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Abstract Different strains of a microorganism growing in the same environment display a wide 
variety of growth rates and growth yields. We developed a coarse- grained model to test the hypoth-
esis that different resource allocation strategies, corresponding to different compositions of the 
proteome, can account for the observed rate- yield variability. The model predictions were verified 
by means of a database of hundreds of published rate- yield and uptake- secretion phenotypes of 
Escherichia coli strains grown in standard laboratory conditions. We found a very good quantitative 
agreement between the range of predicted and observed growth rates, growth yields, and glucose 
uptake and acetate secretion rates. These results support the hypothesis that resource allocation 
is a major explanatory factor of the observed variability of growth rates and growth yields across 
different bacterial strains. An interesting prediction of our model, supported by the experimental 
data, is that high growth rates are not necessarily accompanied by low growth yields. The resource 
allocation strategies enabling high- rate, high- yield growth of E. coli lead to a higher saturation of 
enzymes and ribosomes, and thus to a more efficient utilization of proteomic resources. Our model 
thus contributes to a fundamental understanding of the quantitative relationship between rate and 
yield in E. coli and other microorganisms. It may also be useful for the rapid screening of strains in 
metabolic engineering and synthetic biology.

Editor's evaluation
This study develops a rigorous resource allocation model for E. coli growing under steady- state 
conditions. Validated by comparison with a compiled data set, the model highlights the complex 
nature of the relationship between metabolites, growth rate, and yield which is significantly more 
complex than the one- to- one- one relationship that has generally been assumed. The work will be 
of interest not only to investigators interested in basic questions of bacterial physiology but also to 
those working on applied problems in biotechnology.

Introduction
Microbial growth consists of the conversion of nutrients from the environment into biomass. This flux 
of material is coupled with a flux of energy from the substrate to small energy cofactors (ATP, NADH, 
NADPH, etc.) driving biomass synthesis forward and releasing energy in the process (Schaechter 
et al., 2006). The growth of microorganisms has been profitably analyzed from the perspective of 
resource allocation, that is, the assignment of limiting cellular resources to the different biochemical 
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processes underlying growth (Scott et al., 2010; Scott et al., 2014; Molenaar et al., 2009; Giordano 
et al., 2016; Weiße et al., 2015; Reimers et al., 2017; Bosdriesz et al., 2015; Towbin et al., 2017; 
Maitra and Dill, 2015; Dourado and Lercher, 2020; Metzl- Raz et al., 2017). It is often considered 
that proteins, the main component of biomass, are also the bottleneck resource for growth. Proteins 
function as enzymes in carbon and energy metabolism and they constitute the molecular machines 
responsible for the synthesis of macromolecules, in particular proteins themselves. The composition 
of the proteome in a given growth condition can therefore be interpreted as the resource allocation 
strategy adopted by the cells to exploit available nutrients.

Two macroscopic criteria for characterizing microbial growth are growth rate and growth yield. 
The former refers to the rate of conversion of substrate into biomass, and the latter to the efficiency 
of the process, that is, the fraction of substrate taken up by the cells that is converted into biomass. 
Several empirical relations between proteome composition on the one hand, and growth rate and 
growth yield on the other, have been established. A linear relation between growth rate and the ribo-
somal protein fraction of the proteome holds over a large range of growth rates and for a variety of 
microbial species (Scott et al., 2010; Neidhardt and Magasanik, 1960; Forchhammer and Lindahl, 
1971; Bremer and Dennis, 1996). Variants of this so- called growth law have been found for cases 
of reduced translation capacities (Scott et al., 2010) or different temperatures (Herendeen et al., 
1979; Mairet et al., 2021). While the ribosomal protein fraction increases with the growth rate, the 
proteome fraction allocated to energy metabolism decreases (Basan et al., 2015a; Schmidt et al., 
2016). Moreover, within this decreasing fraction, Escherichia coli and other microorganisms move 
resources from respiration to fermentation pathways (Basan et  al., 2015a). Simple mathematical 
models have been proposed to account for the above relations in terms of the requirements of 
self- replication of the proteome and the relative protein costs and ATP yields of respiration and 
fermentation (Scott et al., 2010; Molenaar et al., 2009; Giordano et al., 2016; Weiße et al., 2015; 
Bosdriesz et al., 2015; Dourado and Lercher, 2020; Mairet et al., 2021; Basan et al., 2015a; Mori 
et al., 2019).

Most of these relations have been studied in experiments in which the same strain exhibits a range 
of growth rates in different environments, with different carbon sources. Even for a fixed environ-
ment, however, different strains of the same species may grow at very different rates and yields. For 
example, in a comparative study of seven E. coli strains, growth rates ranging from 0.61 to 0.97 hr-1, 
and (carbon) growth yields between 0.52 and 0.66, were observed during aerobic growth on glucose 
(Monk et al., 2016). Since the genes encoding enzymes in central carbon and energy metabolism are 
largely shared across the strains (Monk et al., 2016), the yield differences are not due to different 
metabolic capacities but rather to different regulatory strategies, that is, different usages of the meta-
bolic pathways of the cell. As another example, evolution experiments with E. coli have given rise 
to evolved strains that grow more than 40% faster, sometimes with higher growth yields, than the 
ancestor strain in the same environment (LaCroix et al., 2015). Analysis of the underlying mutations 
reveals that the higher rates and yields of the evolved strains are not due to new metabolic capacities, 
but rather to modified regulatory strategies (LaCroix et al., 2015; Utrilla et al., 2016).

Can the large variability of rate- yield phenotypes observed across different strains of the same 
species be explained by different resource allocation strategies, that is, different compositions of 
the proteome? In order to answer this question, we developed a coarse- grained resource allocation 
model that couples the fluxes of carbon and energy underlying microbial growth. The model was 
calibrated by means of existing data in the literature, without any parameter fitting, and its predic-
tions were compared with a database of several hundreds of pairs of rates and yields of E. coli strains 
reported in the literature. The database includes wild- type strains as well as mutant strains obtained 
through directed mutagenesis or adaptive laboratory evolution (ALE).

We found that, in different growth conditions, the predicted variability of rate- yield phenotypes 
corresponds very well with the observed range of phenotypes. This also holds for the variability of 
substrate uptake and acetate secretion rates. Whereas in the literature, a high rate is often associated 
with a low yield, due to a shift of resources from respiration to fermentation, many of the E. coli strains 
in our database grow at a high rate and a high yield. The model predicts that strains with a high- rate, 
high- yield phenotype require resource allocation strategies that increase metabolite concentrations in 
order to allow for the more efficient utilization of proteomic resources, in particular enzymes in metab-
olism and ribosomes in protein synthesis. This prediction is confirmed by experimental data for a 
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high- rate, high- yield strain. A resource allocation strategy matching the observed strategy could only 
be found, however, when taking into account enzyme activities in addition to enzyme concentrations.

These results are interesting for both fundamental research and biotechnological applications. They 
show that the application of coarse- grained models can be used to predict multivariate phenotypes, 
without making any assumptions on optimality criteria, and reveal unexpected relations confirmed by 
the experimental data. The model is capable of predicting quantitative bounds on growth rates and 
yields within a specific environment, which can be exploited for rapidly screening performance limits 
of strains developed in synthetic biology and metabolic engineering.

Results
Coarse-grained model with coupled carbon and energy fluxes
Coarse- grained resource allocation models describe microbial growth by means of a limited number 
of macroreactions converting nutrients from the environment into proteins and other macromole-
cules. Several such models have been proposed, usually focusing on either carbon or energy fluxes 
(Scott et al., 2010; Molenaar et al., 2009; Giordano et al., 2016; Weiße et al., 2015; Maitra and 

Figure 1. Coarse- grained model of microbial growth with coupled carbon and energy fluxes. Upper left figure: schematic outline of the model, showing 
the biomass constituents and the macroreactions, as well as the growth and degradation of biomass. Green boxes: system of differential equations 
describing the carbon and energy balances, growth rate and growth yield, and resource allocation. The kinetic expressions for the reaction rates 
can be found in Appendix 1. The growth rate and growth yield are defined in terms of the fluxes of the macroreactions. Lower right figure: biomass 
composition, including the protein categories considered in resource allocation. The fluxes vr,  vmu ,  vmc ,  vmer ,  vmef  , vd [Cmmol or mmol gDW-1 hr-1], 
the variables  p ,  r  , mu, mc,  mer ,  mef  ,  c ,  u ,  a∗  [Cmmol or mmol gDW-1], the resource allocation parameters  χu ,  χr ,  χc ,  χer ,  χef   [dimensionless], the 
degradation rate constant  γ   [hr-1], the biomass density  β  [Cmmol gDW-1], the ATP yield and cost factors  nmer ,  nmef  , nr,  nmu  [mmol Cmmol-1], and the 
correction factors for CO2 loss  ρmef  ,  ρru  [dimensionless] are formally defined in Appendix 1. The values of the parameters are derived in Appendix 2.
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Dill, 2015; Bosdriesz et al., 2015; Towbin et al., 2017; Mairet et al., 2021). Few models have taken 
into account both, that is, the use of substrate as a carbon source for macromolecules and as a source 
of free energy to fuel the synthesis of macromolecules. This coupling of carbon and energy fluxes is 
essential, however, for understanding the relation between growth rate and growth yield. Among 
the notable exceptions, we cite the model of Basan et al., 2015a (see also Mori et al., 2019), which 
couples carbon and energy fluxes while abstracting from the reaction kinetics, and the model of 
Zavřel et al., 2019, which does provide such a kinetic view but ignores macromolecules other than 
proteins and focuses on photosynthetic growth (see Appendix 1 for a discussion of existing coarse- 
grained resource allocation models).

Figure 1 presents a coarse- grained kinetic model that takes inspiration from and generalizes this 
previous work. While the model is generic, it has been instantiated for aerobic growth of E. coli in 
minimal medium with glucose or glycerol as the limiting carbon source. The model variables are inten-
sive quantities corresponding to cellular concentrations of proteins ( p ) and other macromolecules 
(DNA, RNA, and lipids forming cell membranes) ( u ), as well as central carbon metabolites ( c ) and ATP 
( a∗ ). The central carbon metabolites notably comprise the 13 precursor metabolites from which the 
building blocks for macromolecules (amino acids, nucleotides, etc.) are produced (Schaechter et al., 
2006). All concentrations have units Cmmol gDW-1, except for ATP [mmol gDW-1]. Five macroreactions 
are responsible for carbohydrate uptake and metabolism, ATP production by aerobic respiration and 
fermentation, and the synthesis of proteins and other macromolecules. The rates of the reactions, 
denoted by  vmc ,  vmer ,  vmef  , vr, and  vmu  [Cmmol gDW-1 hr-1], respectively, are defined by kinetic expres-
sions involving protein, precursor metabolite, and ATP concentrations. Details of the rate equations 
and the derivation of the model from basic assumptions on microbial growth can be found in Appendix 
1. Appendix 1—table 1 summarizes the definition of variables, reaction rates, and parameters.

The carbon entering the cell is included in the different biomass components or released in the 
form of CO2 and acetate. CO2 is produced by respiration and macromolecular synthesis, while acetate 
overflow is due to aerobic fermentation (Basan et al., 2015a; Gottschalk, 1986). The carbon balance 
also includes the turnover of macromolecules, which is responsible for a large part of cellular mainte-
nance costs (van Bodegom, 2007 and Appendix 1).

The energy balance is expressed in terms of the production and consumption of ATP. While energy 
metabolism also involves other energy cofactors (NADP, NADPH, etc.), the latter can be converted 
into ATP during aerobic growth (Basan et al., 2015a; Gottschalk, 1986). We call the ATP fraction 

 a∗/(a∗ + a) , where  a∗  and  a  denote the ATP and ADP concentrations, respectively, the energy charge 
of the cell, by analogy with the concept of adenylate energy charge (Atkinson, 1968). The ATP yields 
of respiration and fermentation ( nmer  and  nmef  ) as well as the ATP costs of the synthesis of proteins 
and other macromolecules (nr and  nmu ) are determined by the stoichiometry of the underlying meta-
bolic pathways and the biomass composition (Basan et al., 2015a; Kaleta et al., 2013 and Appendix 
2). When total ATP production and consumption in growing microbial cells are computed from 

 nmer vmer + nmef vmef   and  nr vr + nmu vmu , respectively, the former usually largely exceeds the latter (Feist 
et al., 2007; Russell and Cook, 1995). This so- called uncoupling phenomenon is explicitly accounted 
for by an energy dissipation term vd in the energy balance (Appendix 1).

Like in other resource allocation models, the proteome is subdivided into categories (Scott et al., 
2010; Basan et  al., 2015a). We distinguish ribosomes and other translation- affiliated proteins, 
enzymes in central carbon metabolism, enzymes in respiration and fermentation metabolism, and 
a residual category of other proteins, with concentrations  r , mc,  mer ,  mef  , and mu, respectively. The 
latter category includes proteins involved in the synthesis of RNA and DNA as well as in a variety of 
housekeeping functions. Each category of protein catalyzes a different macroreaction in Figure 1: 
ribosomes are responsible for protein synthesis, enzymes for carbon and energy metabolism, and 
residual proteins for the synthesis of macromolecules other than proteins. Note that the proteins in 
the residual category may thus catalyze a macroreaction, contrary to what is assumed in other models 
in the literature (Appendix 1).

The protein synthesis capacity of the cell, given by the total protein synthesis rate vr, is distrib-
uted over the protein categories using five fractional resource allocation parameters that sum to 1: 

 χu ,  χr ,  χc ,  χer , and  χef  . Fixing the resource allocation parameters determines the model dynamics 
and therefore the growth phenotype (Dourado and Lercher, 2020; Zavřel et al., 2019; de Groot 
et al., 2020). During balanced growth, when the system is at steady state, the resource allocation 
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parameters equal the corresponding protein fractions, for example,  χ
∗
r = r∗/p∗ , where the asterisk ( ∗ ) 

denotes the steady- state value (Appendix 1 and Erickson et al., 2017).
Contrary to most models of microbial growth, the biomass includes other cellular components 

(DNA, RNA, metabolites, etc.) in addition to proteins (Appendix 1). The growth rate μ [hr-1] directly 
follows from the biomass definition, under the assumption that the total biomass concentration  1/β  is 
constant (Appendix 1 and de Jong et al., 2017). The growth rate captures the specific accumulation 
of biomass corrected for degradation:

 µ = β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu)) − γ,  (1)

where  ρmef   and  ρru − 1  denote the fractional loss of carbon by fermentation and macromolecular 
synthesis, respectively. More precisely,  ρmef   and  ρru , both greater than 1, express that CO2 is a 
by- product of the synthesis of acetate and of proteins and other macromolecules, respectively, adding 
to the total flux of carbon through these macroreactions (Basan et al., 2015a; Gottschalk, 1986). In 
the growth rate definition of Equation 1, the total macromolecular synthesis rate  vr + vmu  is multiplied 
with  ρru − 1 , because only the associated CO2 flux is lost to biomass production (Appendix 1).

The growth yield is defined as the ratio of the net biomass synthesis rate ( µ/β ) and the substrate 
uptake rate  vmc :

 
Y = 1

β

µ

vmc
.
  

(2)

Yields are dimensionless and vary between 0 and 1. They express the fraction of carbon taken up by 
the cells that is included in the biomass, a definition often used in ecology and biotechnology (Morin 
et al., 2016; Roller and Schmidt, 2015). The definitions of Equations 1 and 2 provide a rigorous 
statement of the carbon balance and thus enable the comparison of different resource allocation 
strategies.

The model in Figure 1 was calibrated using data from the literature for batch or continuous growth 
of E. coli in minimal medium with glucose or glycerol. In brief, for the E. coli reference strain BW25113, 
we collected for each growth medium the growth rate and metabolite uptake and secretion rates 
(Peebo et al., 2015; Haverkorn van Rijsewijk et al., 2011; Gerosa et al., 2015), as well as protein 
and metabolite concentrations (Schmidt et al., 2016; Gerosa et al., 2015). Using additional assump-
tions based on literature data (Bennett et al., 2009; Dourado et al., 2021), we fixed a unique set of 
parameters for each condition (batch vs. continuous growth, glucose vs. glycerol), without parameter 
fitting (Appendix 2). The resulting set of quantitative models provides a concise but comprehensive 
representation of the growth of E. coli in different environments.

Predicted rate-yield phenotypes for E. coli
The reference strain used for calibrating the model has, for each of the conditions considered, a 
specific resource allocation strategy defined by the values of the resource allocation parameters: 

 (χu,χr,χc,χer,χef) . We ask the question how the growth rate and growth yield change, during 
balanced growth, when the resource allocation strategy is different from the one adopted by the 
reference strain. In other words, we consider the range of possible rate- yield phenotypes for strains 
with the same metabolic capacities as the reference strain, but different regulation of the allocation 
of protein resources to the macroreactions of Figure 1. The same parameter values for the kinetic 
constants are used as for the reference strain. This allows us to focus on differences in growth rate and 
growth yield that can be unambiguously attributed to differences in resource allocation.

In order to predict the variability of rate- yield phenotypes, we uniformly sampled the space of 
possible resource allocation strategies. Except for the parameter  χu , expressing the fraction of 
resources attributed to housekeeping and other proteins, the parameters defining a resource alloca-
tion strategy were allowed to vary over the entire range from 0 to 1, subject to the constraint that they 
sum to 1 (Figure 1). The allowed range of values for  χu  was limited to the observed variation in the 
reference strain over a large variety of growth conditions (different limiting carbon sources, different 
stresses, etc.) (Schmidt et al., 2016 and Figure 2—figure supplement 1). For every resource alloca-
tion strategy, we numerically simulated the system until a steady state was reached, corresponding to 
balanced growth of the culture (Materials and methods). From the steady- state values of the fluxes 
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and concentrations, the growth rate and growth yield can then be computed by means of Equations 
1 and 2 (Figure 2—figure supplement 3).

Figure 2 shows the cloud of predicted rate- yield phenotypes for batch growth on glucose. A first 
observation is that the possible combinations of rate and yield are bounded. The growth rate does 
not exceed 1.1 hr-1, and for all but the lowest growth rates, the growth yield is larger than 0.3. The 
existence of an upper bound on the growth rate can be intuitively understood from Equation 1. The 
maximum growth rate is limited by the substrate uptake rate, which provides the carbon included 
in the biomass. In turn, the uptake rate is bounded by the concentration of enzymes responsible 
for substrate uptake and metabolism, a concentration that is ultimately limited by the total biomass 
concentration. The existence of a lower bound on the biomass yield is a direct consequence of the 
autocatalytic nature of microbial growth: the different growth- supporting functions are sustained by 

Figure 2. Predicted rate- yield phenotypes and underlying resource allocation strategies. Predicted rate- yield phenotypes during balanced growth 
of E. coli on minimal medium with glucose (gray dots). The resource allocation strategy and growth physiology underlying the rate- yield phenotypes 
are shown for selected points, corresponding to the BW25113 reference strain (BW), predicted maximum growth rate ( µmax ), and predicted maximum 
growth yield (Ymax). The pictograms show the biomass composition, flux distribution, and energy charge. Note that by calibration, the predicted and 
observed resource allocation strategies for the reference strain are identical. We also indicate, for later reference, the rate- yield phenotype of the 
NCM3722 strain (NCM).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Observed allocation of resources to the category of residual proteins in different growth conditions.

