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Abstract Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and 
pathological movement. In single trials, beta oscillations include bursts of intermittent, transient 
periods of high-power activity. These burst events have been linked to a range of sensory and motor 
processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, 
a role for beta burst activity in information coding and communication suggests spatiotemporal 
patterns, or travelling wave activity, along specific anatomical gradients. We here show in human 
magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar 
spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular 
to the central sulcus. Moreover, we find that the two propagation directions are characterised by 
distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta 
bursts occurring before and after a movement can be distinguished by their anatomical, spectral, 
and spatiotemporal characteristics, indicating distinct functional roles.

Editor's evaluation
This paper provides important insights into the spatial organization of β-oscillatory activity in 
the human brain, which is a crucial dynamic feature of frontal and parietal networks involved in 
movement preparation and sensory prediction. Using high-resolution source reconstruction with 
Magnetoencephalography in humans, the authors provide compelling evidence demonstrating 
that β oscillations are organized as travelling waves in two distinct directions relative to the central 
sulcus. Furthermore, the study convincingly shows that the spatiotemporal organization of β bursts 
is systematically linked to behavior, specifically motor execution. These findings have important 
implications for our understanding of the neural mechanisms that underlie movement planning and 
execution in the human brain.
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Introduction
Neural activity at the rate of 13–30 Hz constitutes one of the most prominent electrophysiological 
signatures in the sensorimotor system (Baker, 2007; Brown, 2007). This sensorimotor beta activity is 
traditionally seen to reflect oscillations: sustained rhythmic synchronous spiking activity within neural 
populations. However, a substantial proportion of sensorimotor beta activity occurs in bursts of inter-
mittent, transient periods of synchronous spiking activity (Jones, 2016) which relate to both motor, 
perceptual, and sensory function (Enz et al., 2021; Feingold et al., 2015; Heideman et al., 2020; 
Sherman et al., 2016; Shin et al., 2017; Sporn et al., 2020; Tinkhauser et al., 2017a; Wessel, 2020; 
Zich et al., 2018) and pathophysiological movement (Cagnan et al., 2019; Deffains et al., 2018; 
Tinkhauser et al., 2017a; Tinkhauser et al., 2017b), but their functional role remains unclear.

Sensorimotor beta burst activity is commonly considered as zero-lagged (or standing wave) activity 
which is generated by the summation of synchronised layer-specific inputs within cortical columns 
that result in a cumulative dipole with a stereotypical wavelet shape in the time domain (Bonaiuto 
et al., 2021; Law et al., 2022; Neymotin et al., 2020). These time periods of synchronous activity 
which generate standing wave activity are thought to convey little information encoding (Brittain and 
Brown, 2014; Carhart-Harris, 2018; Carhart-Harris et al., 2014). This view sides with the proposed 
akinetic role of high sensorimotor beta states (Gilbertson et al., 2005; Joundi et al., 2012; Khanna 
and Carmena, 2017; Pogosyan et al., 2009). However, burst activity may have heterogeneous and 
mechanistically distinct components which can be characterised by their distinct spatial, temporal, 
and spectral structure (Law et al., 2022; Zich et al., 2020) that, in addition to zero-lagged activity, 
contains spatiotemporal gradients, or travelling wave, components.

In animals, for example, a high proportion of sensorimotor beta activity occurs as travelling waves 
(Rubino et al., 2006; Rule et al., 2018), in addition to highly synchronous standing waves. In travelling 
waves, the relative timing of fluctuations of synchronous spiking activity is not precisely zero-lagged 
but adopts a phase offset and moves across space. Propagation of neural activity constitutes one 
mechanism for cortical information transfer and travelling waves have been described over spatial 
scales that range from the mesoscopic (single cortical areas and millimetres of cortex) to the macro-
scopic (global patterns of activity over several centimetres) and extend over temporal scales from 
tens to hundreds of milliseconds (Alexander et al., 2019; Davis et al., 2021; Heitmann et al., 2017; 
Muller et al., 2018; Roberts et al., 2019; Rule et al., 2018).

Characterising travelling wave components within sensorimotor beta burst activity is of relevance 
as it would provide insights into the putative underlying mechanisms and functional roles of senso-
rimotor beta activity. For instance, in general terms, spatiotemporal propagation of high-amplitude 
beta may support information transfer across space and may reflect the spatiotemporal patterns of 
sequential activation required for movement initiation (Best et al., 2017; Rubino et al., 2006). At the 
macro-scale level, the specific propagation properties, such as propagation direction and speed, may 
provide further constraints for the putative functional role of burst activity in organising behaviour 
across different brain regions (Ding and Ermentrout, 2021), including the modulation of neural sensi-
tivity (Davis et al., 2020) or the sequencing of muscle representations in motor cortex (Muller et al., 
2018; Riehle et al., 2013; Takahashi et al., 2015). In humans, the precise properties of beta bursts 
and whether their high-amplitude activity comprise distinct spatiotemporal gradients remain unclear.

To address this, we here employed high signal-to-noise (SNR) magnetoencephalography (MEG) 
in healthy human subjects during simple visually cued motor behaviour. We show that beta burst 
activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along 
two anatomical axes. Crucially, our results show structure beyond the inherent limitations of source 
reconstruction such as volume conduction or the spatial pattern of beamformer weights. Moreover, 
we find that the two propagation directions are characterised by distinct anatomical and physiological 
features. Finally, to further extend our understanding of the functional roles of sensorimotor beta 
bursts we compare bursts occurring before and after a movement. Our results suggest that senso-
rimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, 
spectral, and spatiotemporal characteristics, indicating distinct functional roles.

https://doi.org/10.7554/eLife.80160
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Results
Temporal, spectral, and spatial burst characteristics
Participants completed three blocks per recording session, and 1–5 sessions on different days. We 
analysed 123–611 trials per participant (M = 438.5, SD = 151.0 across individuals) in which correct 
key presses were made with either the right index or middle finger, in response to congruent imper-
ative stimuli and high coherence visual cues (see ‘Participants and experimental task’; Bonaiuto 
et al., 2018; Little et al., 2019). We focussed on these trial types to delineate the multi-dimensional 
(temporal, spectral, spatial) properties of sensorimotor beta burst activity (Figure  1a and b; Zich 
et al., 2020). Bursts were identified over a 4 s time window (−2–2 s relative to the button press), in 
the beta frequency range (13–30 Hz) and a region of interest (ROI) spanning the primary motor cortex 
(M1) and adjacent areas of the primary sensory cortex and premotor cortex using session-specific 
amplitude thresholding (Little et al., 2019) and 5D clustering (see ‘Burst operationalisation’, Figure 
6).

First, we characterise several first-level burst characteristics (see ‘Burst characteristics’). In the 
temporal domain, we observed the expected increase in burst probability pre- vs. post-movement 
(Figure 1c). Burst duration was consistent across subjects (M = 238 ms, SD = 23 ms across individuals, 
temporal resolution 50 ms, Figure 1e). Spectrally, while beta bursts occurred throughout the beta 
frequency range, most bursts were identified in the lower beta frequency range (Figure 1c), with a 
consistent frequency spread across subjects (M = 3 Hz, SD = 0 Hz across individuals, frequency reso-
lution 1 Hz, Figure 1e). To examine burst probability as a function of space across subjects, individual 
subject maps were spatially normalised, projected onto a single surface, and then averaged across 
subjects. Topographically, bursts were most likely to occur in M1 (Figure 1d, see Figure 1—figure 
supplement 1 for individual subject maps) and spanned, on average, 10% of the ROI’s surface area 
(apparent spatial width: M = 6 cm2; SD = 0.9 cm2 across individuals). Post hoc analysis revealed no 
significant differences between beta bursts around index or middle finger movement.

We performed a range of control analyses to examine whether our results can be explained by 
trivial properties of the beamformer itself. Firstly, we sought to assess whether differences in the 
bursts’ apparent spatial width could be explained by differences in SNR across and/or within sessions 
rather than differences in the spatial distribution of cortical activity. We reasoned that if differences 
in SNR across sessions would explain bursts’ apparent spatial width, then burst amplitude and burst 
apparent spatial width should be negatively correlated (for a schematic illustration, see Figure 1—
figure supplement 2ai). The absence of significant correlations between burst amplitude and burst 
apparent spatial width, both across sessions within subjects and also across sessions and individuals 
(Figure 1—figure supplement 2aii), suggests that the apparent spatial width of bursts is not solely 
explained by the differences in SNR across sessions and across individuals.

