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Abstract Loss of endoplasmic reticular (ER) Ca?* activates store-operated Ca®* entry (SOCE)

by causing the ER localized Ca®* sensor STIM to unfurl domains that activate Orai channels in the
plasma membrane at membrane contact sites (MCS). Here, we demonstrate a novel mechanism by
which the inositol 1,4,5 trisphosphate receptor (IPsR), an ER-localized IP;-gated Ca®* channel, regu-
lates neuronal SOCE. In human neurons, SOCE evoked by pharmacological depletion of ER-Ca?*

is attenuated by loss of IPsRs, and restored by expression of IP;Rs even when they cannot release
Ca?*, but only if the IP;Rs can bind IP;. Imaging studies demonstrate that IP;Rs enhance association
of STIM1 with Orail in neuronal cells with empty stores; this requires an IP;-binding site, but not a
pore. Convergent regulation by IP;Rs, may tune neuronal SOCE to respond selectively to receptors
that generate IPs.

Editor's evaluation

This paper proposes a fundamental new role for IP3 receptors in the regulation of store-operated
calcium entry in neurons, in which IP3-bound receptors enhance the association of STIM1 and Orai1
independently of their ability to release Ca from the ER. While the evidence for this phenomenon is
solid, experimental support for an underlying mechanism is incomplete and will require additional
studies. The paper will appeal to cell biologists and neurobiologists interested in calcium signaling
pathways, particularly store-operated calcium entry.

Introduction

The activities of all eukaryotic cells are regulated by increases in cytosolic-free Ca?* concentration
([Ca**].), which are almost invariably evoked by the opening of Ca?*-permeable ion channels in biolog-
ical membranes. The presence of these Ca?" channels within the plasma membrane (PM) and the
membranes of intracellular Ca*" stores, most notably the endoplasmic reticulum (ER), allows cells to
use both intracellular and extracellular sources of Ca?* to evoke Ca?* signals. In animal cells, the most
widely expressed Ca®* signaling sequence links extracellular stimuli, through their specific receptors
and activation of phospholipase C, to formation of inositol 1,4,5-trisphosphate (IP;), which then stim-
ulates Ca®" release from the ER through IP; receptors (IPsR) (Foskett et al., 2007; Prole and Taylor,
2019). IP;Rs occupy a central role in Ca** signaling by releasing Ca?* from the ER. IPsRs thereby elicit
cytosolic Ca** signals, and by depleting the ER of Ca?* they initiate a sequence that leads to activation
of store-operated Ca®* entry (SOCE) across the PM (Putney, 1986; Thillaiappan et al., 2019). SOCE
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occurs when loss of Ca** from the ER causes Ca** to dissociate from the luminal Ca®*-binding sites
of an integral ER protein, stromal interaction molecule 1 (STIM1). STIM1 then unfolds its cytosolic
domains to expose a region that binds directly to a Ca?* channel within the PM, Orai, causing it to
open and Ca?* to flow into the cell across the PM (Parekh and Putney, 2005; Prakriya and Lewis,
2015; Lewis, 2020). The interactions between STIM1 and Orai occur across a narrow gap between
the ER and PM, a membrane contact site (MCS), where STIM1 puncta trap Orai channels. While STIM1
and Orai are undoubtedly the core components of SOCE, many additional proteins modulate their
interactions (Rosado et al., 2000; Palty et al., 2012; Deb et al., 2016; Srivats et al., 2016) and other
proteins contribute by regulating the assembly of MCS (Chang et al., 2013; Giordano et al., 2013,
Kang et al., 2019).

It is accepted that IPs-evoked Ca?* release from the ER through IP;Rs is the usual means by which
extracellular stimuli evoke SOCE. Here, the role of the IP;R is widely assumed to be restricted to its
ability to mediate Ca®* release from the ER and thereby activate STIM1. Evidence from Drosophila,
where we suggested an additional role for IP;Rs in regulating SOCE (Agrawal et al., 2010;
Chakraborty et al., 2016), motivated the present study, wherein we examined the contribution of
IPsRs to SOCE in mammalian neurons. We show that in addition to their ability to activate STIM1
by evoking ER Ca** release, IP;Rs also facilitate interactions between active STIM1 and Orai1l. This
additional role for IPsRs, which is regulated by IP; but does not require a functional pore, reveals an
unexpected link between IP;, IP;Rs and Ca?* signaling that is not mediated by IP;-evoked Ca?* release.
We speculate that dual regulation of SOCE by IP;Rs may allow Ca** release evoked by IP; to be pref-
erentially coupled to SOCE.

Results

Loss of IP;R1 attenuates SOCE in human neural stem cells and neurons
We investigated the effects of IP;Rs on SOCE by measuring [Ca?*]. in human neural stem cells and
neurons prepared from embryonic stem cells. Human neural progenitor cells (nNPCs) were derived
from H9 embryonic stem cells using small molecules that mimic cues provided during human brain
development (Gopurappilly et al., 2018). We confirmed that hNPCs express canonical markers of
neural stem cells (Figure 1A) and that IPsR1 is the predominant IP;R subtype (GEO accession no.
GSE109111; Gopurappilly et al., 2018). An inducible lentiviral sShARNA-miR construct targeting IP;R1
reduced IP;R1 expression by 93 + 0.4% relative to a non-silencing (NS) construct (Figure 1B and C).
Carbachol stimulates muscarinic acetylcholine receptors, which are expressed at low levels in hNPCs
(Gopurappilly et al., 2018). In Ca?*-free medium, carbachol evoked an increase in [Ca**]. in about 10%
of hNPCs, consistent with it stimulating Ca?* release from the ER through IP;Rs. Restoration of extra-
cellular Ca?* then evoked an increase in [Ca?*]. in all cells that responded to carbachol. Both carbachol-
evoked Ca* release and SOCE were abolished in hNPCs expressing IPsR1-shRNA, confirming the
effectiveness of the IP;R1 knockdown (Figure 1—figure supplement 1A-C).

Thapsigargin, a selective and irreversible inhibitor of the ER Ca?* pump (sarcoplasmic/endoplasmic
reticulum Ca?*-ATPase, SERCA), was used to deplete the ER of Ca?* and thereby activate SOCE
(Figure 1D; Parekh and Putney, 2005). Restoration of extracellular Ca®* to thapsigargin-treated
hNPCs evoked a large increase in [Ca**], reflecting the activity of SOCE (Figure 1D). The maximal
amplitude and rate of SOCE were significantly reduced in cells lacking IP;R1, but the resting [Ca*"],
and thapsigargin-evoked Ca?* release were unaffected (Figure 1D-F and Figure 1—figure supple-
ment 1D and E). STIM1 and Orai1 expression were also unaltered in hNPC lacking IP;R1 (Figure 1—
figure supplement 1G). After spontaneous differentiation of hANPC, cells expressed markers typical of
mature neurons, and the cells responded to depolarization with an increase in [Ca*"], (Figure 1—figure
supplement 1F and Figure 1—figure supplement TH-J). Thapsigargin evoked SOCE in these differ-
entiated neurons; and expression of IP;R1-shRNA significantly reduced the SOCE response without
affecting depolarization-evoked Ca®* signals (Figure 1H-J and Figure 1—figure supplement 1H-L).