Figure supplement 2. Relation between resource allocation strategies and rate- yield phenotypes.

Figure supplement 3. Schematic overview of the computation of growth rate and growth yield from resource allocation strategies.

Figure supplement 4. Predicted fluxes, concentrations, and resource allocation along the Pareto frontier of growth rate and growth yield.
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enzymes and ribosomes, which need to be continually produced to counter the effect of growth dilu-
tion and degradation.

A second observation is that, for low growth rates, the maximum growth yield increases with the 
rate, whereas it decreases for high growth rates, above 0.4 hr-1. The initial maximum yield increase 
can be attributed to the proportionally lower burden of the maintenance costs (Pirt, 1965). In partic-
ular, considering that a higher growth rate comes with a higher substrate uptake rate (Equation 1), 
the term  γ/vmc  appearing in the definition of the yield when substituting the growth rate expres-
sion (Equation 2) rapidly diminishes in importance when the growth rate increases (Figure 4—figure 
supplement 1A). The decrease of the maximum yield at higher growth rates reflects a trade- off that 
has been much investigated in microbial physiology and ecology (Lipson, 2015; Beardmore et al., 
2011) and to which we return below.

Every point within the cloud of rate- yield phenotypes corresponds to a specific underlying resource 
allocation strategy. The mapping from resource allocation strategies to rate- yield phenotypes is far 
from straightforward due to the feedback loops in the model, which entail strong mutual dependen-
cies between carbon and energy metabolism, protein synthesis, and growth. Useful insights into the 
nature of this mapping can be gained by visualizing the physiological consequences of a strategy in 
the form of a pictogram showing (i) the biomass composition, (ii) the flux map, and (iii) the energy 
charge. The pictogram summarizes how the incoming carbon flux is distributed over the biosynthesis, 
respiration, and fermentation fluxes, and how the concentrations of proteins, metabolites, and energy 
cofactors sustain these fluxes (Figure 2).

Due to model calibration, the fluxes, concentrations, and energy charge for the point corre-
sponding to the growth of the reference strain, labeled BW in Figure 2, agree with the experimental 
data. At steady state, the resource allocation parameters coincide with the protein fractions (Erickson 
et al., 2017 and Appendix 1), so that the relative sizes of the protein concentrations in the pictogram 
correspond to the resource allocation strategy adopted by the cells. As can be seen, the reference 
strain highly invests in ribosomal and other translation- oriented proteins, which take up almost 50% of 
the proteome. The pictogram also shows that the reference strain generates ATP by a combination of 
respiration and fermentation: both  vmer  and  vmef   are non- zero, and so are the corresponding enzyme 
concentrations  mer  and  mef  . Although proteins dominate the biomass, a non- negligible proportion of 
the latter consists of other macromolecules (25%) and central metabolites (1%) (Appendix 2).

How does the reference point compare with other notable points in the cloud of predicted rate- 
yield phenotypes, in particular the points at which the growth rate and growth yield are maximal, 
denoted by  µmax  and  Ymax ? While the physiology of  µmax  is not radically different from that for the 
reference strain, it does have a number of distinctive features. The higher growth rate comes with a 
higher glucose uptake rate and a higher protein synthesis rate. The total protein concentration is lower 
though, due to increased growth dilution at the higher growth rate. Investment in energy metabolism 
has shifted from fermentation to respiration, in order to allow for more efficient ATP production at a 
lower enzyme concentration. The energy charge is slightly lower than in the reference strain. This is 
compensated for by a higher metabolite concentration, however, which leads to a higher saturation of 
ribosomes and allows protein synthesis to increase even at a lower ribosome concentration. In other 
words, bearing in mind the kinetic expression for protein synthesis from Appendix 1,

 
vr(r, c, a∗) = kr r c

c + Kr

a∗

a∗ + Kar
,
  

(3)

where kr is a catalytic constant corresponding to the maximum protein synthesis rate and  Kr, Kar  half- 
saturation constants, vr can increase at  µmax  despite the decrease of  r  and  a∗ , thanks to the increase 
of  c .

The rate- yield phenotype corresponding to Ymax has a predicted physiology that is strikingly different 
from the reference strain. The high yield is obtained by a strong reduction of protein synthesis and 
therefore lower concentrations of enzymes and ribosomes (Figure 2). Protein synthesis is the principal 
ATP- consuming process in microbial growth, so its reduction diminishes the need for ATP synthesis 
and decreases the associated loss of carbon (Figure 1). The net effect is a decrease of the growth rate, 
but an increase of the growth yield (Equations 1 and 2).

The strong reduction of the concentration of proteins and other macromolecules at Ymax implies, 
by the assumption of constant biomass density (Appendix 1), that the metabolite concentration 
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increases. This may correspond to the formation of glycogen, a glucose storage compound, which 
occurs when excess glucose cannot be used for macromolecular synthesis due to other limiting factors. 
Glycogen concentrations in wild- type E. coli cells are low, but there exist mutants which accumulate 
high amounts of glycogen, on the order of 25–30% of biomass (Morin et al., 2016). The biomass 
percentage of carbohydrates and lipids in other microorganisms, such as microalgae, reaches even 
higher levels (Finkel et al., 2016; Reitan et al., 2021).

The upper boundary of the cloud of predicted rate- yield phenotypes in Figure 2, between Ymax and 

 µmax , is a Pareto frontier. It corresponds to a trade- off between growth rate and growth yield, which 
cannot be simultaneously increased in this region. How can this trade- off be explained? By making 
appropriate assumptions, the model can be simplified along the Pareto frontier, which allows the 
decrease in growth yield with the increase in growth rate to be traced back to changes in the resource 
allocation strategy (Appendix 1 and Figure 2—figure supplement 4). In summary, the analysis shows 
that an increase in growth rate requires protein synthesis to be increased, which comes with a higher 
loss of carbon, and therefore a lower (maximum) yield. The increase in protein synthesis leads to 
a higher protein concentration, reflected in a resource allocation strategy shifting resources to the 
synthesis of enzymes in energy metabolism and ribosomes, and a correspondingly lower concentra-
tion of central carbon metabolites. That is, on the physiological level, the trade- off between growth 
rate and growth yield corresponds to a trade- off between protein and metabolite concentrations.

Some caution should be exercised in the biological interpretation of the points  µmax  and  Ymax , as 
they are located on the upper boundary of the cloud of predicted rate- yield phenotypes. They repre-
sent extreme phenotypes that may be counterselected in the environment in which E. coli evolves or 
that may violate basic biophysical constraints not included in the model. Nevertheless, the bounds 
do put a quantitative limit on the variability of rate- yield phenotypes that can be confronted with the 
available experimental data.

Comparison of predicted and observed rate-yield phenotypes for E. 
coli
We predicted the variability of rate- yield phenotypes of E. coli during batch growth in minimal medium 
with glucose or glycerol, and during continuous growth at different dilution rates in minimal medium 
with glucose. The resource allocation strategies were varied in each condition with respect to the 
strategy observed for the BW25113 strain used for model calibration (Figure 3A). In order to compare 
the predicted variability of rate- yield phenotypes with experimental data, we compiled a database of 
measured rates and yields reported in the literature (Supplementary files 1 and 2), and plotted the 
measurements in the phenotype spaces (Figure 3B–D). The database includes the reference wild- type 
strain, other E. coli wild- type strains, strains with mutants in regulatory genes, and strains obtained 
from ALE experiments. Apart from the rate and yield of the reference strain (Haverkorn van Rijsewijk 
et al., 2011), none of the data points plotted in Figure 3 were used for calibration.

The variability of the measured rates and yields during batch growth on glucose corresponds very 
well with the predicted variability: all data points fall inside the predicted cloud of phenotypes and 
much of the cloud is covered by the data points (Figure 3B). Interestingly, the highest growth rates 
on glucose attained in ALE experiments, just above 1 hr-1 (LaCroix et al., 2015; Monk et al., 2017), 
approach the highest predicted growth rates (1.1 hr-1). The range of high growth rates is enriched in 
data points, which may reflect the bias that E. coli wild- type and mutant strains grow relatively fast on 
glucose and glycerol, and that in most ALE experiments the selection pressure is tilted toward growth 
rate.

The BW25113 strain has a low growth yield on glucose (equal to 0.50, Haverkorn van Rijsewijk 
et al., 2011). Many mutants of this strain with deletions of regulatory genes somewhat increase the 
yield (Haverkorn van Rijsewijk et al., 2011), but still fall well below the maximally predicted yield. 
The growth yield of some other wild- type strains is significantly higher, for example the W strain 
achieves a yield of 0.66 at a growth rate of 0.97 hr-1 (Monk et al., 2016). The highest growth yield 
is achieved by an evolved strain (0.81, Schuetz et al., 2012), agreeing quite well with the maximum 
predicted growth yield for that growth rate. The latter strain does not secrete any acetate while 
growing on glucose (Schuetz et al., 2012), which contributes to the higher yield.

Similar observations can be made for growth of E. coli on glycerol, although in this case less exper-
imental data points are available (Figure 3D). The model predicts that the highest growth rate on 
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glycerol is similar to the highest growth rate on glucose, which is confirmed by experimental data 
(Andersen and von Meyenburg, 1980). In addition to batch growth, we also considered continuous 
growth in a chemostat. This required a recalibration of the model, since the environment is not the 
same as for batch growth (Appendix 2). Figure 3C shows the predicted rate- yield phenotype space 
for dilution rates around 0.2, 0.35, and 0.5 hr-1, as well as the observed rates and yields. Again, there is 

Figure 3. Predicted rate- yield phenotypes and comparison with experimental data. (A) Measured proteome fractions of the protein categories in the 
model, corresponding to resource allocation strategies during balanced growth, for the BW25113 reference strain used for model calibration (Schmidt 
et al., 2016 and Appendix 2). (B) Predicted and observed combinations of growth rate and growth yield for balanced batch growth of E. coli in minimal 
medium with glucose. The rate- yield phenotypes concern the reference strain, other wild- type strains, mutant strains obtained by directed mutagenesis, 
and mutant strains from adaptive laboratory evolution (ALE) experiments. (C) Idem for continuous growth in a chemostat in minimal medium with 
glucose at different dilution rates (0.2, 0.35, and 0.5 hr-1). The predicted yields are shown for the indicated dilution rates ±10%. (D) Idem for batch growth 
of E. coli in minimal medium with glycerol. All predictions were made using the model in Figure 1, calibrated for the different growth conditions, and 
varying the resource allocation parameters as described in the text (90,000–160,000 samples). The measurements of rate and yield reported in the 
source literature have been converted to units hr-1 (growth rate) and a dimensionless unit corresponding to  Cmmolbiomass   Cmmol−1

substrate  (growth yield) (see 
Materials and methods and Supplementary files 1 and 2 for details).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Robustness of rate- yield predictions for alternative model calibration and alternative model assumption.

https://doi.org/10.7554/eLife.79815
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good correspondence between the predicted and observed variability of growth yield. Most chemo-
stat experiments reported in the literature have been carried out with the BW25113 and MG1655 
wild- type strains. This absence of mutants and evolved strains may lead to an underestimation of the 
range of observed growth yields.

In the above comparisons of the model with the data, we made the assumption that the strains 
considered have the same metabolic capacities as the reference strain. This assumption was satisfied 
by restricting the database to wild- type strains with essentially the same central carbon and energy 
metabolism (Monk et al., 2016), mutant strains with deletions of genes encoding regulators instead 
of enzymes (Haverkorn van Rijsewijk et al., 2011), and short- term ALE mutants which have not had 
the time to develop new metabolic capacities (Monk et al., 2017). We also made the assumption that 
the parameter values are the same for all strains, so that differences in resource allocation strategies 
are the only explanatory variable. It is remarkable that, despite these strong assumptions, the model 
predicts very well the observed variability of rate- yield phenotypes in E. coli.

Predicted and observed uptake-secretion phenotypes for E. coli
Growth rate and growth yield are defined in terms of carbon and energy fluxes through the population 
(Equations 1 and 2). Like rate and yield, some of these fluxes, in particular uptake and secretion rates, 
have been found to vary substantially across E. coli strains growing in minimal medium with glucose 
(Monk et al., 2016; LaCroix et al., 2015). Can our model also reproduce the observed variability of 
uptake- secretion phenotypes? We projected the model predictions in the space of uptake- secretion 
phenotypes, and crossed the latter with rate- yield phenotypes. Moreover, we compared the predicted 
variability with measurements from studies in which not only growth rate and growth yield, but also 
uptake and secretion rates were measured (Supplementary file 1).

Figure 4A and B relates the predicted range of glucose uptake rates to the growth rates and 
growth yields, respectively. The model predicts an overall positive correlation between growth rate 
and glucose uptake rate, which is an obvious consequence of the fact that glucose provides the 
carbon included in the biomass. The glucose uptake rate does not unambiguously determine the 
growth rate though. Depending on the resource allocation strategy, the bacteria can grow at different 
yields for a given glucose uptake rate (Equation 2 and Figure 4—figure supplement 1B). Note that 
the trade- off between growth rate and maximum growth yield previously observed in Figure 3 reap-
pears here in the form of a trade- off between glucose uptake rate and maximum growth yield, for 
uptake rates above 20 Cmmol gDW-1 hr-1.

The predicted variability of glucose uptake rates vs growth rates and growth yields corresponds 
to the observed variability. Almost all data points fall within the predicted cloud of phenotypes and 
the data points cover much of the cloud. The strains resulting from ALE experiments cluster along the 
predicted upper bound of not only rate but also yield, suggesting that part of the increase in growth 
rate of ALE strains is obtained through the more efficient utilization of glucose.

Another observable flux is the acetate secretion rate, which is an indicator of the functioning of 
energy metabolism. In aerobic conditions, E. coli has two different modes of ATP production: respira-
tion and fermentation. Glucose and glycerol are taken up by the cells and degraded in the glycolysis 
pathway, eventually producing acetyl- CoA. Whereas acetyl- CoA enters the tricarboxylic acid (TCA) 
cycle in the case of respiration, it is secreted in the form of acetate during fermentation. In both cases, 
NADP and other reduced compounds are produced along the way and their recycling is coupled with 
the generation of a proton gradient across the membrane, enabling the production of ATP. Respira-
tion is the more efficient of the two ATP production modes: in E. coli, respiration yields 26 ATP mole-
cules per molecule of glucose and fermentation only 12 (Basan et al., 2015a).

Figure 4C and D shows the predicted relation between acetate secretion rates and growth rates 
and growth yields. The plots reveal a clear trade- off between maximum growth yield and acetate 
secretion rate, due to the fact that fermentation is less efficient than respiration in producing ATP. 
The model predicts no apparent relation between growth rate and acetate secretion. In particular, 
high growth rates can be attained with a continuum of ATP production modes: from pure respiration 
to combinations of respiration and fermentation. Similar conclusions can be drawn when plotting 
the acetate secretion rate relative to the glucose uptake rate ( vmef/vmc ), that is, when considering 
the fraction of carbon taken up that is secreted as acetate (Figure 4—figure supplement 1C–D). 
Maximum yield requires respiration without fermentation, whereas minimum yield is attained for 
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Figure 4. Predicted uptake- secretion phenotypes and comparison with experimental data. (A) Predicted and observed glucose uptake rates and 
growth rates for the case of batch growth of E. coli on minimal medium with glucose. (B) Idem for glucose uptake rates and growth yields. (C) Idem 
for acetate secretion rates and growth rates. (D) Idem for acetate secretion rates and growth yields. (E) Idem for glucose uptake and acetate secretion 
rates. The predicted uptake- secretion phenotypes  vmc  and  vmef   were taken from the simulations giving rise to Figure 3B. The measurements of glucose 

Figure 4 continued on next page
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maximum fermentation, where more than 50% of the carbon entering the cell is lost due to acetate 
overflow.

The measured combinations of acetate secretion rate vs growth rate or growth yield entirely fall 
within the bounds predicted by the model (Figure 4C–D). The data notably show that as the growth 
yield increases, fermentation phenotypes give way to respiration phenotypes. The measurements 
further confirm that it is possible for E. coli to grow fast without acetate secretion. In particular, some 
of the fastest growing E. coli wild- type strains have no acetate overflow, like the W strain (Monk et al., 
2016), and some of the evolved strains grow very fast but with little acetate overflow as compared to 
their ancestors (Schuetz et al., 2012). The observed relative acetate secretion rates also fall almost 
entirely within the predicted bounds (Figure 4—figure supplement 1C–D).

Another view on the uptake- secretion data is obtained when plotting, for each resource allocation 
strategy, the predicted glucose uptake rate against the predicted acetate secretion rate (Figure 4E). 
Not surprisingly, the maximum acetate secretion rate increases with the glucose uptake rate, since 
acetate is a by- product of glucose metabolism. The plot also emphasizes, however, that the increase 
of acetate secretion with glucose uptake is not a necessary constraint of the underlying growth phys-
iology: E. coli is predicted to be able to grow without acetate overflow over almost the entire range 
of glucose uptake rates, from 0 to 65 Cmmol gDW-1 hr-1.

Again, the observed variability of uptake- secretion phenotypes falls well within the predicted 
bounds, although a few outliers occur. In particular, the Crooks strain has a phenotype that is signifi-
cantly deviating from the predicted combinations of acetate secretion and glucose uptake rates (Monk 
et al., 2017). This suggests that resource allocation alone cannot fully explain the observed pheno-
type and other regulatory effects need to be taken into account in this case. High acetate secretion 
rates, above 20 Cmmol gDW-1 hr-1, are mostly absent from the database of observed uptake- secretion 
phenotypes. This is another manifestation of the over- representation of strains with a high growth rate 
on glucose (Figure 3B): the secretion of a large fraction of the glucose taken up in the form of acetate 
does not make it possible to attain high growth rates (Equation 1).

Given the higher ATP yield of respiration, it is not surprising that the highest growth yields are 
attained when respiration is preferred to fermentation. What might not have been expected, however, 
is that some strains achieve a growth rate on glucose close to the predicted maximum without resorting 
to fermentation. It is well known that when growing an E. coli strain in minimal medium with glucose 
at increasingly higher growth rates, the contribution of fermentation to ATP production increases at 
the expense of respiration, as witnessed by the increase of acetate secretion (Basan et al., 2015a; 
Nanchen et al., 2006; Peebo et al., 2015; Valgepea et al., 2010 and Figure 4—figure supplement 
2). This shift of resources from respiration to fermentation has been explained in terms of constraints 
on available protein resources, trading costly but efficient respiration enzymes against cheap but inef-
ficient fermentation enzymes. The existence of strains capable of attaining the highest growth rates 
without fermentation suggests that this proteome constraint can be bypassed and raises the question 
which resource allocation strategies allow the bacteria to do so.

