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ABSTRACT 29 
Metabolic syndrome (MetSyn) is a cluster of dysregulated metabolic conditions that occur together to 30 

increase the risk for cardiometabolic disorders such as type 2 diabetes (T2D). One key condition associated with 31 
MetSyn, abdominal obesity, is measured by computing the ratio of waist-to-hip circumference adjusted for the 32 
body-mass index (WHRadjBMI). WHRadjBMI and T2D are complex traits with genetic and environmental 33 
components, which has enabled genome-wide association studies (GWAS) to identify hundreds of loci 34 
associated with both. Statistical genetics analyses of these GWAS have predicted that WHRadjBMI is a strong 35 
causal risk factor of T2D and that these traits share genetic architecture at many loci. To date, no variants have 36 
been described that are simultaneously associated with protection from T2D but with increased abdominal 37 
obesity. Here, we used colocalization analysis to identify genetic variants with a shared association for T2D and 38 
abdominal obesity. This analysis revealed the presence of five loci associated with discordant effects on T2D 39 
and abdominal obesity. The alleles of the lead genetic variants in these loci that were protective against T2D 40 
were also associated with increased abdominal obesity. We further used publicly available expression, 41 
epigenomic, and genetic regulatory data to predict the effector genes (eGenes) and functional tissues at the 42 
2p21, 5q21.1, and 19q13.11 loci. We also computed the correlation between the subcutaneous adipose tissue 43 
(SAT) expression of predicted effector genes (eGenes) with metabolic phenotypes and adipogenesis. We 44 
proposed a model to resolve the discordant effects at the 5q21.1 locus. We find that eGenes gypsy 45 
retrotransposon integrase 1 (GIN1), diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2), and 46 
peptidylglycine alpha-amidating monooxygenase (PAM) represent the likely causal eGenes at the 5q21.1 locus. 47 
Taken together, these results are the first to describe a potential mechanism through which a genetic variant can 48 
confer increased abdominal obesity but protection from T2D risk. Understanding precisely how and which 49 
genetic variants confer increased risk for MetSyn will develop the basic science needed to design novel 50 
therapeutics for metabolic syndrome.  51 



INTRODUCTION 52 
Metabolic syndrome (MetSyn) is a cluster of dysregulated metabolic conditions that tend to occur 53 

together to increase the risk for cardiometabolic disorders such as type 2 diabetes (T2D)1. This cluster includes 54 
insulin resistance (IR), abdominal obesity, elevated serum triglycerides (TG) levels, low high-density 55 
lipoprotein cholesterol (HDL-C) levels, as well as elevated systolic and diastolic blood pressure. Obesity, or the 56 
excessive accumulation of fat that presents a risk to health, is a major contributor to MetSyn1,2. Obesity, which 57 
is typically defined as a Body-Mass Index (BMI) above 30, has reached unprecedented levels of prevalence, and 58 
its role as a central regulator of disease risk makes it an appealing therapeutic target2. Several recently 59 
developed T2D therapeutics have even successfully targeted obesity; SGLT2 inhibitors and GLP-1 agonists 60 
have been reported to result in a 2-6 kilogram reduction of body weight and reduced insulin resistance3.  61 

Despite the promise of these obesity-centered therapeutic strategies, there has also been a growing body 62 
of evidence describing a rare phenotype known as metabolically healthy obesity (MHO)4. MHO describes a 63 
group of phenotypes in which individuals with obesity are protected from adverse metabolic effects5. While no 64 
formal definition of MHO exists, it is often described as either obesity with less than three components of 65 
MetSyn, or obesity without insulin resistance as computed by the Homeostasis Model Assessment of Insulin 66 
Resistance (HOMA–IR)5. Mechanisms proposed to mediate this include depressed ectopic fat accumulation, 67 
subcutaneous adipose tissue expansion plasticity, and shifts in fat storage from the abdomen to the legs4–6. In 68 
recent years the ability of abdominal obesity to mediate cardiometabolic disease risk has gained attention. 69 
People with MHO have less intra-abdominal fat accumulation compared to people with metabolically unhealthy 70 
obesity (MUO)7–12. Intra-abdominal fat accumulation can be approximated through the ratio of Waist-to-Hip 71 
circumference (WHR) adjusted for BMI (WHRadjBMI). WHRadjBMI is a causal factor that increases 72 
susceptibility for T2D, but the genetic and molecular mechanisms underlying fat distribution remain largely 73 
unknown13–15. Understanding the mechanisms mediating WHRadjBMI, MHO, and T2D is critical to our 74 
understanding of disease pathogenesis and to clinical strategies to treat MetSyn.  75 

Most of the genetic mechanisms of MHO described have been associated with increased BMI without 76 
increased disease risk. For example, the missense variant rs373863828 in CREB3 Regulatory Factor has been 77 
shown to increase BMI without a corresponding increase in HOMA-IR and circulating triglycerides, or a 78 
decrease in circulating adiponectin16. Ob/ob mice with overexpression of adiponectin but lacking in leptin are 79 
shown to accumulate considerable fat mass without a corresponding increase in insulin sensitivity17. In contrast, 80 
the genetic loci associated with increased WHRadjBMI but without increased disease risk have not yet been 81 
described. To date, all genes that have been shown to increase fat accumulation into abdominal fat depots have 82 
also been shown to increase the risk for T2D18–23. 83 