Loss of IP;R1 attenuates SOCE in human neuroblastoma cells

IPsRs link physiological stimuli that evoke Ca?* release from the ER to SOCE, but the contribution
of IPsRs is thought to be limited to their ability to deplete the ER of Ca?*. We have reported that
in Drosophila neurons there is an additional requirement for IP;Rs independent of ER Ca?" release
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Figure 1. Loss of IP;R1 attenuates SOCE in human neural stem cells. (A) Confocal images of hNPCs (passage 6) stained for DAPI and neural stem cell
proteins: Paxé and Kié7 (proliferation marker). Scale bars, 50 um. (B) WB for IP;R1 of hNPCs expressing non-silencing (NS) or IP;R1-shRNA. (C) Summary

results (mean +s.d., n=3) show IP;R1 expression relative to actin. “p < 0.01, Student's t-test with unequal variances. (D) Changes in [Ca

*]. evoked by

thapsigargin (Tg, 10 pM) in Ca®*-free HBSS and then restoration of extracellular Ca®* (2 mM) in hNPCs expressing NS or IP;R1-shRNA. Mean + s.e.m.
from hree independent experiments, each with four replicates that together included 100-254 cells. Inset shows the target of Tg. (E-G) Summary results
(individual cells, median (bar), 25th and 75th percentiles (box) and mean (circle)) show Ca?" signals evoked by Tg or Ca®* restoration (E), rate of Ca®*
entry (F) and resting [Ca%]. (G). ""p < 0.001, Mann-Whitney U-test. (H) Changes in [Ca?"]. evoked by Tg (10 uM) in Ca?"-free HBSS and after restoring
extracellular Ca?* (2 mM) in neurons (differentiated hNPCs) expressing NS or IP;R1-shRNA. Mean + s.e.m. from three experiments with ~200 cells.

(I,J) Summary results (presented as in E-G) show Ca?* signals evoked by Tg or Ca** restoration (I) and rate of Ca** entry (J). “p < 0.001. Mann-Whitney

U-test. See also Figure 1—figure supplement 1. Source data in Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Loss of IP;R1 attenuates SOCE in human neural stem cells.

Figure supplement 1. Loss of IP;R1 attenuates SOCE in neural precursor cells and differentiated neurons.

Figure supplement 1—source data 1. Loss of IP;R1 attenuates SOCE in neural precursor cells and differentiated neurons.
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(Venkiteswaran and Hasan, 2009, Agrawal et al., 2010; Chakraborty et al., 2016). Our results with
hNPCs and stem cell-derived neurons suggest a similar requirement for IPsRs in regulating SOCE in
mammalian neurons. To explore the mechanisms underlying this additional role for IP;Rs, we turned
to a more tractable cell line, SH-SY5Y cells. These cells are derived from a human neuroblastoma; they
exhibit many neuronal characteristics (Agholme et al., 2010); they express M3 muscarinic acetylcho-
line receptors that evoke IP;-mediated Ca** release and SOCE (Grudt et al., 1996); and they express
predominantly IP;R1 (Wojcikiewicz, 1995; Tovey et al., 2001), with detectable IP;R3, but no IP;R2
(Figure 2A). We used inducible expression of IP;R1-shRNA to significantly reduce IP;R1 expression (by
74 = 1.2%), without affecting IPsR3 (Figure 2A and B). As expected, carbachol-evoked Ca?" signals in
individual SH-SY5Y cells were heterogenous and the carbachol-evoked Ca®" release was significantly
reduced by knockdown of IP;R1 (Figure 2C and D and Figure 2—figure supplement 1A and B).
Thapsigargin evoked SOCE in SH-SY5Y cells (Grudt et al., 1996), and it was significantly attenuated
after knockdown of IP;R1 without affecting resting [Ca?]., the Ca** release evoked by thapsigargin or
expression of STIM1 and Orai1 (Figure 2E-G and Figure 2—figure supplement 1C-E).

We also used CRISPR/Cas9n and Cas9 to disrupt one or both copies of the IP;R1 gene, subsequently
referred to as IKO (one copy knockout) and IKO null (both copies knocked out) in SH-SY5Y cells.
IP;R1 expression was absent in the IKO null (Figure 2—figure supplement 1F) whereas expression
of STIM1, STIM2 and Orai1 were unperturbed (Figure 2—figure supplement 1G). Carbachol-evoked
Ca?* release and thapisgargin-evoked SOCE were significantly reduced (Figure 2—figure supple-
ment TH-J). Since the IKO null cells were fragile and grew slowly, we examined SOCE in SH-SY5Y cells
with disruption of one copy of the IP;R1 gene. In the IKO cells, IP;R1 expression, carbachol-evoked
Ca?* signals and thapsigargin-evoked SOCE were all reduced (Figure 2—figure supplement 1K-Q).

These observations, which replicate those from hNPCs and neurons (Figure 1), vindicate our use of
SH-SY5Y cells to explore the mechanisms linking IP;Rs to SOCE in human neurons.

Expression of IPsR1 or IP;R3 in SH-SY5Y cells expressing IPsR1-shRNA restored both carbachol-
evoked Ca** release and thapsigargin-evoked SOCE without affecting resting [Ca**]. or thapsigargin-
evoked Ca?* release (Figure 2H-J and Figure 2—figure supplement 2A-D). Over-expression of
STIM1 in cells expressing NS-shRNA had no effect on SOCE (Figure 2—figure supplement 2E and F),
but it restored thapsigargin-evoked SOCE in cells expressing IP;R1-shRNA, without affecting resting
[Ca*]. or thapsigargin-evoked Ca*" release (Figure 2K-M). We conclude that IP;Rs are required for
optimal SOCE, but they are not essential because additional STIM1 can replace the need for IPsRs
(Figure 3A).

It has been reported that SOCE is unaffected by loss of IP;R in non-neuronal cells (Ma et al., 2001,
Chakraborty et al., 2016). Consistent with these observations, the SOCE evoked in HEK cells by
stores emptied fully by treatment with thapsigargin was unaffected by expression of IP;R1 shRNA
(Figure 2—figure supplement 3A-3C) or by knockout of all three IP;R subtypes using CRISPR/cas%
(HEK-TKO cells; Figure 2—figure supplement 3D and E). The association of STIM1 with Orail in
wild type HEK cells and HEK TKO cells after thapsigargin-evoked store depletion also appeared iden-
tical as tested by a proximity ligation assay (PLA, described further in Figure 5 and Figure 2—figure
supplement 3F). Neuronal and non-neuronal cells may, therefore, differ in the contribution of IP;R to
SOCE. We return to this point later.

Binding of IP; to IP;R without a functional pore stimulates SOCE
IP;Rs are large tetrameric channels that open when they bind IP; and Ca**, but they also associate
with many other proteins (Prole and Taylor, 2019), and many IP;Rs within cells appear not to release
Ca?* (Thillaiappan et al., 2019). A point mutation (D2550A, IP;R1%4) within the IP;R1 pore prevents
it from conducting Ca?* (Dellis et al., 2008). As expected, expression of IP;R1%4 in cells lacking IP;R1
failed to rescue carbachol-evoked Ca* release, but it unexpectedly restored thapsigargin-evoked
SOCE (Figure 3B-D; and Figure 3—figure supplement 1). We confirmed that rescue of thapsigargin-
evoked Ca®* entry by this pore-dead IP;R was mediated by a conventional SOCE pathway by demon-
strating that it was substantially attenuated by siRNA-mediated knockdown of Orai1 (Figure 3C and
D and Figure 3—figure supplement 1F-H).

Activation of IP;Rs is initiated by IP; binding to the N-terminal IP;-binding core of each IP;R
subunit (Prole and Taylor, 2019). Mutation of two conserved phosphate-coordinating residues in the
a-domain of the binding core (R568Q and K569Q of IP;R1, IP;R18¥%?) almost abolishes IP; binding
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Figure 2. Loss of IP;R1 attenuates SOCE in SH-SY5Y cells. (A) WB for IP;R1-3 of SH-SY5Y cells expressing non-silencing (NS) or IPsR1-shRNA.