Strategies enabling fast and efficient growth of E. coli
The analysis of the model predictions in Figure 2, notably the point  µmax , provided some indications 
of the strategies enabling high- rate, high- yield growth of E. coli. Unfortunately, no data for  µmax  are 
available. However, the NCM3722 strain (Brown and Jun, 2015) attains a growth rate approaching 
the maximally observed rate for E. coli in minimal medium with glucose (0.97 hr-1), and has a signifi-
cantly higher growth yield than the BW25113 reference strain (0.6) (Schmidt et  al., 2016; Cheng 

uptake and acetate secretion rates reported in the source literature have been converted to units Cmmol gDW-1 hr-1 (see Materials and methods and 
Supplementary files 1 and 2 for details). The Crooks strain, labeled in panel E, shows an uptake- secretion phenotype deviating from the range of 
predicted phenotypes.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Additional model predictions of rate- yield and uptake- secretion phenotypes and their comparison with experimental data.

Figure supplement 2. Variation of normalized acetate secretion rate with growth rate in experiments with a single E. coli strain growing in different 
environments.

Figure 4 continued

https://doi.org/10.7554/eLife.79815


 Research article Computational and Systems Biology

Baldazzi et al. eLife 2023;12:e79815. DOI: https://doi.org/10.7554/eLife.79815  13 of 53

et al., 2019). The glucose uptake and acetate secretion rates of NCM have been measured in the 
growth conditions considered here (Basan et al., 2015a; Cheng et al., 2019) and proteomics data 
are available from the same experiment as used for calibration of the model (Schmidt et al., 2016, 
Figure 5A). How does the observed resource allocation strategy for NCM compare with the strategies 

Figure 5. Resource allocation strategies underlying high- rate, high- yield phenotypes. (A) Characterization of the physiology of the NCM3722 strain in 
comparison with the BW25113 strain during batch growth on glucose (data from Appendix 2—table 1 and Appendix 2—table 5). (B) Comparison 
of total protein and metabolic fractions in NCM and BW. The total protein fraction includes amino acids (Figure 1), which is indicated by the hatched 
pattern. (C) Predicted resource allocation strategies for a strain with the NCM phenotype, in the case of the model with fixed catalytic constants (blue 
boxplot) or a model variant in which catalytic constants are allowed to vary twofold (red boxplot). The observed resource allocation strategy for NCM 
(Schmidt et al., 2016, black dots) corresponds with the strategies predicting the NCM phenotype when catalytic constants are allowed to vary, that is, 
when metabolic regulation in addition to resource allocation is taken into account. The model predictions summarized in the boxplot concern strategies 
with simulated rate- yield and uptake- secretion phenotypes within 5% of the observed values for NCM. The black dots correspond to three independent 
replicates of the proteomic measurements (Schmidt et al., 2016). (D) Predicted and observed biomass composition for high- rate, high- yield growth of 
E. coli, with data for NCM (Appendix 2—table 5). Regulation of enzyme activity leads to a very good match of predicted and observed total protein 
and metabolite concentrations, here indicated as fractions of the total biomass ( pβ  and  cβ ).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Relative changes in kinetic parameters for resource allocation strategies reproducing the observed phenotypes of the NCM3722 
strain during minimal growth on glucose.

https://doi.org/10.7554/eLife.79815


 Research article Computational and Systems Biology

Baldazzi et al. eLife 2023;12:e79815. DOI: https://doi.org/10.7554/eLife.79815  14 of 53

that, according to the model, predict the rate- yield and uptake- secretion phenotypes of NCM? And 
how do these strategies enable fast and efficient growth of this strain?

Whereas every resource allocation strategy gives rise to a unique rate- yield phenotype, the inverse 
is not true: several strategies can in principle predict an observed combination of growth rate, growth 
yield, glucose uptake rate, and acetate secretion rate (Materials and methods and Figure 2—figure 
supplement 2). The boxplots in Figure 5C show the resource allocation strategies that, according 
to the model, give rise to a growth physiology consistent with that observed for NCM. That is, every 
individual strategy predicts a growth rate, growth yield, glucose uptake rate, and acetate secretion 
rate within 5% of the observed value. The same figure also shows the observed resource allocation 
strategy for NCM, consisting of the values of  χu ,  χr ,  χc , and  χe = χer + χef   during balanced growth on 
glucose, derived from the proteomics data (Materials and methods).

Whereas the strategies reproducing the rate- yield and uptake- secretion phenotypes of NCM 
partially overlap with the measured strategy, the predicted  χc  values are significantly higher than 
those observed. In other words, the model requires a higher protein fraction for enzymes in central 
carbon metabolism ( mc/p ) than observed in the proteomics data. The underlying problem is that in our 
model the carbon uptake and metabolization rate is directly proportional to the enzyme concentration 
(Appendix 1):

 
vmc = kmc mc

S
S + Kmc

≈ em mc,
  

(4)

where  S ≫ Kmc  during balanced growth in batch and em [hr-1] is an apparent catalytic constant 
(Appendix 1). Therefore, the high value glucose uptake rate necessary for the high growth rate of 
NCM requires a high enzyme concentration, and therefore a high protein fraction  mc/p . This is contra-
dicted by the measured protein fraction for NCM, which is slightly lower than the one observed for 
BW (0.07 as compared to 0.09 for BW), for a glucose uptake rate that is much higher (66.0 Cmmol 
gDW-1 hr-1 as compared to 49.6 Cmmol gDW-1 hr-1 for BW). Note that a less pronounced, but opposite 
divergence of model and data is seen in the case of the protein fractions of ribosomal proteins and 
enzymes in energy metabolism (Figure 5C). That is, the predicted over- investment in central metabo-
lism comes with a corresponding under- investment in protein synthesis and energy metabolism.

The discrepancies between predicted and observed resource allocation strategies suggest that 
bacteria exploit additional regulatory factors to achieve high- rate, high- yield growth. This conclusion 
agrees with the view that the regulation of fluxes in central metabolism involves not only enzyme 
concentrations, but also regulation of enzyme activity (Davidi and Milo, 2017; Donati et al., 2018). 
While little is known about the mechanisms allowing NCM to grow much faster than BW, genomic 
changes and their physiological impact have been identified for ALE strains (LaCroix et al., 2015; 
Utrilla et al., 2016; Cheng et al., 2014). In an ALE mutant evolved in glycerol, the change in growth 
rate was attributed to a change in activity of the GlpK enzyme (Cheng et al., 2014), leading to higher 
glycerol uptake rates. In the model, the latter mutation would translate to an increase in the catalytic 
constant  kmc  (Appendix 1).

In order to verify the hypothesis that an additional layer of regulation, acting upon enzyme activity, 
plays a role in high- rate, high- yield growth, we modified the analysis of the model. Instead of varying 
only resource allocation parameters  (χu,χr,χc,χer,χef) , we also allowed the catalytic constants 

 (kmc, kmer, kmef) , representing the (apparent) enzyme turnover rates in central carbon and energy metab-
olism (Appendix 1), to increase or decrease by at most a factor of 2. The results of the simulations are 
shown in Figure 5C. They reveal that there now exist resource allocation strategies capable of repro-
ducing the observed NCM growth phenotypes within a 5% margin. Most notably, these strategies 
require an increased value of  kmc  (Figure 5—figure supplement 1). That is, the model predicts that 
glycolytic enzymes are more active in NCM as compared to BW during growth on glucose. This allows 
resources to be shifted from glycolytic enzymes to other growth- supporting functions. Whereas no 
experimental data exist to specifically test the above prediction, it is known that the activity of pyru-
vate kinase, regulated by fructose- 1,6- bisphosphate (Valentini et al., 2000), increases with a higher 
glycolytic flux and therefore higher growth rate (Kochanowski et al., 2013; Kremling et al., 2007).

Our model thus allows the accurate reconstruction of resource allocation strategies underlying 
high- rate, high- yield growth of the E. coli NCM strain on glucose, when the repertoire of available 
strategies is enlarged from resource allocation to the regulation of enzyme activity. In addition to 
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the rate- yield and uptake- secretion phenotypes, the strategies also reproduce the total protein and 
metabolite concentrations (Figure 5D and Basan et al., 2015b; Park et al., 2016). Importantly for 
the question how the strategies enable high- rate, high- yield growth, NCM is seen to maintain a higher 
metabolite concentration than BW (Figure  5B). As a consequence, the estimated ratio of central 
metabolites and half- saturation constants rises from 1.2 for BW to 3.0 for NCM (Appendix 2). The 
resulting increased saturation of enzymes and ribosomes sustains higher metabolic fluxes, without 
an additional investment in proteins (Figure 5B). This observation, together with the higher activity 
of enzymes in central carbon metabolism, suggests that the more efficient utilization of proteomic 
resources is key to high- rate, high- yield growth of E. coli. This strategy is reminiscent of the proposed 
existence of a trade- off between enzyme and metabolite concentrations in central carbon metabolism 
in other recent studies (Dourado et al., 2021; Fendt et al., 2010; O’Brien et al., 2016).

Discussion
Analysis of the resource allocation strategies adopted by microbial cells can explain a number of 
phenomenological relations between growth rate, growth yield, and macromolecular composition 
(Scott et al., 2010; Scott et al., 2014; Molenaar et al., 2009; Giordano et al., 2016; Weiße et al., 
2015; Reimers et al., 2017; Bosdriesz et al., 2015; Towbin et al., 2017; Maitra and Dill, 2015; 
Dourado and Lercher, 2020; Metzl- Raz et  al., 2017). We have generalized this perspective to 
account for a striking observation: the large variability of rate- yield phenotypes across different strains 
of a bacterial species grown in the same environment. We constructed a coarse- grained resource allo-
cation model (Figure 1), which was calibrated using literature data on batch and continuous growth 
of the E. coli BW25113 strain in minimal medium with glucose or glycerol. In each of the conditions, 
we considered the rate- yield phenotypes predicted by the model when allowing resource allocation 
to vary over the entire range of possible strategies, while keeping the kinetic parameters constant.

This approach is based on a number of strong assumptions. The coarse- grained nature of the model 
reduces microbial metabolism and protein synthesis to a few macroreactions, instead of accounting 
for the hundreds of enzyme- catalyzed reactions involved in these processes (Cheng et  al., 2019; 
Adadi et al., 2012; Mori et al., 2016; Reimers et al., 2017; Wortel et al., 2018). Resource alloca-
tion is reduced to constraints on protein synthesis capacity, whereas other constraints such as limited 
solvent capacity and membrane space may also play a role (Adadi et al., 2012; Beg et al., 2007; 
Zhuang et al., 2011; Szenk et al., 2017). All possible combinations of resource allocation param-
eters were considered, limited only by the constraint that they must sum to 1. Observed variations 
in protein abundance are less drastic (Schmidt et al., 2016; Hui et al., 2015), and coupled through 
shared regulatory mechanisms (Scott et al., 2014; Chubukov et al., 2014). The kinetic parameters in 
the model have apparent values absorbing unknown regulatory effects, specific to each growth condi-
tion. This contrasts with strain- specific kinetic models with an explicit representation of the underlying 
regulatory mechanisms (Weiße et al., 2015; Erickson et al., 2017; Millard et al., 2017), and does not 
allow our model as such to be used for transitions between growth conditions.

Despite these limitations, we observed a very good quantitative correspondence between the 
predicted and observed variability of rate- yield phenotypes of different E. coli strains grown in the 
same environment (Figure 3). This correspondence also holds when the comparison with the experi-
mental data is extended to glucose uptake and acetate secretion rates associated with the measured 
growth rates and growth yields (Figure 4). The results suggest that differences in resource allocation 
are a major explanatory factor for the observed rate- yield variability. We verified the robustness of this 
conclusion by testing alternative ways to calibrate the model (Appendix 1 and Appendix 2). In partic-
ular, we used data for another commonly used laboratory strain, MG1655, to determine the kinetic 
parameters, and we interpreted the proteomics data differently by introducing an additional category 
of growth- rate- independent proteins that do not carry a flux (Scott et al., 2010; Hui et al., 2015). In 
both cases, the predicted rate- yield variability largely overlaps with that obtained for the reference 
model (Figure 3—figure supplement 1).

Many studies of microbial growth have provided evidence for a trade- off between growth rate 
and growth yield (see Lipson, 2015; Beardmore et al., 2011, for reviews). One particularly telling 
manifestation of this trade- off is the relative increase of acetate overflow, and thus decrease of the 
growth yield, when an E. coli strain is grown on glucose at increasingly higher growth rates, by setting 
the dilution rate in a chemostat or by genetically modifying the glucose uptake rate (Figure 4—figure 
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supplement 2). This shift of resources from respiration to fermentation has been explained in terms of 
a trade- off between energy efficiency and protein cost (Molenaar et al., 2009; Basan et al., 2015a; 
Pfeiffer et al., 2001). In the experimental condition considered here, batch growth on glucose of 
different E. coli strains with the same metabolic capacities, we found no straightforward relation 
between growth rate and growth yield. Neither the model nor the data show a correlation between 
growth rate and acetate overflow (Figure 4C and Figure 4—figure supplement 1), as was also previ-
ously observed by Cheng et al., 2019, for a selection of ALE mutant strains. In particular, the data 
show that some of the fastest growing strains secrete little or no acetate and therefore have a high 
growth yield.

These findings raise the question which resource allocation strategies allow E. coli to grow on 
glucose both rapidly and efficiently. Our model predicts that a high- rate, high- yield phenotype, as 
exemplified by  µmax  in Figure 2, can be obtained by increasing the concentration of central carbon 
metabolites in comparison with the concentration observed for the BW25113 strain used for calibra-
tion. While no data are available for the  µmax  phenotype, a higher concentration of central carbon 
metabolites is indeed observed for the well- characterized NCM3722 strain, which also exhibits high- 
rate, high- yield growth (Figure 5B). The increased concentration of metabolites leads to a higher 
saturation of enzymes and ribosomes, and allows an increase of biosynthetic fluxes without a higher 
investment in proteins. When comparing the resource allocation strategies that predict the NCM 
phenotype with experimental data (Figure 5), we found some discrepancies that cannot be solely 
attributed to the uncertainty in the proteomics data. We therefore allowed the apparent catalytic 
constants of the macroreactions to vary as well, contrary to the initial model assumption, in order to 
account for genetic differences between strains or for regulatory mechanisms responding to phys-
iological changes. This fine- tuning of the adaptation repertoire made it possible to quantitatively 
reproduce the high- rate, high- yield phenotype of NCM by means of resource allocation strategies 
consistent with the proteomics data (Figure 5). In comparison with the BW reference strain, a higher 
value of the catalytic constant corresponding to glucose uptake and metabolism was required, that 
is, a higher activity of glycolytic enzymes (Figure  5—figure supplement 1). Both higher enzyme 
saturation and higher enzyme activity point at a more efficient utilization of proteomic resources as a 
requirement for high rate, high- yield growth.

A strategy consisting of the more efficient utilization of enzymes and ribosomes cannot be predicted 
by most existing models. For example, with constant metabolite concentrations and some additional 
simplifying assumptions, our model reduces to the well- known model of Basan et al., 2015a, which 
predicts that high growth rates can only be attained at the expense of low growth yields (Appendix 1). 
In other words, in the absence of the possibility of a trade- off between proteins and metabolites, our 
simplified model also predicts that an increase in growth rate requires a shift from energy- efficient but 
costly respiration to energy- inefficient but cheap fermentation. The model presented in this work is 
thus general enough to accommodate different strategies to increase the growth rate, some of which 
lead to a decrease in growth yield whereas others may afford an increase in growth yield by exploiting 
available degrees of freedom in the space of resource allocation strategies.

The main finding of this study is that the observed variability of growth rates and growth yields 
across different strains of a bacterial species can, to a large extent, be accounted for by a coarse- 
grained resource allocation model. The capability to predict the range of rates and yields achievable 
by a microbial species, and the possibility to relate these to underlying resource allocation strategies, 
is of great interest for a fundamental understanding of microbial growth. In addition, by extending the 
model with a macroreaction for the production of a protein or a metabolite of interest (Yegorov et al., 
2019), this provides rapidly exploitable guidelines for metabolic engineering and synthetic biology, 
by pointing at performance limits of specific strains and suggesting improvements. While instantiated 
for growth of E. coli, the model equations are sufficiently generic to apply to other microorganisms. 
The calibration of such model variants can benefit from the same hierarchical procedure as developed 
here, exploiting largely available proteomics and metabolomics datasets.
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Materials and methods
Simulation studies
The resource allocation models were derived from a limited number of assumptions on the processes 
underlying microbial growth, as explained in Appendix 1. The parameters in the models were deter-
mined from literature data, as described in Appendix 2. In order to produce the plots with rate, yield, 
uptake, and secretion phenotypes (Figures  2–4), we uniformly sampled combinations of resource 
allocation parameters  χr ,  χc ,  χer , and  χef   such that their sum equals 1- χu , where  χu  was sampled from 
a reduced interval determined from the data (Figure 2—figure supplement 1). Starting from initial 
conditions, the system was simulated for each combination of resource allocation parameters until a 
steady state was reached, and rate and yield were computed from the fluxes and concentrations at 
steady state (Figure 2—figure supplement 3).

When sampling the space of initial conditions for a given resource allocation strategy, the 
system was found to always reach the same steady state. Whereas every strategy thus gives rise 
to a unique rate- yield phenotype, the inverse is not true: different strategies can account for a 
given growth rate and growth yield. An intuitive explanation can be obtained from inspection of 
Equations 1 and 2. A given rate- yield phenotype fixes the substrate uptake rate  vmc  and the sum 

 vmer + ρmef vmef + ((ρru − 1) (vr + vmu)) , representing the loss of carbon due to CO2 outflow and acetate 
secretion. Different resource allocation strategies, and hence different protein and metabolite concen-
trations, can lead to fluxes that add up to the latter sum, and thus enable the cells to grow at the spec-
ified rate and yield (Figure 2—figure supplement 3). The same argument generalizes to combined 
rate- yield and uptake- secretion phenotypes.

All simulations were carried out by means of Matlab R2020b. The models and the simulation 
code used for generating all figures in the paper are available at https://gitlab.inria.fr/baldazzi/ 
coliallocation.

Computation of rates and yields from published experimental data
The rate- yield database was compiled from the experimental literature (Supplementary files 1 
and 2). Growth rates have unit hr-1 and growth yields were converted to the dimensionless quan-
tity  Cmmolsubstrate   Cmmol−1

biomass  by means of appropriate conversion constants. Most publications 
report yields with unit gDW  mmol−1

substrate , that is, as the ratio of the growth rate with unit hr-1 and the 
substrate uptake rate with unit  mmolsubstrate  gDW-1 hr-1. If yields are not explicitly reported, then they 
were computed in this way from the reported growth rate and substrate uptake rate. In order to 
convert  mmolsubstrate  to  Cmmolsubstrate , we multiplied the former with the number of carbon atoms in the 
substrate molecule (six for glucose, three for glycerol). In order to convert gDW to  Cmmolbiomass , we 
used the consensus value for the biomass density  1/β , 40.65  Cmmolbiomass  gDW-1 (Appendix 2). Some 
substrate uptake rates, in particular for the NMC3722 strain, were expressed in units  mMsubstrate  OD-1 
hr-1. We used strain- specific and when possible laboratory- specific conversion constants from optical 
density (OD) to gDW L-1, notably the value 0.49 gDW L-1 OD-1 for NMC3722 (Basan et al., 2015a). 
Acetate secretion rates reported in  mmolacetate  gDW-1 hr-1 or  mMacetate  OD-1 hr-1 were converted to unit 
Cmmol gDW-1 hr-1 using the same procedure.

