ–miR- 499a–SHKBP1 network orches-
trates the EMT- associated kinase switch, which induces resistance to erlotinib in CD166+ OS CSC- like 
cells.

Overall, targeting of lncRNAs and miRNAs may be a promising strategy to improve the efficacy 
of sarcoma- targeted therapies. There have, however, been increasing concerns regarding the ther-
apeutic potential of targeting a single ncRNA and other current targeting strategies. First, despite 
the numerous studies that have attempted to reveal the mechanisms and effects of ncRNAs, we 
have gained only superficial knowledge in the field, and the effects of circRNAs in sarcoma- targeted 
therapy remain largely unclear. Furthermore, given the large number of ncRNAs and their upregula-
tion or downregulation in sarcoma, it is crucial to determine the most clinically relevant ncRNAs that 
have the greatest impact on disease outcome. Therefore, further studies are needed to investigate 
the mechanisms of ncRNA action in sarcoma- targeted drug resistance in order to improve patient 
survival.

lncRNAs in resistance of sarcomas to immunotherapy
Immunotherapy, which has been used for melanoma, is a new therapy paradigm that holds great 
promise for sarcoma treatment (Falcone et al., 2020; Rutkowski et al., 2020). Although the anti- 
CTLA- 4 drug ipilimumab was well tolerated by patients with synovial sarcoma, no obvious efficacy 
was observed in this patient group (Maki et al., 2013). However, in a separate study using the anti- 
PD- 1 antibody SARC028 to treat patients with bone sarcomas, a partial response was observed 
(NCT02301039; Tawbi et al., 2017). The primary resistance to immunotherapy may be caused by 
an immunosuppressive environment in which there is no pre- existing antitumor response (Saleh and 
Elkord, 2020). The overexpression of ICI molecules may create an immunosuppressive environment, 
leading to immunotherapy resistance in sarcoma. A previous study had found that the elevated expres-
sion of several lncRNAs was correlated with reduced immune cell infiltration and reduced sensitivity 
to ICIs in sarcomas (Pang and Hao, 2021). Despite disappointing results from preliminary immuno-
therapy trials for sarcomas, the combination of ICIs with cytotoxic chemotherapies or targeted thera-
pies may significantly improve the prognosis for sarcoma patients.

Overall, immunotherapy is a promising strategy that requires specific adjustments for use in patients 
with sarcomas. More in- depth studies are needed to clarify the association between abnormal ncRNA 
expression and clinical efficacy of ICIs in sarcomas; for example, further investigations are needed to 
understand the changes in expression of ncRNAs that occur in the tumor tissue or serum of sarcoma 
patients treated with ICIs. Both in vitro and in vivo experiments are needed to investigate the molec-
ular mechanisms underlying the influence of ncRNAs on ICI treatment in sarcomas. ncRNAs hold the 
potential to be used in predicting drug sensitivity and in improving treatment efficacy through the 
detection or perturbation of their expression, respectively, in patients with sarcoma who are under-
going immunotherapy.

ncRNAs in resistance of OS, chondrosarcoma, and ATRT to 
radiotherapy
Pre- and postoperative radiotherapy is widely used in sarcomas (Haas, 2014). Radiotherapy leads 
to the activation of an interconnected series of processes in the tumor microenvironment, including 
inflammation, cycling hypoxia, immunomodulation, revascularization, extracellular matrix remodeling 
coordinated by cancer- associated fibroblasts, and fibrosis. These changes affect the radiosensitivity 
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of cancer cells (Barker et  al., 2015). Moreover, many mechanisms for CSC radioresistance have 
been proposed, including drug efflux through ABC transporters, overactivation of the DNA damage 
response, apoptosis evasion, activation of the prosurvival pathway, cell cycle promotion, and/or cell 
metabolic alterations (Garcia- Mayea et al., 2020). In addition, the role of ncRNAs in radiotherapy 
resistance has been investigated in hepatocellular carcinoma, breast cancer, lung cancer, and gastric 
cancer (Zhang et  al., 2020d). Several studies have illustrated the molecular mechanisms through 
which ncRNAs regulate radiosensitivity in OS. For example, He et al., 2020 demonstrated that knock-
down of the lncRNA LINC00210 enhances the radiosensitivity of OS cells by acting as a miR- 342–3 p 
sponge to positively regulate expression of the oncogene GDNF receptor alpha 1 (GFRA1). By 
contrast, overexpression of miR- 328–3 p enhances the radiosensitivity of OS cells by directly targeting 
histone H2AX (Yang et al., 2018). The effect of miR- 34 and miR- 142–3 p in radioresistance in chon-
drosarcoma (Vares et al., 2020) and ATRT (Lee et al., 2014) have been identified by regulating the 
transcription factors FOXO3 and SOX2, respectively. Specifically, overexpression of miR- 34a enables 
chondrosarcoma cells to overcome resistance to carbon- ion irradiation by upregulating FOXO3, which 
leads to KLF4 repression (Vares et al., 2020). Moreover, miR- 142- 3p was shown to reduce γ radiation 
resistance in pediatric brain ATRT by inhibiting expression of sex- determining region Y box 2 (SOX2) 
(Lee et al., 2014).