(B) Summary results (mean =+ s.d., n=4) show IP;R expression relative to actin normalized to control NS cells. “p < 0.01, Student’s t-test with unequal
variances. (C) Ca®* signals evoked by carbachol (CCh, 3 uM) in SH-SY5Y cells expressing NS or IP;R1-shRNA. Mean + s.e.m. from three experiments with
70-90 cells. (D) Summary results show peak changes in [Ca*]. (A[Ca*'].) evoked by CCh. ""p < 0.001, Mann-Whitney U-test. (E) Ca** signals evoked by

Figure 2 continued on next page
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thapsigargin (Tg, 10 uM) in Ca**-free HBSS and then after restoration of extracellular Ca®* (2 mM) in cells expressing NS or IP;R1-shRNA. Mean + s.e.m.
from three experiments with ~50 cells. (F, G) Summary results (individual cells, mean + s.e.m., n=3, ~50 cells) show peak changes in [Ca*']. evoked

by Ca?* restoration (A[Ca?"]) (F) and rate of Ca*" entry (G). “p < 0.001, Mann-Whitney U-test. (H) Ca®* signals evoked by Tg and then Ca?* restoration

in cells expressing NS-shRNA, or IP;R1-shRNA alone or with IP;R1 or IP;R3. Traces show mean + s.e.m. (50-115 cells from three experiments). (l,

J) Summary results (mean + s.e.m, 50-115 cells from three experiments) show peak increases in [Ca?*]. (A[Ca**].) evoked by Ca** restoration (I) and rates
of Ca®* entry (J) evoked by restoring extracellular Ca?". (K) Effects of thapsigargin (Tg, 10 pM) in Ca®*-free HBSS and then after Ca®* restoration (2 mM)

in cells expressing IPsR1-shRNA alone or with IP;R1 or mCh-STIM1. Traces show mean + s.e.m. (100-150 cells from three experiments). (L, M) Summary
results (mean + s.e.m.) show peak increase in [Ca?']. after Ca®" restoration (A[Ca®‘]) (L) and rate of Ca®" entry (M). Different letters indicate significant
differences (panels I, J, L, M), p <0.001, one-way ANOVA with pair-wise Tukey's test. See also Figure 2—figure supplements 1-3. Source data in Figure

2—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1. Loss of IP;R1 attenuates SOCE in SH-SY5Y cells.
Figure supplement 1. Reduced expression of IP;R1 using either shRNA or CRISPR/Cas9n attenuates SOCE in SH-SY5Y cells.

Figure supplement 1—source data 1. Reduced expression of IPsR1 using either shRNA or CRISPR/Cas9n attenuates SOCE in SH-SY5Y cells.

Figure supplement 2. Attenuated SOCE in SH-SY5Y cells lacking IP;R1 is rescued by expression of IP;R1, IP;R3 or STIM1.

Figure supplement 2—source data 1. Attenuated SOCE in SH-SY5Y cells lacking IP;R1 is rescued by expression of IPsR1, IP;R3 or STIM1.

Figure supplement 3. Loss of IP;R1 does not affect SOCE in HEK cells.

Figure supplement 3—source data 1. Loss of IP;R1 does not affect SOCE in HEK cells.

(Yoshikawa et al., 1996; Iwai et al., 2007), while mutation of a single residue (R568Q, IP;R17?)
reduces the IP; affinity by ~10-fold (Dellis et al., 2008). Expression of rat IPsR17¥? rescued neither
carbachol-evoked Ca?* release nor thapsigargin-evoked SOCE in cells lacking IP;R1 (Figure 3E and
F and Figure 3—figure supplement 1C and I). However, expression of IP;R1%? substantially rescued
thapsigargin-evoked SOCE (Figure 3E and F and Figure 3—figure supplement 1J). Expression of
an N-terminal fragment of rat IP;R (IP3R1'¢%), to which IP; binds normally (Iwai et al., 2007), failed to
rescue thapsigargin-evoked SOCE (Figure 3—figure supplement 1K and L). These results establish
that a functional IP;-binding site within a full-length IPsR is required for IP;Rs to facilitate thapsigargin-
evoked SOCE. Hence in cells with empty Ca?* stores, IP; binding, but not pore-opening, is required
for regulation of SOCE by IP;Rs. In cells stimulated only with thapsigargin and expressing IPsRs with
deficient IP; binding, basal levels of IP; are probably insufficient to meet this need.

We further examined the need for IP; by partially depleting the ER of Ca?* using cyclopiazonic
acid (CPA), a reversible inhibitor of SERCA, to allow submaximal activation of SOCE (Figure 3—
figure supplement 1M and N). Under these conditions, addition of carbachol in Ca?-free HBSS
to SH-SY5Y cells expressing IP;R1-shRNA caused a small increase in [Ca*']. (Figure 4A-C). In the
same cells expressing IP;R1°*, the carbachol-evoked Ca?* release was indistinguishable from that
observed in cells without IPsR® (Figure 4B and C), indicating that the small response was entirely
mediated by residual native IP;R1 and/or IP;R3. Hence, the experiment allows carbachol to stimulate
IP; production in cells expressing IP;R1°P* without causing additional Ca** release. The key result is
that in cells expressing IP;R1°*, carbachol substantially increased SOCE from sub maximal to higher
levels (Figure 4AC). Moreover, addition of carbachol to control shRNA expressing SH-SY5Y cells with
maximal store depletion (thapsigargin, Tg, 2 uM) resulted in a small increase in SOCE (Figure 4—
figure supplement 1A). We conclude that in neuronal cells IP;, through IPsRs, regulates coupling of
empty stores to SOCE. This is the first example of an IP;R mediating a response to IP; that does not
require the pore of the channel.

G-protein-coupled receptors are linked to IP; formation through the G-protein Gqg, which stimu-
lates phospholipase C  (PLC B). We used YM-254890 to inhibit Gq (Kostenis et al., 2020; Patt et al.,
2021). As expected, addition of YM-254890 to wild type (WT) or NS-shRNA transfected SH-SY5Y cells
abolished the Ca?* signals evoked by carbachol (Figure 4—figure supplement 1C), but it also reduced
the maximal amplitude and rate of thapsigargin-evoked SOCE (Figure 4D-E and Figure 3—figure
supplement 10). YM-254890 had no effect on the residual thapsigargin-evoked SOCE in SH-SY5Y
cells expressing IP;R1-shRNA (Figure 4F and Figure 3—figure supplement 10). The latter result is
important because it demonstrates that the inhibition of SOCE in cells with functional IP;Rs is not an
off-target effect causing a direct inhibition of SOCE.
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and for two genotype comparison Mann Whitney U-test. See also Figure 3—figure supplement 1—source data 1. Source data in Figure 3—source
data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Regulation of SOCE by IPsR requires IP; binding but not a functional pPore in SH-SY5Y cells.

Figure supplement 1. Attenuated SOCE in SH-SY5Y cells lacking IP;R1 is rescued by expression of pore-dead IP;R1 with a functional IPs-binding site.
Figure supplement 1—source data 1. Attenuated SOCE in SH-SY5Y cells lacking IPsR1 is rescued by expression of pore-dead IPsR1 with a functional
IPs-binding site.

In wild type or HEK-TKO (lacking all three IP;Rs) cells, YM-254890 had no effect on thapsigargin-
evoked SOCE, but it did inhibit SOCE in HEK cells lacking only IP;R1 (Figure 4G-I and Figure 4—
figure supplement 1D-G). These results suggest that in HEK cells, which normally express all three
IP;R subtypes (Mataragka and Taylor, 2018), neither loss of IP;R1 nor inhibition of Gaq is sufficient on
its own to inhibit thapsigargin-evoked SOCE, but when combined there is a synergistic loss of SOCE.

