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Abstract Computational models starting from large ensembles of evolutionarily related protein 
sequences capture a representation of protein families and learn constraints associated to protein 
structure and function. They thus open the possibility for generating novel sequences belonging to 
protein families. Protein language models trained on multiple sequence alignments, such as MSA 
Transformer, are highly attractive candidates to this end. We propose and test an iterative method 
that directly employs the masked language modeling objective to generate sequences using MSA 
Transformer. We demonstrate that the resulting sequences score as well as natural sequences, for 
homology, coevolution, and structure- based measures. For large protein families, our synthetic 
sequences have similar or better properties compared to sequences generated by Potts models, 
including experimentally validated ones. Moreover, for small protein families, our generation 
method based on MSA Transformer outperforms Potts models. Our method also more accurately 
reproduces the higher- order statistics and the distribution of sequences in sequence space of natural 
data than Potts models. MSA Transformer is thus a strong candidate for protein sequence genera-
tion and protein design.

Editor's evaluation
This important study proposes a method to sample novel sequences from a protein language model 
that could have exciting applications in protein sequence design. The claims are supported by a 
solid benchmarking of the designed sequences in terms of quality, novelty and diversity.

Introduction
Designing new proteins with specific structure and function is a highly important goal of bioengi-
neering. Indeed, it can allow to tune their stability or their biochemical properties, including their 
enzymatic activities, enabling important medical applications. The search for novel proteins is diffi-
cult due to the huge size of protein sequence space: for instance, there are 20100 different possible 
sequences for a short protein domain with 100 amino acids. Furthermore, only a small fraction of 
this space comprises sequences that do fold, as demonstrated by experiments studying random 
sequences (Socolich et al., 2005), and by theoretical arguments based on the physics of disordered 
systems (Bialek, 2012). De novo or rational protein design, which starts with target three- dimensional 
structures and physico- chemical potentials, can generate proteins which are not in a known protein 
family (Dahiyat and Mayo, 1997; Kuhlman et al., 2003; Liang et al., 2009), but is generally restricted 
to small proteins (Rocklin et al., 2017). Conversely, directed evolution allows to perform a local search 
of sequence space, but generally remains limited to the vicinity of a natural sequence (Arnold, 2018).
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Generative computational models that build on the breadth of available natural protein sequence 
data, and capture a representation of protein families, now offer great alternatives that can allow to 
sample novel sequences belonging to protein families. In particular, Potts models, or DCA models 
(Weigt et  al., 2009; Morcos et  al., 2011; Marks et  al., 2011; Ekeberg et  al., 2013), which are 
pairwise maximum entropy models trained to reproduce the one- and two- body statistics of the 
sequences of a family, allow direct sampling from a probability distribution modeling this family (Figli-
uzzi et al., 2018), and have been used successfully for protein design (Russ et al., 2020). Variational 
autoencoders are deep learning models which also allow sampling, and they have been shown to 
successfully produce functional proteins (Hawkins- Hooker et al., 2021a), although their statistical 
properties appear to have a lower quality than with Potts models (McGee et al., 2021).

Protein language models are deep learning models based on natural language processing 
methods, especially attention (Bahdanau et al., 2015) and transformers (Vaswani et al., 2017). They 
are trained on large ensembles of protein sequences, and capture long- range dependencies within a 
protein sequence (Alley et al., 2019; Elnaggar et al., 2021; Rives et al., 2021; Rao et al., 2021b; 
Vig et al., 2021; Madani et al., 2020; Madani et al., 2021; Rao et al., 2021a). These pre- trained 
models are able to predict structure in an unsupervised way (Rao et al., 2021b), either taking as input 
a single sequence (Rives et al., 2021) or a multiple sequence alignment (MSA) (Rao et al., 2021a), 
potentially by transferring knowledge from their large training set (Bhattacharya et al., 2020; Bhat-
tacharya et al., 2022). The great success of supervised protein structure prediction by AlphaFold 
(Jumper et al., 2021) is partly based on the use of transformers. It is therefore of strong interest to 
assess the generative ability of protein language models, and recent works show that this has high 
potential (Madani et al., 2021; Johnson et al., 2021; Hawkins- Hooker et al., 2021b; Ferruz et al., 
2022; Hie et al., 2022).

Correlations in amino- acid usage that can be observed between the columns of MSAs of homol-
ogous proteins (Casari et al., 1995; Lapedes et al., 1999; Dunn et al., 2008) were experimentally 
demonstrated to be highly important to generate functional synthetic proteins (Socolich et al., 2005; 
Bialek and Ranganathan, 2007). The importance of pairwise coevolution signals was then corrob-
orated by the success of Potts models at predicting structural contacts (Weigt et al., 2009; Marks 
et al., 2011; Morcos et al., 2011; Sułkowska et al., 2012; Ekeberg et al., 2013), analyzing muta-
tional effects (Dwyer et al., 2013; Cheng et al., 2014; Cheng et al., 2016; Figliuzzi et al., 2016), 
protein evolution (de la Paz et al., 2020) and conformational changes (Morcos et al., 2013; Malin-
verni et al., 2015), designing proteins (Russ et al., 2020), and predicting protein–protein interaction 
partners (Bitbol et al., 2016; Gueudré et al., 2016; Cong et al., 2019; Green et al., 2021). Protein 
language models that take MSAs as input (Rao et al., 2021a; Jumper et al., 2021) are able to directly 
exploit this covariation signal, and are thus particularly interesting candidates for protein design. Thus 
motivated, we focus on MSA Transformer (Rao et al., 2021a), a protein language model which was 
trained on MSAs using the masked language modeling (MLM) objective, without additional super-
vised training – by contrast to AlphaFold (Jumper et al., 2021). We ask how the generative properties 
of MSA Transformer compare to those of Boltzmann machine DCA (bmDCA) (Figliuzzi et al., 2018; 
Russ et al., 2020), a state- of- the- art generative Potts model.

We propose and test a generating method that directly uses the MLM objective in an iterative way 
to generate sequences using MSA Transformer. Using homology, coevolution, and structural scores, 
we demonstrate that the sequences generated by this method score as well as natural sequences. 
We further show that this good performance is not restricted to synthetic sequences that are very 
similar to natural sequences. For large protein families, our synthetic sequences have homology and 
structure- based scores as good as or better than sequences generated by bmDCA, and have similar 
properties to experimentally validated bmDCA- generated sequences. Moreover, for small protein 
families, our generation method based on MSA Transformer outperforms bmDCA, by providing 
synthetic sequences that score well without being extremely similar to natural ones. However, we 
find that bmDCA better reproduces the one- and two- body statistics of the natural MSAs than MSA 
Transformer when used with default parameters, consistently with its training objective. Interestingly, 
the opposite generally holds for higher- order statistics. MSA- Transformer–generated sequences also 
better reproduce the distribution of sequences in sequence space than bmDCA- generated ones. Our 
conclusion is that MSA Transformer is a strong candidate for protein sequence generation and protein 
design.

https://doi.org/10.7554/eLife.79854
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Results
An iterative masking procedure allows MSA Transformer to generate 
novel sequences with high scores
Can the protein language model MSA Transformer (Rao et al., 2021a) be used to generate sequences 
that are credible members of protein families? How do its generative abilities compare to Potts 
models inferred by bmDCA (Figliuzzi et al., 2018), a state- of- the- art generative DCA method which 
has been experimentally shown to generate functional proteins (Russ et al., 2020)? To address these 
questions, we developed and employed an iterative masking procedure to generate synthetic MSAs 
from natural MSAs of 14 different large Pfam protein families (see Appendix 1—table 5) and 7 small 
ones (see Appendix 1—table 6) with MSA Transformer, as described in ‘Using MSA Transformer to 
generate sequences via an iterative masking procedure’. We also generated synthetic sequences 
by Markov Chain Monte Carlo (MCMC) sampling from Potts models inferred from these MSAs by 
bmDCA, using two variants that differ by sampling temperature  T   and regularization strength  λ , 
matching, respectively, the default parameters employed in Figliuzzi et al., 2018, and some of those 
used in Russ et al., 2020, see ‘Sampling sequences from Potts models’ for details. For each protein 
family, we thus obtained four different MSAs of the same depth: the natural one, the one generated 
by our iterative masking procedure using MSA Transformer, and the two MSAs sampled from the 
inferred Potts model. To characterize each sequence, we consider four different scores (see ‘Scoring 
individual sequences’). First, we assess the quality of the generated sequences as homologs of the 
protein family of interest; we do this via the HMMER (http://hmmer.org) score of the hidden Markov 
model employed by Pfam to retrieve natural homologs. Second, we consider a score that accounts for 
coevolution between amino- acid sites, namely the statistical energy score from the Potts model fitted 
on the natural MSA. Third, we determine AlphaFold’s confidence in its determination of the three- 
dimensional structure of these sequences, via the predicted local- distance difference test (pLDDT) 
score. Fourth, to assess whether the predicted structures are similar to the native ones, we compute 
the root- mean- squared deviation (RMSD) between a reference experimental structure and the Alpha-
Fold predicted structures. The first three scores are such that higher values are better, while smaller 
RMSD values indicate that predicted structures are similar to the native ones. Together, these scores 
account for very different aspects of proteins, namely homology, coevolution and structure.

