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Abstract The proportional recovery rule (PRR) posits that most stroke survivors can expect 
to reduce a fixed proportion of their motor impairment. As a statistical model, the PRR explic-
itly relates change scores to baseline values – an approach that arises in many scientific domains 
but has the potential to introduce artifacts and flawed conclusions. We describe approaches that 
can assess associations between baseline and changes from baseline while avoiding artifacts due 
either to mathematical coupling or to regression to the mean. We also describe methods that can 
compare different biological models of recovery. Across several real datasets in stroke recovery, we 
find evidence for non-artifactual associations between baseline and change, and support for the 
PRR compared to alternative models. We also introduce a statistical perspective that can be used 
to assess future models. We conclude that the PRR remains a biologically relevant model of stroke 
recovery.
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Introduction
Intuition, experience, and data suggest that patients with worse motor impairment in the immediate 
post-stroke period will also typically see the largest absolute reductions in impairment during the first 
3–6 months of recovery. However, rigorously quantifying this observation has proved challenging. 
The proportional recovery rule (PRR) was an early attempt to describe the relationship between 
initial impairment and recovery through the investigation of upper-extremity Fugl-Meyer assessments 
(FMA-UE) at baseline and at subsequent follow-up visits, with recovery defined as the change over 
time (Prabhakaran et al., 2008; Krakauer and Marshall, 2015). This work indicated that, on average, 
a large subset of patients recovered roughly 70% of the maximal potential recovery from impairment, 
but a biologically distinct and smaller subgroup recovered much less (‘non-recoverers’). Since its intro-
duction, the PRR has been applied across several neurological domains, implemented in various ways 
across studies, and evaluated using several different statistical metrics (Lazar et al., 2010; Winters 
et al., 2015; Winters et al., 2017; Veerbeek et al., 2018; Byblow et al., 2015). In a recent article, we 
sought to reestablish the original conceptualization of the PRR as a regression model for describing of 
recovery from upper limb impairment (Kundert et al., 2019).

The PRR has, in recent years, come under fire. The criticisms echo concerns raised anytime change 
as an outcome is related to the baseline value, particularly before and after an intervention – whether 
the outcome of interest is blood pressure, CD4 cell count, or behavior. The concern hinges on statis-
tical questions about the relationship between baseline values and change scores – a relationship 
that is often fraught, counterintuitive, and has confounded researchers and statisticians for decades 
(Oldham, 1962; Gill et al., 1985; Tu, 2016). Bringing these issues to the fore and illustrating the ways 
they affect the specific case of stroke recovery has spurred an important and informative debate. 
Specifically, there are questions about the usefulness of correlations in the case when there is math-
ematical coupling from inclusion of the baseline value in the change score, the distinction between 
population-level descriptions and patient-level predictions; the usefulness of the PRR in functional 
domains other than upper-extremity motor control; the identification of ‘non-recoverers’, both 
prospectively and retrospectively; and the possibility that ceiling effects exaggerate associations or 
introduce non-linearity not accounted for by the PRR (Hope et al., 2018; Hawe et al., 2018; Bonk-
hoff et al., 2020; Bowman et al., 2021).

Although the critiques of the PRR have been rigorous and careful, never asserting that the PRR was 
entirely irrelevant for recovery, the tone and content of some of this work might make it understand-
able for readers to infer otherwise. In ‘Recovery after stroke: not so proportional after all?’ (Hope et al., 
2018), the authors say in their discussion that they ‘are not claiming that the proportional recovery rule 
is wrong’, only that they do not see evidence that the rule holds and that other models for recovery 
are possible. Hawe et al., 2018, included some similar caveats in the discussion of a paper titled 
‘Taking proportional out of recovery’. Senesh and Reinkensmeyer, 2019 (title: ‘Breaking proportional 
recovery after stroke’) summarized these two papers in their abstract by saying they ‘explained that 
[proportional recovery] should be expected because of mathematical coupling between the baseline 
and change score’. Some of the authors of the original criticisms have since moderated their stance 
and important points of consensus are emerging; see, for example, Bonkhoff et al., 2020, and Bonk-
hoff et al., 2022. Against this rapidly evolving and potentially confusing backdrop, we hope to bring 
together all the thorny issues so that readers can reach some degree of closure on the PRR.

The growing meta-literature often discusses the PRR in an abstract way, focusing on a baseline 
‍x‍, a single follow-up ‍y‍, the change ‍δ = y − x‍, and all the various correlations among them. Readers 
could be forgiven for asking how an intuitive formula for expected recovery spawned its own cottage 
industry, and why arguments about the PRR have become so esoteric. We suspect that many, by now, 
would prefer a simple judgment on the truth of the PRR without a winding statistical detour. We’re 
sympathetic to this perspective, but find the detour necessary as the nuanced and sometimes coun-
terintuitive statistical arguments are critical to get right for the sake of furthering our understanding 
of the biological mechanisms of recovery.