Computation of resource allocation strategies from proteomics data
The observed resource allocation strategies for the BW25113, MG1655, and NCM3722 strains were 
computed by means of the proteomics data in Table S11 of Schmidt et al., 2016. We computed 
the mass fraction for each protein category distinguished in the model by associating the latter 
with specific COG groups ( r/p  amino acid transport and metabolism and translation;  mc/p  carbohy-
drate transport and metabolism;  (mer + mef)/p  energy production and conversion;  mu/p  all other COG 
groups). The mass fraction of enzymes in energy metabolism was further subdivided into fractions 
attributed to respiration and fermentation,  mer/p  and  mef/p , in the same way as for model calibration, 
by distinguishing enzymes specific to fermentation, enzymes specific to respiration, and enzymes 
shared between respiration and fermentation (Basan et al., 2015a, and Supplementary file 4). The 
resource allocation strategy during balanced growth  (χu,χr,χc,χer,χef)  was equated with the corre-
sponding mass fractions.

https://doi.org/10.7554/eLife.79815
https://gitlab.inria.fr/baldazzi/coliallocation
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Appendix 1

Model equations
Modeling assumptions
The coarse- grained resource allocation model of coupled carbon and energy fluxes generalizes and 
elaborates upon previous models of microbial growth (Scott et al., 2010; Giordano et al., 2016; 
Basan et al., 2015a; Zavřel et al., 2019). It is based on a partitioning of the cellular proteome into 
five major categories:

Ribosomes and translation- affiliated proteins, including enzymes in amino acid metabolism, 
that are necessary for protein synthesis.
Enzymes in central carbon metabolism that are responsible for carbohydrate uptake and 
metabolism, leading to central carbon metabolites that fuel biosynthesis and ATP production 
pathways.
Enzymes in energy metabolism that are responsible for transferring (free) energy from carbo-
hydrate substrates to small energy cofactors like ATP, NADH, and NADPH. This category is 
further subdivided into enzymes for aerobic respiration and fermentation, respectively.
Other proteins that do not fall within one of the above- mentioned categories. This category 
includes, for example, proteins involved in the synthesis of RNA and DNA, cell- cycle proteins, 
and a variety of housekeeping functions.
The partitioning is different from that found in some other coarse- grained models of microbial 
growth, as discussed in the section Model variant with an additional growth- rate- independent 
protein category below.
In addition to the above proteins, we distinguish two intracellular metabolite categories:
Central carbon metabolites, that is, catabolic products of the carbohydrate substrate (glucose, 
glycerol, etc.) taken up from the medium. Central carbon metabolites include intermediates 
of the glycolysis pathway, the TCA cycle, and the pentose phosphate pathway, notably the 13 
precursor metabolites from which the building blocks for macromolecules (amino acids, nucle-
otides, etc.) are produced (Schaechter et al., 2006). Central carbon metabolites can be stored 
in the form of glycogen or other storage compounds.
Energy cofactors driving the synthesis of proteins and other macromolecules, occurring in 
both their higher- energy form (ATP, NADH, NADPH, etc.) and lower- energy form (ADP, NAD+, 
NADP+, etc.). Here, we restrict ourselves to the principal energy cofactors ATP and ADP, 
exploiting the fact that in aerobic conditions NADH and NADPH can be converted to ATP 
(Basan et al., 2015a; Gottschalk, 1986).
In addition to proteins and metabolites, we have:
Other macromolecules, notably including RNA, DNA, and lipids forming the cell membrane.

The cellular biomass consists of the sum of the above categories, that is, it includes proteins, 
metabolites, and other macromolecules, contrary to most other models which equate biomass with 
proteins. For reasons of simplicity, energy cofactors are not included as a separate category in the 
biomass. This is motivated by the fact that the total biomass fraction of ATP, ADP, NADH, NAD+, 
etc. is negligible (<1%, Appendix 2). As a consequence, the model does not explicitly account for 
their synthesis from central carbon intermediates, but only represents their role in the flow of energy 
through the different macroreactions.

The following macroreactions interconverting the above biomass categories are distinguished in 
the model:

Carbon uptake and central carbon metabolism, responsible for the uptake of the carbohy-
drate substrate from the medium and its conversion into metabolic precursors for amino acid 
biosynthesis and energy metabolism.
Energy metabolism for the regeneration of energy cofactors (conversion of ADP into ATP) 
through the respiration or fermentation of central carbon intermediates. In the former case, 
carbon leaves the cell in the form of CO2, whereas both acetate and CO2 are produced in the 
second case.
Protein synthesis involving the biosynthesis and polymerization of amino acids, a process 
driven by ATP and releasing CO2.
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Synthesis of other macromolecules, like RNA and DNA, which consumes precursors from 
central metabolism and ATP, and releases CO2.

The total protein synthesis rate is divided over the different protein categories enumerated above, 
according to fractional resource allocation parameters. Together, these parameters define the 
resource allocation strategy of the cell and determine the growth rate and growth yield in a given 
environmental condition.

The model includes two macroreactions producing ATP (respiration and fermentation) and two 
macroreactions consuming ATP (synthesis of proteins and other macromolecules). The ATP produced 
and consumed in central carbon metabolism is accounted for in the ATP balance of the other 
macroreactions. For example, the net ATP consumption attributed to protein synthesis does not 
only include the ATP costs of amino acid polymerization, but also ATP consumption and production 
required for amino acid synthesis (Kaleta et al., 2013). The same holds for the production of ATP by 
energy metabolism (Basan et al., 2015a).

Much of the carbon taken up and the ATP produced by microbial cells does not directly contribute 
to growth but is used for maintenance. Maintenance is a broad concept that includes, among other 
things, the turnover of macromolecules, osmoregulation, motility, and energy spilling (van Bodegom, 
2007). The first type of maintenance costs distinguished in the model are the resources needed to 
compensate for the degradation of biomass, in particular macromolecules. As a consequence of 
biomass degradation, cells require a minimal substrate uptake rate above which net growth of the 
population starts. In Appendix 2, we show that biomass degradation in our model is structurally 
equivalent to the so- called maintenance coefficient in the Pirt model (Pirt, 1965). The second form 
of maintenance considered is energy dissipation. This refers to the sizable fraction of ATP that is 
not consumed for macromolecular synthesis but invested in other cellular processes that are not 
explicitly modeled, such as motility and the regulation of osmotic pressure, or that is apparently 
spilled (Russell and Cook, 1995).

Derivation of model equations
A schematic representation of microbial growth is shown in Appendix  1—figure 1, illustrating 
the modeling assumptions discussed above. Here, we derive a mathematical model from these 
assumptions following a number of basic steps outlined previously (de Jong et al., 2017). We first 
define extensive variables for quantities and rates, then normalize these with respect to the mass 
of the growing microbial population, assuming that the biomass density is constant (Basan et al., 
2015a). This will lead to intensive variables denoting concentrations and specific reaction rates, as 
well as matching expressions of growth rate and growth yield in terms of these rates.

Appendix 1—figure 1. Resource allocation model of coupled carbon and energy fluxes in microorganisms. The 
figure shows the biomass categories and macroreactions, together with the concentration variables, reaction rates, 
and growth and degradation rates.

Carbohydrates in the medium are taken up and metabolized by the cellular population at a rate 
 Vmc , a macroreaction that is controlled by enzymes with a total quantity equal to  Mc . The resulting 
central carbon metabolites having a quantity  C  are used to produce ATP and synthesize proteins and 
other macromolecules. More specifically, two alternative ATP- producing pathways are considered: 
respiration at a rate  Vmer , catalyzed by enzymes with a quantity  Mer , and fermentation at a rate  Vmef  , 
catalyzed by enzymes with a quantity  Mef  . Synthesis of proteins and other macromolecules occurs at 
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rates  Vr  and  Vmu , respectively, and are catalyzed by ribosomes and other proteins with quantities  R  
and  Mu , respectively. The protein and metabolite quantities are expressed in units mmol of carbon 
(Cmmol) and the rates in units Cmmol hr-1.

ADP and ATP, at total quantities  A  and  A∗  [mmol], respectively, are permanently recycled through 
the ATP production and the biosynthesis pathways. CO2 is released by the cell through respiration, 
but also as a by- product of the biosynthetic reactions and fermentation. The latter CO2 outflux is 
accounted for in the carbon balance through the (dimensionless) correction factors  ρru  and  ρmef  , 
respectively. The correction factors express that CO2 is a by- product of the synthesis of proteins 
and other macromolecules ( ρru ) and acetate ( ρmef  ). The loss of CO2 adds to the total flux of carbon 
through these macroreactions, which makes  ρru > 1  and  ρmef > 1 . All biomass components are 
subjected to degradation at a rate  γ  [hr-1].

The time evolution of the total quantity of each biomass component in the growing population 
can now be written as follows:

 
dC
dt

= Vmc − Vmer − ρmef Vmef − ρru (Vr + Vmu) − γ C,
  

(5)

 
dU
dt

= Vmu − γ U,
  

(6)

 
dMu
dt

= χuVr − γ Mu,
  

(7)

 
dR
dt

= χr Vr − γ R,
  

(8)

 
dMc
dt

= χc Vr − γ Mc,
  

(9)

 
dMer

dt
= χer Vr − γ Mer,  (10)

 
dMef

dt
= χef Vr − γ Mef,  

(11)

where  χu,χr,χc,χer,χef   are dimensionless resource allocation parameters, such that

 χu + χr + χc + χer + χef = 1.  (12)

The time evolution of the total quantity of protein  P = Mu + R + Mc + Mer + Mef   is obtained by 
summing the differential equations for the different protein categories:

 
dP
dt

= Vr − γ P.
  

(13)

We define the total cellular biomass  B  [gDW] as

 B = β (Mu + R + Mc + Mer + Mef + C + U),  (14)

where  1/β  is the biomass carbon content [Cmmol gDW-1]. Recall that ATP and ADP are not included 
in the biomass.

Assuming that the volume of the growing microbial population is proportional to the biomass 
(Basan et al., 2015a), we transform the above quantities into concentrations by dividing by the total 
biomass  B : mu = Mu/B, mc = Mc/B, mer = Mer/B, mef = Mef/B, r = R/B, c = C/B, u = U/B . Accordingly, 
the concentration variables have units Cmmol gDW-1 and the total biomass concentration is given 
by  1/β .

The dynamics of the concentration variables is described by the following system of differential 
equations:

 
dc
dt

= Vmc
B

− Vmer
B

− ρmef
Vmef

B
− ρru ( Vr

B
+ Vmu

B
) − γ c − 1

B
dB
dt

c,
  (15)
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du
dt

= Vmu
B

− γ u − 1
B

dB
dt

u,
  

(16)

 
dmu
dt

= χu
Vr
B

− γ mu − 1
B

dB
dt

mu,
  

(17)

 
dr
dt

= χr
Vr
B

− γ r − 1
B

dB
dt

r,
  

(18)

 
dmc
dt

= χc
Vr
B

− γ mc −
1
B

dB
dt

mc,
  

(19)

 
dmer

dt
= χer

Vr
B

− γ mer −
1
B

dB
dt

mer,  (20)

 
dmef

dt
= χef

Vr
B

− γ mef −
1
B

dB
dt

mef,  
(21)

The (specific) growth rate μ [hr-1] is defined as the relative biomass increase of the cell,

 
µ = 1

B
dB
dt

,
  

(22)

so that the last term in the preceding equations describes dilution by growth. Furthermore, defining 
 vmc = Vmc/B ,  vme = Vme/B ,  vr = Vr/B , and  vmu = Vmu/B  as the reaction rates per unit of biomass (volume) 
[Cmmol hr-1 gDW-1], we obtain

 
dc
dt

= vmc − vmer − ρmef vmef − ρru (vr + vmu) − (µ + γ) c,
  

(23)

 
du
dt

= vmu − (µ + γ) u,
  

(24)

 
dmu
dt

= χu vr − (µ + γ) mu,
  

(25)

 
dr
dt

= χr vr − (µ + γ) r,
  

(26)

 
dmc
dt

= χc vr − (µ + γ) mc,
  

(27)

 
dmer

dt
= χer vr − (µ + γ) mer,  (28)

 
dmef

dt
= χef vr − (µ + γ) mef.  

(29)

In addition to the flow of carbon through the system, two equations describe energy transfer due 
to the production and consumption of ATP. We define, analogously to the other concentration 
variables,  a∗ = A∗/B  and  a = A/B , with units mmol gDW-1. The energy and mass flows are coupled via 
the following balance equations

 
da∗

dt
= nmer vmer + nmef vmef − nr vr − nmu vmu − vd,

  (30)

 
da
dt

= −nmer vmer − nmef vmef + nr vr + nmu vmu + vd,
  (31)

where  nmer  and  nmef   represent the ATP yield of the two ATP production pathways (with  nmer > nmef  , 
i.e. respiration has a higher yield than fermentation), and  nmu  and nr the ATP costs of biomass and 
protein synthesis, respectively. The reaction rate vd accounts for energy dissipation, that is, the fact 
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that around half of the ATP produced is not utilized for macromolecular synthesis but dissipated in 
other cellular processes (Russell and Cook, 1995; Feist et al., 2007).

Since  da∗/dt = −da/dt , the total concentration of the energy cofactors (pool of  a  and  a∗ ) is equal 
to some constant a0 [mmol gDW-1],

 a0 = a + a∗,  (32)

in agreement with experiments in which usually little variation in the concentration of energy cofactors 
is observed (Petersen and Møller, 2000; Schneider and Gourse, 2004). Given the dependency 
between  a∗  and  a , we omit the differential equation of the latter.

The model variables and rates are summarized in Appendix 1—table 1.

Appendix 1—table 1. Model variables and rates.
The units Cmmol and gDW refer to mmol carbon and gram dry weight, respectively.

Model Description Unit

Macromolecule concentrations

 p Total proteins Cmmol gDW-1

 r  Ribosomes Cmmol gDW-1

mc Enzymes in central carbon metabolism Cmmol gDW-1

 mer Enzymes in energy metabolism (respiration) Cmmol gDW-1

 mef  Enzymes in energy metabolism (fermentation) Cmmol gDW-1

mu Other proteins Cmmol gDW-1

 u Other macromolecules Cmmol gDW-1

Metabolite concentrations

 c Central carbon metabolites Cmmol gDW-1

 a ADP mmol gDW-1

 a∗ ATP mmol gDW-1

Reaction rates

 vmc Carbon uptake and central metabolism Cmmol gDW-1 hr-1

 vmer Energy metabolism (respiration) Cmmol gDW-1 hr-1

 vmef  Energy metabolism (fermentation) Cmmol gDW-1 hr-1

vr Protein synthesis Cmmol gDW-1 hr-1

 vmu Synthesis of other macromolecules Cmmol gDW-1 hr-1

vd Energy dissipation mmol gDW-1 hr-1

Other rates and yield

μ Growth rate hr-1

γ Degradation rate hr-1

Y Growth yield –

Appendix 1—table 2. Model parameters.

Model Description Unit

Resource allocation parameters

 χr Fraction of ribosomal proteins –

 χc Fraction of enzymes in central carbon metabolism –

 χer Fraction of enzymes in respiratory energy metabolism –

Appendix 1—table 2 Continued on next page
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Model Description Unit

 χef  Fraction of enzymes in fermentation energy metabolism –

 χu Fraction of other proteins –

ATP factors

 nmer ATP yield from respiration mmol Cmmol-1

 nmef  ATP yield from fermentation mmol Cmmol-1

nr ATP cost of protein synthesis mmol Cmmol-1

 nmu ATP cost of synthesis of other macromolecules mmol Cmmol-1

Correction factors

 ρmef  Correction for CO2 loss during fermentation –

 ρru Correction for CO2 loss during biosynthesis –

 1/β Total biomass concentration Cmmol gDW-1

Using the definition of total biomass (Equation 14), we can express the growth rate μ as a function 
of the reaction rates as follows:

 

µ = 1
B

dB
dt

= β
1
B

d(Mu + R + Mc + Mer + Mef + C + U)
dt

= β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu)) − γ.  
(33)

Note that the total macromolecular synthesis rate is multiplied by  ρru − 1  rather than  ρru , expressing 
that only the additional CO2 outflux is lost to biomass synthesis.

The nondimensional growth yield is defined as the ratio between the net biomass synthesis rate 
( µ/β ) and the carbon uptake rate  vmc , which leads to the following expression:

 
Y = 1

β

µ

vmc
=

vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu) − γ/β
vmc

.
  

(34)

We use Michaelis- Menten kinetics to define the rates of the macroreactions:

 
vmc(mc, S) = mc kmc

S
S + Kmc

,
  

(35)

 
vr(r, c, a∗) = r fr(c, a∗) = r kr

c
c + Kr

a∗

a∗ + Kar
,
  

(36)

 
vmu(mu, c, a∗) = mu fmu(c, a∗) = mu kmu

c
c + Kmu

a∗

a∗ + Kamu
,
  

(37)

 
vmer(mer, c, a) = mer fmer(c, a) = mer kmer

c
c + Kmer

a
a + Kamer

,
  (38)

 
vmef(mef, c, a) = mef fmef(c, a) = mef kmef

c
c + Kmef

a
a + Kamef

,
  

(39)

where  S  denotes the concentration of the substrate in the medium [Cmmol L-1],  Kmc ,  Kr ,  Kar ,  Kmu , 
 Kamu ,  Kmer, Kamer, Kmef, Kamef   half- saturation constants [Cmmol gDW-1] and [mmol gDW-1], and  kmc , 
kr,  kmu ,  kmer ,  kmef   maximum catalytic rate constants [hr-1]. As can be seen, rates are proportional to 
enzyme concentrations, but depend nonlinearly on metabolite concentrations. During balanced 
growth in batch, the external substrate concentration  S  is much higher than the half- saturation 
constant  Kmc  ( S ≫ Kmc ), so that Equation 35 can be approximated by  vmc(mc) = mc es , where  es = kmc  
[hr-1]. During continuous growth, the external substrate concentration  S  is approximately constant, 
with the parameter es now defined as

 
es = kmc

S
S + Kmc

.
  