Let us first consider the 14 large protein families in Appendix 1—table 5, where MSAs are deep 
enough to accurately fit Potts models using bmDCA (Figliuzzi et al., 2018). Figure 1 shows that, 
for all these protein families, and for these four different scores, the sequences generated by MSA 
Transformer using our iterative masking procedure have scores that are at least as good as those of 
natural sequences, and better than those of sequences generated by bmDCA with default parameters 
(Figliuzzi et al., 2018), as confirmed by the Kolmogorov–Smirnov test (see Appendix 1—table 1). 
Decreasing the sampling temperature and the regularization strength used with bmDCA improves 
the statistical energy score as expected (Russ et al., 2020), but also other scores. These other scores, 
and most importantly our two structural scores, are similar or better for MSA- Transformer–generated 
sequences compared to those generated by bmDCA with non- default parameters. In particular, the 
median pLDDT score is larger for the former than for the latter in 11 protein families out of 14, by 
a margin larger than the standard deviation in 4 of them (see Appendix 1—table 2). These results 
demonstrate that MSA Transformer is a good candidate to generate synthetic sequences from protein 
families, and that our iterative masking procedure allows to perform such generation.

How different are these synthetic sequences from the natural ones? In particular, are the best- 
scoring sequences novel, or are they almost copies of natural sequences? In Figure 2 we show, for two 
example protein families (PF00072 and PF00153), the HMMER score and the DCA statistical energy 
score versus the sequence’s Hamming distance to its closest natural sequence in the natural MSA.

From the marginal distributions of the Hamming distances in Figure  2, we observe that MSA 
Transformer generates sequences with variable distances to their closest natural sequences, and that 
these distances are overall larger than those between natural sequences and their closest neighbors 
(excluding themselves). With default parameters, bmDCA generates sequences which are generally 
very different from the natural ones, but decreasing sampling temperature makes bmDCA- generated 
sequences more similar to natural ones and to each other, see Figure  1—figure supplement 1. 
Besides, the marginal distributions of scores illustrate the general observation made on Figure 1 and 
in Appendix 1—table 2 that MSA- Transformer–generated sequences have good scores. Moreover, 

https://doi.org/10.7554/eLife.79854
http://hmmer.org
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Figure 1. Comparison of homology, coevolution, and structure- based scores between natural sequences and sequences generated by MSA 
Transformer or Boltzmann machine DCA (bmDCA). For each Pfam family in Appendix 1—table 5, we compare a natural MSA from Pfam and three 
synthetic MSAs of the same depth. The first synthetic MSA was obtained using MSA Transformer via our iterative masking procedure, and the second 
and third ones were generated by a Potts model inferred from the natural MSA using bmDCA with two different pairs  (λ, T)  of regularization strength  λ  
and sampling temperature  T  . For each of the four scores described in ‘Scoring individual sequences’, we show the distributions of score values among 
sequences in each MSA as a violin plot. Higher score values are better for all scores except root- mean- squared deviation (RMSD) (bottom panel), where 
smaller values indicate a closer match to an experimental structure. Top panel: For each Pfam family, HMMER scores are divided by the highest score 
found in the natural MSA. Note that sequences below HMMER’s default homology detection score (E- value larger than 10), and whose HMMER score is 
thus 0, are not shown (the median over families of the fraction of such sequences is 2% for bmDCA (10−2, 1.00)- generated MSAs, while there are no such 
sequences among the MSA- Transformer–generated ones). Second panel: Statistical energy scores are defined as minus the bmDCA statistical energies. 
To accommodate the highly family- dependent ranges of these scores, for each Pfam family we show their values after shifting by the mean score in the 
natural MSA, and normalizing by the standard deviation of natural MSA scores. Third panel: AlphaFold’s predicted local- distance difference test (pLDDT) 
confidence scores. Bottom panel: RMSD of predicted structures with respect to the experimental structures in Appendix 1—table 5. Structural scores 
(pLDDT and RMSD) were computed on 200 randomly chosen sequences from each MSA. All kernel- smoothed histograms are normalized such that all 
violins have the same maximal width. Outliers (less than 1% in all cases) were discarded for legibility.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Multiple sequence alignment (MSA) diversity for each protein family and each generation method.

https://doi.org/10.7554/eLife.79854
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the plots in Figure 2 reveal that the MSA- Transformer–generated sequences featuring the highest 
HMMER scores tend to have large Hamming distances to natural sequences, that is to be truly novel 
(see also ‘Choosing parameters in the iterative masking procedure’). We observe these trends for most 
large protein families studied, and they are robust to using BLOSUM similarity scores (Henikoff and 
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Figure 2. Homology and coevolution scores versus distance to the natural multiple sequence alignment (MSA), for protein families PF00072 and 
PF00153. We show contour plots of the HMMER score and the statistical energy score (defined as minus the DCA statistical energy, shifted by its mean 
value in the natural MSA) versus the Hamming distance of each sequence to the closest natural sequence (which is not itself, in the case of natural 
sequences). Results are shown for natural sequences and for sequences generated using MSA Transformer and Boltzmann machine DCA (bmDCA) (the 
same two  (λ, T)  pairs as in Figure 1 are used for bmDCA). The lightest contours shown include 99% of the cumulative probability mass.

https://doi.org/10.7554/eLife.79854
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Henikoff, 1992) instead of Hamming distances. Therefore, our sequence generation method based 
on MSA Transformer is not reaching good scores by just reproducing natural sequences. Besides, the 
diversity of MSA- Transformer–generated MSAs, as measured by their effective depth (Equation 8), 
is only slightly smaller than that of natural MSAs (see Figure 1—figure supplement 1). Conversely, 
bmDCA at low temperature produces highly redundant sequences (Figure 1—figure supplement 
1), which are concentrated in specific regions of the score versus distance space in Figure 2. Indeed, 
sequence generation by bmDCA is then constrained to exploring the local minima of the Potts model 
energy landscapes.

Sequence generation by the iterative masking procedure is successful 
for small protein families
Accurately fitting Potts models requires deep and diverse MSAs, as evidenced by the strong depen-
dence of structural contact prediction by Potts models on MSA depth (Marks et al., 2011; Morcos 
et al., 2011). By contrast, MSA Transformer was trained on many MSAs, and is able to transfer knowl-
edge across protein families. It outperforms Potts models at unsupervised contact prediction most 
strongly for shallow MSAs (Rao et al., 2021a). How does sequence generation using our iterative 
masking procedure based on MSA Transformer compare to bmDCA in the case of small protein 
families?

To address this question, we generated synthetic MSAs starting from seven small families, using 
both our iterative masking procedure based on MSA Transformer and bmDCA with default parame-
ters and with low sampling temperature. Figure 3 reports all four scores discussed above in the case 
of these seven small families, listed in Appendix 1—table 6. We observe that MSA- Transformer–
generated sequences have similar HMMER scores and structural scores to natural sequences. MSA- 
Transformer–generated sequences also generally have better HMMER scores and structural scores 
than those generated by bmDCA with default parameters. While low- temperature bmDCA yields 
better statistical energy scores (as expected), and also gives HMMER scores and structural scores 
comparable to natural sequences, it in fact generates sequences that are almost exact copies of 
natural ones (see Figure 3, bottom row). By contrast, MSA Transformer produces sequences that are 
quite different from natural ones, and have very good scores. Thus, our method based on MSA Trans-
former is particularly promising in the tricky case of small protein families.

Higher-order statistics are better reproduced by MSA Transformer, 
while lower-order statistics are better reproduced by bmDCA
How well do synthetic MSAs generated by our method based on MSA Transformer, and by bmDCA, 
reproduce the statistics of amino- acid usage observed in natural MSAs? To address this question, we 
consider the r20 score (Haldane et al., 2018; McGee et al., 2021), which quantifies the statistical 
similarity of two datasets at various orders (see ‘Analyzing the statistics of MSAs’). We compute it 
between each of our synthetic MSAs and the corresponding natural one, for the 14 large protein fami-
lies in Appendix 1—table 5. We also present as reference an assumption- free null model, namely the 
r20 score between two subsets of each natural MSA. Figure 4 shows that bmDCA with default param-
eters is most often the best method at reproducing lower- order statistics, while MSA Transformer is 
the best at reproducing higher- order statistics, in all families considered. bmDCA at lower tempera-
ture performs more poorly at reproducing the statistics of natural MSAs than other methods, because 
low- temperature biases the sampling (bmDCA models are effectively learned at temperature  T = 1 ).