IP;Rs promote interaction of STIM1 with Orai1 within MCS
Our evidence that IPsRs intercept coupling between empty stores and SOCE (Figure 3A) prompted
us to investigate the coupling of STIM1 with Orail across the narrow junctions between ER and PM
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Figure 4. Receptor-regulated IP; production stimulates SOCE in cells with empty Ca*" stores and expressing pore-dead IP;R. (A, B) SH-SY5Y cells
expressing IP;R1-shRNA alone (A) or with IP;R1°* (B) were treated with a low concentration of CPA (2 pM) in Ca?*-free HBSS to partially deplete the ER
of Ca? and sub-maximally activate SOCE (see Figure 3—figure supplement 1M-N). Carbachol (CCh, 1 pM) was then added to stimulate IP; formation
through muscarinic receptors, and extracellular Ca** (2 mM) was then restored. Traces (mean + s.e.m of 68-130 cells from three experiments) show
responses with and without the CCh addition. (C) Summary results show the peak increases in [Ca?*], (A[Ca?*].) after addition of CCh (CCh-induced Ca**
release) and then after restoring extracellular Ca?* (SOCE). (D-F) SH-SY5Y cells wild type (WT) (D) and expressing NS-shRNA (E) or IP;R1-shRNA (F) were
treated with YM-254890 (YM, 1 pM, 5 min) in Ca*'-free HBSS to inhibit Goq and then with thapsigargin (Tg, 1 uM) before restoring extracellular Ca**

Figure 4 continued on next page
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(2 mM). Traces show mean + s.e.m of ~120 cells from three experiments. (G-I) Similar analyses of HEK cells. Summary results (mean + s.e.m, 50-100 cells
from three experiments) are shown in (). Different letter codes (panels C and |) indicate significantly different values within the store Ca?* release or
SOCE groups, p<0.001, one-way ANOVA and pair-wise Tukey’s test. See also Figure 4—figure supplement 1. Source data in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Receptor-regulated IP; production stimulates SOCE in cells with empty Ca®* stores and expressing pore-dead IPsR.

Figure supplement 1. Effects of generating IP; and inhibiting Gg on Ca?®* signals and STIM1-Orail interactions in SH-SY5Y and HEK cells.

Figure supplement 1—source data 1. Effects of generating IP; and inhibiting Gg on Ca** signals and STIM1-Orai1 interactions in SH-SY5Y and HEK

cells.

(Carrasco and Meyer, 2011). An in situ proximity ligation assay (PLA) is well suited to analyzing
this interaction because it provides a signal when two immunolabeled proteins are within ~40 nm
of each other (Derangére et al., 2016), a distance comparable to the dimensions of the junctions
wherein STIM1 and Orai1 interact (Poteser et al., 2016). We confirmed the specificity of the PLA
and demonstrated that it reports increased association of STIM1 with Orail after treating SH-SY5Y
cells with thapsigargin by measuring the surface area of PLA spots (Figure 5A and Figure 5—figure
supplement 1A-F) and not the number, because the latter did not change upon store-depletion
(Figure 5—figure supplement 10). In cells expressing IP;R1-shRNA, thapsigargin had no effect on
the STIM1-Orai1 interaction reported by PLA, but the interaction was rescued by expression of IP;R1
or IP;R1PA, There was no rescue with IP;R18¥%? (Figure 5B—E). WT SH-SY5Y cells that were depleted
of basal IP; by treatment with the Gq inhibitor YM-254890, showed significantly reduced STIM1-Orai1
interaction after thapsigargin-evoked depletion of Ca*" stores (Figure 4—figure supplement 1B).
The results with PLA exactly mirror those from functional analyses (Figures 1-4), suggesting that IP;
binding to IP;R enhances SOCE by facilitating interaction of STIM1 with Orail (Figure 3A).

In independent experiments we tested the effect of fluorescent-tagged and ectopically expressed
ligand bound (wild type rat IP;R1) and mutant (rat IP;R17¥*?; Figure 6—figure supplement 1A) IP;R1
on SOCE dependent STIM1 oligomerization and translocation to ER-PM junctions in SH-SY5Y cells
(Figure 6). In agreement with PLA data (Figure 5), ER-PM translocation of mVenus-STIM1 upon SOCE
induction was reduced significantly in mCherry-IP;R17¥? expressing cells compared to mCherry-IPsR1
expressing SH-SY5Y cells (Figure 6A, B, D and E and Figure 6—figure supplement 1B and D). SOCE
also brought about a small increase in the surface intensity of over-expressed wild type mCherry-
IP;R1 and mCherry-IP;R1"¥%? in the regions where we observe formation of SOCE-dependent STIM1
puncta (Figure 6A-C and Figure 6—figure supplement 1C and E). Moreover, the intensity of
mCherry-IP;R1R¥%? appeared marginally lower than mCherry-IP;R1 (Figure 6—figure supplement 1C
and E). The significance, if any, of these small changes in surface localization between over-expressed
mCherry-IP;R1 and mCherry-IP;R18¥%® ypon SOCE induction, need further verification by alternate
methods.

Extended synaptotagmins (E-Syts) are ER proteins that stabilize ER-PM junctions including STIM1-
Orail MCS (Maléth et al., 2014; Kang et al., 2019; Woo et al., 2020). Over-expression of E-Syt1
in SH-SY5Y cells expressing IP;R1-shRNA rescued thapsigargin-evoked Ca®* entry without affecting
resting [Ca?*]. or thapsigargin-evoked Ca* release (Figure 7A-C). The rescued Ca** entry is likely to
be mediated by conventional SOCE because it was substantially attenuated by knockdown of STIM1
(Figure 7D-F). Over-expression of E-Syt1 had no effect on SOCE in cells with unperturbed IP;Rs
(Figure 7G-I). These results suggest that attenuated SOCE after loss of IP;Rs can be restored by
exaggerating ER-PM MCS.

Discussion

After identification of STIM1 and Orail as core components of SOCE (Prakriya and Lewis, 2015;
Thillaiappan et al., 2019), the sole role of IP;Rs within the SOCE pathway was assumed to be the
release of ER Ca*" that triggers STIM1 activation. The assumption is consistent with evidence that
thapsigargin-evoked SOCE can occur in avian (Sugawara et al., 1997, Ma et al., 2002; Chakraborty
et al.,, 2016) and mammalian cells without IP;Rs (Prakriya and Lewis, 2001). Although SOCE in
mammalian HEK cells was unaffected by loss of IPsRs in our study (Figure 2—figure supplement 3),
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Figure 5. IP;Rs promote interaction of STIM1 with Orail. (A-E) PLA analyses of interactions between STIM1 and Orail in SH-SY5Y cells expressing
NS-shRNA (A) or IPsR1-shRNA alone (B) or with IPsR1 (C), IPsR1°* (D) or IP;R17¥*? (E). Confocal images are shown for control cells or after treatment with
thapsigargin (Tg, 1 uM) in Ca**-free HBSS. PLA reaction product is red, and nuclei are stained with DAPI (blue). Scale bars, 5 um. Summary results show

Figure 5 continued on next page
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Figure 5 continued

the surface area of the PLA spots for 8-10 cells from two independent analyses. Individual values, median (bar) and 25th and 75th percentiles (box). “p
< 0.001, Student’s t-test with unequal variances. See also Figure 5—figure supplement 1. Source data in Figure 5—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:
Source data 1. IPsRs promote interaction of STIM1 with Orai1.
Figure supplement 1. Validation of PLA measurements of Orai1-STIM1 interactions.