Further we reasoned that if the apparent spatial width is driven by differences in SNR across bursts 
within a session, then a positive relationship between burst amplitude and burst apparent spatial 
width within sessions should be present, and there should be no systematic phase differences across 
different spatial locations within each burst (for a schematic illustration, see Figure 1—figure supple-
ment 2b). While burst amplitude and burst apparent spatial width are positively correlated within 
sessions (Pearson’s r: M = 0.749, SD = 0.056 across sessions, all ps<0.001), we consistently observed 
diverse phase lags across space within these bursts (see ‘Sensorimotor burst activity propagates along 
one of two axes’), which are unlikely to arise simply from amplitude scaling of a single source.

Together, these control analyses suggest that differences in bursts’ apparent spatial width is not 
merely due to differences in SNR across and/or within sessions, but for the most part due to differ-
ences in the spatial distribution of cortical activity.

Sensorimotor beta burst activity is propagating
The precise decomposition of beta bursts into their spectral, spatial, and temporal signal domains 
allowed us to next assess any spatiotemporal gradients within sensorimotor beta bursts. For each 
burst, we identified the dominant propagation direction and propagation speed. Propagation direction 
and speed were estimated from critical points in the oscillatory cycle (Figure 2a) and then averaged 
across critical points within one burst. The propagation direction at each critical point was estimated 
from the relative latency (Figure 2bi). Next, using linear regression (Balasubramanian et al., 2020), 
whereby the relative latency at the surface location was predicted from the coordinates of the surface 

https://doi.org/10.7554/eLife.80160
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Figure 1. Spectral, temporal, and spatial beta burst characteristics. (a) Burst characteristics for a single example burst. (ai) Temporal and spectral burst 
characteristics. (aii) Spatial burst characteristics. (aiii) Burst amplitude. Shown is the amplitude for each temporal, spectral, and spatial location of that 
burst, as well as the histogram across all three signal domains. Note that we use integer indexation of 3D surface location (idx) for visualisation here. All 
other analyses use the actual 3D surface location as provided by Cartesian x,y,z coordinates. Usually the mean (straight line) or the 95 percentile (dashed 
line) is reported as burst amplitude. (b) Same as (a) for a different burst. (c) Burst probability (i.e. number of bursts relative to the number of epochs) 
as a function of time and frequency across all bursts of all subjects (see Figure 1—figure supplement 1 for individual subjects). Burst probability as a 
function of time (bottom) and frequency (left) is shown for each subject separately (grey lines) and across subjects (black line). (d) Burst probability as a 
function of space across all bursts of all subjects on the inflated surface (top) and original surface (bottom). Highlighted are the central sulcus and the 
borders for 0.44 and 0.49 burst probability. To visualise burst probability as a function of space across subjects, individual subject maps were spatially 
normalised, projected onto a single surface, and then averaged across subjects. Figure 1—figure supplement 1 depicts the burst probability for each 
subject in native space. (e) Burst temporal duration (top), frequency spread (middle), and apparent spatial width (bottom) for each subject as boxplot.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Beta power and burst probability are shown for all three signal domains for each subject.

Figure supplement 2. Schematic illustration of LCMV-related aspects for 3D bursts.

https://doi.org/10.7554/eLife.80160
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Figure 2. Quantification of propagation direction and propagation speed on one exemplar burst. For a dynamic version, that is, updated for each 
critical point, see Figure 2—video 1. (a) Left: single burst on inflated surface. Spatial locations are colour-coded by their x coordinate rank. Note that 
x coordinate rank is only used here to illustrate the spatial location of the neural time series shown on the right. Right: neural activity in the beta range 
(13–30 Hz) from each surface location for the temporal duration of the entire epoch (top, average across spatial locations in black and amplitude-
envelope in red) and in large for the temporal duration of the burst. Vertical lines indicate critical points (four critical points per oscillatory cycle, i.e. 
peak and trough as well as peak-trough and trough-peak midpoint) at which propagation direction and propagation speed were estimated. Red vertical 
line indicates the control point at 212 ms, shown in (bi,ii) and (ci,ii), and highlighted in (biii) and (ciii). (bi) Relative latencies of the critical point at 212 ms 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.80160
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location of the inflated surface (see ‘Propagation direction and speed of neural activity within bursts’). 
We excluded complex spatiotemporal patterns such as random or circular patterns (Figure 2—figure 
supplement 1b and c; M = 8.25%, SD = 0.88% across individuals; Denker et al., 2018; Rule et al., 
2018), to focus on bursts with a dominant planar propagation orientation (Figure 2—figure supple-
ment 1a; M = 79.6%, SD = 2.4% across individuals; Balasubramanian et al., 2020; Rubino et al., 
2006; Takahashi et al., 2011).

To test whether the planar spatiotemporal structure of bursts is significant, we compared the 
propagation properties detected in real burst activity to those of surrogate data for a subset of 100 
randomly selected bursts sampled across all subjects. For each burst, 1000 phase-randomised surro-
gates (Hurtado et  al., 2004) were created and the propagation properties of the real data were 
compared to their distribution from 1000 surrogates (see ‘Statistical analysis’). Real sensorimotor beta 
burst activity exhibited significantly stronger planar spatiotemporal structure than spectrally matched 
surrogate data (all 100 bursts p<0.01).

Accuracy of the propagation direction estimation in simulated and 
surface meshes
Before assessing the propagation direction of sensorimotor beta burst activity, we evaluated the 
accuracy of the propagation direction estimation (see ‘Accuracy of the propagation direction detec-
tion in simulated and real meshes’). To this end, we created 360 noise-free high-resolution gradients 
spanning 1–360° (in steps of 1°; subset shown in Figure 3a). To tease apart inaccuracies due to the 
method from inaccuracies due to the nature of the mesh, we first estimated the propagation direction 
of these gradients from three different 2D surface mesh types (square mesh, circular mesh, random 
mesh; Figure 3b–d). Further, we evaluate the accuracy using three spatial sampling rates (N/2, N, N 
× 2, whereby N approximates the spatial sampling of the real mesh), as the real mesh is irregular with 
varying spatial sampling across the mesh. By comparing the true and estimated propagation direction, 
we found that under noise-free conditions, the propagation direction can be estimated accurately 
from regular meshes (Figure 3b and c), whereas the mean error is roughly twice as large for random 
meshes (Figure 3d). Further, for the random mesh a linear relationship between accuracy and spatial 
sampling can be observed.

This is relevant because the surface mesh obtained from brain imaging data is irregular. When 
evaluating the accuracy of the propagation direction estimates using the real mesh (Figure 3e) and 
the real spatial burst properties, we found an average error of 7° between true and estimated prop-
agation direction, with little variability across individuals (SD = 0.5° across subjects) and angles (SD = 
1.5° across angles; Figure 3ei). Across individuals the error was smallest for gradient directions around 
104/284° and largest around 170/350° (Figure 3ei). Further, for bursts with a larger apparent spatial 
width (i.e. containing more spatial samples), the estimated error is lower (Figure 3eii).

Overall, these results suggest that propagation directions can be estimated with sufficient accuracy 
from higher SNR MEG recordings over a relatively small cortical patch, as here.

as a function of space illustrated on inflated surface. (bii) Simple linear regressions between latency at surface location and x (top) as well as y (bottom) 
coordinates of the surface location for the critical point at 212 ms. Colour refers to the x coordinate rank as illustrated in (a). (biii) Propagation direction 
obtained from regression coefficients for each critical point (grey), the critical point at 212 ms (red), and the average across all critical points (black, 
i.e. propagation direction of burst). (ci) Distance, that is, exact geodesic distance, from the surface location with the smallest relative latency to each 
surface location on the inflated surface for the critical point at 212 ms. Green line indicated the path, that is, distance, from the surface location with the 
smallest to the surface location with the largest relative latency. (cii) Propagation speed for each critical point (grey), the critical point at 212 ms (red). 
The standard deviation across critical points is indicated by the grey area, and the average across all critical points (i.e. propagation speed of burst) is 
indicated by the black horizontal line.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Examples of bursts with (a) one propagation direction and (b, c) complex propagation patterns.

Figure supplement 2. Propagation speed using the distance on the original or the inflated surface.