To have a more detailed insight into lower- order correlations, we estimate frequencies and infor-
mation theory measures, at the one-, two-, and three- body level, from our natural and synthetic MSAs, 
and compare them (see ‘Analyzing the statistics of MSAs’). Figure 4—figure supplement 1 shows that 
one- and two- body statistics are generally better reproduced by bmDCA with default parameters than 
by MSA Transformer, while results are more mixed for three- body statistics. Figure 4—figure supple-
ment 2 and Figure 4—figure supplement 3 show a comparison of second- and third- order connected 
correlations for PF00072 and PF00153. For PF00072, bmDCA reproduces better the second- but also 
third- order connected correlations of the natural data than MSA Transformer, while for PF00153, MSA 
Transformer reproduces the third- order connected correlations better than bmDCA, consistently with 
Figure 4. Potts models are pairwise maximum entropy models constrained to match the one- and 
two- body frequencies from natural MSAs. Thus, bmDCA is trained to reproduce these frequencies, 

https://doi.org/10.7554/eLife.79854
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Figure 3. Application of our sequence generation method based on MSA Transformer to small protein families. We consider seven small protein 
families, with natural MSAs that comprise from nine to a few hundreds of sequences, see Appendix 1—table 6. As in Figure 1, for each family, we 
compare the natural MSA and three synthetic MSAs of the same depth. In all cases, we show violin plots of the same four scores as for large families 
in Figure 1, as well as of the Hamming distance to the closest natural sequence, which is not itself in the case of natural sequences (‘Distance’). For 
the three smallest families (left panel; fewer than 40 sequences), we also show the score of each individual sequence as a swarm plot. Note that while 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.79854
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and achieves these objectives quite well, although the comparison to the null model in Figure 4—
figure supplement 2 and Figure 4—figure supplement 3 hints that further improvements remain 
possible, see Meshulam et al., 2021. MSA Transformer has entirely different training objectives, but, 
interestingly, it performs comparably at reproducing three- body statistics and is better at reproducing 
even higher- order statistics than bmDCA.

MSA Transformer captures well the distribution of sequences in 
sequence space
How are synthetic MSAs generated by MSA Transformer and bmDCA impacted by the heteroge-
neous repartition of natural sequences in sequence space? While natural protein sequences in a family 

we employ the same sampling temperatures  T   as in Figure 1 for Boltzmann machine DCA (bmDCA), here, we use regularization strength  λ = 10−2  
throughout, due to MSA shallowness (see ‘Sampling sequences from Potts models’).

Figure 3 continued

Figure 4. Similarity of statistics between synthetic and natural multiple sequence alignments (MSAs). To compare the statistics of synthetic and natural 
MSAs at various orders, we compute r20 scores (Haldane et al., 2018; McGee et al., 2021), and plot them versus the number of different MSA 
columns that are considered (see ‘Analyzing the statistics of MSAs’ for details). All families in Figure 5 are considered. For each of them, the reference 
MSA comprises either half of the natural MSA (with sequences selected uniformly at random), or 30,000 sequences from it if the natural MSA depth is 
larger than 60,000. The null model compares the other half of the natural MSA to this reference MSA. It yields an estimate of the expected r20 scores 
due only to finite- size effects in a model- free, purely data- driven way.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Ability of generated sequences to reproduce one-, two-, and three- body statistics.

Figure supplement 2. Two- and three- body connected correlations estimated from generated multiple sequence alignments (MSAs) versus the natural 
one, for family PF00072.

Figure supplement 3. Two- and three- body connected correlations estimated from generated multiple sequence alignments (MSAs) versus the natural 
one, for family PF00153.

https://doi.org/10.7554/eLife.79854


 Research article Computational and Systems Biology

Sgarbossa et al. eLife 2023;12:e79854. DOI: https://doi.org/10.7554/eLife.79854  9 of 28

have evolved from a common ancestor along a phylogeny, synthetic sequences do not have a real 
evolutionary history. However, as bmDCA and MSA Transformer are trained on natural data, they can 
capture phylogenetic correlations (Lupo et al., 2022). Besides, inferred Potts models are known to 
be impacted by phylogenetic correlations (Weigt et al., 2009; Marks et al., 2011; Qin and Colwell, 
2018; Vorberg et  al., 2018; Rodriguez Horta et  al., 2019; Rodriguez Horta and Weigt, 2021; 
Marmier et al., 2019; Colavin et al., 2022; Gerardos et al., 2022; Dietler et al., 2023).

To analyze the overall distribution of MSA sequences in sequence space, we first perform a prin-
cipal component (PC) analysis of one- hot encoded MSAs, and focus on the top two PCs (Figliuzzi 
et al., 2018) (see ‘Characterizing the distribution of sequences in MSAs’). Figure 5 shows the distribu-
tion of sequences in the space spanned by these top two PCs, for natural and synthetic MSAs, in the 
cases of PF00072 and PF00153. We observe that MSA Transformer is able to generate sequences with 
a distribution in sequence space that is very similar to that of the natural MSA. Conversely, bmDCA 
captures the overall shape of this distribution, but appears to smooth it compared to the natural data 
with default parameters and to restrict to sparse regions of the sequence space at low temperature, 
consistently with our previous results. These observations are general across all the deep MSAs we 
considered (see Figure 5—figure supplement 1 and Figure 5—figure supplement 2). Note that a 
limitation of this analysis is that the top two PCs explain a small fraction of the variance in all cases 
(see Figure 5).

Next, to assess whether generated sequences most resemble natural ones that are well repre-
sented in their family or, rather, rare ones, we consider the closest natural sequence to each synthetic 
sequence, and count the neighbors of this natural sequence in the natural MSA (see ‘Characterizing 
the distribution of sequences in MSAs’). Figure 5—figure supplement 3 compares the distribution 

Figure 5. Distribution of sequences in sequence space, for families PF00072 and PF00153. We show the distribution of one- hot encoded natural and 
synthetic sequences projected in the subspace of the first two principal components of the natural multiple sequence alignment (MSA). The same axis 
limits are used within one family, except for Boltzmann machine DCA (bmDCA) (10−3, 0.33) in the case of PF00072. Note that the fraction of the total 
variance explained by the first two principal components of each MSA is less than 4% for all families and all generation methods.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Distribution of sequences in sequence space for all large protein families in our dataset (part 1).

Figure supplement 2. Distribution of sequences in sequence space for all large protein families in our dataset (part 2).

Figure supplement 3. Neighbors of natural and synthetic sequences, for families PF00072 and PF00153.

Figure supplement 4. Comparing phylogenies inferred from natural and generated multiple sequence alignments (MSAs) for families PF00072 and 
PF00153.

https://doi.org/10.7554/eLife.79854
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of these numbers of neighbors for natural sequences and for the closest natural sequences to gener-
ated sequences, in the cases of PF00072 and PF00153. It shows that bmDCA generates sequences 
similar to natural sequences with fewer neighbors than typical in the natural data. Conversely, MSA 
Transformer generates sequences whose closest natural sequences have a distribution of number of 
neighbors similar to that of the natural MSA. This suggests that our generation method based on 
MSA Transformer tends to sample from denser regions of the sequence space than bmDCA, while not 
reproducing natural sequences (see also Figure 2 and ‘Choosing parameters in the iterative masking 
procedure’).

Finally, to analyze in more detail the apparent relatedness of generated sequences, and compare 
it to real phylogenetic relationships in natural sequences, we infer phylogenetic trees from each 
synthetic and natural MSA, and analyze the eigenvalue spectrum of their modified graph Lapla-
cian (MGL) to compare them (Lewitus and Morlon, 2016) (see ‘Characterizing the distribution of 
sequences in MSAs’). Figure  5—figure supplement 4 compares the density of these eigenvalue 
spectra for natural and synthetic MSAs regarding families PF00072 and PF00153. The skewness and 
the position of such distributions are indicators of the topology of the tree. In particular, distributions 
with negative skewness (right unbalanced) or which are shifted to the right, correspond to ‘tippy’ 
trees, while the opposite case corresponds to ‘stemmy’ trees (Lewitus and Morlon, 2016), which 
feature an accumulation of recent speciation events (short leaves length) (Molina‐Venegas, 2021). In 
this light, Figure 5—figure supplement 4 shows that both MSA Transformer and low- temperature 
bmDCA generate sequences with an apparent phylogeny that is more stemmy than the natural one, 
while bmDCA with default parameters yields a slightly more tippy tree. This is consistent with our 
observations regarding sequence diversity, which is larger than in natural data for bmDCA with default 
parameters, slightly smaller than in natural data using MSA Transformer and much lower using low- 
temperature bmDCA (see Figure 1—figure supplement 1).

Comparison with published experimental datasets
How do the sequences generated by our method based on MSA Transformer compare to published 
protein design experimental datasets? Recently, sequences sampled from a bmDCA Potts model 
of the chorismate mutase protein family were experimentally demonstrated to be functional (Russ 
et al., 2020). In Figure 6—figure supplement 1, we show plots analogous to those in Figure 2, plus 
additional ones for our two structural scores (pLDDT and RMSD), in the case of chorismate mutase. 
This allows a detailed comparison between the sequences we generate using MSA Transformer and 
the sequences designed in Russ et al., 2020 using bmDCA with a combination of different tempera-
tures and regularization strengths. We find that our method based on MSA Transformer produces 
sequences that score as well as artificial sequences which have been tested experimentally. Besides, 
we obtained these results without fine- tuning the parameters of our generative procedure to this 
family, while several specific combinations of parameters were used in Russ et al., 2020.