Appendix 1—table 2 Continued
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The energy dissipation rate is defined by first- order mass- action kinetics:

 vd(a∗) = kd a∗,  (40)

where kd [hr-1] is a catalytic rate constant.
The resource allocation model of microbial growth thus becomes

 

dc
dt

= vmc(mc) − vmer(mer, c, a) − ρmef vmef(mef, c, a)

−ρru (vr(r, c, a∗) + vmu(mu, c, a∗)) − (µ + γ) c,  
(41)

 
du
dt

= vmu(mu, c, a∗) − (µ + γ) u,
  

(42)

 
dmu
dt

= χu vr(r, c, a∗) − (µ + γ) mu,
  

(43)

 
dr
dt

= χr vr(r, c, a∗) − (µ + γ) r,
  

(44)

 
dmc
dt

= χc vr(r, c, a∗) − (µ + γ) mc,
  

(45)

 
dmer

dt
= χer vr(r, c, a∗) − (µ + γ) mer,  (46)

 
dmef

dt
= χef vr(r, c, a∗) − (µ + γ) mef,  

(47)

 

da∗

dt
= nmer vmer(mer, c, a) + nmef vmef(mef, c, a)

−nr vr(r, c, a∗) − nmu vmu(mu, c, a∗) − vd(a∗),  
(48)

with

 

µ = β (vmc(mc) − vmer(mer, c, a) − ρmef vmef(mef, c, a)

−(ρru − 1) (vr(r, c, a∗) + vmu(mu, c, a∗))) − γ.   
(49)

Since it holds by Equation 14 that

 1/β = u + c + mc + mer + mef + r + mu,  (50)

we can omit the differential equations for one of the variables in the right- hand side. Given that  u  
is not playing a role in any of the kinetic rates, we usually eliminate Equation 42.

Note that in the above model, like in other resource allocation models (Erickson et al., 2017), 
resource allocation parameters and proteome fractions coincide at steady state. For example, from 
the steady- state equation for ribosomes,  χr vr = (µ + γ) r , and the steady- state equation for total 
proteins,  vr = (µ + γ) p , it follows that  χr = r/p .

Model variant with an additional growth-rate-independent protein category
The model described above includes a residual category of proteins, consisting of proteins other 
than ribosomes and translation- affiliated proteins ( R ), enzymes in central carbon metabolism ( Mc ), 
or enzymes in energy metabolism ( Mer  and  Mef  ). This category  Mu  carries a flux, because it includes 
the machinery for the synthesis of macromolecules other than proteins, in particular RNA and DNA. 
Moreover, we allow the fraction of the proteome occupied by this category to vary with the particular 
resource allocation strategy adopted, and therefore with the growth rate.

The fact that the proteome fraction of  Mu  may change with the growth rate and that it carries a 
flux distinguishes it from a residual category of housekeeping proteins that is found in other models 
of microbial growth (Scott et  al., 2010; Mori et  al., 2016). The latter protein category (usually 
indicated by  Q ) is not accessible to growth- rate- dependent proteome adjustments and carries no 
flux. Its size can be determined in different ways, most rigorously as the sum of the offsets of the 
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linear relation between growth rate and proteome fraction of the individual protein categories (Hui 
et al., 2015).

We developed a variant of the model used in this study that includes such a growth- rate- 
independent category  Q . First of all, for each of the other protein categories, we distinguished a 
growth- rate- independent and -dependent part, indicated by the superscripts 0 and μ, respectively. 
For example, for ribosomes and translation- affiliated proteins, we have  R = R0 + Rµ . Second, we 
defined  Q  as consisting of the growth- rate- independent parts of the other protein categories:

 Q = R0 + M0
c + M0

er + M0
ef + M0

u.  (51)

Following these notations, the total cellular biomass  B  [gDW] is now defined as

 B = β (Q + Rµ + Mµ
c + Mµ

er + Mµ
ef + Mµ

u + C + U),  (52)

where in what follows we drop the superscripts for the growth- rate- dependent parts of the protein 
categories. Notice that, like in the reference model, ATP and ADP are not included in the biomass.

Following the same steps as for the reference model, a system of ordinary differential equations 
can be derived. The only differences with Equations 41–49 are that an additional equation for the 
category  Q  is added:

 
dq
dt

= χq vr(r, c, a∗) − (µ + γ) q.
  

(53)

Moreover, the sum of biomass components is given by

 1/β = q + mc + mer + mef + r + mu + u + c,  (54)

and the sum of resource allocation parameters is extended with  χq :

 χq + χr + χc + χer + χef + χu = 1.  (55)

Note that, while the model has a very similar structure as the reference model of Equations 41–
49, the interpretation of the protein concentrations mc,  r ,  mer ,  mef  , and mu has changed: instead 
of denoting the total enzyme and ribosome concentrations, they now refer to the growth- rate- 
dependent part of these concentrations.

Comparison with other coarse-grained resource allocation models
The model of Figure 1 differs in several assumptions from previously proposed resource allocation 
models of microbial growth. We summarize these differences below, focusing the comparison on 
coarse- grained models. That is, we do not consider fine- grained models on the genome scale used 
in constraint- based analysis (Cheng et al., 2019; Adadi et al., 2012; Mori et al., 2016; Reimers 
et al., 2017; Wortel et al., 2018).

A first class of models takes into account either the carbon or energy balance, but not both 
(Molenaar et al., 2009; Scott et al., 2010; Scott et al., 2014; Maitra and Dill, 2015; Giordano 
et al., 2016; Weiße et al., 2015; Bosdriesz et al., 2015; Erickson et al., 2017; Towbin et al., 2017; 
Dourado and Lercher, 2020; Mairet et al., 2021). Typical examples are the classical model of Scott 
et al., 2010, which describes mass flow from substrate to different categories of proteins, and the 
model of Maitra and Dill, 2015, which provides a balance of ATP produced from the substrate 
and ATP consumed for protein synthesis. These models have successfully reproduced the ribosomal 
growth law, that is, the linear relation between growth rate and the ribosomal protein fraction, and 
other empirical regularities. However, apart from the presence of an occasional dissipation term, all 
substrate is used for biomass synthesis. Therefore, the growth yield as defined by Equation 2 does 
not vary with resource allocation. For our purpose, we need to be able to take into account that 
the use of substrate for ATP production is accompanied by the outflow of CO2 and the secretion of 
acetate, thus lowering the growth yield.

A second class of models takes into account the coupling of the carbon and energy balances, but 
describes the latter as fluxes of carbon and energy without specifying the underlying reaction kinetics 
(Basan et al., 2015a; Mori et al., 2019). For example, in the model of Basan et al., 2015a, fluxes in 
energy metabolism are modeled as the product of the proteome fraction of enzymes in respiration 
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or fermentation multiplied by a corresponding efficiency coefficient. The energy coefficients express 
the ATP yield per unit of protein in the respiration and fermentation pathways, respectively. The 
coefficients are constant and therefore cannot express differences in the utilization of enzymes 
depending on the concentrations of central carbon metabolites and energy cofactors. These 
concentrations may change with the resource allocation strategy and lead to a higher saturation 
of enzymes, which we hypothesized as an explanation for high- rate, high- yield growth of E. coli. In 
addition, this category of models equates biomass with proteins, like the other models cited above. 
This does not allow the total protein concentration to vary and a trade- off between protein and 
metabolite concentrations to occur. In the next section, we precisely define the additional modeling 
assumptions that allow our model to be reduced to the model of Basan et al., 2015a.

A third class of models does provide a kinetic description of all fluxes in the model and does 
include metabolites in the biomass definition, although ignoring other macromolecules (Zavřel 
et al., 2019; Faizi et al., 2018). The model of Zavřel et al., 2019, is closest to our model, but 
since it describes growth of cyanobacteria, it does not include alternative ATP production pathways 
and therefore does not account for differences in growth yield depending on the investment of 
cellular resources in respiration or fermentation. Moreover, the analysis of this model is focused 
on accounting for the experimentally observed growth rate of cyanobacteria under different light 
intensities. This has motivated the choice to look for resource allocation strategies optimizing the 
growth rate for each light intensity rather than scanning the space of possible resource allocation 
strategies in order to predict the variability of rate- yield phenotypes.

The model presented in this work could be further extended by taking into account additional 
features of some of the models cited above. For example, instead of treating resource allocation 
strategies as an input to the model (Figure 2—figure supplement 2), they could be defined as a 
function of the bacterial physiology, for example, translation activity (Scott et  al., 2014; Maitra 
and Dill, 2015; Giordano et al., 2016; Weiße et al., 2015; Bosdriesz et al., 2015; Erickson et al., 
2017; Towbin et al., 2017). This would allow, among other things, to account for the adaptation 
of resource allocation during dynamic transitions between states of balanced growth. As another 
example, our model could be extended to allow the uptake of alternative carbon sources (Erickson 
et al., 2017; Towbin et al., 2017), which would allow the modeling of diauxic growth behavior. 
The short summary in this section describes the main differences between the model of Figure 1 
and some major previous work, but cannot do complete justice to the rich diversity of results in 
the literature. We refer to article- length reviews on coarse- grained resource allocation models and 
microbial growth for more extensive information (Scott et al., 2014; Kafri et al., 2016; de Jong 
et al., 2017; Bruggeman et al., 2020).

Simplified coarse-grained resource allocation models
In this section, we discuss two simplifications of the model that (i) allow its predictions to be analyzed 
along the Pareto frontier of growth rate and growth yield in Figure 2, in order to explore the relation 
between resource allocation and growth, and (ii) allow the predictions to be compared with previous 
work, in particular the model of Basan et al., 2015a.

Model simplification and analysis along the Pareto frontier
We analyze the model of Equations 41–50, with the reaction rates given by Equations 33–40, 
at steady state, after making a number of simplifying assumptions that are valid along the Pareto 
frontier of growth rate and growth yield shown in Figure 2. Using this simplified model, the decrease 
of the maximum yield with increasing growth rate can be traced back to qualitative changes in 
resource allocation parameters.

First, we exploit the fact that the contribution to the carbon balance of CO2 loss during 
macromolecular synthesis is negligible along the Pareto frontier, that is,  vmc ≫ (ρru − 1) (vr + vmu)  
(Figure  2—figure supplement 4C). Second, we exploit the fact that the degradation of 
macromolecules is negligible at high growth rates, that is,  γ ≪ µ  (Figure 4—figure supplement 
1A). Third, for the maximum yields along the Pareto frontier, the contribution of fermentation to 
energy production is negligible ( vmef ≈ 0 , Figure 2—figure supplement 4). This leads to a simplified 
definition of growth rate (Equation 33):

 µ = β (vmc − vmer).  (56)
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Fourth, over most of the rate- yield phenotype space, and a fortiori along the Pareto frontier, the rate 
of synthesis of other macromolecules is strongly coupled to the rate of protein synthesis (Figure 2—
figure supplement 4C). In other words,  vmu ≈ α1 vr , where  α1 < 1  is a positive constant. Fifth, in 
a similar way, the rate of ATP spilling is strongly coupled to the rate of ATP production, that is, 
 vd ≈ α2 vmer , with  α2 < 1  a positive constant. This leads to the following simplified energy balance 
(Equation 30):

 (nr + α1 nmu) vr = (nmer + α2) vmer.  (57)

Moreover, the assumptions lead to the following simplification of the biomass composition (Equation 
50):

 1/β = c + (1 + α1) p, where p = mc + mer + r + mu,  (58)

and the resource allocation constraint:

 χr + χc + χer + χu = 1.  (59)

Sixth, we note that  χu , and therefore  mu/p , are approximately constant at their minimal possible 
value (Figure  2—figure supplement 4D and Figure  2—figure supplement 1). Finally, seventh, 
while the concentrations of central metabolites and ADP vary along the Pareto frontier, we observe 
that the Michaelian term in the rate equations in which  c  and  a  occur are approximately constant, 
contrary to the term for  a∗  (Figure 2—figure supplement 4B). This leads to simplified expressions 
for the rate equations of ATP production and consumption (Equation 36 and Equation 38):

 
vr = k′r r a∗

a∗ + Kar
,
  

(60)

 vmer = k′mer mer,  (61)

where  k′r, k′mer  are lumped constants incorporating the effect of the metabolite and energy cofactor 
concentrations on the reaction rates.

With the above simplifications, it becomes possible to explicitly relate the observed increase in 
growth rate ( µ ↑ ) and decrease in growth yield ( Y ↓ ) to underlying changes in the resource allocation 
parameters, due to the constraints on carbon and energy fluxes, biomass composition, and resource 
allocation. We first note that, by Equation 1, a decrease in growth yield ( Y ↓ ) must be accompanied 
by a decrease of the ratio of the growth rate and the substrate uptake rate:  (µ/vmc) ↓ . Because  µ ↑  
this necessarily implies  vmc ↑ , that is, the substrate rate must increase along the Pareto frontier. 
Furthermore, by substituting the simplified growth rate expression of Equation 56 into the yield 
definition, we obtain the expression

 
Y = 1 − vmer

vmc
,
  (62)

where  Y ↓  implies  (vmer/vmc) ↑ , that is, the fraction of substrate dedicated to ATP production increases 
for higher growth rates along the Pareto frontier. Because  vmc ↑ , it must also hold that  vmer ↑ . With 
the simplified energy balance of Equation 57,  vmer ↑  implies  vr ↑ . Moreover, from the proportionality 
of  vmer  and vd, it follows that  vd ↑  too. In summary, the flux of carbon underlying microbial growth 
increases with higher growth rate along the Pareto frontier, as verified in Figure  2—figure 
supplement 4C.

Does the increase in protein synthesis rate lead to a higher (total) protein concentration? The 
answer is less straightforward than might be thought, because under conditions of balanced 
growth the protein synthesis rate equals growth dilution of proteins, that is,  vr = µ p . Both vr and 
μ increase, so the direction of increase of  p  is not obvious from this equation. However, note that 
with the simplified energy balance of Equation 57, the growth yield equation of Equation 62 can 
be rewritten as

 
Y = 1 − nr + α1 nmu

nmer + α2

vr
vmc

,
  (63)

which with  Y ↓  implies  (vr/vmc) ↑ . Now, because  (vmc/µ) ↑ , and  (vr/vmc) (vmc/µ) = vr/µ , it follows that 
 (vr/µ) ↑ , and therefore  p ↑ . That is, in order to facilitate the higher flux of carbon through the bacteria, 
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a higher protein concentration is needed. By the constant total biomass concentration (Equation 
58), this directly implies that the concentration of central carbon metabolites must decrease ( c ↓ ). 
In other words, the trade- off between rate and yield along the Pareto frontier is accompanied by 
a trade- off between proteins and metabolites. Because the concentration of central carbon 
metabolites remains largely saturating (Figure 2—figure supplement 4B), however, the decrease of 
the concentration does not much affect its driving force in the reactions of energy metabolism and 
macromolecular synthesis.

How do the concentrations of the individual protein classes change when the growth rate 
increases along the Pareto frontier? With the definition of the substrate uptake rate,  vmc = mc es , we 
immediately find that  vmc ↑  implies  mc ↑ . From the simplified rate equation for energy metabolism 
(Equation 61) it also follows that  mer ↑ . Determining the direction of change of the ribosome 
concentration is less straightforward. Note that the simplified rate equation can be rewritten as 
follows:

 
vr
a∗

= k′r r 1
a∗ + Kar

,
  

(64)

Because  vr ∼ vmer ∼ vd ∼ a∗ , the ratio  vr/a∗  remains constant for increasing μ along the Pareto 
frontier. Because  vd ↑ , we have  a∗ ↑ , so that it follows that  r ↑ . In conclusion, not only the total 
protein concentration, but the concentrations of all enzymes and the ribosomes increase (Figure 2—
figure supplement 4A).

The fact that the steady- state concentration of a protein category increases does not imply that the 
corresponding resource allocation parameter also increases. Since the total protein concentration  p  
increases, even for constant resource allocation, the concentration of the protein category increases. 
This is the case for the category of other proteins:  χu  is constant, so that with  mu = χu p , it follows 
that  mu ↑ . Dividing Equations 60 and 61 by  p , we obtain the following expressions:

 

vmer
p

= k′mer χer,
  

(65)

 
µ = k′r χr

a∗

a∗ + Kar
.
  

(66)

From the energy balance, we find that  vmer/p  must change in the same direction as  vr/p = µ , that is, 
increase along the Pareto frontier. As a consequence,  χer ↑ . Since both  µ ↑  and  a∗ ↑ , the second 
equation does not unambiguously fix the direction of change of  χr , which depends on the ratio 
of μ and  a∗/(a∗ + Kar) . In particular, if this ratio remains constant, then  χr  also remains constant, 
whereas if the ratio increases, then  χr ↑ . Figure 2—figure supplement 4B shows that these two 
cases both occur along the Pareto frontier.  χr  remains constant for a large range of growth rates: the 
ribosome concentration nevertheless increases due to the higher total protein concentration. This is 
not sufficient for the highest growth rates, however, where  χr  needs to increase as well to sustain the 
higher flux of carbon through the bacteria. In both cases, however, the resource allocation constraint 
of Equation 59 forces  χc  to decrease (Figure  2—figure supplement 4D). That is, whereas the 
concentration of mc increases, the fraction of resources devoted to the uptake and metabolism of 
the carbon source decreases, so as to free resources for energy metabolism and protein synthesis 
at the higher growth rate. The higher investment in protein synthesis, and the corresponding higher 
energy demand and CO2 loss through respiration, explain the lower growth yield.

The above analysis thus explicitly relates the observed change in rate and yield along the Pareto 
surface with the changes in fluxes, concentrations, and resource allocation parameters shown in 
Figure 2—figure supplement 4. We emphasize that some of the assumptions underlying the model 
simplifications are specific for the Pareto frontier, such as the restriction of energy metabolism to 
respiration. As a consequence, accounting for a change in rate and yield in terms of changes in 
resource allocation may be different in other regions of the rate- yield phenotype space.

Reduction to resource allocation model of Basan et al.
We simplify the model of Equations 41–50, with the reaction rates given by Equations 33–40, to the 
model of Basan et al., 2015a, by making a number of additional assumptions.

https://doi.org/10.7554/eLife.79815


 Research article Computational and Systems Biology

Baldazzi et al. eLife 2023;12:e79815. DOI: https://doi.org/10.7554/eLife.79815  34 of 53

First, assume that the concentrations of central carbon metabolites, energy cofactors, and other 
macromolecules are constant and that their contribution to the biomass balance can be ignored. 
This leads to the revised rate equations

 vr(r) = k′r r, vmer(mer) = k′mer mer, vmef(mef) = k′mef mef, . . .  (67)

where the constants  k
′
r, k′mer, k′mef, . . .  lump the effects of the catalytic efficiency of the enzymes and 

the concentrations of central carbon metabolites and energy cofactors. Moreover, the assumption 
reduces the biomass to total protein mass:

 B = β′ (Mu + R + Mc + Mer + Mef),  (68)

and consequently,

 1/β′ = mc + mer + mef + r + mu,  (69)

where  1/β′
  is the total protein concentration. Note that, with this simplification, the total protein 

concentration is constant, independently from the resource allocation strategy adopted by the cell.
A second assumption is that energy dissipation and the degradation of macromolecules can be 

neglected, which means that  γ = kd = 0 . The absence of protein degradation, together with the 
revised biomass definition, leads to the proportionality of growth rate and protein synthesis rate:

 
µ = 1

B
dB
dt

= β′

B
dVr
dt

= β′ vr.  
(70)

The absence of energy dissipation, in combination with the omission of other macromolecules, leads 
to a revised energy balance:

 0 = nmer vmer + nmef vmef − nr vr,  (71)

which with Equation 70 gives

 
nmer vmer + nmef vmef = nr

β′ µ,
  

(72)

and hence

 
nmer k′mer mer + nmef k′mef mef = nr

β′ µ.
  