Figure 2—video 1. Same as Figure 2, but each frame corresponds to a different critical point within the burst.

https://elifesciences.org/articles/80160/figures#fig2video1

Figure 2 continued

https://doi.org/10.7554/eLife.80160
https://elifesciences.org/articles/80160/figures#fig2video1
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Sensorimotor burst activity propagates along one of two axes
Having established that the spatial sampling of the cortical mesh is sufficient to detect propaga-
tion in simulated gradients, we analysed the propagation properties of the sensorimotor beta burst 
activity. We observed that neural activity within beta bursts propagates along one of two dominant 
axes, which were approximately 90° apart (Figure 4a): one anterior–posterior (a-p) axis traversing 
the central sulcus in approximately perpendicular fashion, and one medial–lateral (m-l) axis running 
approximately parallel to (i.e. along) the central sulcus. The propagation distributions along these 

Figure 3. Propagation direction can be estimated accurately from cortical meshes. (a) Simulated gradient at 0, 45, 90, 135, 180, 225, and 270°. (b) Error 
between simulated gradient and estimated gradient on a square mesh. We test three different spatial sampling rates, N/2 (green), N (red), and N × 2 
(blue), whereby the spatial sampling of N is roughly equivalent to the spatial sampling of the inflated surface. Error is calculated for 1–360° in steps of 
1°. The median error per spatial sampling is shown in the right, that is, higher spatial sampling results in a lower error. (c) As (b), but for a circular mesh. 
(d) Error between simulated gradient and estimated gradient on a random mesh. 100 random meshes were generated. The error for each iteration is 
shown as well as the mean across iterations (black line). (e) Error between simulated gradient and estimated gradient on the inflated surface. The error 
was calculated for each burst. (ei) The mean across bursts is shown for each subject (grey lines) and across subjects (black line). For each subject, the 
mean error across all angles and bursts is shown, that is, error is comparable across subjects. (eii) Error as a function of burst size along the x-axis (left) 
and y-axis (right), that is, the error is lower in bigger burst.

https://doi.org/10.7554/eLife.80160
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Figure 4. Beta bursts activity propagates along one of two axes, which have distinct bursts properties. (a) Polar probability histogram showing the 
probability distribution of burst direction in MNI space. Probability distributions were calculated for each subject individually and then averaged (dark 
grey line, N=8). Variability across subjects is expressed as standard deviation from the mean (light grey area). To estimate the dominant propagation 
directions, a mixture of von Mises functions was fitted to the averaged probability distribution (arrows). The four functions lie on two axes. One axis 
has an anterior–posterior orientation which is approximately perpendicular to the orientation of the central sulcus (a-p), while the other axis runs 
in approximately medial–lateral orientation which is approximately parallel to the orientation of the central sulcus (m-l). (b) Burst occurrence, burst 
amplitude, burst extent, and burst speed differ as a function of propagation direction. Medians are shown for each subject (circles) and the mean 
across the subjects’ medians (squares). (c) Burst location differs as a function of burst direction. Burst location is described by two principal components 
(PCs) of the Cartesian coordinates of the centre of the burst. For each of the two PCs, the surface plot of the component structure and the probability 
distributions of the PC score are shown. Probability distributions were calculated for each subject individually and then averaged (dark line, N=8). 
Variability across subjects is expressed as standard deviation from the mean (light area). Bursts with a direction parallel to the CS, relative to bursts with 
a direction perpendicular to the CS, are located more centrally in the region of interest (ROI). CS, central sulcus; S1, primary sensory cortex; M1, primary 
motor cortex; PM, premotor cortex.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Length and angle are highly replicable for all four von Mises functions across halves of the data.

Figure supplement 2. Reducing temporal duration, frequency spread, and apparent spatial width to burst extend using principal component analysis 
(PCA).

Figure supplement 3. The spatial location of a burst can be summarised by the first two principal components (PCs) of the Cartesian coordinates of the 
centre of the burst.

Figure supplement 4. Burst frequency and burst location are comparable for pre-movement and post-movement bursts.

https://doi.org/10.7554/eLife.80160
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axes were well described by a mixture of four von Mises functions (log-likelihood = –1.8058e+04 
[For comparison, log-likelihood for two von Mises functions = -1.8231e+04, and log-likelihood for 
four von Mises functions of a random distribution = -1.8462e+04.]) with means of 66° and 248° for 
the a-p axis, and means of 142° and 324° for the m-l axis, indicating that the surface mesh imposes 
structure. Note, however, that these axes do not align with the directions showing the smallest or the 
largest error when estimating the direction from noise-free gradients on the same surface mesh and 
spatial burst properties, indicating that the mesh properties do not drive the observed propagation 
direction.

The reliability of von Mises functions was assessed using a split-half reliability test. In total, 500 
split halves were computed and four von Mises functions estimated on each half independently (see 
‘Statistical analysis’). The length and direction of the von Mises functions were highly reproducible 
for all four von Mises functions across both halves of the data (percentage difference in length: M = 
4.32%, SD = 3.86%; angular difference: M = 2.2°, SD = 2.8°; across 500 repetitions and four von Mises 
functions; Figure 4—figure supplement 1). Further, we tested whether the four von Mises functions 
were significantly different from zero using non-parametric permutation testing. In total, 5000 permu-
tations were carried out by randomising the propagation direction of each burst and estimating four 
von Mises functions of the distribution of all bursts. The length of the real van Mises functions was 
significant while correcting for multiple comparison at p<0.01.

Next, we performed a set of control analysis. First, to examine whether the two main propagation 
axes can be trivially explained by spatial variability in the beamformer weights, we correlated the 
latency of the critical points across space before and after regressing out the main components of the 
spatial variability in the linearly constrained minimum variance (LCMV) weights (see ‘Control analysis’). 
We found significant correlations (Pearson’s r: M = 0.61, SD = 0.27 across individuals, all ps<0.05), 
indicating that beamformer weights contribute to, but do not solely explain the observed propaga-
tion directions. Second, we examined whether the distribution of propagation direction is biased by 
a potential bias in the spatial domain (i.e. Ahlfors et al., 2010; Eulitz et al., 1997). To test this, we 
conducted the same analysis on a subset of bursts, forming a uniform spatial distribution (see ‘Statis-
tical analysis’). We found that the distribution of propagation directions using this subset of bursts is 
comparable to the original set of bursts, suggesting that potential spatial sampling bias does not bias 
the propagation analysis.

Together, these results demonstrate that propagation of sensorimotor beta burst activity occurs 
along two, orthogonal axes which are oriented approximately parallel and perpendicular to the CS.

Burst characteristics differ as a function of the propagation axis
The aforementioned analyses suggest that burst activity propagates along one of two propagation 
axes. We next asked whether bursts propagating along these distinct axes vary in their physiological 
properties. Specifically, we tested for potential differences in the temporal (i.e. temporal centre), spec-
tral (i.e. frequency centre), or spatial domain (spatial location), as well as burst extent, burst amplitude, 
and propagation speed.

We found significantly more bursts propagating along the a-p axis (M = 55.1%, SD = 2.0 across 
individuals), compared to the m-l axis (M = 44.9, SD = 2.0 across individuals; T [test statistic for 
Wilcoxon signed-rank test, see ‘Statistical analysis’] = 2.521, p<0.012; Figure 4b). Moreover, bursts 
propagating along these axes differ in their amplitude, extent, speed (Figure 4b), and spatial loca-
tion (Figure 4c). Specifically, bursts propagating medial–lateral are characterised by a higher burst 
amplitude (a-p M = 0.94, SD = 0.20 across individuals; m-l: M = 0.98, SD = 0.20 across individuals; T 
= 2.521, p<0.012), larger extent (a-p: M = –0.53, SD = 0.04 across individuals; m-l: M = –0.33, SD = 
0.1 across individuals; T = 2.521, p<0.012), and slower propagation speeds (a-p: M = 2.97 m/s, SD = 
0.47 m/s across individuals; m-l: M = 2.72 m/s, SD = 0.40 m/s across individuals; T = 2.38, p<0.017).

The notion that burst activity propagates along distinct anatomical axes was further supported 
by differences in the spatial location of bursts propagating along these axes. Specifically, the distri-
bution of spatial location principle component (PC)1 and PC2 (see ‘Burst characteristics’; Figure 4—
figure supplement 3) differed significantly for burst propagating along axis m-l, relative to bursts 
propagating along axis a-p for both PC1 (KS [test statistic for Kolmogorov–Smirnov test, see ‘Statis-
tical analysis’]: M = 0.182 across individuals, range = 0.107–0.232; 8/8 ps<0.001) and PC2 (KS: M = 
0.203 across individuals, range = 0.110–0.253; 8/8 ps<0.001; Figure 4c). This indicates that bursts 
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propagating along a-p are located predominantly in the putative hand region of M1 in the vicinity of 
the central sulcus, whereas the central locus of burst activity propagating mediolaterally is in S1.