Figure supplement 1—source data 1. Validation of PLA measurements of Orai1-STIM1 interactions.

it was modestly reduced in other studies of mammalian cells (Bartok et al., 2019, Yue et al., 2020).
However, additional complexity is suggested by evidence that SOCE may be reduced in cells without
IP;Rs (Chakraborty et al., 2016; Bartok et al., 2019; Yue et al., 2020), by observations implicating
phospholipase C in SOCE regulation (Rosado et al., 2000; Broad et al., 2001), by evidence that
SOCE responds differently to IP;Rs activated by different synthetic ligands (Parekh et al., 2002) and
by some, albeit conflicting reports (Woodard et al., 2010, Santoso et al., 2011; Béliveau et al.,
2014; Sampieri et al., 2018; Ahmad et al., 2022), that IP;Rs may interact with STIM and/or Orai
(Woodard et al., 2010; Santoso et al., 2011; Béliveau et al., 2014; Sampieri et al., 2018).

We identified two roles for IPsRs in controlling endogenous SOCE in human neurons. As widely
reported, IP;Rs activate STIM1 by releasing Ca*" from the ER, but they also, and independent of
their ability to release Ca®*, enhance interactions between active STIM1 and Orail (Figure 8). The
second role for IP;Rs can be supplanted by over-expressing other components of the SOCE complex,
notably STIM1 or ESyt1 (Figure 2K-M and Figure 7A and B). It is intriguing that STIM1 (Carrasco and
Meyer, 2011; Lewis, 2020), ESyt1 (Giordano et al., 2013) and perhaps IP;Rs (through the IP;-binding
core) interact with phosphatidylinositol 4,5-bisphosphate (PIP,), which is dynamically associated with
SOCE-MCS (Kang et al., 2019). We suggest that the extent to which IP;Rs tune SOCE in different
cells is probably determined by the strength of Gq signaling, the proximity of IP;Rs to nanodomains of
PLC signaling and endogenous interactions between STIM1 and Orail. The latter is likely to depend
on the relative expression of STIM1 and Orail (Woo et al., 2020), the STIM isoforms expressed,
expression of proteins that stabilize STIM1-Orai1 interactions (Darbellay et al., 2011, Rana et al.,
2015; Rosado et al., 2015; Knapp et al., 2022), and the size and number of the MCS where STIM1
and Orail interact (Kang et al., 2019). The multifarious contributors to SOCE suggest that cells may
differ in whether they express “spare capacity”. In neuronal cells, loss of IP; (Figure 4D) or of the
dominant IP;R isoform (IP;R1-shRNA; Figures 1 and 2) is sufficient to unveil the contribution of IP;R
to SOCE, whereas HEK cells require loss of both IP; and IP;R1 to unveil the contribution (Figure 4H
and |). The persistence of SOCE in cells devoid of IP;Rs (Figure 2—figure supplement 3D and E;
Prakriya and Lewis, 2001, Ma et al., 2002) possibly arises from adaptive changes within the SOCE
pathway. This does not detract from our conclusion that under physiological conditions, where recep-
tors through IP; initiate SOCE, IP;Rs actively regulate SOCE.

The IPsRs that initiate Ca?* signals reside in ER immediately beneath the PM and alongside, but not
within, the MCS where STIM1 accumulates after store depletion (Thillaiappan et al., 2017, Figure 6A
and B). In migrating cells too, IP;Rs and STIM1 remain separated as they redistribute to the leading
edge (Okeke et al., 2016). Furthermore, there is evidence that neither STIM1 nor STIM2 co-im-
mmunoprecipitate with IP;R1 (Ahmad et al., 2022). We suggest, and consistent with evidence that
SOCE in cells without IP;Rs can be restored by over-expressing E-Syt1 (Figure 7A-C), that ligand-
bound IP;Rs facilitate SOCE either by stabilizing the MCS wherein STIM1 and Orail interact, or by
indirectly supporting STIM1 movement towards the MCS, rather than by directly regulating either
protein. Stabilization of the MCS is analogous with similar structural roles for IP;Rs in maintaining MCS
between ER and mitochondria (Bartok et al., 2019) or lysosomes (Atakpa et al., 2018; Figure 8).
Alternately, our observation that SOCE-dependent STIMT movement to the MCS is reduced in pres-
ence of IP;R1RYXC (Figure 6 and Figure 6—figure supplement 1), suggests that ligand-bound IP;R1s
could help in STIM1 mobilization to the MCS. The mechanism(s) by which ligand bound IP;R1s might
stabilize the MCS or stimulate STIM1 movement to the MCS remain to be elucidated by methods that
can directly assay the MCS such as electron microscopy.

Since both contributions of IP;Rs to SOCE require IP; binding (Figure 3E and F), each is ultimately
controlled by receptors that stimulate IP; formation (Figure 4B and C). Convergent regulation by
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Figure 6. Ligand-bound IP;R1 supports SOCE-dependent STIM1 movement to ER-PM contact sites. (A-B) Representative TIRF images of mVenus

STIM1 co-transfected with either wild type mcherry-rat IPsR1 (A) or IP;R17¥%? (ligand binding mutant), (B) in wild type SH-SY5Y cells before (Basal) and
after CPA induced store depletion (CPA treated) at 4 min and 7 min. On the right are shown RGB profile plots of STIM1 (green) and IP;R1, wild type or
mutant (magenta) corresponding to the rectangular selections (Cell 1 and Cell 2). Scale bar is 10 um.(C-D) Changes in number of IP;R1 (C) and STIM1

Figure 6 continued on next page
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(D) puncta upon CPA-induced store depletion over a period of 10 min in the indicated genotypes. Mean * s.e.m from seven cells from n=6 independent
experiments. (E) Summary result (mean + s.e.m) showing the change in the number of maximum STIM1 puncta formed after CPA-induced store
depletion in the indicated genotypes. Mean + s.e.m. of seven cells from n=6 independent experiments. Different letters indicate significant differences,
p<0.05, Mann-Whitney U-test. See also Figure 6—figure supplement 1. Source data in Figure 6—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Ligand-bound IP;R1 supports SOCE-dependent STIM1 movement to ER-PM contact sites.

Figure supplement 1. Validation of fluorescent-tagged rat IP;R1 constructs.

Figure supplement 1—source data 1. Validation of fluorescent-tagged rat IPsR1 constructs.

IP3Rs at two steps in the SOCE pathway may ensure that receptor-regulated PLC activity provides the
most effective stimulus for SOCE; more effective, for example, than ryanodine receptors, which are
also expressed in neurons (Figure 8B). By opening IP;Rs parked alongside SOCE MCS (Thillaiappan
et al., 2017; Ahmad et al., 2022), |P; selectively releases Ca?* from ER that is optimally placed to
stimulate SOCE, and by facilitating Orai1-STIM1 interactions IP; reinforces this local activation of
SOCE (Figure 8A and B).

We conclude that IP;-regulated IP;Rs regulate SOCE by mediating Ca®* release from the ER,
thereby activating STIM1 and/or STIM2 (Ahmad et al., 2022) and, independent of their ability to
release Ca?*, IP;Rs facilitate the interactions between STIM and Orai that activate SOCE. Dual regula-
tion of SOCE by IP; and IP;Rs allows robust control by cell-surface receptors and may reinforce local
stimulation of Ca** entry.

