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Abstract Coronary heart disease (CHD) is one of the most pressing health problems of our time 
and a major cause of preventable death. CHD results from complex interactions between genetic 
and environmental factors. Using multiplex serological testing for persistent or frequently recurring 
infections and genome- wide analysis in a prospective population study, we delineate the respec-
tive and combined influences of genetic variation, infections, and low- grade inflammation on the 
risk of incident CHD. Study participants are enrolled in the CoLaus|PsyCoLaus study, a longitudinal, 
population- based cohort with baseline assessments from 2003 through 2008 and follow- up visits 
every 5 years. We analyzed a subgroup of 3459 individuals with available genome- wide genotyping 
data and immunoglobulin G levels for 22 persistent or frequently recurring pathogens. All reported 
CHD events were evaluated by a panel of specialists. We identified independent associations with 
incident CHD using univariable and multivariable stepwise Cox proportional hazards regression anal-
yses. Of the 3459 study participants, 210 (6.07%) had at least one CHD event during the 12 years 
of follow- up. Multivariable stepwise Cox regression analysis, adjusted for known cardiovascular 
risk factors, socioeconomic status, and statin intake, revealed that high polygenic risk (hazard ratio 
[HR] 1.31, 95% CI 1.10–1.56, p=2.64 × 10−3) and infection with Fusobacterium nucleatum (HR 1.63, 
95% CI 1.08–2.45, p=1.99 × 10−2) were independently associated with incident CHD. In a prospec-
tive, population- based cohort, high polygenic risk and infection with F. nucleatum have a small, yet 
independent impact on CHD risk.

Editor's evaluation
This study is an important contribution to the understanding of cardiovascular disease aetiology 
based on solid design and methodology. It is a useful independent replication of the effects of tradi-
tional risk factors in a large prospective cohort and a valuable investigation of the role of past infec-
tion with a commensal bacterium F. nucleatum which warrants validation.

Introduction
Worldwide, cardiovascular diseases (CVDs) are the leading cause of mortality (Roth et  al., 2018). 
An estimated 17.9 million people die from CVD each year, accounting for 32% of all deaths. CVD is 
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a broad term for medical conditions involving the heart and blood vessels, such as coronary heart 
disease (CHD), congenital heart disease, cerebrovascular disease, peripheral arterial disease, rheu-
matic heart disease, deep vein thrombosis, and pulmonary embolism (World Health Organization, 
2009).

CHD is the most common type of heart disease (Roth et al., 2018). It is caused by atherosclerosis, 
a build- up of plaque inside the walls of the arteries that supply blood to the heart. CHD progresses 
over a long period of time and eventually evolves into symptoms such as chest pain (angina), tightness 
in the chest, breathing difficulties, and pain in the arms or shoulders (Ambrose and Singh, 2015). A 
complete blockage can cause a heart attack.

A combination of demographic, environmental, and genetic factors contribute to the develop-
ment of CHD (Khot et al., 2003; Mendis et al., 2011). The main risk factors associated with the 
development of CHD – smoking, diabetes, hyperlipidemia, and hypertension – have been established 
by extensive epidemiological research (MacMahon et al., 1990; Stamler et al., 1993; Verschuren 
et al., 1995; Weintraub, 1990). Age is also an important risk factor for CHD (Castelli, 1984). Finally, 
the incidence of CHD is greater in males than in females (Castelli, 1984). Very recently, a new algo-
rithm, named Systematic COronary Risk Evaluation 2 (SCORE2), was developed to predict the 10- year 
risk of first- onset CVD in European populations (SCORE2 working group and ESC Cardiovascular 
risk collaboration, 2021; SCORE2- OP working group and ESC Cardiovascular risk collaboration, 
2021). This score has replaced the existing HeartScore scoring system, and incorporates most of the 
risk factors mentioned above (Conroy et al., 2003).

CHD also has an important genetic component. In 1938, the first familial risk model for CHD was 
described and later confirmed by clinical observations and large studies of twins and of longitudinal 
cohorts (Müller, 1938; Marenberg et al., 1994; Samani et al., 2007; Abraham et al., 2016). Based 
on whole- genome approaches, the heritability of CHD has been estimated at 40–60%, even after 
controlling for known risk factors (Vinkhuyzen et al., 2013).

Multiple clinical studies have identified inflammatory risk factors that are predictive of future 
cardiovascular events (Alfaddagh et al., 2020; Libby, 2006; Hansson, 2005). Endothelial dysfunction 
and subintimal cholesterol have been shown to trigger an inflammatory cascade, involving activated 
macrophages and leading to atherosclerotic lesions. At the molecular level, inflammasome formation 
in macrophages plays, through their production of interleukin (IL)- 1β, an essential role in the propa-
gation of inflammation. These cytokines are released, trigger various inflammatory cells, and produce 
IL- 6 that in turn, stimulate C- reactive protein (CRP) production by the liver, which further enhances 
the inflammatory cascade within the vascular wall. Today, CRP is an established biomarker of systemic 
inflammation and a possible predictor of future cardiovascular events (Libby, 2006).