Distinct physiological fingerprints of pre- and post-movement bursts
Having established that sensorimotor burst activity propagates along one of two major axes, with 
distinct foci of burst activation for burst activity propagating along these, we turned to the question 
whether bursts occurring pre- or post-movement might also be distinguished by their burst and/or 
propagation properties. To this end, we defined pre-movement bursts as bursts with an on- and offset 
prior to the movement, and post-movement bursts as bursts with an on- and offset post movement 
(Figure 5a). Bursts with an onset pre-movement and offset post-movement (M = 4.7%, SD = 1.9% 
across individuals) are excluded from this specific analysis. As expected, we found significantly more 
bursts post- than pre-movement (pre: M = 34.3%, SD = 5.3% across individuals; post: M = 60.9, SD = 
6.9% across individuals; T = 2.521, p=0.012; Figure 5b). Further, post-movement bursts are character-
ised by a larger amplitude (pre: M = 0.898 db, SD = 0.181 db across individuals; post: M = 0.974 db, 
SD = 0.208 db across individuals; T = 2.521, p=0.012; Figure 5b) and were generally larger in all 
signal dimensions (burst extent; pre: M = –0.719, SD = 0.063 across individuals; post: M = –0.480, SD 
= 0.036 across individuals; T = 2.521, p=0.012; Figure 5b). However, the average spatial location and 
frequency centre were not significantly different between pre- and post-movement bursts (all ps>0.1; 
Figure 4—figure supplement 4).

Further, in line with non-human primate recordings (Rubino et al., 2006), propagation directions 
were not significantly different between pre- and post-movement bursts (U2 [test statistic for Watson’s 
U2 test, see ‘Statistical analysis’]: M = 0.088 across individuals, range = 0.025–0.190; 8/8 ps>0.1; 
Figure 5c). The directions of pre-movement bursts activity propagating along the a-p (68/246°) and 
m-l direction (148/315°) did not differ from the directions observed post-movement (a-p: 66/248°; 
m-l: 142/325°). However, while the mean propagation direction did not differ between pre- and 
post-movement bursts, we found that propagation speed for post-movement bursts was significantly 
slower than pre-movement (pre: M = 2.90 m/s, SD = 0.20 m/s across individuals; post: M = 2.69, 
SD = 0.28 across individuals; T = 2.521, p=0.012; Figure 5b). Finally, we sought to explore whether 

Figure 5. Differences in pre- and post-movement beta bursts. (a) Burst timing relative to the button press across all subjects. Each horizontal line 
represents one burst. Bursts are sorted by burst onset and burst duration using multiple-level sorting, yielding the burst index. Pre-movement bursts 
(i.e. bursts that start and end prior to the button press) are highlighted in red, post-movement bursts (i.e. bursts that start after the button press) are 
highlighted in green, and bursts that start prior to the button press and end after the button press are highlighted in black. (b) Number of bursts, burst 
amplitude, burst extent, and burst speed differ between pre- and post-movement bursts. Medians are shown for each subject (circles) and the mean 
across the subjects’ medians (squares). (c) Propagation direction does not differ between pre- and post-movement bursts. Shown are polar probability 
histograms separately for pre- and post-movement bursts. Probability distributions were calculated for each subject individually and then averaged 
(dark line, N=8). Variability across subjects is expressed as standard deviation from the mean (light area). Von Mises functions were fitted separately for 
pre- and post-movement bursts.
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pre-movement burst characteristics are related to reaction time. We did not find evidence that burst 
characteristics relate to reaction time in these data (all ps>0.1).

Discussion
The temporal, spectral, and spatial characteristics of beta bursts in human sensorimotor cortex remain 
unknown. We here show that beta bursts in human sensorimotor cortex occur predominantly post-
movement, in the lower beta frequency band, and on the posterior bank of the precentral gyrus. 
Crucially, sensorimotor beta bursts do not just occur as local standing waves of synchronous activity but 
propagate along one of two axes that run parallel or perpendicular to the central sulcus, respectively. 
In addition to the principal axis of their propagation direction, these bursts differ in their occurrence, 
location, propagation speed, amplitude, and extent. Further, post-movement bursts are characterised 
by higher amplitude, larger extent, and slower propagation speed, suggesting distinct physiological 
markers and functional roles pre- and post-movement. Collectively, our data provide novel evidence 
that a substantial proportion of human sensorimotor beta burst activity travels along two anatomical 
and functional distinct axes, with distinct burst properties pre- and post-movement.

Distinct anatomical propagation axes of sensorimotor beta activity
Travelling wave activity occurs at multiple spatial scales, ranging from mesoscopic, columnar, to 
macroscopic, transcortical levels (Muller et al., 2018). Here we show that beta burst activity in human 
sensorimotor cortex propagates along one of two approximately orthogonal axes that are oriented 
in anterior–posterior and medial–lateral direction. Recordings from invasive multi-electrode arrays 
confirm the dominance of these two propagation axes, albeit on a different spatial scale. For example, 
Takahashi and colleagues reported that beta activity in M1 of a tetraplegic patient propagated along 
the medial–lateral axis (Takahashi et  al., 2011). And using a multi-thousand channel array placed 
across the central sulcus beta activity propagated along the anterior–posterior axis across the M1-S1 
functional boundary (Tchoe et  al., 2022). In non-human primates, beta activity propagates along 
the anterior–posterior axis in M1 (Balasubramanian et al., 2020; Best et al., 2017; Rubino et al., 
2006; Takahashi et al., 2011; Takahashi et al., 2015), and along the medial–lateral axis in the dorsal 
premotor cortex (Rubino et  al., 2006), indicating regional differences in spatiotemporal patterns 
(Rubino et al., 2006; Rule et al., 2018).

Except for the multi-thousand channel array, which can cover an area of roughly 64 cm2 in humans 
(Tchoe et al., 2022), neural activity has been recorded from a single cortical region, limited by the 
dimension of the electrode array (roughly 0.16 cm2). By contrast, we here identified spatiotemporal 
patterns of beta activity in burst events of an average apparent spatial width of ~6 cm2 located in M1 
and adjacent cortical areas. By leveraging high SNR MEG recordings that permit high sensitivity in 
all signal domains, we were able to quantify bursts and their spatiotemporal pattern non-invasively 
over these functionally cogent brain regions at a spatial scale that sits between invasive recordings 
in animals and previous human M/EEG or intracranial recordings (Alexander et al., 2016; Roberts 
et al., 2019; Rule et al., 2018; Stolk et al., 2019; Takahashi et al., 2011). Our results extend previous 
invasive recordings by showing that bursts activity can travel across sensory and motor cortices and 
bridge across functionally distinct brain areas.

The spatial profiles of propagation of beta activity along the anterior–posterior and medial–lat-
eral direction are in line with the idea that propagation directions are imposed by the dominant 
internal connections within anatomical networks (Rubino et al., 2006). Here, our dominant prop-
agation axes conformed to an anterior–posterior network comprising dorsal premotor cortex, 
primary motor cortex, and primary sensory cortex (Cauller et al., 1998; Kurata, 1991; Luppino 
and Rizzolatti, 2000; Muakkassa and Strick, 1979) and a medial–lateral network spanning across 
medial and lateral dorsal premotor cortex, supplementary motor area cortex, and caudal portions 
of ventral premotor cortex (Dum and Strick, 2005; Ghosh and Gattera, 1995; Luppino et al., 
1993). The latter is thought to mirror proximal and distal sites within the motor cortex (Rubino 
et al., 2006), with proximal representations (i.e. shoulder and elbow) located more medially and 
distal representations (i.e. wrist and fingers) located more laterally (Penfield and Boldrey, 1937). 
This suggests that at a macro-scale level, the direction of wave propagation is dictated by the 
underlying horizontal connections, though further work across different spatial scales (such as 
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Sreekumar et al., 2020) is required to fully unpack the precise relationship between sustained 
rhythmic synchronous spiking activity within neural populations, mesoscopic and macroscopic trav-
eling wave activity.

While our results further corroborate the importance of anterior–posterior and medial–lateral prop-
agation axes, the precise mechanism of travelling wave activity remains unclear. One possible mecha-
nism is that excitation from a single generator propagates through a network, guided by conduction 
delays within corticocortical and the corticothalamic system (Ermentrout and Kleinfeld, 2001; Muller 
et al., 2018; Prechtl et al., 2000). Alternatively, travelling wave activity could arise from one gener-
ator driving a network through increasing time delay, so-called fictive travelling waves, or coupled 
generators that exhibit stable phase differences (e.g. Zhigalov and Jensen, 2022). Different levels 
of network interactions may thus generate and sustain propagating waves. Common to all travelling 
wave activity is the idea that they generate a consistent spatiotemporal frame for further neuronal 
interactions. In mesoscopic data, it is very challenging to analytically resolve any ambiguity about 
the mechanism of wave generation. LFP recordings with implanted electrode arrays in non-human 
primates suggest that coupled oscillators contribute significantly to beta travelling waves over a 
spatial scale of 0.16 cm2 (Rule et al., 2018).