(73)

Third, assume that in the mass balance for the central carbon metabolites the contributions from 
growth dilution and spontaneous degradation can be neglected in comparison with the utilization of 
these metabolites for protein synthesis. Then Equation 41 reduces to

 vmc = vmer + ρmef vmef + ρru vr,  (74)

which with the energy balance of Equation 71 can be rewritten as

 
vmc =

(
ρmef −

nmef
nmer

)
vmef +

(
ρru −

nr
nmer

)
vr ≈

(
ρru −

nr
nmer

)
vr,

  
(75)

bearing in mind that both  ρmef   and  nmef/nmer  assume values in the range 1–2. That is, the substrate 
uptake rate is approximately proportional to the protein synthesis rate.

Now, using the protein mass balance of Equation 69, we can express the total concentration of 
energy proteins as follows:

 mer + mef = (1/β′ − mu) − mc − r,  (76)

which with Equation 75 and the rate equations for the glucose uptake and protein synthesis rates 
give

 
mer + mef = (1/β′ − mu) − 1

β′ es

(
ρru −

nr
nmer

+ es
k′r

)
µ

  (77)
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= mmax

e − α

β′ µ,
  

(78)

where  mmax
e = 1/β′ − mu , making the further assumption that  mu = β′/χu  is constant, and 

 α = (1/es) (ρru − nr/nmer + es/k′r) . Equation 78 expresses that the concentration (or equivalently for 
constant  1/β′

 , the fraction) of proteins involved in energy metabolism linearly decreases with the 
growth rate. Basan et al., 2015a, posit the same linear relationship, based on proteomics data for 
the NCM3722 strain (Hui et al., 2015).

When combining Equations 72 and 78, we can solve for the two unknowns  mef   and  mer  as a 
function of μ:

 

mef =

(
nr

β′ nmer k′mer
+ α

β′

)
µ− mmax

e
(

nmef
nmer

k′mef
k′mer

− 1

) ,

  

(79)

 

mer =

(
nr

β′ nmef k′mef
+ α

β′

)
µ− mmax

e

(
nmer
nmef

k′mer
k′mef

− 1

) .

  

(80)

The model is only valid in the range of growth rates where both concentrations are positive. By 
means of the simplified expressions for the respiration and fermentation fluxes (Equation 67), we 
can compute the total ATP production rate  nmer k′mer mer + nmef k′mef mef   using the above expressions. 
The ATP production rates of Basan et al., 2015a, are rescaled by using protein fractions instead 
of protein concentrations, which gives rise to  JE,f ≡ nmef k′mef β

′ mef   and  JE,r ≡ nmer k′mer β
′ mer . 

Developing the expressions for  JE,f   and  JE,r  by means of Equations 79 and 80 yields equations that 
are equivalent to Eqs S12 and S13, respectively, of Basan et al., 2015a, after appropriately renaming 
the parameters ( ϵf = nmef k′mef  ,  ϵr = nmer k′mer ,  σ = nr ,  b = α , and  ϕE,max = β′ mmax

e  ).
The model of Basan et al., 2015a, predicts a trade- off between respiration and fermentation 

when the growth rate increases, because the protein cost of fermentation is lower than the protein 
cost of respiration, that is,  nmef k′mef > nmer k′mer . This relation, which is preserved for the parameter 
values for growth on glucose in our model (Appendix 2—table 2), implies that when the growth rate 
increases, the concentration of fermentation enzymes increases at the expense of the concentration 
of respiration enzymes. Due to the lower protein cost of fermentation, however, the total ATP 
production rate increases.

As explained in the Discussion section, our model makes less stringent assumptions, which 
notably allows metabolite and total protein concentrations to vary with different resource allocation 
strategies. As a consequence, there are ways to increase the total ATP production rate without 
shifting resources from energy- efficient but costly respiration (high  nmer  but low  nmer k′mer ) to energy- 
inefficient but cheap fermentation (low  nmef   but high  nmef k′mef  ). In particular, in our model, growth 
rate and growth yield can be simultaneously increased, by trading off proteins against metabolites, 
thus enabling a more efficient use of proteomic resources.
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Appendix 2
Model calibration
Reference datasets and model calibration strategy
Model calibration was performed using published reference datasets with measurements of growth 
rates and fluxes (Haverkorn van Rijsewijk et al., 2011; Gerosa et al., 2015; Peebo et al., 2015), 
protein concentrations (Schmidt et al., 2016), and metabolite concentrations (Gerosa et al., 2015; 
Bennett et al., 2009; Park et al., 2016). The datasets concern the E. coli BW25113 strain: either 
batch growth in minimal medium with glucose or glycerol, or continuous growth in minimal medium 
with glucose. We also used auxiliary data for other strains at comparable growth rates, when 
necessary. Moreover, we adopted a top- down model calibration procedure, in order to enforce 
consistency across different data types.

Step 1
We used the total biomass density and measured biomass proportions of proteins and metabolites 
to derive total protein and metabolite concentrations.

Step 2
We used proteomics and metabolomics data to derive the concentrations of the different protein 
and metabolite categories distinguished in the model.

Step 3
We used published data to reconstruct the biomass degradation rate for growth on glucose and 
glycerol.

Step 4
We used the measured substrate uptake and acetate secretion rates, the growth rate, and the 
derived protein and metabolite concentrations to reconstruct the other metabolic fluxes from the 
carbon mass balance.

Step 5
We derived the kinetic parameters from literature data and from the fluxes and the concentrations 
obtained in the previous steps.

The above procedure does not require computational parameter fitting, since all parameters 
are unambiguously fixed by the data, literature information, and suitable hypotheses motivated by 
experimental results. We explain the procedure in detail for batch growth of the reference strain, 
and then summarize the results for continuous growth and for an alternative strain. In what follows, 
observed fluxes, growth rates, and concentrations, as well as kinetic parameters derived from this 
information, are denoted by a hat  ̂.  symbol.

Reconstruction of concentrations, rates, and fluxes for batch growth
Total biomass concentration  1/β 
The total concentration of biomass in the cell, in units Cmmol gDW-1, is referred to in our model as 
 1/β . Using the definition of yield (Equation 2 in the main text), we have  1/β = Y vmc/µ . With the values 
reported by Morin et al., 2016, for the MG1655 strain, we estimate

 1/β̂ = 40.65 Cmmol gDW−1.  (81)

This value is close to the theoretical value obtained from the fact that the carbon mass fraction of 
biomass is approximately 0.5 (Folsom and Carlson, 2015):

 
1 gDW = 0.5 CgDW = 0.5

12.01 · 10−3 = 41.6 Cmmol,
  

(82)

where CgDW refers to Cgram dry weight and the molecular weight of C equals 12.01  g mol-1. 
Another way to determine the total biomass concentration is to use the estimated elementary 
biomass composition of E. coli. von Stockar and Liu, 1999, report CH1.77O0.49N0.24, which with the 
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molecular weights of H, O, and N yields an estimate of 40.03 Cmmol gDW-1, again close to the value 
proposed above.

Metabolite concentrations  c ,  a ,  a∗ , and a0
A recent quantification of 43 abundant metabolites in the E. coli BW25113 strain growing in minimal 
medium with glucose or glycerol learns that these metabolites sum up to a concentration of 0.89 
Cmmol gDW-1 and 0.69 Cmmol gDW-1, respectively (Gerosa et al., 2015). When comparing the 
metabolites quantified by Gerosa et al. with those measured in a broader screen carried out by Park 
et al., 2016, we conclude that 56% of the metabolite mass is covered by the study of Gerosa et al. As 
a consequence, we estimate the total metabolite concentrations in growth on glucose and glycerol 
to be 1.6 Cmmol gDW-1 and 1.2 Cmmol gDW-1, respectively. With the biomass density value of  1/β̂ , 
these concentrations correspond to 3.9% and 3.0% of the total biomass. The estimates correspond 
well to the older estimate that metabolites constitute 3.5% of the total biomass, obtained for the E. 
coli B/r strain growing at a rate of around 1 hr-1 (Neidhardt, 1996), and a more recent estimate of 
2.9% (Feist et al., 2007).

Analysis of the data of Gerosa et al., 2015, shows that central carbon metabolites account for 
22% of the total free metabolite concentration during growth in minimal medium with glucose. We 
therefore estimate the concentration of the pool of central metabolites in this condition as

 ĉ = 0.22 · 1.6 = 0.35 Cmmol gDW−1.  (83)

For growth on glycerol, the fraction of central metabolites is 17%, so that

 ĉ = 0.17 · 0.92 = 0.20 Cmmol gDW−1.  (84)

As explained in Appendix 1, we consider pools of charged and discharged energy cofactors expressed 
as ATP equivalents. Following the arguments of Basan et al., 2015b, 1 NADH or 1 NADPH molecule 
can be converted into 2 ATP molecules. With these conversion factors, we obtain from the ATP/
ADP, NADH/NAD+, NADPH/NADP+ concentrations reported by Gerosa et al., 2015, the following 
estimates of the concentrations of energy cofactors during growth on glucose:

 â∗ = 0.009 mmol gDW−1, â = 0.011 mmol gDW−1.  (85)

The values for growth on glycerol are

 â∗ = 0.005 mmol gDW−1, â = 0.010 mmol gDW−1.  (86)

Accordingly,  ̂a0 = 0.020 mmol gDW−1
  for growth on glucose, and  ̂a0 = 0.015 mmol gDW−1

  for growth 
on glycerol. Recall that ATP and ADP are not included in the mass balance (Appendix 1).

Protein concentrations mu,  r , mc, and  mer + mef  
Estimates of the total protein concentration of E. coli reported in the literature vary significantly 
(Milo, 2013). For example, older values for the B/r strain indicate a mass fraction of 0.55 (Neidhardt, 
1996), for cells growing with a doubling time of 40 min ( µ = 1.04  hr-1). In their quantification of the 
NCM3722 strain, Basan et al., 2015b, report a value of 0.67 for the protein fraction of dry biomass 
of cells growing in batch in minimal medium with glucose at a rate of 0.99 hr-1. For growth on other 
carbon sources at rates of 0.42–0.43, this fraction increases to 0.73–0.76. Valgepea et al., 2013, 
find that for glucose- limited growth in a bioreactor at a rate of 0.4 hr-1, the MG1655 strain, another 
K- 12 descendant, has a protein dry biomass fraction equal to 0.53. Milo, 2013, cites an old reference 
value of 0.24 g mL-1, which with an estimated total (dry) biomass concentration of 0.33 g mL-1 yields 
a protein mass fraction of 0.73, in agreement with the values of Basan et al.

We based our estimates on the data from Basan et al., 2015b, who report protein dry mass 
fractions for batch growth in different media at different growth rates. From within the range of 
reported values, we chose the dry mass fractions for growth rates corresponding to the observed 
growth rates of the BW25113 strain in minimal medium with glucose or glycerol (Appendix 2—figure 
1). This resulted in protein dry mass fractions of 0.72 (glucose) and 0.73 (glycerol). Like the carbon 
mass fraction of biomass, the carbon mass fraction of protein is approximately 0.5 (Supplementary 
table 3 in Feist et al., 2007). As a consequence, the above protein dry mass fractions also denote 
the protein fractions of the total biomass concentration expressed in units Cmmol gDW-1.
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In our model, the process of protein synthesis includes the synthesis of amino acids from central 
metabolites (Appendix 1). For reasons of consistency, we therefore add the concentrations of free 
amino acids to the total protein concentration. Given that amino acids account for around 50% of 
metabolites (Bennett et al., 2009), and the total metabolite concentrations were estimated to take 
up 3.9% and 3.0% of the total biomass during growth on glucose and glycerol, respectively, the total 
protein concentrations amount to a fraction of 0.74 of the total biomass density, for both glucose 
and glycerol.

The proteomics data of Schmidt et al., 2016, provide information on the mass fractions of each of 
the protein categories distinguished in the model. This information, together with the total protein 
concentration established above, allows us to compute the concentrations mu,  r , mc, and  mer + mef   
(in units Cmmol gDW-1). The use of mass fractions, instead of the absolute values also reported by 
Schmidt et al., has the advantage of ensuring the consistency of the protein concentrations with the 
uptake, secretion, and growth rates reconstructed below. In the case of growth in minimal medium 
with glucose, we thus estimate that

 m̂u = 0.37 · 0.74 · 1/β̂ = 11.1 Cmmol gDW−1,  (87)

 r̂ = 0.44 · 0.74 · 1/β̂ = 13.2 Cmmol gDW−1,  (88)

 m̂c = 0.09 · 0.74 · 1/β̂ = 2.7 Cmmol gDW−1,  (89)

 m̂er + m̂ef = 0.10 · 0.74 · 1/β̂ = 3.0 Cmmol gDW−1.  (90)

while for minimal medium with glycerol we obtain

 m̂u = 0.36 · 0.74 · 1/β̂ = 10.9 Cmmol gDW−1,  (91)

 r̂ = 0.38 · 0.74 · 1/β̂ = 11.5 Cmmol gDW−1,  (92)

 m̂c = 0.10 · 0.74 · 1/β̂ = 3.0 Cmmol gDW−1,  (93)

 m̂er + m̂ef = 0.16 · 0.74 · 1/β̂ = 4.8 Cmmol gDW−1,  (94)

The above mass fractions correspond to the following resource allocation parameters for growth on 
glucose:

 χ̂u = 0.37, χ̂r = 0.44, χ̂c = 0.09,  (95)

and growth on glycerol:

 χ̂u = 0.36, χ̂r = 0.38, χ̂c = 0.10.  (96)

We will discuss in a later section how to distribute the total concentration  ̂mer + m̂ef   over the 
respiration and fermentation protein classes (and thus determine the resource allocation parameters 
 χer  and  χef  ).

Concentration of other macromolecules  u 
The biomass definition in the model enforces the concentration  u  of other macromolecules (RNA, 
DNA, lipids in the cell membrane) to equal the difference between the total biomass concentration 
and the sum of the total protein and metabolite concentrations. For growth on glucose, we thus find 
that

 û = 10.2 Cmmol gDW−1,  (97)

whereas for growth on glycerol, we also obtain

 û = 10.2 Cmmol gDW−1.  (98)
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The estimated values, and all other concentration values derived above, are summarized in 
Appendix 2—table 1.

Degradation rate  γ 
The model includes a degradation constant  γ  that accounts for one of the main causes of so- called 
maintenance costs of the cell, the turnover of macromolecules and other biomass components. We 
show that the biomass degradation constant can be determined by means of the well- known Pirt 
model for maintenance, defined by

 vmc = µ
Ymax + km,  (99)

where  vmc  [Cmmol gDW-1 hr-1] is the substrate uptake rate,  Ymax  [gDW Cmmol-1] the maximum 
biomass yield without maintenance, and km [Cmmol gDW-1 hr-1] the so- called maintenance coefficient 
(Pirt, 1965).

By substituting expressions for  Ymax  and μ from our model (Appendix 1) into Equation 99, we 
obtain

 

vmc =
β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu) − γ/β)

β (vmc − vmer − ρmef vmef − (ρru − 1) (vr + vmu))
· vmc + km

= vmc −
γ

Ymax + km,
  

(100)

or

 γ = km · Ymax.  (101)

Data for growth of the E. coli MG1655 strain in minimal medium with glucose, by Esquerré et al., 
2014, indicate a maintenance coefficient of  km = 0.35   mmolglc  gDW-1 hr-1 and a maximal yield 
 Ymax = 76.2  gDW  mol−1

glc  , practically identical to the values reported for the same strain in the same 
medium by Nanchen et al., 2006 ( km = 0.37   mmolglc  gDW-1 hr-1,  Ymax = 76  gDW  mol−1

glc  ). Using the 
values from Esquerré et  al., 2014, we find  ̂γ = 0.027  hr-1. By the same reasoning as above, the 
maintenance rate for growth in minimal medium with glycerol can be obtained. Classical experiments 
indicate that the rate is 1.2 times the rate for glucose (Farmer and Jones, 1976), so  ̂γ = 0.032  hr-1.

Substrate uptake flux  vmc , fermentation flux  vmef  , and biosynthesis fluxes  vmu , vr
The datasets used from Haverkorn van Rijsewijk et al., 2011, and Gerosa et al., 2015, consist of 
measured fluxes and the growth rate of the E. coli BW25113 strain, during exponential growth in 
minimal medium with glucose and glycerol, respectively. In particular, the glucose or glycerol uptake 
rate  vmc  [ mmolglc/gly  gDW-1 hr-1], the acetate secretion rate  vmef   [ mmolace  gDW-1 hr-1], and the growth 
rate μ [hr-1] were measured. The values for glucose are  ̂vmc = 8.26   mmolglc  gDW-1 hr-1,  ̂vmef = 4.89  
 mmolace  gDW-1 hr-1, and  ̂µ = 0.61  hr-1. These values are very close to those reported by Morin et al., 
2016, for the MG1655 strain. In the case of growth on glycerol, we have  ̂vmc = 11.3   mmolgly  gDW-1 hr-

1 and  ̂µ = 0.49  hr-1, while the acetate secretion rate was found to be small:  ̂vmef = 0.60   mmolace  gDW-1 
hr-1. (Gerosa et al., 2015, actually report a glycerol uptake rate of 10.14   mmolglc  gDW-1 hr-1, but 
explain that uptake rates were computed by dividing the measured growth rates by the measured 
biomass yields [see Extended Experimental Procedures]. In the case of glycerol, the growth rate and 
the biomass yield were found to be 0.49 hr-1 and 0.47 gDW g-1, respectively (Data S1), which with a 
molecular weight of 92.09 g mol-1 gives a value of  0.49/(0.47 · 92.09 · 0.001) = 11.3  mmol gDW-1 hr-1 
for the glycerol uptake rate).