In summary, targeting ncRNAs to overcome radiotherapy resistance in sarcomas is gaining interest; 
however, the number of studies cited in our review is still small. Further research is needed to explore 
the influence of additional ncRNAs on sarcoma radiotherapy. To select the most clinically effective 
target ncRNAs for reversing radiotherapy resistance, more in- depth in vitro and/or in vivo experi-
mental studies as well as multi- center clinical studies with large samples, are urgently needed. In the 
future, interfering with the expression of ncRNAs may become an important strategy for improving 
the sensitivity of radiotherapy and the prognosis of patients with sarcoma.

ncRNAs as biomarkers for treatment monitoring
Sarcomas lack specific tumor markers. Although elevated lactate dehydrogenase levels, or more 
frequently alkaline phosphatase levels, in the serum have been found in some patients with OS, 
these serum indicators lack specificity and sensitivity. Therefore, the diagnosis and prognostic evalu-
ation of diseases depend on imaging examinations and invasive biopsies (Ritter and Bielack, 2010). 
These methods are inconvenient for both primary screening of the disease and monitoring of short- 
term treatment outcomes. Hence, non- invasive biomarkers that have high sensitivity and specificity 
are required. Recently, exosomes, including tumor- associated proteins, enzymes, growth factors, 
bioactive lipids, miRNAs, and DNA sequences, have been considered as potential biomarkers for 
sarcoma diagnosis and prognosis evaluation, and as possible targets for sarcoma therapy (Min 
et  al., 2016). The differential expression of ncRNAs between drug- resistant and drug- sensitive 
sarcoma tissues or cells demonstrates the applicability of ncRNAs as biomarkers for prediction of 
treatment effect. In particular, a previous study reported that miR- 518e- 5p serves as a biomarker 
for imatinib resistance, showing showed high sensitivity (99.8%) and specificity (82.1%) with an AUC 
value of 0.9938 in GISTs (Kou et al., 2018). A separate study reported an AUC value of 0.793 for 
miR- 125b as a biomarker for predicting the chemosensitivity of OS, with a sensitivity of 76.9% and 
a specificity of 79.1%.

Overall, ncRNAs may have potential to serve as biomarkers for sarcoma drug resistance and to 
predict therapeutic responses in patients with sarcoma. However, because ncRNA detection can 
vary immensely depending on the method used, in- depth studies should focus on optimizing ncRNA 
detection methodology. Importantly, the results of the studies cited in this review may be biased, 
as most were single- center trials with small sample sizes. Therefore, further studies are needed to 
accelerate the clinical application of ncRNAs, and the inclusion of multi- center research studies will 
be particularly important in reducing the errors caused by differences between individual centers. In 
addition, the studies included in this review are mainly focused on lncRNAs and miRNAs, highlighting 
the lack of understanding of the role of circRNAs as biomarkers for the prediction of treatment effect 
in sarcoma and the need for further investigations. We expect future analysis of tumor- specific ncRNA 
biomarkers to offer not only improved diagnosis but also a convenient and sensitive method for moni-
toring the outcomes of treatments in sarcoma patients.
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Conclusions
Despite the variability in the results of the studies examined, this systematic review supports the 
notion that ncRNAs have potential to be used as ideal biomarker candidates for treatment monitoring 
and future therapeutic targets in sarcomas. With further research, ncRNAs may become powerful 
compounds for sensitizing therapy- resistant sarcomas to standard treatments.
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