Materials and methods

Culture of human neural precursor cells
Human neural precursor cells (RNPCS) were derived from a human embryonic stem cell (hESC) line,
H9/WAQ9 (RRID: CVCL_9773), using a protocol that inhibits dual SMAD signaling and stimulates
Wnt signaling (Reinhardt et al., 2013) as described previously (Gopurappilly et al., 2018, 2019).
hNPCs were grown as adherent dispersed cells on growth factor-reduced Matrigel (0.5%, Corning,
Cat#356230) in hNPC maintenance medium (NMM) at 37 °C in humidified air with 5% CO,. NMM
comprised a 1:1 mixture of Dulbecco’s Modified Eagle Medium with Nutrient Mixture F-12 (DMEM/
F-12, Invitrogen, Cat#10565018) and Neurobasal medium (ThermoFisher, Cat#21103049), supple-
mented with GlutaMAX (0.5 x, Thermo Fisher, Cat#35050061), N2 (1:200, Thermo Fisher, 17502048),
B27 without vitamin A (1:100, Thermo Fisher, Cat#12587010), Antibiotic-Antimycotic (Thermo Fisher,
Cat#15240112), CHIR99021 (3 uM, STEMCELL Technologies, Cat#72052), purmorphamine (0.5 mM,
STEMCELL Technologies, Cat#72202), and ascorbic acid (150 pM, Sigma, Cat#A92902). Doubling
time was ~24 hr. Cells were passaged every 4-5 days by treatment with StemPro Accutase (Thermo
Fisher, Cat#A1110501), stored in liquid nitrogen, and thawed as required. Cells were confirmed to be
mycoplasma-free by monthly screening (MycoAlert, Lonza, Cat#LT07-318). hNPCs between passages
16 and 19 were used.

All experiments performed with hESC lines were approved by the Institutional Committee for Stem
Cell Research, registered under the National Apex Committee for Stem Cell Research and Therapy,
Indian Council of Medical Research, Ministry of Health, New Delhi.

Stable knockdown of IP;R1

An UltramiR lentiviral inducible shRNA-mir based on the shERWOOD algorithm (Auyeung et al.,
2013; Knott et al., 2014) was used to inhibit IP;R1 expression. The all-in-one pZIP vector, which
allows puromycin-selection and doxycycline-induced expression of both shRNA-mir and Zs-Green
for visualization, was from TransOMIC Technologies (Huntsville, AL). Lentiviral pZIP transfer vectors
encoding non-silencing shRNA (NS, NT#3-TTGGATGGGAAGTTCACCCCG) or IP;R1-targeting shRNA
(ULTRA3316782- TTTCTTGATCACTTCCACCAG) were packaged as lentiviral particles using pack-
aging (pCMV- dR8.2 dpvr, Addgene, plasmid #8455) and envelope vectors (o-CMV-VSV-G, Addgene,
plasmid #8454) by transfection of HEK293T cells (referred as HEK, ATCC, Cat# CRL-3216). Viral
particles were collected and processed and hNPCs (passage 9) or SH-SY5Y cells were transduced
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Figure 7. Extended synaptotagmins rescue SOCE in cells lacking IPsR1. (A) SH-SY5Y cells expressing IP;R1-shRNA alone or with E-Syt1 were stimulated
with Tg (1 uM) in Ca*'-free HBSS before restoring extracellular Ca?" (2 mM). Traces show mean + s.e.m, for 20-80 cells from three experiments.

(B) Summary results show A[Ca?*]. evoked by restoring Ca?* (SOCE). Mean + s.e.m, "p < 0.001, Mann-Whitney U- test. (C) Summary results (mean +
s.e.m, n=20-80 cells) show resting [Ca?"]. (left) and the peak Ca®* signals (A[Ca?"]) evoked by thapsigargin (Tg, 1 pM) in Ca?*-free HBSS for SH-SY5Y cells
expressing IP;R1-shRNA alone or with human E-Syt1. (D) Cells over-expressing E-Syt1 and treated with IP;R1-shRNA in combination with either NS or
STIM1 siRNA were stimulated with Tg (1 uM) in Ca**-free HBSS before restoration of extracellular Ca?* (2 mM). Mean =+ s.e.m. from three experiments
with 3040 cells. (E, F) Summary results (mean + s.e.m, n=30-40 cells) show SOCE evoked by Tg (E), resting [Ca®']. and the Tg-evoked Ca®" release from

intracellular stores (F). “p< 0.001, Mann-Whitney U- test. (G) Similar analyses of cells expressing NS shRNA alone or with human E-Syt1 and then treated

Figure 7 continued on next page
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Figure 7 continued

with Tg (1 uM) in Ca*'-free HBSS before restoring extracellular Ca?" (2 mM). Mean + s.e.m. from three experiments with 115-135 cells. (H, 1) Summary
results (mean + s.e.m, n=115-135 cells) show resting [Ca®']. (H) and A[Ca*']. evoked by Tg (store release) or Ca?* restoration (SOCE) (I). No significant
difference, Mann Whitney U-test. Source data in Figure 7—source data 1.

The online version of this article includes the following source data for figure 7:

Source data 1. Extended synaptotagmins rescue SOCE in cells lacking IPsR1.

(multiplicity of infection, MOI = 10) using Lipofectamine LTX with PLUS reagent (Thermo Fisher,
Cat#15338100). Cells were maintained in media containing doxycycline (2 pg/ml, Sigma, Cat# D3072)
to induce shRNA expression, and puromycin to select transduced cells (1 pg/ml for hNPCs; 3 pg/ml
for SH-SY5Y cells; Sigma, Cat# P9620). Cells were passaged 4-5 times after lentiviral transduction to
select for stable expression of shRNAs.

Derivation of neurons from hNPCs

Neurons were differentiated from hNPCs stably transduced with shRNA. hNPCs were seeded at
50-60% confluence in NMM on coverslips coated with poly-d-lysine (0.2 mg/ml, Sigma, Cat#P7280).
After 1-2 days, the medium was replaced with neuronal differentiation medium, which comprised a
1:1 mixture of DMEM/F-12 with Neurobasal supplemented with B27 (1:100), N2 (1:200), GlutaMAX
(0.5 x) and Antibiotic-Antimycotic solution. Medium was replaced on alternate days. Neurons were
used after 15-20 days.

Culture and transfection of SH-SY5Y cells

SH-SY5Y cells (ATCC, USA, Cat# CRL-2266) were grown on culture dishes in DMEM/F-12 with 10%
fetal bovine serum (Sigma, Cat# F4135) at 37°C in humidified air with 5% CO,. Cells were passaged
every 3-4 days using TrypLE Express (ThermoFisher, Cat# 12605036) and confirmed to be free of
mycoplasma. Cells expressing shRNA were transiently transfected using Trans|T-LT1 reagent (Mirus,
Cat# MIR-2300) in Opti-MEM (ThermoFisher, Cat# 31985062). Plasmids (250 ng) and/or siRNA (200 ng)
in transfection reagent (1 pg/2.5 pl) were added to cells grown to 50% confluence on glass covers-
lips attached to an imaging dish. Cells were used after 48 hr. The siRNAs used were to human Orai
(100 nM, Dharmacon, Cat# L-014998-00-0005) or non-silencing (NS, Dharmacon, Cat# D-495 001810-
10-05), to human STIM1 (Santa Cruz Biotechnology, Cat# sc-76589) or NS (Santa Cruz Biotechnology,
Cat# sc-37007). The expression plasmids were IP;R1 (rat type 1 IP;R1 in pcDNA3.2/V5DEST vector)
(Dellis et al., 2008), rat IP;R1°* (D2550 replaced by A in pcDNA3.2 vector) (Dellis et al., 2008), rat