To further compare our generated sequences to those tested experimentally in Russ et  al., 
2020, we consider relative enrichment, which is the experimental score used in Russ et al., 2020 
to assess the function of chorismate mutase enzymes. This score was measured in Russ et  al., 
2020 for all sequences in the natural MSA and for sequences generated with bmDCA. We estimate 
the expected relative enrichment of our generated sequences as the relative enrichment of the 
closest natural sequence. To test our estimation procedure, we estimate the relative enrichments 
of the bmDCA- generated sequences from Russ et al., 2020, and we compare them to the exper-
imentally measured values. We focus on the top third of sequences in terms of pLDDT scores, 
as it was shown in Malbranke et al., 2021 that good structural scores help to select functional 
sequences. Figure  6 shows that in this ensemble, sequences with a high (resp. low) estimated 
score have a high (resp. low) experimental score too. Next, we compare the distributions of esti-
mated relative enrichment for sequences generated using our method based on MSA Transformer 
and for the bmDCA- generated sequences from Russ et al., 2020. Figure 6 shows that they are 
quite similar to each other. This holds both when focusing on the top third of sequences in terms 
of pLDDT scores for each generation method, and when considering all generated sequences. 
Furthermore, in the high- pLDDT case, these distributions are quite similar to the distribution of 
measured relative enrichment for bmDCA- generated sequences. Importantly, a similar fraction 
of MSA- Transformer–generated sequences and of bmDCA- generated sequences have a large 
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estimated relative enrichment. This suggests that our method based on MSA Transformer should 
be able to generate functional sequences.

While the data from Russ et al., 2020 is particularly well suited to retrospectively evaluate our 
sequence generation method, we also propose a comparison of the distributions of scores based on 
experimental deep mutational scans (DMS) for protein families PF00595 (McLaughlin et al., 2012) 
and PF13354 (Stiffler et al., 2015). We compute these DMS scores for each natural and synthetic 
sequence, by summing the experimentally measured effects of the relevant single- point mutations 
with respect to the reference sequence of the experimental studies. Figure 6—figure supplement 
2 shows the distribution of the DMS scores of natural and generated sequences for these two fami-
lies. Our sequence generation method based on MSA Transformer better reproduces the DMS score 
distribution of natural sequences than bmDCA, and generates sequences with better average DMS 
scores. Despite the potential limitations of our DMS scores, for example their additivity, these results 
corroborate our other findings and provide further encouragement for our sequence generation 
method based on MSA Transformer.
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Figure 6. Comparison of our generated sequences to those experimentally tested in Russ et al., 2020, for the chorismate mutase family. Left: The 
estimated relative enrichment (r.e.) scores of the Boltzmann machine DCA (bmDCA)- generated sequences that are in the top 33% in terms of predicted 
local- distance difference test (pLDDT) scores are plotted versus their experimentally measured counterparts from Russ et al., 2020. We estimate the 
expected r.e. of these generated sequences as the r.e. of the closest natural sequence measured in Russ et al., 2020. We observe that high estimated 
r.e. is associated with high measured r.e., as 71% of sequences with estimated r.e. > 0.4 (green) also have measured r.e. > 0.4. Note that in the top 
marginals (showing the measured r.e. for bmDCA- generated sequences), the green and yellow histograms are stacked on top of each other. Thus, the 
stacked histogram shows the distribution of all measured r.e. values for bmDCA- generated sequences that are in the top 33% in terms of pLDDT scores. 
Top right: Overlaid histograms of estimated r.e. are shown for our MSA- Transformer–generated sequences and for the bmDCA- generated ones from 
Russ et al., 2020, restricting in both cases to the sequences with top 33% pLDDT scores. Bottom right: Same as top right, but considering all generated 
sequences.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Homology, coevolution, and structural scores versus distance to the natural multiple sequence alignment (MSA), for the 
chorismate mutase family.

Figure supplement 2. Deep mutational scanning (DMS) scores for families PF00595 and PF13354.
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Discussion
In this work, we proposed an iterative masking procedure which directly exploits the MLM objective 
of protein language models to generate sequences using the MSA- based neural language model 
MSA Transformer. We found that these sequences score as well as natural ones on three very different 
aspects, namely homology, coevolution, and structure. For large protein families, our synthetic 
sequences have homology and structure- based scores at least as good as bmDCA- generated 
sequences, and have similar properties to experimentally validated ones. Moreover, our generation 
method based on MSA Transformer is less limited by shallow MSAs than bmDCA, and is thus partic-
ularly promising for small protein families. Besides, MSA- Transformer–generated sequences better 
reproduce the higher- order statistics and the distribution of sequences in sequence space of natural 
data than bmDCA- generated ones. Conversely, bmDCA, with default parameters, better reproduces 
first- and second- order statistics, consistently with its training objective.

Our results are highly promising for sequence generation by MSA- based protein language models, 
and we hope that they will motivate further studies, especially experimental tests. They also show 
that protein deep learning models based on the MLM objective have great generative potential, 
despite not being obvious generative models. More generally, our results reinforce the new promising 
‘coevolution- driven’ protein design approach of learning from sequences of evolutionarily related 
proteins the constraints associated to protein structure and function. This concept differs from struc-
ture- and physics- based de novo design (Dahiyat and Mayo, 1997; Kuhlman et al., 2003; Liang 
et al., 2009), and from the new possibility to use supervised deep learning models able to accurately 
predict protein structures (Jumper et  al., 2021; Baek et  al., 2021; Chowdhury et  al., 2023) for 
structure- driven sequence generation (Anishchenko et  al., 2021). One can view the coevolution- 
driven approach as intermediate between structure- based approaches and directed evolution ones 
(Arnold, 2018). The coevolution- driven approach was recently experimentally validated in the case of 
bmDCA Potts models, which capture pairwise coevolution patterns in MSAs (Russ et al., 2020), and 
for variational autoencoders (Hawkins- Hooker et al., 2021a; McGee et al., 2021). Protein language 
models trained on MSAs provide state- of- the- art unsupervised contact prediction and are able to 
capture coevolutionary patterns in their tied row attentions (Rao et al., 2021a), and capture phylo-
genetic relationships in column attentions (Lupo et al., 2022). This makes them ideal candidates to 
generate new protein sequences from given families. However, contrary to Potts models and vari-
ational autoencoders (McGee et  al., 2021), they do not allow direct sampling from a probability 
distribution over sequences (Goyal et  al., 2021). Here, we demonstrated the power of a simple 
generation method directly based on the MLM objective used for the training of MSA- based protein 
language models. It differs from using a decoder, which, though designed to perform autoregressive 
generation of amino acids to form a new sequence, requires training a full encoder–decoder model 
and learning a parametric function mapping an MSA to a distribution over its sequences (Hawkins- 
Hooker et al., 2021b). We instead directly employed the representation of protein families captured 
by the self- supervised model MSA Transformer to generate sequences. More sophisticated sampling 
methods could be considered along this line (Goyal et al., 2021), but our minimal approach already 
gives very promising results.

We have focused on a large protein language model and compared it to the simplest model 
capturing coevolution, namely the Potts model, but we note that interpretable models of interme-
diate complexity such as restricted Boltzmann machines (Tubiana et al., 2019) could also be explored 
for coevolution- driven protein design. All these methods rely on MSAs; this is very useful to capture 
coevolution, but also means that one has to rely on potentially imperfect alignments. Thus, starting 
from alignment- free methods (Bileschi et  al., 2022; Shin et  al., 2021; Madani et  al., 2021) also 
constitutes a promising direction.

Methods
Using MSA Transformer to generate sequences via an iterative masking 
procedure
Iterative masking procedure
In order to generate new sequences using MSA Transformer, we directly leverage the model’s ability to 
assign, to arbitrary masked residue positions, a probability for each of the possible amino- acid tokens, 
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given by the softmax of the model’s output logits (Wang and Cho, 2019; Goyal et al., 2021; Rao 
et al., 2021b). Indeed, in its pre- training, MSA Transformer applies the MLM objective to a training 
set of 26 million MSAs (Rao et al., 2021b). For this, it minimizes a pseudolikelihood loss, which reads, 
for an MSA  M , and a version  M̃   of  M  in which some amino acids (those in a ‘mask’) are masked:

 
LMLM(M, �M; θ) = −

∑
(m,i) ∈ mask

log p(xm,i | �M; θ) .
  

(1)

Here,  xm,i  denotes the amino acid at the  i th residue position in the  m th sequence of  M , and  θ  denotes 
all model parameters. For each position  i  in each sequence  m , the model outputs one value (‘logit’) 
per amino- acid/gap symbol, and softmax- normalizing all values from this location in the MSA yields 
the conditional probabilities  p(xm,i |M̃; θ)  in Equation 1, which are then summed over the subset of 
masked MSA locations.

We propose an iterative masking procedure (see Figure 7) which, given an arbitrary MSA  M  of 
natural sequences, proceeds as follows:

1. If necessary, subsample  M  to obtain an input MSA  M′  for MSA Transformer. The depth of 
 M′  is chosen given the memory footprint of MSA Transformer. In practice, we use input MSAs 
containing 600 sequences picked uniformly at random from our natural MSA. (During training, 
the authors of Rao et al., 2021a kept  LM < 214 , where  L  is sequence length and  M   is MSA 
depth. However, we found that during inference we can use 217 tokens on an Nvidia V100 
32GB GPU.) Note that, for large protein families, multiple 600- sequence MSAs obtained using 
the procedure presented here are then combined into a single MSA of the same depth as the 
natural one (see below).