Propagation axes of sensorimotor beta activity are physiologically 
distinct
While previous work has investigated individual aspects of neural activity in relation to propagation 
direction (Balasubramanian et  al., 2020; Bhattacharya et  al., 2022), we here consider all signal 
domains of neural activity. We found that the two propagation axes can be distinguished based on 
their physiological properties, such as propagation speed, burst occurrence, amplitude, and extent. 
Specifically, beta activity propagating in the medial–lateral direction is characterised by higher burst 
amplitude and larger burst extent, that is, bursts are larger in all signal domains. Further, more bursts 
propagate along the anterior–posterior l direction, which is also characterised by faster propagation 
speed.

Propagating wave activity can occur in a wide range of different speeds, with propagation speeds 
broadly falling into two categories. Speeds for mesoscopic travelling waves occurring within cortical 
columns and their lateral connections, as identified using local field potential (LFP), multielectrode 
arrays, or optical imaging, range between 0.1 and 0.8 m/s (Bhattacharya et al., 2022; Rubino et al., 
2006; Takahashi et al., 2011; Takahashi et al., 2015). These slower wave speeds are consistent with 
axonal conduction speeds of unmyelinated horizontal fibres in the superficial layers of the cortex 
(Girard et al., 2001).

By contrast, macroscopic travelling waves spanning across several cortical regions, and commonly 
assessed using mass-neural signal recordings such as M/EEG or ECoG, have been reported at 
speeds ranging from around 1 to 10 m/s (Alexander et al., 2016; Hughes, 1995; Muller et al., 
2018). The relatively large variability in propagation speed of macroscopic travelling waves is partly 
due to variability in spatial resolution with low spatial resolution being susceptible to aliasing arte-
facts (Alexander et al., 2016; Bahramisharif et al., 2013), and some uncertainty in the travelled 
distance. Regarding the latter, while it has been recommended to study travelling waves on the 
cortical surface (Alexander et al., 2019; Hughes, 1995) it is still unclear whether neural activity truly 
propagates along the brains cortical surface (as quantified by geodesic distance), or, at least in part, 
propagate through the brain volume (as quantified by Euclidean distance). Further, propagation 
distance can be computed on the original, folded cortical surface or on the inflated surface. Our 
data show that propagation speed derived from the folded surfaces is roughly twice as fast than 
the propagation speed derived from the inflated surface (Figure 2—figure supplement 2), which 
is in line with the previously reported folding factor of x2.2 (Alexander et al., 2016; Burkitt et al., 
2000). Notwithstanding the uncertainty this introduces in estimating propagation speeds, the range 
of propagation speeds observed here are compatible with previous reports from human and non-
human primates (Hughes, 1995; Muller et al., 2018), and are compatible with axonal conduction 
speeds of myelinated cortical white matter fibres (Swadlow and Waxman, 2012), suggesting an 
active role for macro-scale travelling burst activity in intra-areal communication and information 
transfer.

https://doi.org/10.7554/eLife.80160
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Pre- and post-movement burst are expressed differently
The transient bursts of beta activity in our human MEG data lasted, on average, several hundred milli-
seconds, and span over approximately 3 Hz predominantly in the lower beta frequency range. These 
temporal and spectral properties are broadly in line with previous reports (Cagnan et al., 2019; Quinn 
et al., 2019; Seedat et al., 2020; Shin et al., 2017; Sporn et al., 2020; Tinkhauser et al., 2017a), 
with variation in the absolute values being strongly dependent on how bursts are operationalised 
(Zich et al., 2020). We extend these previous reports on the temporal and spectral burst characteris-
tics by additionally characterising spatial burst characteristics. Sensorimotor beta burst activity often 
spans over several square centimetres with a distinct topographic distribution. The majority of bursts 
are located on the posterior bank of the precentral gyrus, with a proportion of bursts that spread to 
adjacent areas. While approaching the spatial limits of human MEG, these data indicate the possibility 
of locating beta activity within the sensorimotor cortex.

To further elucidate the functional roles of sensorimotor beta bursts, we next compared pre- and 
post-movement bursts with regard to both their temporal, spectral, and spatial burst characteristics, 
and their propagation properties. We confirmed that post-movement, compared to pre-movement, 
bursts occur more frequently and are stronger (i.e. higher burst amplitude) and larger in all signal 
domains (i.e. larger burst extent). These observations are largely in line with previous studies (Quinn 
et al., 2019; Seedat et al., 2020; Zich et al., 2018), whereby we note that (Little et al., 2019) no 
difference in temporal burst duration between pre- and post-movement bursts was reported. We 
believe this discrepancy is because (Little et al., 2019) employed different thresholds for pre- and 
post-movement bursts, whereby here the same threshold was used. Moreover, we find that pre-
movement bursts exhibit faster propagation speed than post-movement burst activity. There is no 
evidence that the difference in propagation speed is mediated through differences in the frequency 
(Alexander et al., 2016), or spatial location of bursts, as both metrics are comparable for pre- and 
post-movement bursts. The functional relevance of this difference in propagation speed merits further 
consideration in the future, but it indicates that parsing the functional role of beta activity may require 
its decomposition into its physiologically distinct stationary and propagating components. Finally, we 
show that pre- and post-movement bursts propagate along the same propagation axis, which is in line 
with previous reports, observing the same propagation axes during action (Rubino et al., 2006) and 
rest (Takahashi et al., 2011). This provides further evidence that the propagation of burst activity is 
constrained by the underlying connectivity.

Together, our results show that, compared to pre-movement bursts, post-movement bursts are 
stronger and larger in all signal domains, whereby their spectral and spatial centre, as well as their 
propagation direction, are comparable. This might indicate that pre- and post-movement bursts 
share the similar generator processes, which exhibits more and stronger bursts post-movement. 
Studies using biophysical modelling have proposed that beta bursts are generated by a broad 
infragranular excitatory synaptic drive temporally aligned with a strong supragranular synaptic 
drive (Law et al., 2022; Neymotin et al., 2020; Sherman et al., 2016; Shin et al., 2017) whereby 
layer-specific inhibition acts to stabilise beta bursts in the temporal domain (West et al., 2023). 
The supragranular drive is thought to originate in the thalamus (Jones, 1998; Jones, 2001; Mo 
and Sherman, 2019; Seedat et al., 2020), indicating thalamocortical mechanisms. Interestingly, 
sensorimotor beta bursts have not only been observed during action but also during rest (Zich 
et al., 2018; Seedat et al., 2020; Becker et al., 2020; Echeverria-Altuna et al., 2021), which 
raises the question of their functional role. That sensorimotor beta bursts occur across functional 
states, spatial scales, and species suggests that the functional role of the mere presence of bursts is 
a very elementary one, such as maintaining the ‘status quo’ (Engel and Fries, 2010) or ‘null space’ 
(Kaufman et al., 2014). In addition, we believe that specific functional roles can be linked to the 
manifestation of bursts quantifiable by their temporal, spectral, and spatial bursts characteristics 
as well as their propagation properties. To give one example, motor symptoms in Parkinson’s 
disease have been linked to prolonged burst duration (Deffains et al., 2018; Tinkhauser et al., 
2017a; Tinkhauser et al., 2017b). The proposed hierarchical dual-role framework of burst function 
can be tested using biophysical models (Neymotin et al., 2020) and targeted neuromodulatory 
experiments.
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Caveats of spatial and spatiotemporal properties in source space
Non-invasive techniques have limitations that should be considered when interpreting the spatial 
domain of bursts and travelling wave activity. LCMV beamformers assume that each source is a single 
dipole and that there are no other correlated sources in the brain. These limitations make inter-
pretation of spatial structure in LCMV power maps ambiguous. We explore several specific issues: 
firstly, whether the apparent spatial extent of a source is simply modulated by the SNR of the signal. 
Secondly, the inherent smoothness of the source reconstruction maps due to the mapping of a few 
hundred sensors to several thousand voxels. Finally, if a patch of cortex is active rather than a single 
point source, then these correlated voxels can suppress the signal of interest. Each of these points can 
be challenging when interpreting the spatial domain of bursts and travelling waves.