1
RyR-regulated
SOCE

-
IPsR-regulated
SOCE

Figure 8. Dual regulation of SOCE by IP;Rs. (A) SOCE is activated when loss of Ca®* from the ER, usually mediated by opening of IP;Rs when they bind
IPs, causes STIM to unfurl cytosolic domains (2). The exposed cytosolic domains of STIM1 reach across a narrow gap between the ER and PM at a MCS
to interact with PIP, and Orail in the PM. Binding of STIM1 to Orail causes pore opening, and SOCE then occurs through the open Orail channel. We
show that IPsRs when they bind IP; also facilitate interactions between Orail and STIM, perhaps by stabilizing the MCS (1). Receptors that stimulate

IP; formation thereby promote both activation of STIM (by emptying Ca?* stores) and independently promote interaction of active STIM1 with Orail.
(B) Other mechanisms, including ryanodine receptors (RyR), can also release Ca?* from the ER. We suggest that convergent regulation of SOCE by IPsR
with bound IP; allows receptors that stimulate IP; formation to selectively control SOCE.
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IPsR1R® (R568 replaced by Q of type 1 IP;R in pCDNA3.2/V5DEST vector) (Dellis et al., 2008), rat
IP;R1RYKQ (R568 and K569 replaced by Q of type 1 IP;R in pCDNA3.2/V5DEST vector), rat IP;R1'4%
(residues 1-604 of IP;R with N-terminal GST tag in pPCDNA3.2/V5DEST vector; Dellis et al., 2008), rat
IPsR3 (rat type 3 IP3R in pcDNA3.2/V5DEST vector; Saleem et al., 2013), human mCherry-STIM1 (N
terminal mCherry tagged human STIM1 in pENTR1a vector; Nunes-Hasler et al., 2017) and human
extended synaptotagmin 1 (E-Syt1), a kind gift from Dr S. Muallem, NIDCR, USA (Maléth et al., 2014).

CRISPR/Cas9 and Cas9n editing of SH-SY5Y cells

To allow either CRISPR/Cas9 or Cas9n-mediated disruption of IP;R1 expression, we used a published
method to clone gRNAs into the backbone vector (pSpCas?n(BB)-2A-Puro PX462 V2.0, Addgene,
Cat#62987; Ran et al., 2013). Forward and reverse sgRNA oligonucleotides (100 uM) were annealed
and ligated using T4 DNA ligase by incubation (10 pl, 37 °C, 30 min) before slow cooling to 20 °C.
Plasmids encoding Cas9n were digested with Bbsl-HF (37 °C, 12 hr), gel-purified (NucleoSpin Gel
and PCR Clean-up kit from Takara) and the purified fragment was stored at =20 °C. A mixture (final
volume 20 pl) of gRNA duplex (1 pl, 0.5 pM), digested px459 (for IKO null) or pX462 vector (for IKO)
(30 ng), 10x T4 DNA ligase buffer (2 pl) and T4 DNA ligase (1 pl) was incubated (20 °C, 1 hr). After
transformation of DH5-a competent E. coli with the ligation mixture, plasmids encoding Cas9 or
Cas9n and the sgRNAs were extracted, and the coding sequences were confirmed (Ran et al., 2013).
The plasmid (2 pg) was then transfected into SH-SY5Y cells (50-60% confluent) in a six-well plate using
TransIT LT-1 reagent (Mirus Bio, Cat# MIR-2300). After 48 hr, puromycin (3 pg/ml, 72 hr) was added
to kill non-transfected cells. IKO colonies were propagated and screened for Ca** signals evoked
by carbachol and for the presence of the IP;R gene by genomic DNA PCR and droplet digital PCR
using primers close to the region targeted by the gRNAs (Miotke et al., 2014). Three independently
derived IKO lines, each with one residual IP;R1 gene, were used for analyses of Ca?* signaling (see
Figure 2—figure supplement 1N-Q). For one of the cell lines (IKO 2), disruption of one copy of the
IP;R1 gene was confirmed by genomic PCR, droplet digital PCR and western blotting (see Figure 2—
figure supplement 1K-M). For the IKO null line, single-cell selection was done in a ?6-well plate
setup followed by screening for carbachol-evoked Ca?* signals from multiple clones. A single clone
was selected (Figure 2—figure supplement 1H) and a western blot performed to confirm absence of
IP;R1 expression (Figure 2—figure supplement 1F). All the oligonucleotide sequences are described
in Supplementary file 1.

Plasmid construction

Mutagenesis and all DNA modifications were carried out using Q5 Hot Start high-fidelity 2 X Master
Mix (New England BiolLabs, Cat# M0494L) using the recommendations of the manufacturer. Primers
used in this study (details given in Supplementary file 1) were synthesized by Integrated DNA Tech-
nologies (IDT). Mutations in the Ligand binding domain (R568Q and K569Q) of IP;R1 were gener-
ated on the rat mCherry-IP;R1 cDNA in pDNA3.1 Mutations in all the constructs were confirmed by
sequencing.

Ca?* imaging

Methods for single-cell Ca?* imaging were described previously (Gopurappilly et al., 2019). Briefly,
cells grown as a monolayer (~70% confluence) on homemade coverslip-bottomed dishes were washed
and loaded with Fura 2 by incubation with Fura 2 AM (4 pM, 45 min, 37 °C, Thermo Fisher, Cat#
F1221), washed and imaged at room temperature in HEPES-buffered saline solution (HBSS). HBSS
comprised: 20 mM HEPES, 137 mM NaCl, 5 mM KCI, 2 mM MgCl,, 2 mM CaCl,, 10 mM glucose, pH
7.3. CaCl, was omitted from Ca**-free HBSS. Treatments with carbachol (CCh, Sigma, Cat# C4382),
thapsigargin (Tg, ThermoFisher, Cat# 7458), cyclopiazonic acid (CPA, Sigma Cat# C1530) or high-K*
HBSS (HBSS supplemented with 75 mM KCl) are described in legends.

Responses were recorded at 2 s intervals using an Olympus IX81-ZDC2 Focus Drift-Compensating
Inverted Microscope with 60xoil immersion objective (numerical aperture, NA = 1.35) with excitation
at 340 nm and 380 nm. Emitted light (505 nm) was collected with an Andor iXON 897E EMCCD
camera and AndoriQ 2.4.2 imaging software (RRID: SCR_014461). Maximal (R...,) and minimal (R,)
fluorescence ratios were determined by addition of ionomycin (10 uM, Sigma, Cat# 407953) in HBSS
containing 10 mM CaCl, or by addition of Ca?*-free HBSS containing BAPTA (10 mM, Sigma, Cat#
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196418) and Triton X100 (0.1%). Background-corrected fluorescence recorded from regions of interest
(ROI) drawn to include an entire cell was used to determine mean fluorescence ratios (R = F345/F3g0)
(ImageJ), and calibrated to [Ca**]. from Grynkiewicz et al., 1985:

[Ca®)e = Kp.F 33 / F 365.(R = Rin) | (Rnax — R
where, Ky = 225 nM (Forostyak et al., 2013).