As complex traits with both environmental and genetic risk factors, abdominal obesity and T2D have 84 
been the subject of multiple genome-wide association studies (GWAS). While GWA studies have identified 85 
hundreds of genetic loci associated with abdominal obesity and T2D, moving from association to mechanism at 86 
a locus is not trivial. The use of colocalization analysis (COLOC), which identifies loci that contain shared 87 
genetic architecture for multiple traits of interest, can inform mechanistic hypotheses moving from association 88 
to function by integrating data from multiple studies24–27. For example, the colocalization of a GWAS signal 89 
with genetic regulation of genes at quantitative trait loci (QTL) implies a mechanistic relationship between the 90 
regulated gene and GWAS trait28. Another recently developed approach named Tissue of ACTion scores for 91 
Investigating Complex trait-Associated Loci (TACTICAL)29, incorporates gene expression data, and epigenetic 92 
annotations with GWAS associations to predict the causal eGenes and tissues of action at GWAS loci. These 93 
methods have been used to inform data-driven mechanistic predictions at GWAS loci that have been 94 
experimentally validated and can recall previously validated loci as positive controls.  95 

To advance the understanding of mechanisms linking body fat distribution to T2D risk, independent of 96 
overall obesity, we used COLOC and TACTICAL to predict the mechanisms of action at genetic loci associated 97 
with both T2D and WHR, both adjusted for the BMI. Using the most recent GWAS summary statistics, QTL 98 
summary statistics, tissue-specific gene expression data, and high-resolution epigenetic annotations, we 99 
predicted the shared genetic architecture of T2DadjBMI and WHRadjBMI at 79 genetic loci. Here we present 100 
the identification of 5 loci that contained association signals with discordant effects on abdominal fat and T2D 101 
risk, meaning that the allele of the lead variant associated with protection from T2D was associated with 102 
increased abdominal fat accumulation. We predicted the eGenes and tissues of action at these 5 loci and 103 



explored the relationship between adipose eGene expression with cellular and physiological phenotypes. Here, 104 
we provide data-driven hypotheses about predicted candidate causal eGenes at GWAS loci with associations 105 
that recall metabolically healthy abdominal obesity.  106 



RESULTS 107 
 Colocalization analysis of genetic loci associated with Type 2 Diabetes and Body Fat Distribution 108 
predicts colocalization of discordant T2DadjBMI and WHRadjBMI association signals at six loci. 109 
 To identify genetic loci which contained pleiotropic association signals for both T2DadjBMI and 110 
WHRadjBMI, we performed colocalization analysis (Figure 1A). This analysis yielded 79 genetic loci where a 111 
single variant was significantly associated with both T2DadjBMI and WHRadjBMI. We obtained the 99% 112 
credible set of variants in colocalized loci (Supplementary File 1) and discovered the presence of 143 variants in 113 
five loci associated with discordant effects on T2DadjBMI and WHRadjBMI. We also discovered 851 SNPs in 114 
73 loci with the expected concordant effects on both traits. Although almost all of the representative lead 115 
discordant variants reached genome-wide significance, two associations reached nominal significance (p < 5e-116 
05). Because of recent work demonstrating that even variants with only nominal and local significance in 117 
GWAS can also have functional relevance to GWAS traits, we included variants prioritized in the 99% credible 118 
set but with only nominal significance30. We then performed fine-mapping of the causal variants in each locus 119 
containing a discordant association signal while relaxing the assumption of a single causal variant per locus. In 120 
four of the five loci, this fine-mapping recalled only one likely candidate causal signal. In the 5q21.1 locus, 121 
SuSiE identified a secondary association signal that was also associated with discordant effects on T2DadjBMI 122 
and WHRadjBMI (Figure 1B and Supplementary File 2). To parse the associations between specific 123 
components of WHRadjBMI, including WC, HC, WHR, and BMI, with both T2D and T2DadjBMI, we 124 
performed multi-trait colocalization analysis with Hyprcoloc of the associations at discordant loci 125 
(Supplementary File 3). At three of the five discordant loci, the discordant association signals were also 126 
colocalized with WHRadjBMI component traits waist circumference and WHR. 127 
 We next investigated the genetic and physiological consequences of discordant variants. We performed 128 
a phenome-wide association study (PheWAS) for anthropometric and glycemic traits with the most highly 129 
powered GWAS available (Figure 1 – source data 1)31. We used the most highly powered GWAS or GWAS 130 
meta-analysis for each trait included in our PheWAS and queried the summary statistics for the associations of 131 
each lead discordant variant (Figure 1C). This query revealed consistent significant associations with 132 
discordance across anthropometric and glycemic traits in each locus. At the association signal in the 5q11.2 133 
region, association signals exemplified this metabolic discordance. Represented by genetic variant rs459193, 134 
the association signal was associated with increased abdominal obesity in nearly every metric, but also with 135 
protection from type 2 diabetes in nearly every metric. At all lead discordant variants, effects were consistent 136 
with a phenotype of increased abdominal obesity but protection from type 2 diabetes. 137 

We then queried the Variant effect predictor (VEP) to discover genetic variant annotations32 (Figure 1D 138 
and Supplementary File 4). VEP predicted that discordant variants overwhelmingly lie in noncoding regions of 139 
the genome, with only one missense variant in a coding region. Because the vast majority of discordant variants 140 
lie in noncoding regions, it is likely their function lies in altering genetic regulation of proximal genes33. 141 
Therefore, we investigated the coincidence of these discordant variants with the genetic regulation of proximal 142 
genes with functional prediction methods. 143 
 Integration of molecular QTLs and genomic annotations to predict functional genes in tissues of 144 
action at discordant genetic loci. 145 