The recognition of atherosclerosis as an inflammatory disease has renewed interest in examining 
the role of pathogens in CHD and other CVDs. Nearly 150 years ago, acute infection with Bacillus 
typhosus was found to cause sclerosing changes in the arterial wall (Gilbert and Lion, 1889). A 
century later, the interest for a potential role of infection in atherosclerosis was renewed, with the 
discovery that CHD- positive individuals show an increased likelihood of having elevated levels of 
antibodies to Chlamydia pneumoniae (C. pneumoniae) (Saikku et al., 1988). This was followed by 
the discovery of the association with CHD of several other infectious agents, including bacteria and 
viruses, such as Helicobacter pylori (H. pylori), hepatitis C virus (HCV), and human herpes viruses 
(Adinolfi et al., 2018; Filardo et al., 2015; Wang et al., 2020; Zhang et al., 2008). The exact mech-
anisms linking infection to low- grade inflammation and atherosclerosis are still being studied, though 
some potential pathways have been proposed. One proposed mechanism involves the production 
of pro- inflammatory molecules in response to an infection (Campbell and Rosenfeld, 2015). These 
molecules, such as cytokines, can increase the activity of cells involved in atherosclerosis, such as 
macrophages and smooth muscle cells, leading to the formation of plaques and other changes in the 
walls of arteries (Campbell and Rosenfeld, 2015). Another mechanism is related to the inflammation 
at the site of vessel wall. Specifically, it is characterized by the presence of the infectious agents within 
the atherosclerotic plaques. The infectious consequences on the atherosclerotic plaque can be accel-
erated progression or a final complication like thrombosis and plaque rupture (Pedicino et al., 2013).

Although enormous progress has been made in the understanding of CHD pathogenesis, the 
overall picture of the combined contribution of infectious, inflammatory, and genetic factors to the 
risk of developing CHD in the general population remains incomplete. We here use data from the 
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CoLaus|PsyCoLaus study, a well- characterized, longitudinal, population- based study from Switzerland, 
to obtain a more comprehensive view of the evidence for the respective contributions of these factors 
to CHD.

Results
Demographic and serological characteristics
A total of 3459 CoLaus|PsyCoLaus participants with available phenotypic, serological, and genotypic 
data were included. Their characteristics are presented in Table 1.

During the follow- up of 4500 days (12.3 years), at least one CHD event occurred in 210 individuals 
(6.07%). The number of participants with one, two, and three coronary events was 140, 47, and 14, 
respectively. Nine individuals had between four and eight coronary events. Eligible study participants 
were on average 52.8 (standard deviation [SD] ± 10.5) years of age at baseline, 54% were women and 
25.5% were smokers. On average, their body mass index (BMI) was 25.5 (±4.3) kg/m2, their systolic 
blood pressure was 129 (±18) mmHg, and their HDL cholesterol level was 1.66 (±0.43) mmol/L. The 
percentages of participants by average gross monthly income are 7.5 (<CHF 2999), 19.1 (CHF 3000–
4999), 23.3 (CHF 5000–6999), 21.3 (CHF 7000–9499), 14.3 (CHF 9500–13,000), and 14.5% (CHF > 
13,000).

For the measured biomarkers of inflammation, the log10- transformed mean (SD) values for high- 
sensitive CRP (hs- CRP), IL- 1β, IL- 6, and tumor necrosis factor α (TNF-α) were 0.09 (±0.46), 0.17 (±0.64), 
0.24 (±0.58), and 0.46 (±0.38), respectively.

We also investigated participants’ serostatus for the following 22 human pathogens: 15 viruses 
(human polyomaviruses BK [BKV], JC [JCV], 6 [HPyV6], and WU [WUPyV], herpes simplex virus [HSV]-1, 
HSV- 2, varicella zoster virus (VZV), Epstein–Barr virus [EBV], cytomegalovirus [CMV], human herpes 
virus 6A [HHV- 6A], HHV- 6B, HHV- 7, Kaposi’s sarcoma- associated herpes virus [KSHV], parvovirus B19 
[PVB- 19], and rubella virus); six bacteria (Chlamydia trachomatis [C. trachomatis], Clostridium tetani 
[C. tetani], Cornybacterium diphteriae [C. diphteriae], F. nucleatum, H. pylori, and S. gallolyticus); and 
one parasite (T. gondii) (Appendix 1—table 1). The overall seropositivity ranged from 3.99% (S. gallo-
lyticus) to 96.80% (EBV). The overall serostatus split between CHD- positive (with at least one CHD 
event during follow- up) and CHD- negative individuals are shown in Figure 1. Rubella, C. tetani and C. 
diphteriae were excluded from further analyses as the antibodies detected against these pathogens 
were most likely induced by vaccination.

Univariable predictors of CHD incidence
To validate the utility of SCORE2 in our cohort, we tested its association with CHD. SCORE2 was signifi-
cantly and positively associated with CHD (HR 1.72, 95% CI 1.61–1.85, p = 2.87×10−61) (Appendix 1—
table 2). We also observed a significant inverse association between average gross monthly income 
and CHD risk (HR 0.85, 95% CI 0.76–0.96, p = 7.27×10−3).