The first issue suggests that differences in the bursts’ apparent spatial width could simply be caused 
by differences in SNR across and/or within sessions rather than differences in the spatial distribution of 
cortical activity. We performed one beamformer per session; thus, different SNR levels across sessions 
would affect the beamformer weights. However, if variation across sessions in beamformer weights 
would explain variation in bursts’ apparent spatial width, we would expect a negative relationship 
between burst amplitude and burst apparent spatial width across sessions. This is not the case in our 
data, suggesting that between-session differences in beamformer weights do not cause the observed 
differences in bursts’ apparent spatial width. Nevertheless, spatial width of burst activity measured 
with M/EEG or ECoG should be interpreted with caution. Here, due to the strong correlation between 
the bursts’ apparent spatial width, temporal duration, and frequency spread, we combined these 
signal properties using PCA and used the resulting cross-modal measure burst extent.

Secondly, the inherent smoothness of the beamformer solution can lead to 'trivial' structure in 
the source solution, meaning that single sources can leak across cortex or that multiple sources can 
become blurred together. Across space in bursts diverse phase lags exists, suggesting that structure 
is unlikely to have arisen solely from leakage of a single source. The functional role of travelling waves 
remains unclear. As outlined above, the mechanisms underlying travelling waves remain ambiguous 
(see ‘Distinct anatomical propagation axes of sensorimotor beta activity’), both at the meso- and 
macro scale (Hughes, 1995; Muller et al., 2018). We cannot rule out the possibility that this phase 
structure arises from mixing of multiple distinct sources but take a 'gradient' or 'travelling wave’ 
perspective here to better link with comparative literature. While this concerns travelling wave anal-
yses across a range of spatial scales and recording techniques, source space analysis, as employed 
here, entails an additional issue – namely whether the propagation directions can be trivially explained 
by spatial variability in the beamformer weights. Our control analysis showed that the estimated prop-
agation direction correlates significantly with the propagation direction obtained after regressing out 
the main components of spatial variability in the beamformer weights. This indicates that beamformer 
weights can contribute to, but do not solely explain, spatiotemporal gradients in human MEG data.

Finally, patches of high-amplitude, correlated sources can be mutually suppressed by the LCMV 
beamformer, leading to an apparent loss of signal. Though we cannot remove the possibility these 
mutual correlations may be suppressing part of the signal, we observe strong task-related activity 
suggesting that a substantial proportion remains in our analysis.

Together, we acknowledge that the beamformer weights can affect bursts’ spatial width and prop-
agation direction but believe that our control analyses suggest that the beamformer weights are not 
driving the observed effects.

Materials and methods
Participants and experimental task
The study was approved by the UCL Research Ethics Committee (reference number 5833/001) and 
conducted in accordance with the Declaration of Helsinki. Informed written consent was obtained 
from all participants. All participants (six males, M = 28.5 y, SD = 8.52 y across individuals) were free 
of neurological or psychiatric disorders, right-handed, and had normal or corrected-to-normal vision.

Participants performed a visually cued action decision-making task in which they responded to 
visual stimuli projected onto a screen by pressing one of two buttons using their right index or middle 
finger (for details, see Bonaiuto et al., 2018). Each trial consists of a baseline (1–2 s), random dot 
kinematogram (RDK, coherent motion to the left or right for 2  s), delay period (0.5  s), instruction 
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cue (arrow pointing to the left or right), and motor response. Participants were instructed to press 
the corresponding button (index finger for left button and middle finger for right button) as fast 
and accurately as possible. The task uses a factorial design with congruence between RDK and cue 
(congruent, incongruent) and coherence of the dot motion (low, medium, high). Each block comprised 
126 congruent and 54 incongruent trials, and 60 trials for each coherence level with half containing 
leftward motion, and half rightward motion. Here we only consider congruent, high-coherence trials 
(42 trials per block) that were responded to correctly.

MRI acquisition and processing
Prior to the MEG sessions, structural MRI data were acquired using a 3T Magnetom TIM Trio MRI 
scanner (Siemens Healthcare, Erlangen, Germany). A T1-weighted 3D spoiled fast low-angle shot 
(FLASH) sequence was acquired to generate an accurate image of the scalp for head-cast construc-
tion. Subject-specific head-casts optimise co-registration and reduce head movements, and thereby 
significantly improve the SNR. See Bonaiuto et al., 2018; Meyer et al., 2017; Troebinger et al., 2014 
for details on the sequence and the head-cast construction.

In addition, a high-resolution, quantitative, multiple parameter mapping (MPM) protocol, consisting 
of three differentially weighted, RF and gradient spoiled, multi-echo 3D FLASH acquisitions recorded 
with whole-brain coverage at 800 mm isotropic resolution, was performed. See Bonaiuto et al., 2018 

Figure 6. A schematic for the processing pipeline.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Empirical threshold to binarise beta bursts.

Figure supplement 2. Effect of different burst thresholds on burst characteristics, propagation speed and direction.
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for details on the protocol. Each quantitative map was co-registered to the scan used to design the 
head-cast using the T1 weighted map. Individual cortical surface meshes were extracted using Free-
Surfer (v5.3.0; Fischl, 2012) from multiparameter maps using the PD and T1 sequences as inputs, with 
custom modifications to avoid tissue boundary segmentation failures (Carey et al., 2018). Meshes 
were down-sampled by a factor of 10 (vertices: M = 30,095, SD = 2665 across individuals; faces: M 
= 60,182, SD = 5331 across individuals) and smoothed (5 mm). Here we used the original and the 
inflated pial surface.

MEG acquisition and pre-processing
MEG data were acquired using a 275-channel Canadian Thin Films (CTF) MEG system using individual 
head-casts in a magnetically shielded room. Head position was localised using three fiducial coils 
placed at the nasion and left/right pre-auricular points, within the head-cast. Data were sampled at 
1200 Hz. A projector displayed the visual stimuli on a screen (~50 cm from the participant), and partic-
ipants made responses with a button box.

A summary of the data processing pipeline is shown in Figure 6. MEG data were processed in for 
each block separately unless stated otherwise. Firstly, raw data were converted to SPM12 format for 
analysis in Matlab2019b. Registration between structural MRI and the MEG data was performed with 
RHINO (Registration of head shapes Including Nose in OSL) using only the Fiducial landmarks and 
single shell as forward model. Unless stated otherwise, data were analysed in single subject space.

Continuous data were down-sampled to 300 Hz. Further, a band-pass (1–95 Hz) and notch-filter 
(49–51 Hz) were applied. Time segments containing artefacts were identified by using generalised 
extreme studentised deviate method (GESD; Rosner, 1983) on the standard deviation of the signal 
across all sensors in 1  s non-overlapping windows, with a maximum number of outliers limited to 
20% of the data and adopting a significance level of 0.05. Data segments identified as outliers were 
excluded from subsequent analyses.

Further, denoising was applied using independent component analysis (ICA) using temporal 
FastICA across sensors (Hyvärinen, 1999). Sixty-two independent components were estimated, and 
components representing stereotypical artefacts such as eye blinks, eye movements, and electrical 
heartbeat activity were manually identified and regressed out of the data.

Data were then filtered to the frequency band of interest (β 13–30 Hz) and segmented from –2 s 
to 2 s relative to the button press. Segmented data were projected onto subjects’ individual cortical 
surface meshes using an LCMV vector beamformer (Van Veen and Buckley, 1988; Woolrich et al., 
2011). The beamformer weights were estimated at the centre of each face, referred to henceforth 
as spatial locations. A covariance matrix was computed across all segments and was regularised to 
55 dimensions using principal component analysis (PCA). All analyses are conducted in source space.

Time-frequency decomposition
Time-frequency analysis was applied to single trials and spatial locations using dpss-based multitaper 
(window = 1.6 s, steps = 200 ms) with a frequency resolution of 1 Hz. Epochs were baseline corrected 
(–1.8 s to –1.1 s). This procedure results in a trial-by-trial time-frequency decomposition for each 
spatial location, that is, relative power in 4D, time × frequency × space × trial, whereby space is on its 
own three-dimensional (x, y, z coordinates of surface locations).

Burst operationalisation
We used binarisation and high-dimensional clustering to operationalise beta bursts. Power derived 
from time-frequency analysis was first binarised using a simple amplitude threshold. The threshold 
was obtained empirically as in previous work (Little et al., 2019). Specifically, trial-wise power was 
correlated with the burst probability across a range of different threshold values (median to median 
plus 7 standard deviations, in steps of 0.25). The threshold value that retained the highest correlation 
between trial-wise power and burst probability was used to binarise the data. To account for differ-
ence in signal-to-noise across sessions, days and subjects we obtained one threshold per session (M 
= 2.97 × SDs above mean, SD = 0.66 across sessions; Figure 6—figure supplement 1). To explore 
the robustness of the results, analyses were repeated using a range of thresholds (Figure 6—figure 
supplement 2).
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Detecting bursts simultaneously in the 
temporal, spectral, and spatial domain is accom-
panied by some conceptual and computational 
challenges. Here we opt for a simple thresh-
olding approach rather than a more data-driven 
approach, such as the hidden Markov model 
(HMM; Quinn et al., 2019; Vidaurre et al., 2016). 
Firstly, existing HMM variants do not provide the 
here desired frequency resolution. Secondly, 
adapting the amplitude-envelope HMM to 
threshold power derived from time-frequency 
analysis poses a computational challenge for this 
high-dimensional dataset. Finally, one of the main 

advantages of HMM, that is, the prevention of burst-splits (see Quinn et al., 2019) is overcome in 
the 5D clustering procedure. Together, while HMM and other data-driven approaches are generally 
advantageous, in this framework a simple amplitude threshold is preferred.