To investigate the role of eGenes in physiological phenotypes and cellular phenotypes, we evaluated the 146 
correlation of adipose tissue eGene expression and T2D-relevant phenotypes since these correlations can reveal 147 
biologically-relevant functional relationships34. To predict the genes and tissues of function at discordant loci, 148 
we used publicly available multi-omic data from metabolically relevant tissue-specific resources to predict 149 
functional mechanisms underlying associations. We first interrogated where the 143 discordant variants in the 150 
credible set were located in relation to tissue-specific chromatin state data in pancreatic islet, adipose, liver, and 151 
skeletal muscle tissues17. We computed the enrichment of colocalized association signals in various chromatin 152 
state annotations in each of these tissues (Figure 2A). We noted the specific enrichment of adipose tissue 153 
chromatin states of high activity, such as active transcription start sites, enhancer regions, and areas of 154 
transcriptional activity. For every other tissue, the leading annotations represented areas of decreased 155 
transcriptional activity. We additionally queried 3D chromatin data for discordant variant enhancer/promoter 156 
contact but did not find any significant interactions (Figure 2 – source data 2). We then used these enrichment 157 
scores, chromatin states, and gene expression data to predict the functional tissues at each colocalized locus 158 



(Supplementary File 5). We predicted that adipose tissue was classified as the candidate TOA at three loci, and 159 
skeletal muscle and liver tissue shared classification with adipose tissue at the remaining two discordant loci 160 
(Figure 2B).  161 

To predict effector genes (eGenes) regulated by discordant variants, we next predicted the colocalization 162 
of quantitative trait loci (QTL) with the WHRadjBMI and T2DadjBMI GWAS. Colocalization of a GWAS 163 
association signal with a genetic regulatory association signal can be used to prioritize mechanisms underlying 164 
association. We obtained expression QTL (eQTL) and splicing QTL (sQTL) summary statistics from multiple 165 
cohorts and tissue groups (Figure 2 – source data 2). We extracted eQTL summary statistics for all genes within 166 
1Mb of the lead variant of all discordant colocalized loci from adipose, pancreatic, skeletal muscle, and liver 167 
tissues. We extracted sQTL summary statistics for all genes within 1Mb of the lead variant of all discordant 168 
colocalized loci for adipose tissue data that was available. We used Summary-based Mendelian Randomization 169 
and Coloc.abf to perform GWAS-QTL colocalization and used the framework developed by Hukku et al. to 170 
reconcile the results of SMR and Coloc.abf. In this framework, colocalization found using Coloc.abf but not 171 
with SMR potentially represents signals with horizontal pleiotropy, whereas colocalization found through SMR 172 
but not through Coloc.abf potentially represents locus-level colocalization24. Colocalization found using both 173 
methods represents the identification of candidate causal effector transcripts. Our colocalization analysis 174 
revealed seven candidate causal effector transcripts at three of the 5 discordant loci (Figure 2C). With 175 
Coloc.abf, we predicted four putative eGenes in these two loci. At the 2p21 locus, we predicted THADA-AS 176 
(SAT, VAT) to be the sole eGene. At the 5q21.1 locus, we predicted GIN1 (SAT), PAM(SAT & SKM), and 177 
PPIP5K2 (SAT) to be the eGenes. The association signal at rs6860588 was associated with a novel alternative 178 
splicing isoform of PAM in subcutaneous adipose tissue (SAT), which skips the 14th exon. Using SMR, we 179 
predicted four eGenes at two discordant loci. At the 5q21.1 locus, we predicted the genetic association signal 180 
represented by rs6860588 was also associated with the regulation of EIF3KP1 (SAT, VAT, SKM, PANC), 181 
PPIP5K2 (SAT), and GIN1 (SAT, SKM, PANC). At the discordant association signal in the 19q13.11 locus, we 182 
predicted that the genetic association signal represented by variant rs3786897 was also associated with the 183 
regulation of PEPD (SAT, VAT). As the colocalization transcripts GIN1 and PPIP5K2 were replicated with 184 
both methods (Supplementary Files 6 and 7), these represent high-confidence predictions of potentially causal 185 
effector transcripts underlying the genetic association with discordance in the 5q21.1 locus. We queried white 186 
adipose tissue single-cell RNA sequencing data35 for discordant association signal eGenes and found that 187 
eGenes were expressed in adipocytes and adipocyte progenitor stem cells (ASPCs) (Figure 2D). Because body 188 
fat distribution associations are driven by ASPCs and adipocytes in adipose tissues36–38, we reasoned that 189 
exploring adipose expression data could help to explain discordant associations. This multi-omic data enabled 190 
us to make high-confidence consensus predictions of tissues and eGenes of action at discordant loci. 191 