To investigate the relationship between CHD and humoral response to infectious agents, we tested 
the association of serostatus for each of the included 19 persistent or frequently occurring pathogens 
with CHD. We found significant positive associations for six of them, including three herpes viruses, 
namely HSV- 1 (HR 1.88, 95% CI 1.30–2.68, p = 6.52×10−4), HHV- 6A (HR 1.39, 95% CI 1.03–1.86, p = 
2.89×10−2), and VZV (HR 1.70, 95% CI 1.02–2.82, p = 4.25×10−2), one polyomavirus, HPyV6 (HR 1.66, 
95% CI 1.06–2.61, p = 2.74×10−2), and two bacteria, F. nucleatum (HR 1.66, 95% CI 1.20–2.29, p = 
2.32×10−3), and C. trachomatis (HR 1.45, 95% CI 1.11–1.91, p = 7.22×10−3) (Appendix 1—table 2).

To evaluate the impact of the biomarkers of inflammation on CHD risk, we tested the association 
of log10- transformed levels of hs- CRP, IL- 1β, IL- 6, and TNF-α with CHD. We observed a positive rela-
tionship between individuals’ hs- CRP (HR 1.91, 95% CI 1.42–2.55, p = 1.51×10−5) and TNF-α (HR 1.43, 
95% CI 1.05–1.96, p = 2.46×10−2) levels, and increased risk of CHD event (Appendix 1—table 2).

Finally, we calculated a CHD polygenic risk score (CHD- PRS) for each subject to investigate the 
effect of common human genetic variations on CHD. As expected, we observed a significant associa-
tion between the PRS and CHD (HR 1.32, 95% CI 1.16–1.51, p = 4.29×10−5), confirming that genetic 
predisposition to CHD can be captured through CHD- PRS. The top three genetic principal compo-
nents (PC1, PC2, and PC3) were not significantly associated with CHD (Appendix 1—table 2).
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Table 1. Baseline characteristics of 3459 CoLaus|PsyCoLaus participants by coronary heart disease 
(CHD) cases and controls.
p- Values are based on the t- test for continuous variables and Fisher’s exact test for categorical 
variables comparing the CHD cases and controls group.

Overall
N = 3249 (100%)

Controls
N = 3249 (93.93%)

CHD cases
N = 210 (6.07%) p

Baseline characteristics

Age (mean [SD]) 52.83 [10.48] 52.34 [10.36] 60.34 [9.53] <0.001

BMI (mean [SD]) 25.51 [4.31] 25.41 [4.27] 27.11 [4.62] <0.001

Systolic blood pressure (mean [SD]) 129.04 [18.40] 128.32 [18.01] 140.18 [20.60] <0.001

HDL cholesterol (mean [SD]) 1.66 [0.43] 1.67 [0.43] 1.49 [0.41] <0.001

LDL cholesterol (mean [SD]) 3.34 [0.92] 3.33 [0.92] 3.48 [0.91] 0.018

Total cholesterol (mean [SD]) 5.60 [1.03] 5.59 [1.02] 5.73 [1.04] 0.051

Sex = male (%) 1592 (46.0) 1448 (44.6) 144 (68.6) <0.001

Statin = yes (%) 296 (8.6) 242 (7.4) 54 (25.7) <0.001

Average gross monthly income (in CHF): 0.029

<2999 (%) 178 (5.1) 161 (5.0) 17 (8.1)

3000–4999 (%) 452 (13.1) 425 (13.1) 27 (12.9)

5000–6999 (%) 552 (16.0) 517 (15.9) 35 (16.7)

7000–9499 (%) 504 (14.6) 468 (14.4) 36 (17.1)

9500–13,000 (%) 338 (9.8) 323 (9.9) 15 (7.1)

>13,000 (%) 344 (9.9) 335 (10.3) 9 (4.3)

Refused or missing (%) 1091 (31.5) 1020 (31.4) 71 (33.8)

Smoking = yes (%) 883 (25.5) 820 (25.2) 63 (30.0) 0.146

Genetics

CHD- PRS (mean [SD]) 0.00 [1.00] −0.02 [0.99] 0.26 [1.01] <0.001

Biomarkers of inflammation

hs- CRP (mean [SD]) 0.09 [0.46] 0.08 [0.46] 0.22 [0.44] <0.001

TNF-α (mean [SD]) – 63 NAs 0.46 [0.38] 0.46 [0.38] 0.53 [0.35] 0.013

IL- 1β (mean [SD]) – 1’319 NAs 0.17 [0.64] 0.17 [0.64] 0.14 [0.67] 0.637

IL- 6 (mean [SD]) – 294 NAs 0.24 [0.58] 0.24 [0.58] 0.28 [0.55] 0.398

Persistent pathogens

Human polyomaviruses:

BKPyV = seropositive (%) 2912 (84.2) 2735 (84.2) 177 (84.3) 1.000

JCPyV = seropositive (%) 1812 (52.4) 1696 (52.2) 116 (55.2) 0.434

HPyV6 = seropositive (%) 2948 (85.2) 2759 (84.9) 189 (90.0) 0.056

WUPyV = seropositive (%) 3309 (95.7) 3105 (95.6) 204 (97.1) 0.362

Human herpes viruses:

HSV- 1 = seropositive (%) 2547 (73.6) 2373 (73.0) 174 (82.9) 0.002

HSV- 2 = seropositive (%) 601 (17.4) 564 (17.4) 37 (17.6) 0.998

CMV = seropositive (%) 1868 (54.0) 1756 (54.0) 112 (53.3) 0.897

EBV = seropositive (%) 3350 (96.8) 3147 (96.9) 203 (96.7) 1.000

Table 1 continued on next page
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Co-linearity and proportional hazard assumption testing
We calculated pairwise correlations between all variables that were found to be significant in univari-
able analyses. Appendix 2—figure 1 and Appendix 2—figure 2 illustrate that no strong correlations 
exist between significant variables. The strongest correlation was observed between SCORE2 and 
hs- CRP, and between seropositivity to C. trachomatis and gross monthly household income, with 
Pearson’s and Cramer’s V coefficients of 0.22 and 0.15, respectively. The proportionality assumption 
was tested for all significant variables using the Schoenfeld residuals. The residual tests indicated that 
all variables satisfied the proportional hazards assumption, revealing that the effect of all covariates 
are constant in time (Appendix 2—figure 3). Finally, we also assessed potential co- linearity issues 
among predictors that could affect model fitting. No variance inflation factor (VIF) value was indicative 
of co- linearity.

Multivariable model
To identify the independent risk factors of CHD in our cohort, we performed backward stepwise 
selection on 2323 individuals with non- missing data using a multivariable Cox proportional hazards 
model, starting with all the significant factors from the univariable models. The final multivariable 
analysis confirmed that SCORE2 (HR 1.96 per SD increase, 95% CI 1.74–2.22, p = 2.42×10−27) is an 
independent prognostic factor of CHD (Figure 2). We also observed significant independent associa-
tions for statin intake (HR 2.24, 95% CI 1.50–3.35, p = 9.17×10−5) and for seropositivity to F. nucleatum 
infection (HR 1.63, 95% CI 1.08–2.45, p = 1.99×10−2). Comparing individuals who had a least one 
CHD event (CHD group) against those who had no event during the follow- up period (control group), 
22.4% (47/210) of the individuals in the CHD group were seropositive to F. nucleatum, versus 14.6% 
(473/3249) in the control group (p = 0.003) (Figure 1, Table 1). Lastly, we also observed a significant 
association between CHD occurrence and elevated CHD- PRS with an HR of 1.31 (95% CI 1.10–1.56, 
p = 3.32×10−3) per SD increase.

To assess if the overall burden of infections contributed to increased risk of CHD, study participants 
were stratified according to their overall seropositivity index for measured pathogens, calculated by 
summing the number of pathogens for which they show seropositivity (range: 0–16). The numbers of 
individuals in each pathogen burden stratum are shown in Appendix 2—figure 4. In the univariable 
Cox model, pathogen burden significantly increased the risk of CHD occurrence (HR 1.11, 95% CI 

Overall
N = 3249 (100%)

Controls
N = 3249 (93.93%)

CHD cases
N = 210 (6.07%) p

Baseline characteristics

HHV- 6A = seropositive (%) 865 (25.0) 800 (24.6) 65 (31.0) 0.049

HHV- 6B = seropositive (%) 1373 (39.7) 1295 (39.9) 78 (37.1) 0.480

HHV- 7 = seropositive (%) 1846 (53.4) 1746 (53.7) 100 (47.6) 0.099

KSHV = seropositive (%) 141 (4.1) 133 (4.1) 8 (3.8) 0.983

VZV = seropositive (%) 3047 (88.1) 2853 (87.8) 194 (92.4) 0.061

Parvovirus:

PVB- 19 = seropositive (%) 2420 (70.0) 2277 (70.1) 143 (68.1) 0.595

Bacteria:

C. trachomatis = seropositive (%) 1213 (35.1) 1120 (34.5) 93 (44.3) 0.005

F. nucleatum = seropositive (%) 520 (15.0) 473 (14.6) 47 (22.4) 0.003

H. pylori = seropositive (%) 685 (19.8) 645 (19.9) 40 (19.0) 0.846

S. gallolyticus = seropositive (%) 135 (3.9) 130 (4.0) 5 (2.4) 0.322

Parasite:

T. gondii = seropositive (%) 1445 (41.8) 1349 (41.5) 96 (45.7) 0.262

Table 1 continued
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1.03–1.18, p = 3.25×10−3) (Appendix 1—table 2). However, after adjustment with multivariable Cox 
proportional hazards regression, pathogen burden did not meet the level of significance for staying 
in the model.

Discussion
CHD is a complex disease that is influenced by demographic, environmental, and genetic factors 
(Khot et al., 2003; Mendis et al., 2011). Infections have also been suspected to increase the risk of 
CHD, directly or through the induction of chronic inflammation (Vojdani, 2003). The present study 
investigated the independent and combined effects of these risk factors as possible prognostic indi-
cators for the occurrence of CHD. We performed an event- free survival analysis of incident CHD using 
data from a longitudinal, population- based study, in which more than 6% of participants developed 
CHD over a 12- year study period.

We confirmed the utility of SCORE2 to predict CHD risk in our cohort (SCORE2 working group 
and ESC Cardiovascular risk collaboration, 2021). Of note, chronic inflammation reflected in hs- CRP 
level did not appear as an independent predictor of CHD in our analyses, as the univariable associa-
tion signal was suppressed after adjustment for SCORE2 levels.