In agreement with the biomass concentration units, we express mass fluxes in terms of the amount 
of carbon flowing through the system [Cmmol gDW-1 hr-1]. Bearing in mind that the carbon content 
of glucose is 6 C and that of acetate 2 C, we obtain the following rates:

 v̂mc = 8.26 · 6 = 49.6 Cmmol gDW−1 hr−1,  (102)

 v̂mef = 4.89 · 2 = 9.8 Cmmol gDW−1 hr−1.  (103)

Similarly, for growth on glycerol we have

 v̂mc = 11.3 · 3 = 33.9 Cmmol gDW−1 hr−1,  (104)
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 v̂mef = 0.60 · 2 = 1.2 Cmmol gDW−1 hr−1,  (105)

where we have used the fact that the carbon content of glycerol is 3 C.
The measured fluxes, together with the growth and degradation rates and the total biomass 

concentration, fix the biosynthesis fluxes in the model. This can be shown by rewriting the equations 
in the model in the following way:

 vmu = (µ + γ) u,  (106)

 vr = (µ + γ) (mu + r + mc + mer + mef).  (107)

Values for  vmu  and vr can be directly computed from the values for the concentrations and rates in 
the right- hand sides of Equations 106 and 107 that were derived above. This yields for growth on 
glucose:

 v̂mu = 6.5 Cmmol gDW−1 hr−1,  (108)

 v̂r = 19.2 Cmmol gDW−1 hr−1,  (109)

and for growth on glycerol:

 v̂mu = 5.3 Cmmol gDW−1 hr−1,  (110)

 v̂r = 15.8 Cmmol gDW−1 hr−1.  (111)

Respiration flux  vmer  and CO2 correction factors  ρru  and  ρmef  
In the flux datasets mentioned above, CO2 released by the cells was not directly measured. The CO2 
flux can be derived from the carbon mass balance, bearing in mind that almost all of the carbon not 
integrated into biomass leaves the cells as CO2 or acetate (Gerosa et al., 2015; Gottschalk, 1986). 
The carbon mass balance is given by the definition of the growth rate, which provides an expression 
for the total CO2 outflux  vCO2 . We have

 
vCO2 = vmer + (ρmef − 1) vmef + (ρru − 1) (vr + vmu) = vmc − vmef −

µ + γ

β
,
  

(112)

where  ρru − 1 > 0  is the correction factor accounting for the release of CO2 during the synthesis 
of amino acids, proteins, and other biomass components and  ρmef − 1 > 0  the correction factor 
accounting for the CO2 released during the conversion of glucose to acetate (Appendix 1). That 
is, the total CO2 flux is composed of the CO2 released during respiration ( vmer ), fermentation 
( (ρmef − 1) vmef  ), and the CO2 released during macromolecular synthesis ( (ρru − 1) (vr + vmu )). Basan 
et al., 2015a, argue that the latter CO2 outflux is proportional to the growth rate over a wide range 
of conditions, with a proportionality constant  η :

 (ρru − 1) (vr + vmu) = η µ.  (113)

The value of  η  is estimated at 7.2 Cmmol gDW-1 (Basan et al., 2015a), so that for a growth rate of .61 
hr-1 in the case of minimal medium with glucose, the CO2 outflux associated to biosynthesis equals 
4.4 Cmmol gDW-1 hr-1. Moreover, with the values for vr and  vmu  derived above, we find

 
ρ̂ru = η̂ µ̂

v̂r + v̂mu
+ 1 = 1.17.

  
(114)

That is, 17% of the carbon flux toward macromolecular synthesis is lost as CO2. The total CO2 outflux 
can be directly computed from Equation 112, giving

 v̂CO2 = 13.9 Cmmol gDW−1 hr−1.  (115)

For each acetate molecule, one CO2 is produced (Basan et  al., 2015a), so that  ̂ρmef = 1.5 . The 
respiration- associated CO2 outflux can now be reconstructed as

 v̂mer = v̂CO2 − (ρ̂mef − 1) vmef − (ρ̂ru − 1) (v̂r + v̂mu) = 4.6 Cmmol gDW−1 h−1.  (116)
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In the case of growth on glycerol, we find  ̂vCO2 = 11.5  Cmmol gDW-1 hr-1 and  ̂vmer = 7.3  Cmmol gDW-1 
hr-1, while the value for  ρru  is the same as for glucose (1.17). The reconstructed flux measurements 
are summarized in Appendix 2—table 1, whereas the flux correction factors for CO2 release are 
included in Appendix 2—table 2.

Appendix 2—table 1. Reconstruction of growth and degradation rates, fluxes, and concentrations 
from published datasets for the case of batch growth of E. coli in minimal medium with glucose or 
glycerol, as explained in the text.
The uncertainty intervals for the rates, fluxes, and metabolite concentrations are standard deviations 
reported in the source publications, after unit conversion. The uncertainty interval for the total 
biomass concentration was obtained by propagating the errors of the measurements in the 
right- hand side of  1/β = Y vmc/µ  (Morin et al., 2016). The uncertainty interval for the total protein 
concentration was obtained by combining the latter error with the standard error of the mean for 
the total protein fraction predicted by the linear model fitted to the data in Appendix 2—figure 1. 
The resulting error was distributed over the individual protein categories according to their mass 
fractions. References:  a  Haverkorn van Rijsewijk et al., 2011,  b  Gerosa et al., 2015,  c  Esquerré 
et al., 2014,  d  Farmer and Jones, 1976,  e  Morin et al., 2016,  f   Basan et al., 2015b,  g  Schmidt 
et al., 2016,  h  Park et al., 2016.

Rates Unit Glucose Glycerol Reference

 ̂µ  hr−1  0.61 ± 0.01  0.49 ± 0.01  a, b 

 ̂γ   hr−1 0.027 0.032  c, d  

Uptake, secretion, biosynthesis fluxes

 ̂vmc  Cmmol gDW−1 hr−1
  49.6 ± 5  33.9 ± 1.0  a 

 ̂vmer  Cmmol gDW−1 hr−1
 4.6 7.3 Derived

 ̂vmef   Cmmol gDW−1 hr−1
  9.8 ± 3.0  1.2 ± 0.4  a 

 ̂vmu  Cmmol gDW−1 hr−1
 6.5 5.3 Derived

 ̂vr  Cmmol gDW−1 hr−1
 19.2 15.8 Derived

Total biomass concentration

 1/β̂  Cmmol gDW−1
  40.65 ± 2.0  40.65 ± 2.0  e 

Protein concentrations

 m̂u  Cmmol gDW−1
  11.1 ± 0.5  10.9 ± 0.5  e, f, g 

 ̂r   Cmmol gDW−1
  13.2 ± 0.6  11.5 ± 0.6  e, f, g 

 ̂mc  Cmmol gDW−1
  2.7 ± 0.1  3.0 ± 0.1  e, f, g 

 ̂mer + m̂ef   Cmmol gDW−1
  3.0 ± 0.1  4.8 ± 0.2  e, f, g 

 ̂mer  Cmmol gDW−1
 1.9 4.4 Derived

 ̂mef   Cmmol gDW−1
 1.1 0.47 Derived

Metabolite concentrations

 ̂c  Cmmol gDW−1
  0.35 ± 0.002  0.20 ± 0.002  b, h 

 ̂a∗  mmol gDW−1
  0.009 ± 0.0002  0.005 ± 0.0003  b 

 ̂a  mmol gDW−1
  0.011 ± 0.0006  0.010 ± 0.0005  b 

Appendix 2—table 1 Continued on next page
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Rates Unit Glucose Glycerol Reference

 ̂a0  mmol gDW−1
  0.020 ± 0.0008  0.015 ± 0.0008  b 

Concentration of other biomass

 ̂u  Cmmol gDW−1
 10.2 10.2 Derived

Appendix 2—figure 1. Protein dry mass fraction for different growth rates of E. coli. The protein dry mass fraction 
(g gDW-1) as a function of the steady- state growth rate was computed from data for the NCM3722 wild- type 
strain grown in different media (red dots) or for a strain carrying a plasmid for the gratuitous overexpression of a 
protein (blue dots) (Appendix Table S4 in Basan et al., 2015b). We interpolated the data (black line) to provide 
an estimate of the protein dry mass fractions at the growth rates corresponding to batch growth of the BW25113 
strain in minimal medium with either glucose or glycerol ( µ = 0.61  hr-1 or  µ = 0.49  hr-1, respectively).

Appendix 2—table 2. Estimation of the values of the kinetic parameters in the model, in the case of 
batch growth of E. coli in minimal medium with glucose or glycerol, as explained in the text.

Parameter Glucose Glycerol Unit

 ̂ρru 1.17 1.17 –

 ̂ρmef  1.5 1.5 –

 ̂kr 2.9 3.6  hr−1 

 ̂kmu 1.2 1.3  hr−1 

 ̂es 18.3 11.2  hr−1 

Appendix 2—table 1 Continued
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Parameter Glucose Glycerol Unit

 ̂kmer 5.0 4.4  hr−1 

 k̂mef  17.4 6.7  hr−1 

 ̂ka 2279 6462  hr−1 

 ̂Kr 0.29 0.28  Cmmol gDW−1
 

 ̂Kmu 0.29 0.28  Cmmol gDW−1
 

 ̂Kmer 0.29 0.28  Cmmol gDW−1
 

 K̂mef  0.29 0.28  Cmmol gDW−1
 

 ̂Kar 0.0009 0.0005  mmol gDW−1
 

 ̂Kamer 0.0011 0.001  mmol gDW−1
 

 K̂amef  0.0011 0.001  mmol gDW−1
 

 ̂Kamu 0.0009 0.0005  mmol gDW−1
 

 ̂nmer 4.3 4.7  mmol Cmmol−1 

 ̂nmef  2.0 2.3  mmol Cmmol−1 

 ̂nr 0.77 0.09  mmol Cmmol−1 

 ̂nmu 0.65 0.65  mmol Cmmol−1 

Estimation of parameter values for batch growth
The model contains 20 kinetic parameters. Estimation of all of these values from the data in 
Appendix  2—table 1 would lead to identifiability problems. However, as shown below, making 
appropriate assumptions based on experimental observations allows all parameters to be 
unambiguously fixed.

Parameters in energy balance equation  nme ,  nmer ,  nmef  , nr,  nmu , ka
We remind that the energy cofactor rate equation at steady state, or energy balance, is given by

 0 = nmer vmer + nmef vmef − nr vr − nmu vmu − vd,  (117)

where  vd = ka a∗ .
The ATP yield coefficients  nmer  and  nmef   describe how many energy cofactor molecules (ATP) can 

be regenerated from a molecule of substrate (glucose or glycerol), in units  mmolATP  Cmmol. Basan 
et al., 2015b, describe a procedure for deriving the yield coefficients  nmer  and  nmef   from the reaction 
stoichiometry of the metabolic pathways used during growth on glucose. Aerobic respiration 
generates 4 ATP, 8 NADH, 2 NADPH, and 2 FADH2 from one molecule of glucose, equivalent to 26 
ATP, whereas aerobic fermentation (acetate overflow) leads to 4 ATP and 4 NADH, equivalent to 12 
ATP. As a consequence,

 n̂mer = 26 ATP/Glc = 26/6 = 4.3 mmol Cmmol−1,  (118)

 n̂mef = 12 ATP/Glc = 12/6 = 2 mmol Cmmol−1,  (119)

bearing in mind that glucose contains 6 C atoms. Restricting central metabolism to the glycolysis and 
TCA pathways, like Basan et al., 2015b, and focusing on the main flux of glycerol catabolism through 
the lower part of the glycolysis pathway, the ATP yield of glycerol respiration can be determined as 
2 ATP, 4 NADH, 1 NADPH, and 2 FADH2, equivalent to 14 ATP. Similarly, for aerobic fermentation we 
find 2 ATP, 2 NADH, and 1 FADH2, equivalent to 7 ATP. This yields

Appendix 2—table 2 Continued
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 n̂mer = 14 ATP/Gly = 14/3 = 4.7 mmol Cmmol−1,  (120)

 n̂mef = 7 ATP/Gly = 7/3 = 2.3 mmol Cmmol−1,  (121)

given that glycerol contains 3 C atoms.
The coefficient nr describes the ATP costs of protein synthesis. Kaleta et  al., 2013, compute 

the amount of ATP needed for the elongation of a protein by one amino acid, including the net 
ATP costs of the synthesis of the amino acids from central metabolites and mRNA synthesis. They 
find that the ATP costs of the synthesis of many amino acids are negative (i.e. their synthesis yields 
ATP), while the ATP costs of mRNA synthesis are negligible in comparison with the translation costs. 
For glucose, the median total ATP costs are 3.7 ATP/amino acid. This equals 3.7/4.8=0.77  mmolATP  

 Cmmol−1
aa  , where the mean C content of amino acids, weighted for the amino acid composition of 

biomass, is estimated at 4.8 (data from Feist et al., 2007). That is,

 n̂r = 0.77 mmol Cmmol−1.  (122)

These theoretical costs are close to the value of 0.94  mmolATP   Cmmol−1
aa   obtained from the review 

of Russell and Cook, who base their estimate on calculations by Stouthamer (Russell and Cook, 
1995). (The value of 0.94  mmolATP   Cmmol−1

aa   is obtained by converting the value given in Table 1 
of Russell and Cook, 1995, bearing in mind that the calculations were done for a protein fraction 
of biomass equal to 0.52 and using a carbon mass fraction of protein equal to 0.5; Feist et al., 
2007.) For glycerol, where the synthesis of many amino acids is energetically favorable (Kaleta 
et al., 2013), the median total ATP costs are much lower: 0.44 ATP/amino acid. This amounts to 
0.44/4.8=0.09  mmolATP   Cmmol−1

aa  , and hence

 n̂r = 0.09 mmol Cmmol−1.  (123)

The coefficient  nmu  describes the ATP costs of the synthesis of other macromolecules (RNA, DNA, 
etc.). From the review of Russell and Cook, 1995, under the assumption that the average carbon 
mass fraction of other macromolecules is also equal to 0.5, we find that these ATP costs equal 
0.65  mmolATP   Cmmol−1

macromolecule , so that

 n̂mu = 0.65 mmol Cmmol−1.  (124)

This value applies to growth on glucose, but in the absence of information specific to growth on 
glycerol, we use the same value for the latter condition.

It has been well established that the estimated ATP production exceeds the estimated ATP 
consumption for macromolecular synthesis by a factor of 2–3 in the case of growth on minimal 
medium with glucose (Feist et al., 2007; Russell and Cook, 1995). This suggests a dissipation of 
energy which is also observed in our case: the ratio of  ̂nmer v̂mer + n̂mef v̂mef   and  ̂nr v̂r + n̂mu v̂mu  equals 
2.1 in the case of glucose, and increases to 7.5 in the case of glycerol. The difference is due to the 
costs of osmoregulation, motility, and other maintenance processes (van Bodegom, 2007), but also 
to energy spilling, a factor that remains little understood (Russell and Cook, 1995). As explained 
in Appendix 1, we model all of the above forms of energy dissipation by a first- order reaction with 
constant ka whose value can be computed by closing the energy balance (Equation 117):

 
k̂a =

n̂mer v̂mer + n̂mef v̂mef − n̂r v̂r − n̂mu v̂mu

â∗
.
  

(125)

In the case of batch growth on glucose, we thus find an approximate value

 k̂a = 2279 hr−1,  (126)

and for glycerol,

 k̂a = 6426 hr−1.  (127)
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Parameter in rate equation for central carbon metabolism es
As explained in Appendix 1, the macroreaction for central carbon metabolism simplifies to the 
following simple rate equation:

 vmc = es mc.  (128)

With the value for mc derived in the previous section (Appendix 2—table 1), we obtain the following 
estimates for glucose:

 ês = 18.3 hr−1,  (129)

and for glycerol:

 ês = 11.2 hr−1.  (130)

Parameters in the rate equations for the synthesis of proteins and other 
biomass components  Kr ,  Kmu ,  Kar ,  Kamu , kr, and  kmu 
The rate equations for the macroreactions corresponding to protein synthesis and the synthesis of 
other macromolecules are restated as a reminder:

 
vr = kr r a∗

a∗ + Kar

c
c + Kr

,
  

(131)

 
vmu = kmu mu

a∗

a∗ + Kamu

c
c + Kmu

.
  

(132)

The above reactions consume central metabolites ( c ) and charged energy cofactors (ATP) ( a∗ ).
Very little information is available on the in vivo values of half- saturation constants occurring in 

the kinetic expressions of the macroreactions. However, previous metabolomics assays have yielded 
general observations on enzyme saturation (the ratio of reaction substrates and half- saturation 
constants) that will be exploited here (Bennett et al., 2009). These will be refined by combining 
available measurements with a recent compilation of  Km  values for E. coli (Dourado et al., 2021; 
Park et al., 2016).

First, in the case of central carbon metabolism, ‘substrate concentrations are close to  Km  for many 
reactions’ (Bennett et al., 2009). We have computed, for metabolites in central carbon metabolism 
of E. coli quantified by Gerosa et al., 2015, the ratio of metabolite concentrations and values of the 
half- saturation constants of the reactions in which the metabolites participate (Dourado et al., 2021). 
Taking the geometric mean of the ratios, we found an average value of substrate saturation of 1.2 
for glucose and 0.72 for glycerol (Supplementary file 3). Assuming that this value is approximately 
valid for all reactions consuming central carbon metabolites in our model, we estimate for glucose

 K̂r = K̂mu ≈ ĉ
1.2 = 0.29 Cmmol gDW−1,  (133)

and for glycerol

 K̂r = K̂mu ≈ ĉ
0.72 = 0.28 Cmmol gDW−1,  (134)

Note that we deal with apparent half- saturation constants that account for possible metabolic 
regulation.

Second, ATP and NAD+ were found to saturate their enzymes with ‘cofactor concentration 
typically exceeding their  Km  value by more than 10- fold’ (Bennett et al., 2009). This motivates the 
following approximate values for the half- saturation constants occurring in the energy terms of the 
biosynthesis rate equations:

 K̂ar = K̂amu ≈ â∗/10 mmol gDW−1,  (135)

with different values for growth on glucose and glycerol (0.0009 vs 0.0005 mmol gDW-1).
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Together with the values for the fluxes and enzyme concentrations, we can now derive values for 
the unknown catalytic constants kr and  kmu  from Equations 131 and 132. In the case of growth on 
glucose, we have

 k̂r = 2.9 hr−1, k̂mu = 1.2 hr−1,  (136)

whereas for growth on glycerol we find

 k̂r = 3.6 hr−1, k̂mu = 1.3 hr−1.  (137)

Note that the estimates for kr are comparable to values used for the maximum translation capacity 
in previous work (5.9 hr-1 in Scott et al., 2010; 3.6 hr-1 in Giordano et al., 2016).

Parameters in the rate equations for energy metabolism  Kmer ,  Kmef  ,  Kamer ,  Kamef  , 
 kmer , and  kmef  
We repeat the rate equations for energy metabolism, for the two macroreactions (respiration and 
fermentation):

 
vmer = kmer mer

a0 − a∗

a0 − a∗ + Kamer

c
c + Kmer

,
  

(138)

 
vmef = kmef mef

a0 − a∗

a0 − a∗ + Kamef

c
c + Kmef

.
  