2. Randomly mask each residue of  M′  with a masking probability  p  , otherwise leave it unchanged. 
In practice, we choose  p = 0.1  (see ‘Choosing parameters in the iterative masking procedure’).

3. Feed the masked MSA to the model, and fill each masked entry with the token with highest 
probability (obtained from the model’s output logits).

4. Repeat Steps 2–3 a number of times. In practice, we stop the algorithm after  I = 200  iterations.

As natural MSAs, we use Pfam full MSAs for 14 protein families, described in ‘Datasets’. For each 
natural MSA  M , we repeat the procedure above multiple times, sampling sequences each time from 
 M  without replacement to obtain a different input MSA  M′  in Step 1, until all the sequences in  M  
are used. Note that sequences remain aligned at all times during the procedure. Combining the MSAs 
resulting from all these batches then yields a synthetic MSA with the same depth as the natural one, 

VSH#LRTPLT-VRG
AS#-LRSPLTAI#T
TSH-F#TPLATI#S
VSH-L#APLRAIAN
#CHEFRNPL#NIA-
VAH-LKTPLTSI--
ASH#LRTPL#VIKT
LAH-LN#PLTA#AN

VSHELRTPLT-VRG
ASH-LRSPLTAIAT
TSH-FRTPLATI-S
VSH-LRAPLRAIAN
ACHEFRNPLANIA-
VAH-LKTPLTSI--
ASHELRTPLTVIKT
LAH-LNTPLTAIAN

MSA Transformer

Mask & Iterate

Figure 7. Iterative masking procedure to generate sequences using MSA Transformer. Here, the red hashtag (#) stands for a masked amino acid, while 
blue uppercase letters stand for predicted amino acids at the masked positions.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Evolution of mean scores during the iterative masking procedure, for family PF00153.

Figure supplement 2. Evolution of mean scores during the iterative masking procedure, for family PF00096.

Figure supplement 3. Evolution of mean scores during the iterative masking procedure, for family PF13354.

Figure supplement 4. Evolution of inferred contact maps during the iterative masking procedure, for family PF00153.
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which ensures that the statistical properties of the synthetic MSA are subject to the same magnitude 
of finite- size errors as those of the natural MSA.

Choosing parameters in the iterative masking procedure
Figure 7—figure supplement 1 illustrates, in the case of Pfam family PF00153, for different values of 
the masking probability  p , how different properties of the generated MSAs evolve with the number 
 I   of iterations in the iterative masking procedure. For  p < 0.5 , we observe a gradual divergence from 
the initial natural sequences (Figure 7—figure supplement 1A, B) and a simultaneous increase of 
scores (Figure 7—figure supplement 1C, D, see ‘Scoring individual sequences’ for definitions) and 
decrease of MSA diversity (Figure 7—figure supplement 1E), and then a saturation of these various 
measures, as  I   increases. Our choice  I = 200  is motivated by the fact that plateaus are reached at this 
point. However, the final values of all scores depend on  p . Figure 7—figure supplement 4 shows 
the contact maps inferred by MSA Transformer (using the logistic regression on tied row attentions 
trained in Rao et al., 2021a) from generated sequences, for various values of  I   and  p , in the case 
of family PF00153. We observe that the contact map characteristic of the protein family of interest 
gets gradually lost as  I   is increased for larger values of  p  (see Figure 7—figure supplement 1F and 
Figure 7—figure supplement 4). These issues when  p  is increased are understandable, given that 
the pseudolikelihood loss used for the MLM objective in MSA Transformer ignores dependencies 
between masked entries. We note that despite this, larger values of  p  yield overall better average 
HMMER scores (Eddy, 1998) and statistical energy scores (for  p < 0.5 ). Our choice of  p = 0.1  is moti-
vated by the fact that this value is close to that employed in the training of the model ( p ≈ 0.12 ) (Rao 
et al., 2021a), and that it better preserves contact maps. The product  pI   gives the average number of 
times that each amino acid of the MSA is changed during the generation process. With our choices, 
each amino acid is masked 20 times on average.

The behaviors observed in Figure 7—figure supplement 1 for PF00153 are generic across the 
protein families we studied, as can be seen in Figure 7—figure supplement 2 and Figure 7—figure 
supplement 3, which show the same data as in Figure 7—figure supplement 1 for Pfam families 
PF00096 and PF13354 (which have different sequence lengths). This demonstrates that our sequence 
generation method is robust. In particular, as the parameters  p = 0.1  and  I = 200  yield satisfactory 
convergence of MSA properties and preservation of contact maps in all cases, we used these param-
eters throughout, without any family- specific fine- tuning.

The sequences thus generated by our method do not coincide with natural ones. The fraction of 
MSA- Transformer–generated sequences which are identical to sequences in the input natural MSAs is 
below  5 × 10−4  for all large families considered, except three families with low diversity and/or very 
short sequence length (PF00096, PF00397, and PF00595).

Variants of the iterative masking procedure
In our algorithm, we mask tokens randomly throughout the input MSA. We also explored an alter-
native procedure where masking is restricted to the first sequence of the input MSA. Thus, all other 
sequences act as a context for the first sequence which is gradually modified. This can be done either 
with a fixed context, or by sampling different sequences from the natural MSA at each iteration to 
form a variable context. Note that the procedure with fixed context is reminiscent of the non- iterative 
one used in Meier et al., 2021 to compute DMS scores from MSA Transformer. For the same masking 
probability  p = 0.1  as in our standard procedure (note that fewer iterations are needed for conver-
gence, in practice  I = 20  suffices), the alternative procedure with fixed context yields sequences that 
are overall slightly less different from natural ones than the standard iterative masking procedure, 
while the opposite holds with variable context. Besides, both alternative procedures yield sequences 
with better HMMER scores, but worse statistical energy scores, than natural ones – see Appendix 1—
table 3. Finally, the two- and three- body statistics (defined in ‘Analyzing the statistics of MSAs’) of the 
natural MSA are less well reproduced using these alternative procedures than the standard one – see 
Appendix 1—table 3. We also note that these variants are computationally more demanding. In this 
context, we decided to focus on the standard iterative masking procedure.

There are also different ways of selecting the token to fill each masked position. We have chosen 
a greedy sampling method where the token with highest probability is selected. We also explored 
an alternative method where the new token to fill the masked position is chosen by sampling the 
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probability distribution given by the softmax of the logits, see Equation 1. This method allows to 
introduce a sampling temperature  T   into the softmax operation and compute the probability as 

 p = softmax(ξ/T) , where  ξ  is the logit vector. Note that the greedy method that we employ corre-
sponds to sampling at  T = 0 . We found that MSAs generated with higher values of  T   are farther from 
the corresponding natural MSAs, showing that increasing this sampling temperature promotes origi-
nality. However, they are of lower quality according to our HMMER and statistical energy scores, and 
reproduce the statistics of the natural data less well. These results, summarized in Appendix 1—table 
3, motivated us to mainly consider greedy sampling.

Finally, in our iterative masking procedure, we subsample the initial natural MSAs uniformly at 
random. We also tried diversity maximizing sampling (Rao et al., 2021a), but we found that random 
sampling gives slightly better results.

Sampling sequences from Potts models
To sample independent equilibrium sequences from Potts models, we used the strategy described 
in Lupo et al., 2022. Specifically, we fitted Potts models on each of our natural MSAs using bmDCA 
(Figliuzzi et al., 2018) (https://github.com/ranganathanlab/bmDCA; Figliuzzi and Barrat- Charlaix, 
2020). Using bmDCA is known to yield Potts models with good generative power (Figliuzzi et al., 
2018; Russ et al., 2020).

Consider a sequence of  L  amino- acid sites. We denote by  xi ∈ {1, . . . , q}  the state of site 

 i ∈ {1, . . . , L} , where  q = 21  is the number of possible states, namely the 20 natural amino acids and 
the alignment gap. The Potts model Hamiltonian of a sequence  x = (x1, . . . , xL)  reads (Weigt et al., 
2009; Cocco et al., 2018):

 
H(x) = −

L∑
i=1

hi(xi) −
L∑

j=1

j−1∑
i=1

eij(xi, xj) .
  

(2)

For each MSA  M  in Appendix 1—table 5, we inferred parameters  hi(xi)  and  eij(xi, xj)  by bmDCA 
(Figliuzzi et al., 2018; Russ et al., 2020). The Potts model probability distribution is then given by 
the Boltzmann distribution associated to the Hamiltonian  H   in Equation 2:

 
P(x) = e−H(x)/T

Z
,
  

(3)

where  Z   is a constant ensuring normalization and  T   is a parameter whose default value is 1. To 
generate a synthetic MSA from  M , we performed equilibrium MCMC sampling from the Potts model 
with Hamiltonian  H   in Equation 2. Specifically, we used the implementation in Lupo et al., 2022 of 
the Metropolis–Hastings algorithm, in which each step is a proposed mutation at a single amino- 
acid site. We started from a set of  M   randomly and independently initialized sequences, where  M   is 
the depth of  M , and made a total number  N   of Monte Carlo steps on each sequence. For each  M , 
suitable values for  N   are estimated by bmDCA during its training, to ensure that Metropolis–Hast-
ings sampling reaches thermal equilibrium after  N   steps when starting from a randomly initialized 
sequence (Figliuzzi et al., 2018). We thus used the value of  N   estimated by bmDCA at the end of 
training. This yielded, for each MSA in Appendix 1—table 5, a synthetic MSA of the same depth, 
composed of independent equilibrium sequences.