We studied the effect of human genetic determinants on CHD occurrence using PRS, and we 
reproduced previously observed effects: participants with a higher CHD- PRS have a greater risk 
of CHD, even after adjustment for all known factors (Ding et  al., 2011; Kullo et  al., 2016). This 
result confirms the existence of genetic susceptibility loci for CHD, and that the individual genetic 

Figure 1. Prevalence of tested pathogens in CoLaus|PsyCoLaus study in participants with and without coronary heart disease (CHD). Overall serostatus 
for the 22 pathogens are shown in the CHD- positive group (individuals with at least one CHD event during follow- up) or CHD- negative group. The y- axis 
indicates the relative percentage within each group. Pathogens are ranked in ascending order of overall seropositivity (all individuals combined).

The online version of this article includes the following source data for figure 1:

Source data 1. Data underlying Figure 1.

https://doi.org/10.7554/eLife.79742
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background modulates CHD risk independently from age, sex, or co- morbidities. Our work confirms 
the potential interest in using PRS to improve the prediction of coronary events.

We also evaluated the potential contribution of multiple persistent or frequently recurring patho-
gens to CHD after controlling for conventional CHD risk factors, socioeconomic status, and human 
genetic variability. We observed an association of CHD with detection of antibodies against F. 
nucleatum. This pathogen is very prevalent in humans (Adams et al., 2004; Afra et al., 2013; Looker 
et al., 2015). F. nucleatum is an anaerobic bacterium that belongs to the normal flora of the oral 
cavity and plays an important role in the development and progression of oral diseases, such as gingi-
vitis (gum inflammation) and periodontitis (infection of the gums). Under pathological conditions, the 
pathogen can spread by the hematogenous route to extra- oral systemic sites, including the gut and 
the female genital tract (Han and Wang, 2013; Han et al., 2004). Studies have also suggested the 
involvement of F. nucleatum in CVD. First, by its capacity to directly migrate into arterial plaques, thus 

Figure 2. Hazard ratio (HR) and 95% confidence intervals of coronary heart disease (CHD) occurrence according to associated factors. HR > 1 indicates 
an increased risk of CHD, whereas HR < 1 indicates a protective effect. p- Values (p) for each factor based on the multivariable Cox regression are shown.

The online version of this article includes the following source data for figure 2:

Source data 1. Data underlying Figure 2.

https://doi.org/10.7554/eLife.79742
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exacerbating atherosclerosis, and more recently, through the association of periodontitis and CVD 
(Kholy et al., 2015; Elkaïm et al., 2008; Figuero et al., 2011; Ford et al., 2006; Han, 2015; Zardawi 
et al., 2020). Finally, it has been shown that periodontal pathogens are able to spread through the 
bloodstream from the buccal cavity to the arteries in patients with detectable coronary calcium, a 
very specific marker of atherosclerosis (Corredor et al., 2022). In summary, the relationship between 
oral inflammations and CVD could be explained by the colonization of arterial walls and atheroscle-
rosis plaques by dental bacteria, as well as by increased systemic inflammation due to oral infection. 
However, to date, no direct causality has been established. Besides, no genome- wide association 
study on F. nucleatum has been published, neither on humoral immune response (i.e., IgG levels) nor 
on susceptibility to infection/colonization (i.e., serostatus).

HSV- 1, HHV- 6A, VZV, HPyV6, and C. trachomatis serologies, as well as total burden of infection, 
were associated with CHD occurrence in univariable models. However, these factors were not signifi-
cantly associated in the multivariable analysis, suggesting that at least some of them could be indirect 
markers of socioeconomic status.

Our data do not support the existence of the previously identified associations between CHD and 
H. pylori, or CMV. The conflicting reports of possible associations between these pathogens and CHD 
could be due to sample size but remain questionable. Further extensive, and high- quality studies are 
needed to thoroughly examine these associations and provide firm conclusions.

Our study has several limitations. As is the case for most longitudinal studies, the absence of 
data on individuals who dropped out before the end of the follow- up implies that some CHD events 
could have gone undetected. Also, the demographic information, as well as the clinical and labora-
tory measurements, were obtained at baseline, and we do not know whether participant information 
changed over time. Adjustment for risk factors measured at baseline does not account for clinical or 
demographic changes that could influence CHD outcomes. Similarly, we do not know how the anti-
body responses against the various antigens evolved over the 12 years of the study. In addition, no 
significance adjustment was performed when using multiple univariable tests to determine the effect 
of single factors on CHD risk, although this may increase the false positive rate. Moreover, we were 
unable to replicate previously published observations of associations of CHD with C. pneumoniae and 
HCV as serologies for these pathogens were not available. From a more practical point of view, the 
identified association with F. nucleatum needs to be replicated and validated in independent cohorts 
and different populations. Finally, the clinical utility of including genetic and infection biomarkers in 
CHD prediction algorithms will need to be demonstrated.

Conclusion
CHD is a multicomponent disease that is caused by demographic, environmental, and genetic factors. 
Inflammation, possibly caused by persistent or frequently recurring infections, can contribute to its 
development. We identified a statistically significant association between the incidence of CHD and F. 
nucleatum infection, after adjustment for all established risk factors. We also confirmed that the indi-
vidual polygenic risk of CVD, calculated from genome- wide genotypes, represents an independent 
risk factor for incident CHD. Our results can help to better identify subjects at high risk for CHD and 
provide a rationale for future anti- infective prevention trials.