Our goals are to synthesize and discuss the statistical issues relevant to the PRR clearly, to describe 
appropriate analysis techniques, to identify areas of emerging consensus, and to resolve arguments 
where possible. We discuss valid but non-standard hypothesis tests for correlations, framed to distin-
guish true signal from artifact. This is not the same as distinguishing between the PRR and other 
recovery mechanisms that induce strong correlations; we therefore evaluate competing models based 
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on their ability to predict outcomes. Much of this discussion assumes that ‘recoverers’ and ‘non-
recoverers’ can be differentiated, and mainly focuses on models for recoverers. That said, the exis-
tence of distinct recovery groups complicates the quantification of recovery. We discuss the hazards of 
applying advanced statistical methods in settings where they aren’t justified by the data, and discuss 
ways of testing whether observed data are consistent with a hypothesized mechanism. Throughout, 
we use generated datasets and data taken from several published studies of recovery to illustrate our 
statistical points. In some places, the discussion is unavoidably technical, but the aim is to focus on the 
details that are pertinent to the core question: Is there a true systematic relationship between impair-
ment and change in impairment after stroke? If the answer is yes, then this would imply that there is 
important biological work to be done to explain the mechanism for this phenomenological regularity.

Results
Limitations of the correlation between baseline and change as a 
measure of association
Although the PRR is best understood as a regression model (Kundert et  al., 2019), correlations 
between baseline and follow-up, and between baseline and change, have often been used to summa-
rize data and are presented as evidence for the rule. A focus on ‍cor

(
x, δ

)
‍, where ‍δ = y − x‍ is the 

change between follow-up (‍y‍) and baseline (‍x‍), is intuitive in the context of recovery. The value of this 
correlation can be affected in unexpected ways due to mathematical coupling, most broadly defined 
as the setting where one value (‍x‍) is also included in the definition of the second (‍δ‍). The following 
relationship is known to hold:
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This equation shows the dependence of ‍cor
(
x, δ

)
‍ on ‍cor

(
x, y

)
‍ and the variance ratio 

‍
k = σ2

y
σ2

x ‍
 . The 

relationship between these quantities, visualized first by Bartko and Pettigrew, 1968, and more 
recently as a three-dimensional surface by Hope et al., 2018, is shown as a contour plot in Figure 1. 
For reasons that will become clear shortly, we highlight the contour corresponding to ‍k = 1‍, where 
baseline and follow-up have equal variance. Other contour lines in this figure correspond to fixed 
values of ‍k‍ ranging between 0.01 and 4.

An immediate observation from this plot is that the range of possible values for ‍cor
(
x, δ

)
‍ depends 

on ‍cor
(
x, y

)
‍. When ‍cor

(
x, y

)
= 0‍, for example, ‍cor

(
x, δ

)
‍ is restricted to lie in [-1,0] rather than [-1,1]. 

By itself, this suggests that usual tests for the significance of a correlation in which the null value is 

Figure 1. The left panels show four generated datasets, labeled A, B, C, and D. In the top row, panels show outcome values and baseline (x) and follow-
up (y). In the bottom row, panels show change (‍δ‍) against initial impairment (66 − x). The right panel shows a contour plot of Equation 1, with contours 
corresponding to values of the variance ratio k and the contour for k=1 highlighted. Points on this surface show correlation values obtained for Datasets 
A through D. A figure similar to the contour plot is shown in Hope et al., 2018, with different axes and orientations.
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assumed to be 0 are inappropriate for investigations of recovery. However, as we’ll see shortly, this 
does not mean that hypothesis tests are impossible – only that more appropriate ones are necessary.

The dependence of ‍cor
(
x, δ

)
‍ on ‍cor

(
x, y

)
‍ and 

‍
k = σ2

y
σ2

x ‍
 is the basis for two related criticisms of using 

the correlation between baseline and change as a statistical measure of recovery. First, the canonical 
example of coupling is the setting in which baseline (‍x‍) and follow-up (‍y‍) are uncorrelated and have 
the same variance. This situation is represented by the point on the surface where ‍cor

(
x, y

)
= 0‍ and 

the variance ratio 
‍
k = σ2

y
σ2

x
= 1

‍
. In this setting ‍cor

(
x, δ

)
= −0.71‍ – a value that, for some, is unexpectedly 

high and casts doubt on any large correlation between baseline and change (Hope et al., 2018; Hawe 
et al., 2018).