Adipose gene expression analysis of discordant loci eGenes reveals dynamic expression in 192 
adipogenesis and relationships with metabolic physiology. 193 
 To investigate the role of eGenes in physiological phenotypes and cellular phenotypes, we then 194 
evaluated the gene expression dynamics of eGenes in adipose tissue. Correlations between relevant tissue gene 195 
expression and metabolic phenotypes can reveal biologically-relevant functional relationships34. We used SAT 196 
transcriptomic data from the 426 men of the METSIM cohort to investigate how adipose tissue expression of 197 
discordant locus eGenes was related to 23 metabolic phenotypes underlying T2D and abdominal fat 198 
accumulation (Figure 3 – source data 3)39,40. We extracted adipose tissue gene-expression data for eGenes. Gene 199 
expression data were available for six of the seven eGenes. We additionally extracted splice junction expression 200 
data for the only gene with a colocalized splice junction, PAM. We then computed the biweight midcorrelation 201 
of transcript counts or splice junction counts with 23 metabolic phenotypes. We found significant (FDR < 0.05) 202 
correlations of adipose tissue gene expression of three genes with thirteen phenotypes (Figure 3A). We found 203 
that adipose tissue expression of THADA-AS, PEPD, and GIN1 was significantly correlated with inflammatory, 204 
glycemic, and anthropometric phenotypes. SAT THADA-AS expression was positively correlated with insulin 205 
resistance, abdominal fat accumulation, and serum triglyceride levels, but with higher levels of plasma 206 
Interleukin-1 receptor antagonist (IL-1RA) and C-reactive protein (CRP). IL-1Ra plays a protective role in 207 
resolving inflammation41, and elevated levels have been linked to prediabetes42,43. CRP has been used as a 208 
biomarker of increased inflammation in chronic diseases44. The eQTL and GWAS data are associated with 209 
decreased expression of THADA-AS, which is consistent with the protection from insulin resistance in the 210 



correlation data but not with the increased abdominal obesity and inflammation. We are unable to resolve this 211 
correlation evidence with the discordance, but because the METSIM cohort was collected using single-end 212 
RNA sequencing, parsing the correlations of THADA and THADA-AS is difficult45. SAT expression of GIN1 213 
was correlated with higher plasma adiponectin. Adiponectin, secreted by adipocytes, increases insulin 214 
sensitivity, and this provides a mechanism for protection from T2D46. This expression is consistent with the 215 
QTL and GWAS data, providing a direct potential mechanism linking the eQTL to protection from T2D. SAT 216 
PEPD expression was also positively correlated with plasma IL-1RA levels. The QTL at this locus is associated 217 
with decreased expression of PEPD, providing another direct potential mechanism linking the eQTL to 218 
protection from T2D. Through this correlation analysis, we were able to predict the physiological consequences 219 
of eGenes at three discordant loci.  220 
 We next evaluated if eGenes identified in adipose tissues were dynamically expressed in adipogenesis. 221 
Dynamic gene expression in adipogenesis could point to the regulatory and structural roles of eGenes in 222 
adipogenesis47,48. We obtained time series ASPC adipogenesis time course data and evaluated eGenes for 223 
dynamic expression. Gene expression data were available for five of the seven eGenes. Because the expression 224 
data was single-stranded and unable to resolve forward or reverse-strand sequences, we included the probe for 225 
THADA to represent THADA-AS. We found that all eGenes except PPIP5K2 were dynamically expressed over a 226 
sixteen-day adipogenesis time course (Figure 3B), implying potential functional roles for these genes in 227 
regulating preadipocyte fate.  228 
Integration of analysis to predict the functional genes and tissues of action at the discordant 5q21.1 locus 229 

By predicting the mechanisms of action at discordant loci, we were able to generate specific hypotheses 230 
about the genes at each locus that underlie GWAS associations. We predicted that the causal discordant signal 231 
at the 5q21.1 locus was represented by variant rs6860588. The T allele of rs6860588 is associated with 232 
protection from type 2 diabetes, increased abdominal obesity, decreased SAT expression of GIN1, increased 233 
SKM expression of PAM, decreased SAT expression of PPIP5K2, increased SAT expression of a PAM splice 234 
variant with a skipped exon 14, and decreased SAT expression of the canonical PAM splice junctions, exon 235 
13:14 and exon 14:15 (Figure 4A, Figure 4-figure supplement 1, and Figure 4 - source data 4). While the 236 
eGenes, PAM, GIN1, and PPIP5K2, have not been studied in the context of obesity and metabolism, they have 237 
been studied for their function in other cell types. We found that GIN1 and PAM were dynamically expressed 238 
over the course of adipogenesis (Figure 3B). GIN1 has been hypothesized to be a key regulator of energy 239 
metabolism in atria49, but little is known about gypsy integrases and their molecular function. PAM facilitates 240 
C-terminus glycine residue amidation, which can catalyze protein potency50,51. PAM additionally has been 241 
linked to metabolic phenotypes in multiple model organisms, where its deficiency is associated with decreased 242 
peptide secretion and potency critical to insulin release, but not with increased diabetes52,53. PAM loss of 243 
function likely results in deficient peptide synthesis and secretion in adipocytes as well, and its increase of 244 
function likely results in increased myokine signaling from skeletal muscle. Knockdown of PPIP5Ks results in 245 
decreased proliferation, increased mitochondrial mass, decreased inositol metabolism, and accelerated 246 
glycolysis in tumor cell lines54–56. We did not observe significant interactions between adipose PPIP5K2 247 
expression and adipogenesis or metabolic phenotypes, but this does not rule out a role for PPIP5K2 in the 248 
metabolic discordance at 5q21.1. Thus, we propose that the T allele at rs6860588 regulates a group of genes that 249 
promotes adipogenesis, glycolysis, and inflammation in white adipose tissue while simultaneously decreasing 250 
preadipocyte expansion and increasing skeletal muscle peptide secretion and potency (Figure 4B). This model is 251 
consistent with the tissue of action score and QTL analysis, which both predict skeletal muscle and adipose 252 
tissue contribution to the associations at the locus and reconcile the associations with abdominal obesity but 253 
protection from type 2 diabetes associated with the T allele of rs6860588 (Figure 4C).  254 