Following binarisation, data were clustered across time, frequency, and space using a three-stage 
approach (see Video 1). Note that data are four-dimensional, that is, time × frequency × space × trial, 
whereby space is on its own three-dimensional (x, y, z coordinates of surface locations). First, for each 
trial data were clustered in 2D (i.e. time × frequency). To this end, the binarised data were summed 
over the spatial domain and time-frequency cells with at least one surface location being ‘on’ were 
clustered using eight-connectivity (i.e. connected horizontally, vertically, or diagonally). Second, for 
each time-frequency cell with at least one surface location being ‘on’, spatial locations on the surface 
mesh were clustered in 3D (i.e. x, y, z coordinates of surface locations). Spatial locations were part of 
the same cluster if their Euclidean distance was smaller than the maximal distance of two spatial loca-
tions (M = 2.66 mm; SD = 0.15 mm across individuals). Finally, source clusters were combined across 
time-frequency cells using eight-connectivity, that is, if two spatial clusters of two adjourning time-
frequency cells overlapped in at least one surface location the two spatial clusters were combined. This 
procedure allows clustering in high-dimensional irregular space and results in 3D (time × frequency × 
space) bursts. Burst identification was limited to the time of interest (−2 to 2 s relative to the button 
press), the frequency of interest (13–30 Hz), and ROI (left-hand area). To restrict the burst analysis to 
an ROI, volume-based ROIs in MNI space were normalised to subject’s native space using the inverse 
deformation field and transformed to surface-based ROIs. Clusters had to span at least two time 
points, frequency steps, and spatial locations to be considered further.

Burst characteristics
We divide burst characteristics into first- and second-level burst characteristics. We define first-level 
burst characteristics as characteristics that are obtained for each burst and each domain separately. 
Figure 1 illustrates the first-level characteristics. For the temporal domain, burst temporal on- and 
offset, temporal duration and centre (i.e. mean of on- and offset) were obtained. Equally, low- and 
high-frequency boundaries, frequency spread and centre (i.e. mean of low and high boundary) were 
extracted for the spectral domain. For the spatial domain, we obtained the spatial width (i.e. total 
surface area defined as the sum of the area of all faces), the size in each dimension (x, y, z) using the 
minimum bounding rectangle (i.e. bounding box), and the spatial centre. The spatial centre is defined 
as the projection of the centre of mass onto the surface. The spatial centre can be described using 
its Cartesian coordinates. An alternative to the description of the spatial centre is provided by the 
first two components of a PCA of the Cartesian coordinates (Figure 4—figure supplement 3). The 
first two PCs describing 98% of variance are retained for further analysis. The first PC (76.3% variance 
explained) contains a spatial gradient along the anterior/lateral–posterior/medial axis. The second 
PC (22.3% variance explained) contains a spatial gradient along the anterior/medial–posterior/lateral 
axis. Thus, the location of an individual burst can be described by the two PC scores, relating to the 
amount of each PC that it contains. In addition, burst amplitude was obtained, that is, the mean ampli-
tude across all time points, frequencies, and spatial locations of the burst.

These first-level burst characteristics form the basis for second-level burst characteristics. These 
can be broadly summarised as (1) combinations and (2) interactions of characteristics within and across 

Video 1. Illustration of 5D clustering.

https://elifesciences.org/articles/80160/figures#video1
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domains. Here we extract one of these measures: temporal duration, frequency spread, and apparent 
spatial width were combined to a single metric, that is, burst extent. The three measures are highly 
correlated within subjects (M = 0.785; SD = 0.021, across the three correlations and eight individuals, 
Figure 4—figure supplement 2a and b) and were therefore reduced to a single metric using PCA. 
The first principal component explains 85.6% of the variance and is defined as burst extent (PC 2: 
7.5%; PC 3: 6.9%, Figure 4—figure supplement 2c). These burst metrics are not exhaustive. Other 
second-level burst characteristics include the interaction between frequency centre and spatial loca-
tion (Zich et al., 2020), waveform variability (Szul et al., 2022), and the variability of the first-level 
burst characteristics, such as the variability in (instantaneous) frequency, within and across bursts. 
Future work may address the variability and temporal stability of bursts, for example, using methods 
such as empirical mode decomposition (Huang et al., 1998).

Propagation direction and speed of neural activity within bursts
To investigate whether activity within human sensorimotor bursts propagates, we identified the domi-
nant propagation direction and speed for each burst. To this end, data (before time-frequency decom-
position, see Figure 6) of each burst were extracted from burst on- to offset for each surface location 
in the burst. The sign ambiguity in the beamforming process entails that the spatial locations within 
a burst may have arbitrarily opposite signs. This is not an issue when estimating power, as above, but 
can impact on the estimation of the propagation direction. Sign ambiguity was resolved using the 
sign-flipping algorithm described in Vidaurre et al., 2018. For a finer temporal resolution, data were 
interpolated by a factor of 10.

For each burst, we estimated the propagation direction and propagation speed. Propagation 
direction and speed were estimated from critical points in the oscillatory cycle (four critical points per 
oscillatory cycle, i.e. peak and trough as well as peak-trough and trough-peak midpoint, grey vertical 
lines in Figure 2a) and then averaged across critical points within one burst.

The propagation direction at each critical point was estimated from the relative latency (i.e. abso-
lute latency of that critical point at each surface location relative to absolute latency of that critical 
point for the average across all surface locations in that burst). For example, Figure 2bi shows the 
relative latency for each surface location in the burst for the critical point at 212 ms in the burst. Next, 
from these relative latencies and their surface locations the propagation direction was estimated. 
Specifically, propagation direction was estimated using linear regression (Balasubramanian et  al., 
2020), whereby the relative latency at the surface location was predicted from the coordinates of 
the surface location of the inflated surface. On the inflated surface, a gradient in the z-direction is 
always depicted by a gradient in x- or y-direction, which is why only two simple linear regressions 
were estimated, one for the x-and one for the y-direction (Figure 2bii). Propagation direction along 
the x-y-direction was obtained by transforming the regression coefficients from Cartesian coordinates 
to spherical coordinates (red arrow in Figure 2biii). For each regression, its associated coefficient of 
determination (R2) was calculated and the two R2s averaged. This approach results in one propagation 
direction and one R2 per critical point.

Propagation direction across critical points was obtained by clustering (i.e. spectral clustering) 
the propagation directions across critical points. Three scenarios existed: (1) one cluster was 
obtained and the variability across directions of critical points was relatively low (standard deviation 
< π/4; Figure 2biii; Figure 2—figure supplement 1a); (2) one cluster was obtained and the vari-
ability across directions of critical points was relatively high (standard deviation > π/4; Figure 2—
figure supplement 1b); and (3) more than one cluster was obtained (Figure 2—figure supplement 
1c). Scenarios 2 and 3 indicate complex propagation patterns, such as random or circular patterns 
(Denker et al., 2018; Rule et al., 2018). Based on previous literature, we expect planar traveling 
waves to be dominant in the primary motor cortex (Balasubramanian et al., 2020; Rubino et al., 
2006; Rule et al., 2018; Takahashi et al., 2011). For bursts of scenario 1, propagation directions 
and R2 were averaged across critical points (back arrow in Figure 2biii). To have sufficient confi-
dence in the direction, bursts with an average R2 < 0.2 were discarded (Balasubramanian et al., 
2020). Following this procedure, we found that 79.59% (SD = 2.37% across individuals) of the bursts 
show a spatiotemporal pattern (R2: M = 0.355, SD = 0.016 across individuals). To combine propaga-
tion directions across subjects, propagation directions were spatially normalised to MNI space using 
the deformation field. Directions are presented as probability distributions. On the average of the 

https://doi.org/10.7554/eLife.80160
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probability distributions across subjects, the propagation direction was quantified using a mixture 
of von Mises functions.