Methods
Study cohort
The CoLaus|PsyCoLaus study is a longitudinal population- based study initiated in Lausanne in 2003; 
it mainly investigates the biological, environmental, and genetic determinants of CVD (https://www. 
colaus-psycolaus.ch/) (Firmann et al., 2008). The study involves over 6500 participants of European 
ancestry, who were recruited at random from the general population and represent approximately 
10% sample of Lausanne citizens. Of the participants, 47.5% are men, and age at enrolment ranged 
from 35 to 75 years (mean ± SD: 51 ± 10.9). The study participants provided detailed phenotypic 
information through questionnaires, interviews, clinical and biological data. Nuclear deoxyribonu-
cleic acid (DNA) was also extracted from the blood for whole- genome genotyping data. Every 5 
years, follow- up interviews on the participants’ lifestyle and health status are conducted. There are 
three completed follow- ups and a fourth follow- up began in January 2022. The institutional Ethics 

https://doi.org/10.7554/eLife.79742
https://www.colaus-psycolaus.ch/
https://www.colaus-psycolaus.ch/


 Research article      Genetics and Genomics

Hodel et al. eLife 2023;12:e79742. DOI: https://doi.org/10.7554/eLife.79742  9 of 22

Committee of the University of Lausanne, which later became the Ethics Commission of the Canton 
Vaud (https://www.cer-vd.ch/), approved the CoLaus|PsyCoLaus study (reference 16/03, decisions of 
January 13 and February 10, 2003), and all participants gave written consent.

Cardiovascular phenotype
The medical records of the participants who reported a CHD event during their lifetime were collected 
and evaluated by an independent panel of specialists. Information on the cause of death was also 
collected prospectively during the study period. The full procedure was described previously (Beuret 
et al., 2021). Only first events occurring after the baseline and up to day 4500 after the baseline were 
included in the analysis, as only during this period were all participants reliably followed.

DNA genotyping data and PRS calculation for cardiovascular 
phenotypes
The BB2 GSK- customized Affymetrix Axiom Biobank array was used to genotype DNA samples from 
5399 participants at approximately 800,000 single nucleotide polymorphisms (SNPs). After genotype 
imputation and quality control procedures, approximately 9 million SNPs were available for analysis 
(Hodel et al., 2021). We then calculated, based on the risk effects of common SNPs, the CHD- PRS for 
each study participant. We used validated PRS from Inouye et al., available in the polygenic score catalog 
(Inouye et al., 2018; Lambert et al., 2021). These scores and summary statistics were used to construct 
the CHD- PRS in our target cohort data by using the clumping and thresholding method of the PRSice- 2 
v2.2.7 software (Choi et al., 2020). A standardized method was used to obtain the PRS, by multiplying 
the risk allele dosage for each variant by the effect size and summing the scores across all selected vari-
ants. SNPs were clumped according to linkage disequilibrium (r2 < 0.1) within a 250 kb window.

CHD risk evaluation
The risk of CHD for each participant was also assessed using the very recent SCORE2 and SCORE2- 
Older Persons (SCORE2- OP, for individuals >65 years of age) algorithms (SCORE2- OP working 
group and ESC Cardiovascular risk collaboration, 2021; SCORE2 working group and ESC Cardio-
vascular risk collaboration, 2021). These two algorithms will be referred to as SCORE2. SCORE2 
was derived, calibrated, and validated to predict the 10- year risk of first- onset CVD using data from 
13 million individuals from >50 European prospective studies and national registries. To develop this 
algorithm, the authors used competing risk- adjusted and age- and sex- specific models including age, 
current smoking, systolic blood pressure, and total, low- density lipoprotein (LDL), and high- density 
lipoprotein (HDL) cholesterol. The authors also defined four risk regions in Europe on the basis of 
country- specific CVD mortality. For CoLaus|PsyCoLaus participants, calculations were based on the 
low- risk region corresponding to Switzerland. The raw scores of participants were standardized to 
Z- scores with approximately zero mean and unit variance before data analysis.

Measurement of inflammatory biomarkers
Venous blood samples (50 mL) of the participants, in a fasted state, were drawn. Before cytokine 
assessment, the serum blood samples were stored at −80°C, then they were sent to the laboratory 
on dry ice. The measurements of hs- CRP, IL- 1β, IL- 6, and TNF-α cytokine levels were described previ-
ously in detail (Marques- Vidal et al., 2011). Briefly, hs- CRP levels were assessed by immunoassay 
and latex HS (IMMULITE 1000- High, Diagnostic Products Corporation, Los Angeles, CA, USA). Cyto-
kine levels were measured using a multiplexed particle- based flow cytometric cytokine assay on the 
flow cytometer (FC500 MPL, BeckmanCoulter, Nyon, Switzerland), thus following the manufacturer’s 
instructions. The lower limits of detection for IL- 1β, IL- 6, and TNF-α were 0.2 pg/mL. Intra- and inter- 
assay coefficients of variation were, respectively, 15% and 16.7% for IL- 1β, 16.9% and 16.1% for IL- 6, 
and 12.5% and 13.5% for TNF-α. For quality control, repeat measurements were performed on 80 
subjects randomly selected from the initial sample. Individuals with hs- CRP levels above 20 mg/L 
were assigned a value of 20 by the manufacturer therefore were removed from the hs- CRP analyses 
as indicative of acute inflammation.