DISCUSSION 255 
 We report here the integration of multi-omic data spanning the genome, transcriptome, and epigenome 256 
to predict functional genes and tissues underlying genetic signals associated with abdominal obesity but 257 
protection from T2D. We predicted the colocalization of T2DadjBMI and WHRadjBMI association signals at 258 
79 genetic loci. The protective allele of six association signals was associated with lower T2D risk but higher 259 
abdominal fat accumulation, independent of overall obesity (Figure 1). By analyzing colocalization with 260 
molecular QTLs, computing the enrichment of variants in epigenomic and genomic annotations, and comparing 261 
tissue-specific gene expression, we predicted the eGenes and tissues of action at discordant association signals 262 
(Figure 2). We found significant evidence that adipose tissue biology is a significant contributor at colocalized 263 
loci. We then explored the effects of eGenes expression in adipose tissue and preadipocytes on adipogenesis 264 
metabolic phenotypes (Figure 3) and proposed a model by which the genetic variant rs6860588 might confer 265 
protection from T2D but increased abdominal obesity (Figure 4).  266 

The six genetic association signals associated with discordant metabolic phenotypes offer potential 267 
insight into the genetic mechanisms underlying risk stratification of T2D risk within abdominal obesity. While 268 
mechanisms promoting MHO have been described, most have focused on body fat distribution. Defining more 269 
mechanisms that promote MHO is critical as rates of obesity rise globally. Complicating the study of MHO is 270 
the lack of precision in its definition. Some definitions include obesity with less than three components of 271 
MetSyn, obesity with healthy HOMA-IR, or even obesity with the lack of a metabolic and cardiovascular 272 
disorder4. MHO has been controversial and termed an intermediate state57–59, but a growing body of evidence 273 
has accumulated providing evidence that genetic mechanisms influence predisposition to it. In Samoans, the 274 
common CREBRF coding variant rs12513649 increases BMI and overall adiposity but protects from insulin 275 
resistance30. Additionally, IRS1, COBLL1, PLA2G6, and TOMM40 have been associated with higher BMI but 276 
with protective lipidemic and glycemic traits6. The physiological functions of these genes have been proposed 277 
to involve adipose tissue caloric load capacity and body fat distribution6,36,60,61. 278 

While abdominal fat accumulation is known to be one of the strongest predictors of obesity-related 279 
complications13,62,63, our findings point to mechanisms that contradict this trend. Each locus must be 280 
functionally annotated before translating the association results to the clinic. If these discordant variants are 281 
functionally annotated and fully characterized, they might have clinical utility to T2D risk allele carriers and 282 
inform personalized therapeutic strategies. Discovering mechanisms uncoupling abdominal obesity from T2D 283 
can aid in personalized therapeutic strategies and in understanding personalized risk stratification. Risk-284 
stratified personalized obesity treatment could prioritize patients that would or would not benefit significantly 285 
from weight-loss interventions, and use genotype as a biomarker for patients who would benefit from other 286 
therapeutic strategies64,65. Thus, the importance of personalized risk stratification for T2D will only increase as 287 
abdominal obesity becomes more prevalent. Personalized risk stratification with an understanding of specific 288 
molecular, cellular, and physiological mechanisms will aid in the prioritization of effective therapies. This 289 
investigation provided specific hypotheses linking functional genes at discordant loci to tissues of action for 290 
experimental follow-up in vitro and in vivo. Functional characterization of the effect of these genes on insulin 291 
uptake, preadipocyte proliferation, and adipogenesis, as well as secretome characterization, will elucidate 292 
precise mechanisms through which these eGenes might contribute to the discordant association signals. 293 

We predicted tissues and mechanisms of action at five loci containing six discordant association signals 294 
with increased abdominal obesity and protection for type 2 diabetes. A particular example of a peculiar 295 
metabolic discordance was revealed at the 2p21 locus containing THADA and THADA-AS, represented by 296 
variant rs6752964 (Figure 4-figure supplement 2). The associations have been replicated multiple times66–68, but 297 
the exact mechanisms underlying this association are unknown. THADA plays an evolutionarily conserved role 298 
in intracellular calcium signaling and consequently non-shivering thermogenesis. In Drosophila melanogaster, 299 
thada knockout flies developed obesity and hyperphagia without altered circulating glucose levels69. In mice, 300 
pancreatic Thada knockout resulted in protection from T2D through the preservation of β-cell mass and 301 
improvement of β-cell function70. Mendelian randomization studies in humans have likewise found consistent 302 
links between THADA and adiposity, but have not yet been able to link it to diabetic phenotypes such as insulin 303 
secretion68,71. Our investigation revealed relationships between THADA and THADA-AS expression with 304 
diabetic and obesity-abdominal obesity phenotypes as well as dynamic expression in adipogenesis (Figure 3). 305 
Regulatory interactions whereby THADA-AS expression interferes with THADA transcription could provide a 306 



basis by which variant rs6752964 might confer abdominal obesity, but protection from type 2 diabetes72–74. 307 
Further, we also found colocalization of genetic regulation of PEPD in adipose tissue with the discordant 308 
association signal represented by variant rs3786897. Depletion of PEPD in preadipocytes has been shown to 309 
reduce adipogenic potential, decrease triglyceride accumulation, and phospho-Akt signaling, which is critical to 310 
insulin sensitivity75. Notably, a secondary signal represented by variant rs731839 was apparent in this locus but 311 
was not significant for WHRadjBMI. This signal has been associated with sex-specific effects on serum lipid 312 
levels in Han and Mulao populations76. Further in vivo and in vitro work must be done to resolve this multi-313 
tissue, multi-eGene locus. 314 