This procedure allows to tune the sampling temperature  T  , in a similar spirit as for MSA Trans-
former, cf. ‘Variants of the iterative masking procedure’. This amounts to tuning the selection strength. 
Recall that Potts models are inferred at  T = 1 , which is thus the default value. Using MCMC sampling 
as described above, we first generated synthetic MSAs at  T = 1 , and using regularization strength 
 λ = 10−2 . These correspond to the default parameters  (λ, T) , matching those employed in Figliuzzi 
et al., 2018, and allowing direct comparison with those results. Importantly, using sampling tempera-
ture  T = 1  means that the distribution learnt from natural data is directly sampled. However, it was 
found in Russ et al., 2020 that sequences generated at  T = 1  have worse statistical energy scores than 
natural sequences, due at least in part to high regularization, and that this can be corrected by lower- 
temperature sampling. Therefore, for completeness, we also considered all parameter combinations 

 (λ, T)  used in Russ et al., 2020 for PF00072. Appendix 1—table 4 shows that decreasing sampling 
temperature strongly improves the mean statistical energy score, as it should, and somewhat improves 
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HMMER scores and structural scores. However, this comes at the cost of decreasing MSA diversity 
and getting sequences substantially more similar to natural ones. It also strongly impairs the fitting of 
the one- and two- body statistics. The effect of changing regularization strength (at inference) appears 
to be more minor, but decreasing it allows to somewhat mitigate the loss of diversity associated to 
lowering temperature. In light of these results, and to make our comparison to bmDCA compre-
hensive, we used  (λ, T) = (10−3, 0.33)  (Russ et  al., 2020) in addition to  (λ, T) = (10−2, 1)  (Figliuzzi 
et al., 2018) throughout our analysis of deep MSAs. In the case of shallow MSAs (3), we employed 

 (λ, T) = (10−2, 0.33)  instead of  (λ, T) = (10−3, 0.33)  because shallow MSAs require stronger regulariza-
tion strengths.

Scoring individual sequences
We use different scores to compare natural and generated sequences.

First, HMMER scores (Eddy, 1998) are computed, for each sequence, from the Pfam profile Hidden 
Markov Models (HMM), employing the function hmmsearch from the HMMER Suite version 3.3.2 
(http://hmmer.org). HMMER scores are homology scores, which are in particular used in Pfam to 
search sequence databases for sequence homologs and to construct full MSAs starting from curated 
seed MSAs. Higher HMMER scores indicate better matches to the Pfam HMM.

Second, DCA statistical energy scores are computed for each sequence using the Potts model 
Hamiltonian  H   in Equation 2 with the couplings and the fields inferred by bmDCA on the natural MSA 
of the family of interest (see ‘Sampling sequences from Potts models’). The statistical energy score is 
then defined as the opposite of the statistical energy, that is  −H(x)  for a sequence  x , so that, here too, 
higher values mean better scores.

We also compute AlphaFold (Jumper et al., 2021) structural prediction confidence scores, that is 
pLDDT values. Given the computational cost, for each natural or generated MSA, we evaluate pLDDT 
values for a subset of 200 randomly sampled sequences.

Finally, we compute the root- mean- square deviation (RMSD) between a reference experimental 
structure of the family of focus (see list in Appendix 1—table 5) and the AlphaFold predicted struc-
tures, also for a subset of 200 randomly sampled sequences in each MSA.

Because AlphaFold takes MSAs as input, we compute these two structural scores using the whole 
natural MSA of the family of interest as context in all cases. In addition, for the protein family PF00072, 
we also used fully synthetic MSAs as input to AlphaFold. Structural scores are then very similar to 
those obtained using natural context (see Appendix 1—table 4).

Analyzing the statistics of MSAs
To compare the generated MSAs to the natural ones, we consider different statistical measures.

First, to analyze how faithfully the generated MSAs reproduce the statistics of the natural ones at 
various orders, we compute the r20 score (Haldane et al., 2018; McGee et al., 2021). Specifically, to 
obtain Figure 4, we analyze the frequency of subsequences spanning 2–10 non- contiguous columns. 
In each of 1000 randomly sampled sets of columns for each subsequence length, we compute the 
frequency of the 20 most frequent words in natural and synthetic MSAs of the family considered, and 
evaluate the Pearson correlation between these top 20 frequencies in the MSA of focus and those in 
a reference MSA. We then average these Pearson correlation values over all sets of 1000 columns, 
yielding the r20 score.

To further inspect low- order statistics, in each MSA, we compute the one- body frequencies of occurrence 
of each amino acid at each site, the two- body frequencies of each pair of amino acids at each pair of sites, 
and the three- body frequencies associated to triplets. We denote them by  fi(x) ,  fij(x, y) ,  fijk(x, y, z) , where  i , 
 j , and  k  denote sites, while  x ,  y , and  z  represent amino acids (see ‘Sampling sequences from Potts models’). 
We then estimate the second- and third- order connected correlations as:

 Cij(x, y) = fij(x, y) − fi(x)fj(y) ;  (4)

 Cijk(x, y, z) = fijk(x, y, z) − fij(x, y)fk(z) − fik(x, z)fj(y) − fjk(y, z)fi(x) + 2fi(x)fj(y)fk(z) .  (5)

We also compute the ‘plug- in’ estimates of the Shannon entropy of each site  Hi , and of the two- and 
three- body joint entropies  Hij  and  Hijk , from the frequencies. They yield the plug- in estimates of the mutual 
information  Iij  between two columns, and of the co- information  Iijk  between three columns:

https://doi.org/10.7554/eLife.79854
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 Iij = Hi + Hj − Hij ;  (6)

 Iijk = Hi + Hj + Hk − Hij − Hik − Hjk + Hijk .  (7)

Co- information is a measure of higher- order statistical dependencies (McGill, 1954; Timme et al., 
2014; Quax et al., 2017; Rosas et al., 2019), which generalizes mutual information to triplets of 
random variables, vanishes for independent variables, and reflects the balance between redundancy 
and synergy in these triplets (Williams and Beer, 2010; Rosas et al., 2016). A systematic finite- size 
error occurs when estimating entropies using the plug- in estimate from frequencies measured in finite 
datasets (Bialek, 2012), and it affects entropy- derived quantities such as mutual information and 
co- information. Here, we do not attempt to correct it. Rather, we only make comparisons between 
MSAs of the same length and depth, which are affected by the same finite- size errors.

Characterizing the distribution of sequences in MSAs
Another way of studying the properties of generated MSAs is to analyze the distribution of their 
sequences in sequence space, and to compare it to that of natural sequences in the same family.

First, to assess whether generated sequences most resemble natural ones that are well represented in 
their family or, rather, rare ones, we consider for each synthetic sequence its closest natural sequence. We 
then count the number of neighbors of this natural sequence in the natural MSA, that is the number of 
natural sequences that have (normalized) Hamming distance below  δ = 0.2  with the sequence of interest. 
Note that the inverse of this number of neighbors gives the sequence weight wi introduced in Equation 8.

Second, to explore the distributions in sequence space of sequences within each MSA, and 
compare synthetic and natural MSAs, we associate to each sequence the concatenation of the one- 
hot encodings of each of its amino acids (Figliuzzi et al., 2018). We perform a PC analysis of the 
matrix corresponding to the natural MSA in this representation. We can then represent natural and 
synthetic sequences as points projected in the space defined by the first two PCs of the natural MSA.

Third, to analyze in more detail the apparent relatedness of generated sequences, and compare it to real 
phylogenetic relationships in natural sequences, we infer phylogenetic trees from each MSA using Fast-
Tree 2 (Price et al., 2010). To quantitatively compare the topologies of these trees, which do not have 
the same leaves, we analyze the eigenvalue spectrum of their MGL (Lewitus and Morlon, 2016). The MGL 
of a phylogenetic tree is defined as the difference between its degree matrix (a diagonal matrix whose  i th 
diagonal entry is the sum of the branch lengths from node  i  to all other nodes in the tree) and the matrix 
of patristic distances (whose  (i, j)  th entry is the branch length between nodes  i  and  j ). Given the compu-
tational cost of running such an analysis on our deep MSAs, we use a bootstrap- aggregating strategy in 
the spirit of Colijn and Plazzotta, 2018. Namely, for each MSA we compute 200 different trees, each one 
inferred from a different sub- MSA of 500 sequences, itself randomly sampled from the whole MSA. Then, 
for each of these trees, we compute the eigenvalue spectrum of the MGL. Next, we merge all these spectra 
together to obtain a single eigenvalue spectral density. Note that this method has the advantage of not 
depending on the details of the topology of one large inferred tree, which are known to be sensitive to the 
choice of phylogeny reconstruction algorithm.