A broader argument relates to settings where measurements at follow-up have much lower variance 
than initial values, as is typically the case for studies of recovery. In cases where ‍k‍ is small, ‍cor

(
x, δ

)
‍ may 

be ‘(non-trivially) stronger than ‍cor
(
x, y

)
‍’ and therefore spurious or misleading (Hope et al., 2018). 

Settings with small values of ‍k‍ have been described as ‘degenerate’ in that ‍cor
(
x, δ

)
‍ will approach −1 

(Bowman et al., 2021); as Figure 1 makes clear, this is a concern for any value of ‍cor
(
x, y

)
‍.

The recognition of these statistical issues, and the role they have played in understanding recovery, 
reveals some limitations of using correlation to measure the association between baseline and change 
and produce evidence for the significance of this association. By itself, ‍cor

(
x, δ

)
‍ will give at best an 

incomplete understanding of recovery, and traditional hypothesis tests (focusing on 0 as a null value) 
are inappropriate. That said, these criticisms don’t invalidate the PRR – they aren’t even directly 
relevant to the PRR. Instead, they clarify the importance of understanding the relationship between 

‍cor
(
x, δ

)
‍, ‍cor

(
x, y

)
‍, and the variance ratio 

‍
k = σ2

y
σ2

x ‍
 ; the importance of each these in the studies of 

recovery; and the use of appropriate summaries of the data.

Distinguishing true and artifactual signals
To paraphrase the previous section, when the variance ratio is small, large values of ‍cor

(
x, δ

)
‍ can arise 

from a wide range of ‍cor
(
x, y

)
‍. It has been argued that high correlations between baseline and change 

are invalid unless they are accompanied by high correlations between baseline and follow-up.
Refutation of this view has a long history in the statistical literature. Oldham, 1962, argues that a 

variance ratio other than 1 is evidence for some real effect or process: ‘Unless some agent has caused 
a change of standard deviation between the two occasions, ‍σ

2
x ‍ will equal ‍σ

2
y ‍ ’. This argument is slightly 

more complicated when the outcome measure is bounded, a setting Oldham did not consider but 
that arises in stroke recovery. Heterogeneous recovery that depends on initial impairment could be 
the agent that causes a reduction in variance; alternatively, variance may be reduced because recovery 
is homogeneous but subject to ceiling effects or because the impairment scale is non-linear. In any 
case, when ‍k < 1‍ the amount of recovery is related to the baseline value in a way that is not attrib-
utable to mathematical coupling, and differentiating between explanations is necessary after ruling 
out coupling. Oldham’s method, which derives from the role of the variance ratio in studies where 
baseline and change are important, formalizes this concept and is a commonly used approach for 
understanding the relationship between baseline and change; it will be presented in the next section.

The value of ‍cor
(
x, δ

)
‍ depends on the variance ratio ‍k‍ and on ‍cor

(
x, y

)
‍. The variance ratio can be 

used as a measure of the extent to which ‍δ‍ depends on baseline values, regardless of the value of 

‍cor
(
x, y

)
‍, with the understanding that this dependence can arise from the PRR or other recovery mech-

anisms. Meanwhile, ‍cor
(
x, y

)
‍ indicates whether follow-up values are related to baseline, regardless 

of ‍k‍. Thus ‍cor
(
x, y

)
‍ is relevant for questions of patient-level prediction although, as we’ll argue later, 

correlations are less useful than direct measures of prediction accuracy.
We simulate four datasets with different values of ‍cor

(
x, y

)
‍ and ‍k‍:

•	 A: ‍cor
(
x, y

)
= 0‍ and k = 1

•	 B: ‍cor
(
x, y

)
= 0.9‍ and k = 1

•	 C: ‍cor
(
x, y

)
= 0‍ and ‍k = 0.16‍

•	 D: ‍cor
(
x, y

)
= 0.9‍ and ‍k = 0.16‍

All datasets have ‍x‍ values generated from a Normal distribution with mean 30 and standard devi-
ation 14, and consist of 30 generated subjects. Datasets A and B have follow-up values (‍y‍) with mean 
30, while Datasets C and D have follow-up values with mean 53 (variances at follow-up are determined 
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by the variance ratio). Generated datasets did not include values below 0 or above 66. These datasets 
were generated to clarify the relationship between ‍cor

(
x, y

)
‍, ‍k‍, and ‍cor

(
x, δ

)
‍: they are not assumed to 

follow the PRR or any other explicit model for recovery. The left panels in Figure 1 show baseline and 
follow-up values (top row) and scatterplots of ‍δ‍ against initial impairment (bottom row), with initial 
impairment defined as ‍FMmax − x = 66 − x‍. The right panel indicates the placement of these datasets 
on the contour plot of ‍cor

(
x, δ

)
‍.

Dataset A is a canonical example of mathematical coupling, a setting that results in ‍cor
(
x, δ

)
= −0.71‍. 