Although our analysis incorporated genome, transcriptome, epigenome, and phenome data in multiple 315 
cohorts, and used the consensus of orthogonal methods to predict the mechanisms of action at discordant loci, 316 
follow-up is required to validate each prediction. Additionally, our genetic expression data used single-strand 317 
sequencing, and therefore parsing out the associated effects of sense and antisense transcripts is difficult. 318 
Finally, it is critical to discover to diversify ancestry and sex in genetic association studies to identify more 319 
genetic loci underlying MHO. Without experimental follow-up and extensive clinical studies, genotype should 320 
not be used as a diagnostic metric. CRISPR editing of alleles in relevant cell types to study cis-regulatory 321 
effects on genes and phenotypic effects on cells, and work in animal models is necessary to fully annotate these 322 
loci. In addition, it is important to identify the indirect and direct effects of discordant variants, as these 323 
endocrine tissues are major contributors to peptide and hormone secretion. Further experimental 324 
characterization is critical to placing these results in the proper context and providing the basis for personalized 325 
interventions for T2D. The predictions at these six loci provide specific hypotheses to be tested, and should they 326 
be validated experimentally provide knowledge of the precise mechanisms of uncoupling obesity from T2D 327 
risk.  328 



METHODS 329 
 GWAS-GWAS Colocalization Analysis. GWAS results for T2DadjBMI and WHRadjBMI were obtained 330 
from Mahajan et al66 and Pulit et al77. The set of single nucleotide polymorphisms (SNPs) within 500kb of a 331 
genome-wide significant SNP in either GWAS was included in the colocalization test. Rare variants, defined as 332 
SNPs reported to have effect allele frequencies of less than 1% in either GWAS, were excluded. Proximal 333 
analysis windows (>250kb) were merged, and the colocalization test was performed on these genetic loci with 3 334 
methods: Coloc.abf27, Hyprcoloc78, and visual inspection of LocusCompare plots79. 335 

The default parameters were used for Hyprcoloc. In Coloc.abf, the default parameters for p1 and p2 336 
prior probabilities were used for the individual GWAS hypotheses. The parameter p12, the prior for single 337 
variant colocalization, was set to 5e-06 as prescribed by Wallace et. al27 to balance false negative and positive 338 
results. Loci were considered colocalized if the regional probability of colocalization was greater than 0.70. In 339 
Coloc.abf, this was the sum of the PPH3 and PPH4 statistics, and in Hyprcoloc this was the regional probability 340 
statistic. Loci that met colocalization criteria in either method were plotted using LocusCompare with the 341 
default European ancestry linkage disequilibrium (LD) data from 1000Genomes80 and with genome build hg19. 342 
This resulted in 121 LocusCompare plots on which visual inspection was performed to verify colocalized 343 
genetic association signals. If genetic loci were considered colocalized by at least two of the three colocalization 344 
analysis methods, we considered these consensus colocalized loci. We termed this consensus analysis 345 
‘COLOC’. 346 

Discordant Locus Identification. We obtained the 99% credible set of SNPs from the results of Bayesian 347 
Factor Analysis implemented through Coloc.abf at each locus. We calculated the Z-scores for the association 348 
test of each genetic variant and the GWAS trait. If the Z-score associated with SNP had the opposite sign for 349 
association with WHRadjBMI and T2DadjBMI with respect to the same allele and the p-value for the 350 
association with both traits was less than 1e-05, we considered the variant discordant. We then identified in 351 
which loci the SNPs were located, and queried haploReg81 linkage disequilibrium data with the haploR package 352 
in R82 to separate signals in the same loci using LD clumping (R2>0.50) on the discordant variants.  353 

Phenome-Wide Association Study. We queried the GWAS meta-analysis associations of glycemic and 354 
anthropometric traits for each lead discordant variant in the Type 2 Diabetes Knowledge Portal (T2DKP)31. We 355 
additionally obtained the summary statistics of abdominal fat MRI scans in the UK Biobank and queried these 356 
summary statistics for discordant variants83. 357 

Multi-trait Colocalization Analysis. We obtained GWAS summary statistics for Waist Circumference 358 
(WC), Hip Circumference (HC), WHR, WHRadjBMI, T2D, and T2DadjBMI. We extracted summary statistics 359 
of variants within genetic loci containing a discordant association signal66,77 and performed multi-trait 360 
colocalization with Hyprcoloc78. We considered an association signal colocalized for multiple traits if 361 
Hyprcoloc computed a posterior probability for both body fat distribution traits (WC, HC, WHR, and 362 
WHRadjBMI) as well as for T2D or T2DadjBMI. 363 