Datasets
To generate synthetic MSAs with MSA Transformer and bmDCA and compare them to their natural 
counterparts, we consider the deep Pfam ‘full’ alignments (Mistry et  al., 2021) associated to 14 
different protein domains (Appendix 1—table 5). Each MSA is a matrix  M  with  L  columns, repre-
senting the different amino- acid sites, and  M   rows. Each row  i , denoted by  x(i) , represents one 
sequence of the alignment. We refer to  L  as the MSA length, and to  M   as its depth. For all our MSAs, 
 M > 36000 . These alignments are the same as in Lupo et al., 2022, except that we removed PF13354 
(Beta- lactamase2) from this set of deep MSAs because of its smaller depth. However, this family is 
included in our additional analyses (see Appendix 1—table 6).

Deep MSAs generally include some highly similar sequences due to phylogenetic relatedness. This 
can be characterized via the effective depth (Weigt et al., 2009)

 
M(δ)

eff :=
M∑

i=1
wi, with wi :=

���
{

i′ : dH(x(i), x(i′)) < δ
}���

−1
,
  

(8)
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where  dH(x, y)  is the (normalized) Hamming distance between two sequences  x  and  y , that is the frac-
tion of sites where the amino acids differ, and we set  δ = 0.2 . Note that the inverse of the sequence 
weight wi in Equation 8 is the number of neighbors in ‘Characterizing the distribution of sequences in 
MSAs’, and that  M

(0.2)
eff /M   can be as low as 0.06 for our natural MSAs.

All these families were previously shown to be well fitted by Potts models inferred by bmDCA (Figliuzzi 
et al., 2018), making our results on sequence generation by bmDCA readily comparable with previous 
results. Our domains’ short lengths are convenient because bmDCA is computationally demanding, and 
also in view of MSA Transformer’s large memory footprint, which is  O(LM2) + O(L2) . Furthermore, their large 
depth is crucial to our comparisons, as it allows Potts models to be accurately fitted (Figliuzzi et al., 2018).

We extended our study to small protein families by considering seven additional families, listed in 
Appendix 1—table 6, for which we also started from Pfam ‘full’ MSAs. These families comprise from 
nine to a few hundreds of sequences. We also considered two additional protein families, also listed 
in Appendix 1—table 6, for our comparison with published experimental datasets.
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Appendix 1

Appendix 1—table 1. p values of the Kolmogorov–Smirnov test comparing the distributions of 
homology, coevolution, and structure- based scores across natural and synthetic multiple sequence 
alignments (MSAs).
For each score except the root- mean- squared deviation (RMSD), we test the null hypothesis that 
the scores of MSA- Transformer–generated sequences are greater or equal than those of Boltzmann 
machine DCA (bmDCA)- generated sequences, in the (stringent) sense that the cumulative 
distribution function of the former is always below that of the latter. Here, bmDCA1 stands for 
bmDCA with  (λ, T) = (10−3, 0.33)  and bmDCA2 for bmDCA with  (λ, T) = (10−2, 1) . For the RMSD, 
the null hypothesis is that the scores of MSA- Transformer–generated sequences are smaller or equal 
than those of bmDCA- generated sequences (recall that smaller RMSDs are better). In all cases, a 
p value close to one (resp. zero) means that the null hypothesis tested should be accepted (resp. 
rejected). Reported zero p values are too small to be properly assessed by the algorithm.

Pfam ID

HMMER score Statistical energy score pLDDT confidence RMSD

MSA Tr. ≥
bmDCA1

MSA Tr. ≥
bmDCA2

MSA Tr. ≥
bmDCA1

MSA Tr. ≥
bmDCA2

MSA Tr. ≥
bmDCA1

MSA Tr. ≥
bmDCA2

MSA Tr. ≤
bmDCA1

MSA Tr. ≤
bmDCA2

PF00004 0 1.0 0 1.0 0.20 1.0 0.33 0.96

PF00005 0.93 1.0 0 1.0 6.5 · 10−19 1.0 0.78 0.96

PF00041 0.99 1.0 0 1.0 1.0 1.0 2.9 · 10−14 5.9 · 10 −3

PF00072 4.7 · 10−12 1.0 0 1.0 9.1 · 10−6 1.0 3.4 · 10−6 0.96

PF00076 9.5 · 10−134 1.0 0 1.0 6.5 · 10−19 1.0 9.2 · 10−5 1.0

PF00096 0.04 1.0 0 1.0 0.01 0.92 0.92 2.4 · 10−5

PF00153 0.91 1.0 0 1.0 0.98 0.84 9.3 · 10−10 1.0

PF00271 5.9 · 10−30 1.0 0 1.0 0.33 1.0 0.02 0.88

PF00397 0 1.0 0 1.0 1.5 · 10−3 1.0 4.8 · 10−10 0.38

PF00512 0 1.0 0 1.0 4.3 · 10−3 1.0 0.96 0.67

PF00595 0.83 1.0 0 1.0 1.0 · 10−15 1.0 7.2 · 10−24 1.0

PF01535 0.98 1.0 0 1.0 1.0 1.0 0.78 4.1 · 10−8

PF02518 0 1.0 0 1.0 1.0 1.0 1.0 1.0

PF07679 1.0 1.0 0 1.0 1.0 1.0 4.3 · 10−3 1.0

https://doi.org/10.7554/eLife.79854
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Appendix 1—table 2. Median homology, coevolution, and structure- based scores in natural and 
synthetic sequences.
We report the median values of each of the scores shown in Figure 1, as well as their standard 
deviations (between parentheses), for natural sequences (’Nat.’), for sequences generated by our 
method based on MSA Transformer, and for sequences generated by Boltzmann machine DCA 
(bmDCA) at low temperature, that is with  (λ, T) = (10−3, 0.33)  (denoted by ‘bmDCA’). Scores are 
normalized as Figure 1, except that, for statistical energy, we subtract the median of natural scores 
instead of the mean for clarity (therefore, all natural MSAs have median 0 and standard deviation 
1 for this score). For all scores, the best median among those of the two synthetic MSAs is shown 
in bold, and for the predicted local- distance difference test (pLDDT) score, it is shown in red if it is 
better than that the other synthetic MSA by a margin larger than the largest standard deviation. 
Recall that higher values are better for all scores, except root- mean- squared deviation (RMSD), for 
which the opposite holds.

HMMER score Statistical energy score pLDDT confidence (%) RMSD (Å)

Pfam ID Nat. MSA Tr. bmDCA Nat. MSA Tr. bmDCA Nat. MSA Tr. bmDCA Nat. MSA Tr. bmDCA

PF00004 0.5 (0.2) 0.6 (0.2) 0.8 (0.2) 0 (1) 0.8 (0.9) 1.6 (0.1) 85.4 (4.1) 85.8 (4.5) 81.7 (0.7) 3.4 (0.8) 2.8 (0.7) 3.6 (0.5)

PF00005 0.7 (0.1) 0.8 (0.1) 0.8 (0.1) 0 (1) 1.8 (0.9) 3.1 (0.2) 83.0 (6.9) 89.0 (4.2) 91.6 (1.6) 3.8 (1.2) 2.8 (1.0) 2.8 (0.8)

PF00041 0.6 (0.1) 0.9 (0.2) 0.5 (0.1) 0 (1) 1.5 (1.0) 4.9 (0.5) 90.0 (4.5) 92.0 (3.2) 79.2 (2.7) 2.1 (2.1) 2.9 (0.5) 3.4 (2.2)

PF00072 0.7 (0.1) 0.9 (0.1) 0.8 (0.1) 0 (1) 2.1 (0.8) 3.8 (0.3) 94.5 (3.4) 94.9 (1.9) 94.1 (0.5) 2.4 (0.3) 2.3 (0.1) 2.1 (0.1)

PF00076 0.6 (0.1) 0.8 (0.2) 0.8 (0.1) 0 (1) 1.5 (0.8) 3.5 (0.2) 82.2 (4.4) 84.6 (4.8) 87.6 (1.5) 1.8 (0.5) 1.4 (0.6) 1.4 (0.1)

PF00096 0.8 (0.0) 0.9 (0.0) 0.9 (0.0) 0 (1) 2.2 (0.8) 2.8 (0.3) 93.0 (2.0) 94.0 (0.8) 93.7 (0.2) 0.6 (0.1) 0.4 (0.1) 0.4 (0.0)

PF00153 0.5 (0.1) 0.6 (0.1) 0.5 (0.1) 0 (1) 0.6 (0.8) 2.6 (0.3) 65.0 (5.0) 66.6 (6.2) 64.9 (4.3) 5.1 (1.8) 4.4 (1.5) 4.3 (1.1)

PF00271 0.5 (0.1) 0.5 (0.1) 0.5 (0.2) 0 (1) 1.0 (0.9) 2.4 (0.3) 78.4 (4.6) 86.4 (5.4) 83.8 (2.2) 2.0 (0.8) 2.3 (0.6) 1.8 (0.1)

PF00397 0.7 (0.1) 0.8 (0.1) 0.8 (0.1) 0 (1) 0.5 (0.9) 2.1 (0.2) 88.1 (2.2) 88.9 (2.4) 88.2 (1.0) 0.9 (0.3) 0.9 (0.3) 0.9 (0.1)