The propagation speed at each critical point was defined as the distance between the spatial loca-
tions with the largest and smallest relative latency (i.e. latency of each surface location relative to the 
average latency) divided by the difference in their latencies (Bahramisharif et al., 2013). Distance was 
computed using exact geodesic distance (Mitchell et al., 1987; Figure 2cii) on the inflated surface. 
Propagation speed was averaged across critical points. For comparison, we calculated the propaga-
tion speed using the original surface. The speed computed using the distance on the original surface 
(M = 4.90 m/s, SD = 0.46 m/s across individuals) is faster than the speed computed using the distance 
on the inflated surface (M = 2.61 m/s, SD = 0.39 m/s across individuals, Figure 2—figure supplement 
2). This difference is well in line with a suggested cortical folding factor of x2.2 to adjust propagation 
speeds for cortical folding (Alexander et al., 2016; Burkitt et al., 2000). Propagation speed is in the 
expected range of macroscopic waves (Hughes, 1995; Muller et al., 2018).

Accuracy of the propagation direction detection in simulated and real 
meshes
Using simulation, we evaluated the accuracy of the propagation direction estimation. To this end, 
we generated 360 noise-free high-resolution gradients span 1° in steps of 1° (Figure  3a shows a 
subset). To evaluate the effect of mesh type and spatial sampling, we created three 2D mesh types, 
(1) square mesh (Figure 3b), (2) circular mesh (Figure 3c), and (3) random mesh (Figure 3d), whereby 
each mesh type was sampled at three spatial sampling rates: N/2, N, and N × 2 (N approximates the 
spatial sampling of the surface mesh, i.e. roughly 27 surface locations per cm2). For each gradient 
and each mesh, the propagation direction was estimated and the estimation error, that is, difference 
between true and estimated propagation direction, computed. For the random mesh, this procedure 
was repeated 100 times, each time with a different random mesh.

As the surface mesh is irregular and each burst is unique in its spatial size and shape, we addition-
ally evaluated the accuracy of the propagation direction estimation for the real bursts. To this end, for 
each individual burst and each gradient, the propagation direction was estimated, and the estimation 
error computed as above.

Control analysis
The ill-posed nature of the inverse problem in M/EEG means that the source estimation has a degree 
of smoothness. While this is unavoidable and shared with all inverse problem methods, the smooth-
ness can be problematic when interpreting the spatial domain of burst and their spatiotemporal gradi-
ents, travelling waves. We perform a series of control analysis to explore the practical effect of these 
ambiguities in our data. Our reasoning was that with regards to interpreting the spatial width of 
burst activity, any differences could be caused by differences in SNR across and/or within sessions 
rather than differences in the spatial distribution of cortical activity (see Figure 1—figure supplement 
2ai and bi for a schematic illustrations). To address this, we performed several correlation analyses 
between burst amplitude and burst apparent spatial width, between and across sessions. Further, we 
investigated whether the distribution of the propagation direction is biased by a potential bias in the 
spatial domain, such as the selective cancellation of bursts generated by tangential sources (Ahlfors 
et al., 2010; Eulitz et al., 1997). We aimed to examine the distribution of propagation directions 
from beta bursts which form a uniform distribution across space. To retain a nigh SNR, we focussed 
this analysis to the area of the ROI that has a burst probity higher than 0.44 (see Figure 1d). We then 
iteratively removed bursts until the burst distribution across this space was uniform. We found that the 
distribution of propagation directions using a subset of bursts forming a uniform spatial distribution 
is comparable to the original set of bursts. This analysis suggests that potential spatial sampling bias 
does not shape the propagation analysis.

Regarding the interpretation of travelling waves, there is inherent ambiguity concerning the mech-
anisms that generate a travelling wave (see ‘Distinct anatomical propagation axes of sensorimotor 
beta activity’; Prechtl et al., 2000; Ermentrout and Kleinfeld, 2001). While this concerns travelling 
wave analyses across a range of spatial scales and recording techniques, the source space analysis 
employed here entails an additional issue – namely whether the propagation directions can be trivially 
explained by spatial variability in the LCMV weights. To address this issue, we correlated the latency 

https://doi.org/10.7554/eLife.80160


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zich et al. eLife 2023;12:e80160. DOI: https://​doi.​org/​10.​7554/​eLife.​80160 � 20 of 26

of the critical points across space before and after regressing out the main components of the spatial 
variability in the LCMV weights. Specifically, we performed PCA on the LCMV weights and retained 
the components that explained 90% of the variance in the LCMV weights. We then performed, for 
each critical point of each burst, a multiple regression analysis with the latencies of the critical point 
across space as dependent variable and the coefficients of the PCs across space as independent 
variables. We then correlated the latency of the critical points across space with the residuals of the 
multiple regression. Pearson’s r was first averaged across critical points within bursts, and then across 
bursts.

Statistical analysis
Statistical analysis was performed using nonparametric testing in Matlab2019b. If not stated other-
wise, descriptive statistics depict mean and standard deviation of the median across subjects. Burst 
characteristics with unimodal distributions (e.g. burst amplitude, burst propagation speed) were 
compared using the Wilcoxon signed-rank test on the medians of the distribution. The test statistic is 
reported as a value of T. Burst characteristics with multimodal distributions (e.g. spatial location) were 
compared using a two-sample Kolmogorov–Smirnov test on the single subject level. The test statistic 
is reported as the value of KS (i.e. mean and range across subjects). Two circular distributions (e.g. 
propagation direction pre- and post-movement) were compared using two-sample Watson’s U2 test 
(Landler et al., 2021) on the single subject level. The test statistic is reported as the value of U2 test 
(i.e. mean and range across subjects).

To test whether there is significant spatiotemporal structure in burst activity, we compared the prop-
agation direction of real and surrogate data. Specifically, for a subset of bursts, that is, 100 randomly 
selected bursts sampled across all subjects, 1000 surrogates were created for each burst from the data 
after sign ambiguity was resolved (see Figure 6). Surrogate data were obtained by computing the 
discrete Fourier transform of the data, randomising the phase spectrum while preserving the ampli-
tude spectrum, and then computing the inverse discrete Fourier transform to obtain the surrogated 
data (method 3 in Hurtado et al., 2004). For each burst, the magnitude of the propagation direction 
of the real data was compared to the distribution from 1000 surrogates.

To quantify the overall propagation direction, a mixture of four von Mises functions was fitted to the 
average of the subjects’ probability distribution of propagation directions across bursts. This provides 
an estimate of the angle and length of the von Mises functions. Reliability of von Mises functions was 
assessed using a split-half reliability. In total, 500 split halves were computed and 4 von Mises func-
tions estimated on each half independently. For both, angle and length, the difference between the 
two halves was computed. Further, to test whether the von Mises functions were significantly different 
from zero, non-parametric permutation testing was employed on the length of the von Mises func-
tions. Permutations were carried out by randomising the propagation direction of each burst. In total, 
5000 permutations were computed before statistical significance was determined on the length of the 
von Mises functions while correcting for multiple comparison at p<0.01.

Software
All analyses are performed using freely available tools in MATLAB (The MathWorks Inc (2022a) version 
9.12.0, Natick, Massachusetts, RRID:SCR_001622). The code carrying out the analysis in this article 
can be found here: https://github.com/cathazi/Zich_2023_3DBursts (copy archived at Zich et  al., 
2023). This analysis depends on a number of other toolboxes and software packages. The MEG 
processing was performed using the OHBA Software Library (OHBA Analysis Group, 2017). This 
builds upon Fieldtrip, SPM and FSL to provide a range of useful tools for M/EEG analyses. Further, the 
following MATLAB toolboxes were used: Computer Vision Toolbox (version 10.2), Image Processing 
Toolbox (version 11.5), Statistics and Machine Learning Toolbox (version 12.3), and Signal Processing 
Toolbox (version 9.0). Moreover, the MarsBaR region of interest Toolbox for SPM (Brett et al., 2002, 
version 0.45) and CircStat: A Matlab Toolbox for Circular Statistics (Berens, 2009; Berens, 2012) were 
used. Exact geodesic for triangular meshes (Kirsanov, 2008), Inhull (D’Errico, 2012), Point biserial 
correlation (Nagel, 2006), and Triangle/Ray Intersection (Tuszynski, 2018) were used. The 3D burst 
analyses can be very computationally intensive even on a modern computer system. The analyses in 
this article were computed on a MacBook Pro with a 2.6GHz 6-Core Intel Core i7 and 32Gb of RAM. 

https://doi.org/10.7554/eLife.80160
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Details of the installation and setup of the dependencies can be found in the ​README.​md file in the 
main study repository.
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