Fine-mapping Analysis. We performed variable selection in multiple regression as implemented in the R 364 
package SuSiE84. This method implements the sum of single-effects models to fine-map the causal variant(s) in 365 
a locus. Using the T2DadjBMI and WHRadjBMI GWAS summary statistics and the 1000 Genomes LD data, 366 
we performed fine-mapping of loci containing a genetic variant associated with discordant effects on 367 
T2DadjBMI and WHRadjBMI. We used the default flag options in SuSiE and performed a sensitivity analysis 368 
of the results to a range of priors. We selected causal variants with a PPH4 greater than 0.70. 369 

GWAS-QTL Colocalization Analysis. We obtained expression quantitative trait locus (eQTL) data from 370 
the Genotype-Tissue Expression (GTEx) for 49 tissues85, the Stockholm-Tartu Atherosclerosis Reverse 371 
Networks Engineering Task (STARNET) cohort for 6 tissues86, and the Metabolic Syndrome in Men 372 
(METSIM) for subcutaneous adipose tissue39. We also obtained subcutaneous adipose tissue splice QTL 373 
(sQTL) results from the METSIM cohort. Data sources and further information are detailed in (Figure 2 – 374 
source data 2). We extracted the QTL data for each gene or transcript within 1Mb of a discordant locus start or 375 
end site and independently colocalized with the T2DadjBMI and WHRadjBMI GWAS using Coloc.abf and 376 
Summary-Based Mendelian Randomization (SMR). When implementing Coloc.abf, we considered a signal to 377 
be colocalized if PPH4 was greater than 0.50 (a threshold used for GWAS-QTL colocalization in admixed 378 
populations87). We repeated the analysis in SMR and used a false-discovery rate (FDR) threshold of 5% to 379 
control for false positives. We then performed a visual inspection of GWAS-QTL colocalization of plots 380 



generated by LocusCompare. If a GWAS-QTL colocalization met these criteria, the proximal gene was termed 381 
an effector Gene (eGene). 382 

fGWAS Annotation Enrichment analysis. We used the functional GWAS (fGWAS)88 command-line tool 383 
to compute the enrichment of associations in particular genomic and epigenomic regions. We first obtained the 384 
chromosome and base-pair position of each variant in the 99% credible set from each of the 79 colocalized loci. 385 
We mapped the SNPs to their placement in genomic regions using bed files. We used bed files from tissue-386 
specific chromatin-state data (adipose, liver, pancreatic islet, and skeletal muscle) and genome-level coding 387 
region annotations, and mapped SNPs to their presence in these regions. From these maps, we performed 388 
enrichment analysis with the complete model of all annotations with the -fine and -xv flags on fGWAS. We 389 
used the natural log of the Bayes Factor of the colocalization test and computed the enrichment of SNPs for 390 
presence in coding regions to genetic and epigenetic annotations. 391 

Tissue of Action Analysis. We conducted tissue-of-action (TOA) score analysis using the credible set of 392 
SNPs from each of the 79 colocalized loci. TACTICAL computes the TOA score with the SNP-level Bayesian 393 
probabilities, the SNP annotation maps, and the annotation enrichment scores. We used the Coloc.abf PPH4 394 
scores for the SNP-level Bayesian probability, the fGWAS annotation enrichment scores, and the SNP 395 
annotation maps to compute the tissue of action score at all colocalized loci. We separated independent 396 
association signals in the same loci (LD < 0.5) with HaploReg81. With TACTICAL29, we integrated the credible 397 
set of SNPs with the enrichment for genome-level and tissue-specific annotations. We used the default tissue 398 
classification thresholds of .20 to classify signals as belonging to a particular TOA and less than .10 difference 399 
to classify signals as sharing TOA assignments between multiple tissues.  400 

Gene Expression and Phenotype Correlation Analysis. For each eGene, we computed the biweight 401 
midcorrelation and its significance, as implemented by the Weighted Genetic Coexpression Network Analysis 402 
(WGCNA) package89, between gene expression with metabolic phenotypes measured in the METSIM cohort40. 403 
We controlled for false positives with a 5% FDR threshold as implemented by the q-values package in R90. 404 

Adipogenesis Gene Expression Dynamics Analysis. We obtained Simpson-Golabi-Behmel Syndrome 405 
(SGBS) preadipocyte adipogenesis time series gene expression data from GEO (accession number 406 
GSE76131)47. We evaluated the dynamic expression of each adipose tissue eGene by fitting the gene expression 407 
over time to a linear model and applying the likelihood ratio test (LRT) to compare the time-dependent models 408 
to time-independent null models. We considered an eGene to be dynamically expressed in adipogenesis if the p-409 
value of the LRT was less than 0.05.  410 



DATA AVAILABILITY 411 
Our analysis pipeline is publicly available on GitHub (https://github.com/aberrations/predicting-functional-412 
mechanisms-discordant-loci). All source data used in our analyses are detailed in source data 1-4.413 