Serological analyses
To assess the humoral responses to a total of 38 antigens derived from 22 persistent infectious agents, 
serum samples were analyzed by the Infections and Cancer Epidemiology Division at the German 
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Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]) in Heidelberg (Waterboer 
et  al., 2005; Waterboer et  al., 2006). Studied pathogens included 15 viruses (BKV, JCV, HPyV6, 
WUPyV, HSV- 1, HSV- 2, VZV, EBV, CMV, HHV- 6A, HHV- 6B, HHV- 7, KSHV, PVB- 19, and rubella virus); 
six bacteria (C. diphteriae, C. tetani, C. trachomatis, F. nucleatum, H. pylori, and S. gallolyticus); and 
one parasite (T. gondii) (for details, see Appendix 1—table 1). The seroreactivity was measured at 
a serum dilution of 1:1000 by using multiplex serology based on glutathione S- transferase fusion 
capture immunosorbent assays combined with fluorescent bead technology. For each infectious 
agent tested, the antibody responses were measured for one to six antigens and then expressed 
as a binary result (IgG positive or negative), based on the predefined median fluorescence intensity 
thresholds. To define overall seropositivity against infectious agents when more than one antigen was 
used, we applied the pathogen- specific algorithms suggested by the manufacturer (see references in 
Appendix 1—table 1).

Statistical analyses
Univariable and multivariable Cox proportional hazard models were used to explore the relation-
ship between risk factors and CHD incidence in the CoLaus|PsyCoLaus study. Each variable was first 
screened in the univariable model. To identify potential confounding due to population structure, we 
also tested the top three genetic principal components (PC1, PC2, and PC3) for association with CHD. 
We then examined the proportional hazards assumption of the significant (p < 0.05) covariates by 
using the scaled Schoenfeld residuals. The residuals were plotted over time for each covariate to test 
for time independence. Risk factors significantly associated with CHD in the univariable model were 
further evaluated using pairwise correlations. Finally, the identified risk factors were assessed using 
multivariable stepwise Cox regression analysis, adjusted for competing risk (i.e., SCORE2), socio-
economic status (i.e., gross monthly household income), and statin intake. Potential multicollinearity 
between statistically significant factors (p < 0.05) were identified using VIFs. The existence of multicol-
linearity between co- variates was determined by a VIF value > 2. We performed all statistical analyses 
using R (version 4.2.1).
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Appendix 1
Additional tables

Appendix 1—table 1. Characteristics of infectious agent- specific antigens used on the Multiplex 
Serology platform in CoLaus|PsyCoLaus.

Family Pathogen Antigen (Predicted) function
Def. of seropositivity is 
based on Reference

Human 
polyomaviruses

BKV VP1 Major capsid protein NA

Kjaerheim et al., 
2007; Gossai 
et al., 2016; 
Robles et al., 
2015

JCV VP1 Major capsid protein NA

Kjaerheim et al., 
2007; Gossai 
et al., 2016; 
Robles et al., 
2015

HPyV6 VP1 Major capsid protein NA

Kjaerheim et al., 
2007; Gossai 
et al., 2016; 
Robles et al., 
2015

WUPyV VP1 Major capsid protein NA

Kjaerheim et al., 
2007; Gossai 
et al., 2016; 
Robles et al., 
2015

Human herpes 
viruses

CMV

pp150 Tegument protein

At least two positive
Brenner et al., 
2018

pp52 DNA binding protein

pp28 Capsid protein

EBV

ZEBRA Replication activator

At least two positive
Brenner et al., 
2018

EA- D
Replication (polymerase 
accessory subunit)

VCA p18 Capsid protein

EBNA1
Replication, latent viral 
infection

HHV- 6

IE1B Potential transactivator

Any HHV- 6=at least one 
positive HHV- 6A=IE1A 
and/or p100HHV- 6B=IE1B 
and/or p101K

Bassig et al., 
2018; Engdahl 
et al., 2019; 
Freuer et al., 
2020

IE1A Potential transactivator

p101K Potential tegument protein

p100 Potential tegument protein

HHV- 7 U14 Potential tegument protein NA
Validation 
ongoing

HSV- 1 gG Membrane glycoprotein NA
Brenner et al., 
2019a

HSV- 2 mgG Membrane glycoprotein NA
Brenner et al., 
2019a

KSHV

LANA3
Replication and long- term 
persistence

At least one positive
Validation 
ongoingK8.1 Structural glycoprotein

VZV gE/gI Envelope glycoprotein NA
Brenner et al., 
2019a

Parvovirus B19 VP1unique Minor capsid protein NA
Brenner et al., 
2019b

Appendix 1—table 1 Continued on next page
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Family Pathogen Antigen (Predicted) function
Def. of seropositivity is 
based on Reference