(139)

The arguments given in the previous section for fixing the values of the half- saturation constants also 
apply in this case, so that we obtain

 K̂mer = K̂mef = 0.29 Cmmol gDW−1,  (140)

 K̂amer = K̂amef = 0.0011 mmol gDW−1,  (141)

for growth on glucose, and

 K̂mer = K̂mef = 0.28 Cmmol gDW−1,  (142)

 K̂amer = K̂amef = 0.001 mmol gDW−1,  (143)

for growth on glycerol.
In the previous section, we were only able to reconstruct the total concentration of enzymes 

involved in energy metabolism (Appendix 2—table 1), but not the fractions involved in aerobic 
respiration or fermentation. Let  ̂me = m̂er + m̂ef  . In order to derive the concentrations  mer  and  mef  , 
we follow approximately the same procedure as Basan et al., 2015b, but for the proteomics data 
of Schmidt et al., 2016. We divide the proteins labeled as taking part in energy metabolism into 
enzymes only playing a role in respiration (pyruvate decarboxylation, TCA cycle), enzymes only 
playing a role in fermentation (acetate pathway), and other enzymes, notably those constituting 
the electron transport chain and ATP synthases using the proton gradient for ATP production. The 
latter category is involved in both (aerobic) respiration and fermentation, and we divide the protein 
mass according to the ratio of the respiration and fermentation fluxes. For growth on glucose, we 
find fractions 0.45, 0.01, and 0.54 for the three protein categories, whereas for glycerol we find 0.37, 
0.01, and 0.62, respectively (Supplementary file 4). This gives rise to the following estimates for 
glucose,

 
m̂er = (0.45 + 0.54 v̂mer

v̂mer + v̂mef
) m̂e = 1.9 Cmmol gDW−1,

  (144)

 
m̂ef = (0.01 + 0.54

v̂mef
v̂mer + v̂mef

) m̂e = 1.1 Cmmol gDW−1,
  (145)
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and for glycerol

 
m̂er = (0.37 + 0.62 v̂mer

v̂mer + v̂mef
) m̂e = 4.4 Cmmol gDW−1,

  (146)

 
m̂ef = (0.01 + 0.62

v̂mef
v̂mer + v̂mef

) m̂e = 0.47 Cmmol gDW−1.
  (147)

Together with the values for the fluxes and metabolite concentrations, we can now estimate values 
for the unknown apparent catalytic constants  kmer  and  kmef   from Equations 138 and 139. In the case 
of growth on glucose, we have

 k̂mer = 5.0 hr−1, k̂mef = 17.4 hr−1,  (148)

and for growth on glycerol,

 k̂mer = 4.4 hr−1, k̂mef = 6.7 hr−1.  (149)

All parameter values derived in this and the previous sections are summarized in Appendix 2—table 
2.

Data and parameter estimates for continuous growth
The model calibration procedure for the other conditions considered, continuous growth in a 
chemostat, in minimal medium with glucose at dilution rates of 0.2 hr-1, 0.35 hr-1, and 0.5 hr-1, is the 
same as for batch growth. Not all source data used above are available for continuous growth. In 
their absence, we use the corresponding data for batch growth as a proxy. In particular, total protein 
and metabolite concentrations were obtained from Gerosa et al., 2015, and Basan et al., 2015b, 
by selecting the (interpolated) values for batch growth at rates corresponding to the dilution rates 
(Appendix 2—figure 1). In addition, for the case of growth at a dilution rate of 0.2 hr-1, where no 
significant acetate overflow is detected, we set the acetate secretion rate to 5% of the acetate 
secretion rate during continuous growth at 0.35 hr-1, that is, a value below the detection limit. This 
allows the same model with respiration and fermentation to be used over all conditions.

The data used for calibration is shown in Appendix 2—table 3 and the values for the parameters 
obtained after calibration are listed in Appendix 2—table 4.

Appendix 2—table 3. Reconstruction of growth and degradation rates, fluxes, and concentrations 
from published datasets for the case of continuous growth of E. coli in minimal medium with glucose 
at different dilution rates (D0.2: 0.2 hr-1, D0.35: 0.35 hr-1, D0.5: 0.5 hr-1).
For the error bars, see Appendix 2—table 1. References: a Peebo et al., 2015, b Esquerré et al., 
2014, c Morin et al., 2016, d Basan et al., 2015b, e Schmidt et al., 2016, f Gerosa et al., 2015, g 
Park et al., 2016.

Rates Unit D0.2 D0.35 D0.5 Reference

 ̂µ hr-1 o.2 0.35 0.5  a 

 ̂γ  hr-1 0.027 0.027 0.027  b 

Uptake, secretion, and biosynthesis fluxes

 ̂vmc  Cmmol gDW−1 hr−1
 16.0 26.2 37.4  a 

 ̂vmer  Cmmol gDW−1 hr−1
 5.3 8.1 9.4 Derived

 ̂vmef   Cmmol gDW−1 hr−1
 0.02 0.16 2.0  a 

 ̂vmu  Cmmol gDW−1 hr−1
 1.9 3.4 5.2 Derived

Appendix 2—table 3 Continued on next page
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Rates Unit D0.2 D0.35 D0.5 Reference

 ̂vr  Cmmol gDW−1 hr−1
 7.3 11.8 16.1 Derived

Total biomass concentration

 1/β̂  Cmmol gDW−1
  40.65 ± 2.0  40.65 ± 2.0  40.65 ± 2.0  c 

Protein concentrations

 m̂u  Cmmol gDW−1
  11.2 ± 0.6  11.2 ± 0.6  10.4 ± 0.5  c, d, e 

 ̂r   Cmmol gDW−1
  9.3 ± 0.5  9.4 ± 0.5  11.0 ± 0.5  c, d, e 

 ̂mc  Cmmol gDW−1
  3.5 ± 0.2  3.4 ± 0.2  3.3 ± 0.2  c, d, e 

 ̂mer + m̂ef   Cmmol gDW−1
  8.0 ± 0.4  7.2 ± 0.4  5.8 ± 0.3  c, d, e 

 ̂mer  Cmmol gDW−1
 7.9 7.1 5.2 Derived

 ̂mef   Cmmol gDW−1
 0.05 0.1 0.6 Derived

Metabolite concentrations

 ̂c  Cmmol gDW−1
  0.35 ± 0.002  0.35 ± 0.002  0.35 ± 0.002  f, g 

 ̂a∗  mmol gDW−1
 0.005 0.006 0.008  f  

 ̂a  mmol gDW−1
 0.011 0.015 0.016  f  

 ̂a0  mmol gDW−1
 0.016 0.021 0.024  f  

Concentration of other biomass

 ̂u  Cmmol gDW−1
 8.2 9.0 9.8 Derived

Appendix 2—table 4. Estimation of the values of the kinetic parameters in the model, in the case of 
continuous growth of E. coli in minimal medium with glucose at different dilution rates (D0.2: 0.2 hr-

1, D0.35: 0.35 hr-1, D0.5: 0.5 hr-1), as explained in the text.

Parameter D0.2 D0.35 D0.5 Unit

 ̂ρru 1.16 1.17 1.17 –

 ̂ρmef  1.5 1.5 1.5 –

 ̂kr 1.6 2.5 2.9  hr−1 

 ̂kmu 0.33 0.61 1.0  hr−1 

 ̂es 4.5 7.6 11.2  hr−1 

 ̂kmer 1.3 2.3 3.6  hr−1 

 k̂mef  0.77 2.98 6.8  hr−1 

 ̂ka 3203 4001 3633  hr−1 

 ̂Kr 0.29 0.29 0.29  Cmmol gDW−1
 

 ̂Kmu 0.29 0.29 0.29  Cmmol gDW−1
 

 ̂Kmer 0.29 0.29 0.29  Cmmol gDW−1
 

Appendix 2—table 3 Continued
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Parameter D0.2 D0.35 D0.5 Unit

 K̂mef  0.29 0.29 0.29  Cmmol gDW−1
 

 ̂Kar 0.0005 0.0006 0.0008  mmol gDW−1
 

 ̂Kamer 0.0011 0.0015 0.0016  mmol gDW−1
 

 K̂amef  0.0011 0.0015 0.0016  mmol gDW−1
 

 ̂Kamu 0.0005 0.0006 0.0008  mmol gDW−1
 

 ̂nmer 4.3 4.3 4.3  mmol Cmmol−1 

 ̂nmef  2.0 2.0 2.0  mmol Cmmol−1 

 ̂nr 0.77 0.77 0.77  mmol Cmmol−1 

 ̂nmu 0.65 0.65 0.65  mmol Cmmol−1 

Data and parameter estimates for MG1655 and NCM3722 strains
In order to test the robustness of our results with respect to the calibration procedure, we calibrated 
the model for a different E. coli strain, MG1655, in the same way as for the reference strain. To 
this aim, we used published measurements on batch growth of MG1655 in minimal medium with 
glucose, including metabolite concentrations (McCloskey et al., 2018), proteomics data (Schmidt 
et al., 2016), and metabolic fluxes (Monk et al., 2017).

The total biomass concentration is the same as for the reference strain (Equation 81). The total 
metabolite concentration is obtained by McCloskey et  al., 2018, who reported a value of 3.7 
Cmmol gDW-1, equivalent to 9.1% of the total cellular biomass. The fraction of central metabolites 
is estimated to be 14% of the total metabolic concentration. The total protein concentration is 
obtained from Basan et al., 2015b, who report a protein fraction of 0.71 for the MG1655 strain, to 
which we add the fraction of free amino acids, estimated as 50% of the total metabolite concentration 
(Bennett et al., 2009). This gives a total protein biomass fraction of 0.76.

Proteins are then distributed over our protein categories, following the mass fraction values 
reported by Schmidt et al., 2016, for the MG1655 strain. Accordingly, we estimate

 m̂u = 0.37 · 0.76 · 1/β̂ = 11.4 Cmmol gDW−1,  (150)

 r̂ = 0.45 · 0.76 · 1/β̂ = 13.8 Cmmol gDW−1,  (151)

 m̂c = 0.08 · 0.76 · 1/β̂ = 2.4 Cmmol gDW−1,  (152)

 m̂er + m̂ef = 0.10 · 0.76 · 1/β̂ = 3.1 Cmmol gDW−1.  (153)

Uptake and secretion rates were taken from Monk et  al., 2017. Comparison of metabolite 
concentration measurements of McCloskey et  al., 2018, with  Km  values collected by Dourado 
et al., 2021, shows that reactions in central carbon metabolism are more saturated in MG1655 than 
in the reference strain (2.2 vs 1.2), in agreement with its higher growth rate (Supplementary file 3). 
Accordingly, the half- saturation constant of reactions consuming central metabolites are estimated 
as

 K̂r = K̂mu = K̂mer = K̂mef ≈ ĉ
2.2 = 0.24 Cmmol gDW−1.  (154)

The data used for calibration are summarized in Appendix  2—table 5 and the values for the 
parameters obtained after calibration are listed in Appendix 2—table 6.

Appendix 2—table 4 Continued
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Appendix 2—table 5. Reconstruction of growth and degradation rates, uptake and secretion 
fluxes, and protein and metabolite concentrations from published datasets for E. coli MG1655 and 
NCM3722 strains for the case of batch growth in glucose minimal medium.
The uncertainty intervals for the rates, fluxes, and metabolite concentrations are standard deviations 
reported in the source publications, after unit conversion. For the NCM3722 strain, as an example 
of a fast- growing strain with a higher growth yield than the BW25113 reference strain, we only 
use a subset of observed values in the main text. References: aCheng et al., 2019, bBasan et al., 
2015a, cEsquerré et al., 2014, dFarmer and Jones, 1976, eMonk et al., 2017, fBasan et al., 2015b, 
gSchmidt et al., 2016, hPark et al., 2016, iMcCloskey et al., 2018.

Rates Unit MG1655 NCM3722 Reference

 ̂µ  hr−1  0.69 ± 0.02  0.97 ± 0.05  a, b 

 ̂γ   hr−1 0.027 –  c, d  

Uptake, secretion, and biosynthesis fluxes

 ̂vmc  Cmmol gDW−1 hr−1
  51.5 ± 8.5  66.1 ± 4  a, b, e 

 ̂vmer  Cmmol gDW−1 hr−1
 5.7 – Derived

 ̂vmef   Cmmol gDW−1 hr−1
  7.8 ± 2.3  10.3 ± 1.8  a, b, e 

 ̂vmu  Cmmol gDW−1 hr−1
 7.0 – Derived

 ̂vr  Cmmol gDW−1 hr−1
 21.7 – Derived

Total biomass concentration

 1/β̂  Cmmol gDW−1
  40.65 ± 2.0 –  e 

Protein concentrations

 ̂p  Cmmol gDW−1
  30.7 ± 2.0  29.7 ± 1.9  e, f  

 m̂u  Cmmol gDW−1
  11.4 ± 0.74 –  e, f, g 

 ̂r   Cmmol gDW−1
  13.8 ± 0.9 –  e, f, g 

 ̂mc  Cmmol gDW−1
  2.4 ± 0.2 –  e, f, g 

 ̂mer + m̂ef   Cmmol gDW−1
  3.1 ± 0.2 –  e, f, g 

 ̂mer  Cmmol gDW−1
  2.2 ± 0.1 – Derived

 ̂mef   Cmmol gDW−1
  0.9 ± 0.04 – Derived

Metabolite concentrations

 ̂c  Cmmol gDW−1
  0.5 ± 0.09  0.8 ± 0.03  h, i 

 ̂a∗  mmol gDW−1
 0.046 –  h, i 

 ̂a  mmol gDW−1
 0.008 –  h, i 

 ̂a0  mmol gDW−1
 0.054 –  h, i 

Concentration of other biomass

 ̂u  Cmmol gDW−1
 9.4 – Derived
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Appendix 2—table 6. Estimation of the values of the kinetic parameters in the model for the E. coli 
MG1655 strain during batch growth in glucose minimal medium from data in Appendix 2—table 5, 
as explained in the text.
Idem for a model variant with an additional category of growth- rate- independent proteins ( Q ), using 
data for the BW25113 strain from Appendix 2—table 1.

Parameter MG1655 Model variant with Q Unit

 ̂ρru 1.17 1.17 –

 ̂ρmef  1.5 1.5 –

 ̂kr 2.5 6.1  hr−1 

 ̂kmu 0.9 2.5  hr−1 

 ̂es 21.0 38.0  hr−1 

 ̂kmer 4.1 10.3  hr−1 

 k̂mef  20.4 36.1  hr−1 

 ̂ka 412 2278  hr−1 

 ̂Kr 0.24 0.29  Cmmol gDW−1
 

 ̂Kmu 0.24 0.29  Cmmol gDW−1
 

 ̂Kmer 0.24 0.29  Cmmol gDW−1
 

 K̂mef  0.24 0.29  Cmmol gDW−1
 

 ̂Kar 0.005 0.0009  mmol gDW−1
 

 ̂Kamer 0.0008 0.0011  mmol gDW−1
 

 K̂amef  0.0008 0.0011  mmol gDW−1
 

 ̂Kamu 0.005 0.0009  mmol gDW−1
 

 ̂nmer 4.3 4.3  mmol Cmmol−1 

 ̂nmef  2.0 2.0  mmol Cmmol−1 

 ̂nr 0.77 0.77  mmol Cmmol−1 

 ̂nmu 0.65 0.65  mmol Cmmol−1 

We also collect in Appendix 2—table 5 the data for batch growth of the NCM3722 strain in 
minimal medium with glucose, used in the Results section of the main paper. The data concern the 
growth rate and growth yield (Cheng et al., 2019), the glucose uptake, and acetate secretion rates 
reported by Cheng et al., 2019, from experiments carried out by Basan et al., 2015a, the total 
protein concentration (Basan et al., 2015a), and the total metabolite concentration (Park et al., 
2016).

Calibration of model variant with an additional growth-rate-independent 
protein category
In Appendix 1, we introduced a model variant with an additional growth- rate- independent protein 
category, referred to as  Q  (Scott et al., 2010). Estimation of the parameters for this model variant 
requires the estimation, for every protein category, of the offset of the linear relation between growth 
rate and proteome fraction (Hui et al., 2015). In order to obtain results comparable to those for the 
reference model, we have used proteomics data for the BW25113 strain (Schmidt et al., 2016). We 
considered 22 different growth conditions, excluding stationary phase (no balanced growth) and LB 
medium (addition of amino acids).
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For the  R  category, the proteome fraction increases with the growth rate and the offset can be 
computed as  χ

0
r = 0.23  (Appendix 2—figure 2). Unfortunately, in the case of  Mc ,  Me , and  Mu , the 

data show a decreasing or constant pattern with growth rate, which makes it impossible to determine 
the offset fraction for these protein categories (Appendix 2—figure 2, panels B–D). We therefore 
followed a different approach to estimate the growth- rate- independent protein fraction. Assuming 
a total fraction of growth- rate- independent proteins  χq = 0.52 , as reported for the MG1655 strain 
by Mori et  al., 2016, we split the fraction  χq − χ0

r = 0.29  over the  Mc ,  Mu , and  Me  categories 
proportionally to their size:

 

χ0
u = 0.29 · 0.37

0.56
= 0.19,

χ0
c = 0.29 · 0.09

0.56
= 0.05,

χ0
e = 0.29 · 0.10

0.56
= 0.05.

  

Appendix 2—figure 2. Growth- rate dependency of proteome fractions. Using the data from Schmidt et al., 
2016, the proteome fractions over a large variety of growth conditions (growth on different limiting carbon 
sources, different temperatures, different pH, etc.) are plotted for the categories: (A) ribosomes and translation- 
affiliated proteins ( r/p ), (B) enzymes in central carbon metabolism ( mc/p ), (C) enzymes in energy metabolism 
( (mer + mef)/p ), and (D) other proteins ( mu/p ). A linear regression is performed, giving rise to slopes (A) 0.31 ± 0.04, 
(B) –0.03 ± 0.02, (C) –0.34 ± 0.04, and (D) 0.06 ± 0.03, showing that only the fraction  r/p  significantly increases with 
the growth rate.

Notice that the above partitioning is equivalent to assuming that all enzyme categories have the 
same proportion of growth- rate- independent proteins.

The growth- rate- dependent fractions of the protein categories are then simply obtained from 
the difference between the total proteome fractions (Schmidt et al., 2016) and the growth- rate- 
independent fractions:
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χu = 0.37 − 0.19 = 0.18,

χr = 0.44 − 0.23 = 0.21,

χc = 0.09 − 0.05 = 0.04,

χe = 0.10 − 0.05 = 0.05.  

Further calibration of the model is then identical to the calibration of the reference model, using 
published data for batch growth of BW25113 in glucose minimal medium (Appendix 2—table 1). In 
particular, from the total biomass concentration (40.65 Cmmol gDW-1) and the protein mass fraction 
(0.74), we can estimate the following growth- rate- dependent protein concentrations:

 q̂ = 0.52 · 0.74 · 1/β̂ = 15.9 Cmmol , gDW−1,  (155)

 r̂ = 0.21 · 0.74 · 1/β̂ = 6.3 Cmmol gDW−1,  (156)

 m̂u = 0.18 · 0.74 · 1/β̂ = 5.4 Cmmol gDW−1,  (157)

 m̂c = 0.04 · 0.74 · 1/β̂ = 1.2 Cmmol gDW−1,  (158)

 m̂er + m̂ef = 0.05 · 0.74 · 1/β̂ = 1.5 Cmmol gDW−1.  (159)

Parameter values derived for this model are summarized in Appendix 2—table 6.
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