FIGURE CAPTIONS 414 
Figure 1. Analysis summary and discordant variant characteristics. (A) Summary of analysis pipeline and 415 
generated results. Details of data sources are available in Supplementary file 1. (B) Effect size (WHRadjBMI) 416 
and odds ratio (T2DadjBMI) of lead genetic variant at discordant association signals. (C) Phenome-wide 417 
association study (PheWAS) of lead discordant genetic variant effect sizes on glycemic and anthropometric 418 
traits. From left to right: random glucose (RG), fasting glucose (FG), FG adjusted for body mass index (BMI) 419 
(FGadjBMI), fasting insulin adjusted for BMI (FIadjBMI), glycated hemoglobin (HBA1C), pancreatic fat 420 
percentage (PF), trunk fat ratio (TFR), visceral adipose tissue (VAT), VAT adjusted for BMI and height 421 
(VATadjBMIHeight), VAT to abdominal subcutaneous adipose tissue (VATtoASAT), VAT to gluteofemoral 422 
fat (VATtoFGAT), waist circumference, waist circumference adjusted for BMI (WCadjBMI), waist-to-hip ratio 423 
(WHR), and BMI. (D) Variant effect prediction of 99% credible set variants in discordant genetic loci. 424 
The online version of this article includes the following source data for figure 1: Source data 1.  425 
Genetic, transcriptomic, and epigenomic data sources in Figure 1. 426 
 427 
Figure 2. Predicting functional tissues and effector genes at discordant loci. (A) Tissue-specific enrichment of 428 
chromatin states of variants in the 99% credible set of colocalized variants. (B) Tissue of action scores for 429 
association signals in the five discordant loci. Orange coloration indicates predicted adipose tissue of action at 430 
the locus, and blue coloration indicates shared tissue of action assignment at the locus. (C) Summary table of 431 
the expression quantitative trait loci (eQTL) and splicing QTL (sQTL) colocalizations with waist- to- hip 432 
circumference adjusted for the body mass index (WHRadjBMI) and T2DadjBMI for discordant loci. The 433 
expression effect direction is with respect to the protective type 2 diabetes allele. (D) Expression of predicted 434 
effector genes in discordant loci across cell types. From left to right: adipocyte progenitor stem cells (ASPC), 435 
lymphatic endothelial cells (LEC), smooth muscle cells (SMC), and natural killer cells (nk). Data was obtained 436 
from Emont et al., 2022.  437 
The online version of this article includes the following source data for figure 2: Source data 1.  438 
Genetic, transcriptomic, and epigenomic data sources used in Figure 2. 439 
 440 
Figure 3. Predicted physiological and cellular effects of effector genes (eGenes) on metabolic phenotypes and 441 
adipogenesis. (A) Biweight midcorrelation of adipose tissue eGenes expression with metabolic phenotypes 442 
(false discovery rate [FDR] <5%). From left to right: Homeostatic model assessment of insulin resistance 443 
(HOMA-IR), high-density lipoproteins (HDL), low-density lipoproteins (LDL), interleukin-1 receptor agonist 444 
(IL1RA), C- reactive protein (CRP). (B) Dynamic expression of adipose tissue eGenes over 16-day 445 
adipogenesis time course in Simpson-Golabi- Behmel syndrome (SGBS) cells. We performed the likelihood 446 
ratio test (LRT) to evaluate if each gene was dynamically expressed over the time course. The p-value of the 447 
LRT is included.  448 
The online version of this article includes the following source data for figure 3: Source data 1.  449 
Genetic, transcriptomic, and epigenomic data sources in Figure 3. 450 
 451 
 452 
Figure 4. Predicted model of effects associated with T allele at rs6860588. (A) β of the T allele of discordant 453 
variant rs6860588 with respect to waist-to-hip circumference adjusted for the body mass index (WHRadjBMI), 454 
T2DadjBMI, and colocalized effector genes (eGenes). (B) Summary of associations with T allele at rs6860588. 455 
(C) Integrated model reconciling metabolic discordance with eGene-associated phenotypes in two tissues of 456 
action. Created with BioRender.com. The online version of this article includes the following source data and 457 
figure supplement(s) for figure 4: Source data 1. Genetic, transcriptomic, and epigenomic data sources in Figure 458 
4 and Figure 4—figure supplements 1 and 2 . Figure supplement 1. Discordant variant rs6860588 is associated 459 
with pleiotropic effects on gene regulation in multiple tissues. Figure supplement 2. Discordant variant 460 
rs6752964 is associated with pleiotropic effects on gene regulation in multiple tissues.  461 



SUPPLEMENTARY FIGURE CAPTIONS 462 
Figure 4-figure supplement 1. Discordant variant rs6860588 is associated with pleiotropic effects on gene 463 
regulation in multiple tissues. Manhattan plot of associations at the 5q21.1 locus containing lead variant 464 
rs6860588 for (A) waist-to-hip circumference adjusted for the body mass index (WHRadjBMI) genome-wide 465 
association studies (GWAS), (B) T2DadjBMI, (C) subcutaneous adipose tissue (SAT) expression of GIN1, (D) 466 
SKM expression of PAM, (E) SAT expression of PPIP5K2, (F) SAT expression of PAM splice variant that 467 
skips exon 14, (G) SAT expression of canonical PAM splice junction between exons 13 and 14, and (H) SAT 468 
expression of canonical PAM splice junction between exons 14 and 15. 469 
 470 
Figure 4-figure supplement 2. Discordant variant rs6752964 is associated with pleiotropic effects on gene 471 
regulation in multiple tissues. LocusCompare plot of associations with rs6752964 for (A) waist-to-hip 472 
circumference adjusted for the body mass index (WHRadjBMI) genome-wide association studies (GWAS) with 473 
T2DadjBMI GWAS, (B) T2DadjBMI GWAS with adipose tissue expression quantitative trait loci (eQTL), and 474 
(C) WHRadjBMI GWAS with adipose tissue eQTL. (D) The proposed model reconciles the metabolic 475 
discordance observed in 2p21 with the associated lead variant rs6752964. Created with BioRender.com.476 
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