Rubella virus* RV E1 Class II viral fusion protein NA
Brenner et al., 
2019b

C. trachomatis Ct pGP3 Virulence factor NA
Trabert et al., 
2019

C. tetani* Ct TetX Toxoid (heavy chain) NA
Brenner et al., 
2019b

Corynebacterium 
diphtheriae* Cd DTA Toxoid (intracellular) NA

Brenner et al., 
2019b

F. nucleatum Fn

Fn0264 Adhesin (FadA)

At least one positive 
(experimental) Butt et al., 2019

Fn1449
Type Va secretion system 
(Fap2)

Fn1859 Porin (FomA)

H. pylori Hp

HP 10 GroEL Chaperonin

At least three positive
Michel et al., 
2009

HP 73 UreaseA Urease alpha subunit

HP 547 CagA Pathogenesis

HP 875 Catalase Detoxification

HP 887 VacA Pathogenesis

HP 1564 OMP Cell envelope

S. gallolyticus Sg Gallo2178
Pil1 pilus subunit (major 
pilin) NA

Butt et al., 
2016; Butt 
et al., 2017

T. gondii Tg

p22 Surface protein

At least one positive
Brenner et al., 
2019asag- 1 Surface protein

*Pathogens not taken forward due to lack of vaccination history in CoLaus|PsyCoLaus and/or the difficulty in identifying target antigens to 
ensure specificity of the test.

Appendix 1—table 2. Association of risk factors with coronary heart disease (CHD) based on the 
univariable Cox proportional hazard analyses.

Variable HR* (95% CI)* p

Baseline characteristics

SCORE2 1.72 (1.61–1.85)
2.87×10- 
61

Statin 3.82 (2.80–5.22)
3.13×10- 
17

Average gross monthly income 0.85 (0.76–0.96) 7.27×10- 3

Genetics

CHD- PRS 1.32 (1.16–1.51) 4.29×10- 5

PC1 74- 28 (0.03–195096) 0.28

PC2 0.12 (00.0–728) 0.64

PC3 0.33 (0.00–1131) 0.79

Biomarkers of inflammation

hs- CRP† 1.91 (1.42–2.55) 1.51×10- 5

TNF-α† 1.43 (1.05–1.96) 2.46×10- 2

IL- 1β† 0.93 (0.70–1.25) 0.64

Appendix 1—table 1 Continued

Appendix 1—table 2 Continued on next page

https://doi.org/10.7554/eLife.79742


 Research article      Genetics and Genomics

Hodel et al. eLife 2023;12:e79742. DOI: https://doi.org/10.7554/eLife.79742  18 of 22

Variable HR* (95% CI)* p

IL- 6† 1.10 (0.88–1.37) 0.42

Human polyomaviruses

BKPyV 1.05 (0.72–1.52) 0.80

JCPyV 1.14 (0.87–1.50) 0.35

HPyV6 1.66 (1.06–2.61) 2.74×10- 2

WUPyV 1.45 (0.65–3.27) 0.37

Human herpes viruses

HSV- 1 1.88 (1.30–2.68) 6.52×10- 4

HSV- 2 1.05 (0.74–1.50) 0.78

CMV 1.00 (0.76–1.31) 0.99

EBV 0.97 (0.46–2.06) 0.94

HHV- 6A 1.39 (1.03–1.86) 2.89×10- 2

HHV- 6B 0.93 (0.70–1.23) 0.59

HHV- 7 0.79 (0.60–1.03) 8.33×10- 2

KSHV 0.89 (0.44–1.80) 0.74

VZV 1.70 (1.02–2.82) 4.25×10- 2

Parvovirus

PVB- 19 0.90 (0.68–1.21) 0.49

Bacteria .

C. trachomatis 1.45 (1.11–1.91) 7.22×10- 3

F. nucleatum 1.66 (1.20–2.29) 2.32×10- 3

H. pylori 0.95 (0.67–1.34) 0.78

S. gallolyticus 0.62 (0.26–1.51) 0.29

Parasite

T. gondii 1.17 (0.90–1.54) 0.25

Pathogen burden 1.11 (1.03–1.18) 3.25×10−3

*HR = hazard ratio, CI = confidence interval.
†log10- transformed.

Appendix 1—table 2 Continued
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Appendix 2
Additional figures

Appendix 2—figure 1. Pairwise correlations between quantitative characteristics significantly associated with 
coronary heart disease (CHD) risk in the univariable Cox proportional hazard models. Pearson’s correlation values 
are displayed, along with linear fits between variables.
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Appendix 2—figure 2. Strength of association for each pair of categorical variables significantly associated with 
coronary heart disease (CHD) risk in univariable Cox proportional hazard models. Cramer’s V values are displayed.
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Appendix 2—figure 3. Graphical test of proportional hazards assumption (Schoenfeld test). The graphs show 
the scaled Schoenfeld residuals over time. The p- values (p) of the variables and the model as a whole were shown 
in the plot. A significant p- value (< 0.05) indicates that the variable violates the proportional hazard assumption. 
The solid line represents the smoothing fitted spline, and the dashed lines the confidence bands at two standard 
errors. Global Schoenfeld test p=0.58.
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Appendix 2—figure 4. Distribution of individuals according to their exposure to infectious agents (pathogen 
burden). Bar plot showing the number of participants for each cumulative number of positive serological results, 
reflecting simultaneous ongoing chronic/latent infections. Sample sizes for each group are shown above the box.
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