Western blots

Proteins were isolated in RIPA buffer (Sigma, Cat# R0278) with protease inhibitor cocktail (Sigma,
Cat# P8340) or, for WB of Orai1, in medium containing 150 mM NaCl, 50 mM Tris, 1% Triton-X-100,
0.1% SDS and protease inhibitor cocktail. After 30 min on ice with intermittent shaking, samples were
collected by centrifugation (11,000xg, 20 min) and their protein content was determined (Thermo
Pierce BCA Protein Assay kit, ThermoFisher, Cat# 23225). Proteins (~30 pg/lane) were separated
on 8% SDS-PAGE gels for IP;R or 10% SDS-PAGE gels for STIM1 and Orail, and transferred to a
Protran 0.45 pm nitrocellulose membrane (Merck, Cat# GE10600003) using a TransBlot semi-dry
transfer system (BioRad, Cat# 1703940). Membranes were blocked by incubation (1 hr, 20 °C) in
TBST containing skimmed milk or bovine serum albumin (5%, Sigma, Cat# A9418). TBST (Tris-buffered
saline with Tween) comprised: 137 mM NaCl, 20 mM Tris, 0.1% Tween-20, pH 7.5. Membranes were
incubated with primary antibody in TBST (16 hr, 4 °C), washed with TBST (3 x10 min), incubated (1 hr,
20 °C) in TBST containing HRP-conjugated secondary antibody (1:3000 anti-mouse, Cell Signaling
Technology Cat# 7076 S; or 1:5000 anti-rabbit, ThermoScientific Cat# 32260). After 3 washes, HRP
was detected using Pierce ECL Western Blotting Substrate (ThermoFisher, Cat# 32106) and quanti-
fied using ImageQuant LAS 4000 (GE Healthcare) and Image J. The primary antibodies used were
to: IPsR1 (1:1000, ThermoFisher, Cat# PA1-901, RRID: AB_2129984); B-actin (1:5000, BD Biosciences,
Cat# 612656, RRID: AB_2289199); STIM1 (1:1000, Cell Signaling Technology, Cat# 5668 S, RRID:
AB_10828699); Orail (1:500, ProSci, Cat# PM-5205, RRID: AB_10941192); IP;R2 (1:1000, custom
made by Pocono Rabbit Farm and Laboratory; Mataragka and Taylor, 2018); and IP;R3 (1:500, BD
Biosciences, Cat# 610313, RRID: AB_397705).

Immunocytochemistry

After appropriate treatments, cells on a coverslip-bottomed plate were washed twice with cold PBS,
fixed in PBS with paraformaldehyde (4%, 20 °C, 20 min), washed (3x5 min) with PBS containing
Triton-X100 (0.1%, PBST) and blocked by incubation (1 hr, 20 °C) in PBST containing goat serum (5%).
After incubation with primary antibody in PBST (16 hr, 4 °C) and washing with PBST (3x5 min), cells were
incubated (1 hr, 20 °C) with secondary antibody in PBST containing goat serum, washed (3x5 min),
stained (10 min, 20 °C) with DAPI (1 pg/ml in PBS; Sigma, Cat# D9542) and washed (5 min, PBST). Cells
were then covered with glycerol (60% v/v) and imaged using an Olympus FV300 confocal laser scan-
ning microscope with 20xor 60xoil-immersion objectives. Fluorescence was analyzed using ImageJ.
The primary antibodies used were to: PAX6 (1:500, Abcam, Cat# ab195045, RRID: AB_2750924);
Nestin (1:500, Abcam, Cat# 92391, RRID: AB_10561437); Ki67 (1:250, Abcam, Cat# ab16667, RRID:
AB_302459); SOX1 (1:1000, Abcam, Cat# ab87775, RRID: AB_2616563); Tuj1 (BlIl Tubulin 1:1000,
Promega, Cat# G712, RRID: AB_430874); NeuN (1:300, Abcam, Cat# ab177487, RRID: AB_2532109);
Doublecortin (1:500, Abcam, Cat# 18723, RRID: AB_732011); MAP2 (1:200, Abcam, Cat# ab32454,
RRID: AB_776174); STIM1 (1:1000, Cell Signaling Technology, Cat# 5668 S, RRID: AB_10828699); and
Orai1 (1:500, ProSci, Cat# PM-5205, RRID: AB_10941192).

Proximity ligation Assay

The Duolink In Situ Red Starter Mouse/Rabbit kit was from Sigma (#Cat DUO92101) and used
according to the manufacturer’s protocol with primary antibodies to Orai1 (mouse 1:500) and STIM1
(rabbit 1:1000). Cells (~30% confluent) were treated with thapsigargin (1 uM, 5 min) in Ca®*-free HBSS
before fixation, permeabilization, and incubation with primary antibodies (16 hr, 4 °C) and the PLA
reactants. Red fluorescent PLA signals were imaged using an Olympus FV300 confocal laser scanning
microscope, with excitation at 561 nm, and a 60xoil-immersion objective. Quantitative analysis of the
intensity and surface area of PLA spots used the ‘Analyze particle’ plugin of Fiji. Results are shown for
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8-10 cells from two biological replicates of each genotype. Number of PLA spots in all genotypes and
conditions were counted manually.

Detection of STIM1 and IP;R1 puncta using TIRF microscopy

SHSY5Y cells were cultured on 15 mm glass coverslips coated with poly-D-lysine (100 pg/ml) in a
35 mm dish for 24 h. Cells were co-transfected with 500 ng of mCherry rIP;R1 and 200 ng mVenus
STIM1 plasmids using TransIT-LT1 transfection reagent in Opti-MEM. Following 48 hr of transfection
and prior to imaging, cells were washed with imaging buffer (10 mM HEPES, 1.26 mM Ca?*, 137 mM
NaCl, 4.7 mM KCI, 5.5 mM glucose, 1 mM Na,HPO,, 0.56 mM MgCl,, at pH 7.4). The coverslips were
mounted in a chamber and imaged using an Olympus 1X81 inverted total internal reflection fluo-
rescence microscope (TIRFM) equipped with oil-immersion PLAPO OTIRFM 60xobjective lens/1.45
numerical aperture and Hamamatsu ORCA-Fusion CMOS camera. Olympus CellSens Dimensions 2.3
(Build 189987) software was used for imaging. The angle of the excitation beam was adjusted to
achieve TIRF with a penetration depth of ~130 nm. Images were captured from a final field of 65 pm
x 65 pm (300x300 pixels, one pixel = 216 nm, binning 2x2). Cells positive for both mCherry rIP;R1
and mVenus STIM1 were identified using 561 nm and 488 nm lasers, respectively. The cells were
incubated in zero calcium buffer (10 mM HEPES, 1 mM EGTA, 137 mM NaCl, 4.7 mM KClI, 5.5 mM
glucose, T mM Na2HPO4, 0.56 mM MgCl2, at pH 7.4) for 2 min followed by addition of 30 uM CPA
in zero calcium buffer. IP;R1 and STIM1 puncta prior to CPA addition and after CPA addition were
captured at 1 min intervals. Raw images were filtered for background correction and same setting
was used across all samples. Regions where fresh STIM1 puncta (2-10 pixels) appeared post-CPA
treatment at 10 mins were marked and subsequently IP;R1 puncta (2-10 pixels) were captured from
the same region. Change in the intensity of either STIM1 or IP;R1 puncta was calculated from puncta
of >2 pixel by deducting the basal intensity at 0 min from the maximum intensity after CPA treatment
using ImageJ ROI based mean grey value measurement. Particle analysis and RGB profile plot were
done using ImageJ.

Statistical analyses

All experiments were performed without blinding or prior power analyses. Independent biological
replicates are reported as the number of experiments (n), with the number of cells contributing to each
experiment indicated in legends. The limited availability of materials for PLA restricted the number
of independent replicates (n) to 2 (each with 8-10 cells). Most plots show means + s.e.m. (or s.d.).
Box plots show 25th and 75th percentiles, median and mean (see legends). Where parametric anal-
yses were justified by a Normality test, we used Student’s t-test with unequal variances for two-way
comparisons and ANOVA followed by pair-wise Tukey's test for multiple comparisons. Non-parametric
analyses used the Mann-Whitney U-test. Statistical significance is shown by ™p < 0.001, “p < 0.01,
‘p < 0.05, or by letter codes wherein different letters indicate significantly different values (p<0.001,
details in legends). All analyses used Origin 8.5 software.

Details of the plasmids and recombinant DNAs are given in Supplementary file 1.
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¢ Supplementary file 1. Details of plasmids and recombinant DNAs.
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