PF00512 0.5 (0.1) 0.8 (0.2) 0.7 (0.2) 0 (1) 1.5 (1.0) 3.2 (0.3) 91.0 (4.0) 90.2 (4.0) 89.5 (1.5) 2.1 (0.6) 2.2 (0.5) 3.1 (0.2)

PF00595 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0 (1) 0.5 (0.9) 2.6 (0.3) 93.4 (4.5) 94.0 (1.8) 95.1 (0.8) 1.8 (0.4) 1.7 (0.5) 1.4 (0.2)

PF01535 0.5 (0.1) 0.9 (0.2) 0.6 (0.1) 0 (1) 2.3 (1.1) 4.1 (0.2) 82.4 (6.2) 94.3 (5.5) 77.9 (3.6) 1.0 (1.1) 0.4 (0.7) 0.5 (0.4)

PF02518 0.6 (0.2) 0.8 (0.2) 0.7 (0.2) 0 (1) 1.9 (0.9) 3.5 (0.2) 88.0 (6.0) 91.0 (6.3) 73.6 (2.3) 4.1 (0.9) 3.9 (0.5) 4.7 (1.1)

PF07679 0.5 (0.1) 0.7 (0.2) 0.4 (0.1) 0 (1) 1.7 (1.0) 5.2 (0.6) 93.5 (3.8) 95.3 (2.9) 89.8 (2.2) 1.3 (1.0) 1.2 (0.5) 1.2 (0.2)

https://doi.org/10.7554/eLife.79854
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Appendix 1—table 3. Comparing different generation methods of MSA Transformer.
Various scores are shown for the natural MSA of protein family PF00153 and for synthetic MSAs 
generated in different ways from this family (each synthetic MSA comprises 10,000 sequences). 
For generation using MSA Transformer (see ‘Using MSA Transformer to generate sequences via an 
iterative masking procedure’), our standard iterative masking procedure is shown with its default 
greedy sampling (corresponding to  T = 0 ) and two higher temperatures. Variants of the procedure 
where only the first sequence is masked (‘Context’, either fixed or variable, both with greedy 
sampling) are also shown. We report the mean Hamming distance to the closest natural sequence, 
which is not itself in the case of natural sequences (‘Distance’) as well as the mean HMMER and 
statistical energy scores (‘-Energy’) described in ‘Scoring individual sequences’. Note that statistical 
energy scores are shifted by the mean value obtained for the natural MSA (which is −235.8). We 
also report the Pearson correlations between the two- and three- body statistics of the natural and 
the generated MSAs, denoted, respectively, by  ρ

[
Cij

]
  and  ρ

[
Cijk

]
  (for the natural MSA we report the 

Pearson correlation between two halves of this MSA), as illustrated in Figure 4—figure supplement 
2.

Score
Natural 

sequences

MSA Transformer

Iterative masking Context (greedy)

Greedy  T = 0.5  T = 1.0 Fixed Variable

Distance 0.155 0.271 0.305 0.514 0.232 0.262

HMMER 48.0 58.2 58.1 48.4 58.7 63.8

− Energy 0 13.0 8.5 −42.0 −15.4 −13.2

 ρ
[
Cij

]
 0.94 0.84 0.84 0.62 0.73 0.81

 ρ
[
Cijk

]
 0.89 0.80 0.76 0.41 0.66 0.77

https://doi.org/10.7554/eLife.79854
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Appendix 1—table 4. Impact of regularization strength and sampling temperature on sequence 
generation by Boltzmann machine DCA (bmDCA), for family PF00072.
We compare MSAs obtained using bmDCA with different regularization strengths  λ  (for inference) 
and sampling temperatures  T   (for generation) with the natural and the MSA- Transformer–generated 
MSAs. In each case, we report the average of the Hamming distances of each sequence to their 
closest natural neighbor, which is not itself in the case of natural sequences (‘Distance’), as well as 
the effective MSA depth, the scores defined in ‘Scoring individual sequences’, and the Pearson 
correlation coefficients of the two- and three- body connected correlations computed from natural 
and generated MSAs ( ρ

[
Cij

]
  and  ρ

[
Cijk

]
 ). For MSA Transformer ('MSA Tr.'), bmDCA (0.01,1) and 

bmDCA (0.001,0.33), we also computed structural scores by feeding the entire synthetic MSA to 
Alphafold as context MSA (instead of using the natural MSA as context, see ‘Scoring individual 
sequences’). Structural scores are then very similar to those obtained using natural context.

Type  λ  T  Distance  M
(0.2)
eff  HMMER - Energy  ρ

[
Cij

]
  ρ

[
Cijk

]
 

pLDDT 
(%)

RMSD 
(Å)

Natural - - 0.193 40,180 90.3 0 0.99 0.88 93.6 2.5

MSA Tr. - - 0.348 9304 119.1 59.1 0.73 0.53 94.7 2.35

Same as above, with synthetic context: 95.1 2.37

bmDCA 0.01 1 0.55 73,062 66.5 −37.0 0.96 0.58 84.3 2.58

Same as above, with synthetic context: 83.9 2.70

bmDCA 0.01 0.66 0.294 18,911 101.7 92.2 0.48 0.11 94.2 2.61

bmDCA 0.01 0.33 0.251 12 103.2 118.3 0.42 0.05 94.2 2.55

bmDCA 0.001 1 0.525 73,062 86.9 −18.3 0.97 0.63 89.7 2.44

bmDCA 0.001 0.66 0.296 21,294 103.9 89.3 0.48 0.19 94.3 2.6

bmDCA 0.001 0.33 0.274 14 107.7 109.6 0.4 0.13 94.0 2.14

Same as above, with synthetic context: 94.2 2.24

https://doi.org/10.7554/eLife.79854
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Appendix 1—table 5. Pfam families and natural MSAs used in our analysis.
 L  denotes the length of an MSA,  M   its depth, and  M

(0.2)
eff   its effective depth with distance threshold 

 δ = 0.2 , see Equation 8. The reference experimental PDB structures used for our root- mean- squared 
deviation (RMSD) calculations, and their resolutions (‘Resol.’), are also reported.

Pfam ID Family name  L  M   M
(0.2)
eff  PDB ID Resol.

PF00004 AAA 132 39,277 9049 4D81 2.40 Å

PF00005 ABC_tran 137 68,891 43,881 1L7V 3.20 Å

PF00041 fn3 85 42,721 17,782 3UP1 2.15 Å

PF00072 Response_reg 112 73,063 40,180 3ILH 2.59 Å

PF00076 RRM_1 69 51,964 20,273 3NNH 2.75 Å

PF00096 zf- C2H2 23 38,996 12,581 4R2A 1.59 Å

PF00153 Mito_carr 94 93,776 17,859 1OCK 2.20 Å

PF00271 Helicase_C 111 66,809 25,017 3EX7 2.30 Å

PF00397 WW 31 39,045 3361 4REX 1.60 Å

PF00512 HisKA 66 154,998 67,303 3DGE 2.80 Å

PF00595 PDZ 82 71,303 4053 1BE9 1.82 Å

PF01535 PPR 31 109,064 37,514 4M57 2.86 Å

PF02518 HATPase_c 111 80,714 59,189 3G7E 2.20 Å

PF07679 I- set 90 36,141 14,611 1FHG 2.00 Å

https://doi.org/10.7554/eLife.79854
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Appendix 1—table 6. Other Pfam families and natural MSAs used in our analysis.
 L  denotes the length of an MSA and  M   its depth. The reference experimental PDB structures used 
for our root- mean- squared deviation (RMSD) calculations, and their resolutions, are also reported.

Pfam ID Family name  L  M  PDB ID Resol.

PF01356 A_amylase_inhib 68 51 1OK0 0.93 Å

PF03440 APT 87 14 6RO0 2.13 Å

PF04008 Adenosine_kin 154 342 1WVQ 1.45 Å

PF06351 Allene_ox_cyc 175 378 2BRJ 1.50 Å

PF06355 Aegerolysin 131 322 6MYI 1.15 Å

PF16747 Adhesin_E 125 31 6GUT 1.63 Å

PF18648 ADPRTs_Tse2 155 9 5AKO 2.40 Å

PF13354 Beta- lactamase2 198 4642 6QW8 1.10 Å

- Chorismate mutase Russ et al., 2020 96 1130 1ECM 2.20 Å

https://doi.org/10.7554/eLife.79854

	Generative power of a protein language model trained on multiple sequence alignments
	Editor's evaluation
	Introduction
	Results
	An iterative masking procedure allows MSA Transformer to generate novel sequences with high scores
	Sequence generation by the iterative masking procedure is successful for small protein families
	Higher-order statistics are better reproduced by MSA Transformer, while lower-order statistics are better reproduced by bmDCA
	MSA Transformer captures well the distribution of sequences in sequence space
	Comparison with published experimental datasets

	Discussion
	Methods
	Using MSA Transformer to generate sequences via an iterative masking procedure
	Iterative masking procedure
	Choosing parameters in the iterative masking procedure
	Variants of the iterative masking procedure

	Sampling sequences from Potts models
	Scoring individual sequences
	Analyzing the statistics of MSAs
	Characterizing the distribution of sequences in MSAs
	Datasets

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	Appendix 1