Like Dataset A, Dataset C has ‍cor
(
x, y

)
= 0‍, but the variance ratio is lower. Given our emphasis on ‍k‍ 

and on ‍cor
(
x, y

)
‍, any debate about whether ‍cor

(
x, δ

)
‍ for this dataset might be called ‘spurious’ is less 

relevant than (i) the true reduction in variance that results from recovery and (ii) the true association 
between the baseline value and the magnitude of change. Indeed, despite the inability of the baseline 
value to usefully predict follow-up in Dataset C, these data represent a case in which baseline values 
can be used to predict change in a non-artifactual way, which is a setting that Oldham and many 
others since have argued is important (Oldham, 1962; Tu and Gilthorpe, 2007).

In contrast, Datasets B and D have large ‍cor
(
x, y

)
‍, which suggests an ability to predict follow-up 

using baseline with some degree of accuracy. In Dataset B, change from baseline to follow-up is 
constant with some patient-level noise, and accurate predictions at follow-up are a simple byproduct 
of that constancy. Dataset B is also, arguably, irrelevant: whether due to measurements that are truly 
non-linear, ceiling effects, or proportionality, motor impairment recovery is marked by heterogenous 
recovery across subjects.

Dataset D represents the least controversial scenario among our generated data: there is recovery 
heterogeneity that is predictable based on initial values and results in a variance ratio that is less than 
one, and the initial values meaningfully predict outcomes at follow-up. The variance ratio and correla-
tions don’t arise either from mathematical coupling or from regression to the mean due to measure-
ment error. Real data that are similar to these are suggestive of an underlying biological recovery 
process in which baseline values predict change and final outcomes.

Taken together, the generated datasets in this section illustrate the relationship between ‍cor
(
x, y

)
‍, 

‍k‍, and ‍cor
(
x, δ

)
‍ , as well as the kinds of observed data that can give rise to various combinations of 

these values. The examples highlight discrepancies between ‍cor
(
x, y

)
‍ and ‍cor

(
x, δ

)
‍ to illustrate their 

shortcomings when viewed individually. We also identify a setting, typified by Dataset D, in which each 
measure suggests the presence of a relevant association. However, it is not the case that data like 
these necessarily imply that recovery follows the PRR. Other biological models, the presence of strong 
ceiling effects, or other mechanisms could produce data similar to Dataset D, and how to compare 
competing models will be considered in later sections.

Recasting Oldham’s method
Equation (1) and Figure 1 show that ‍cor

(
x, y

)
‍ and ‍k‍ determine the value of ‍cor

(
x, δ

)
‍ in ways that can 

be counterintuitive. When ‍cor
(
x, y

)
= 0‍, for example, an appropriate null value for a hypothesis test 

of ‍cor
(
x, δ

)
‍ is –0.71 rather than 0, because this corresponds to ‘no recovery’ or ‍k = 1‍; a table in the 

appendix provides null values for hypothesis tests of ‍cor
(
x, δ

)
‍ under a range of values of ‍cor

(
x, y

)
‍. 

However, like others, we think the possible confusion around ‍cor
(
x, δ

)
‍ as a measure of evidence make 

it less suitable than other approaches.
Oldham’s method suggests to use ‍cor

( x+y
2 , x − y

)
‍, or simply ‍cor

(
x + y, x − y

)
‍, in place of ‍cor

(
x, δ

)
‍. 

This correlation is zero, rather than −0.71, in the canonical example of mathematical coupling. Indeed, 
this correlation is zero if and only if ‍k = 1‍ – regardless of ‍cor

(
x, y

)
‍, and even in many cases where 

measurement error or other processes might affect the ability to reliably measure outcomes at base-
line and follow-up. Thus, Oldham’s method often guards against false conclusions due to mathemat-
ical coupling and regression to the mean due to measurement error.

Instead of ‍cor
(
x + y, x − y

)
‍, we prefer to focus on the variance ratio ‍k‍. Values of ‍k‍ that differ from 1 

suggest associations between baseline and change that do not arise from mathematical coupling or 
regression to the mean. In parallel, we examine the correlation ‍cor

(
x, y

)
‍, which is equal to zero under 

the null hypothesis that follow-up values are uncorrelated with baseline. These are important but 
distinct; a suggestion that very small values of ‍k‍ can only produce spurious correlations ‍cor

(
x, y

)
‍ would 

stem from conflating the two. We again emphasize that these tests are intended to assess whether 
correlations are ‘artifactual’ (arising from mathematical coupling or regression to the mean), but not 
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to evaluate support for the PRR in comparison to competing models. For instance, as noted by both 
(Hope et al., 2018 and Hawe et al., 2018), Oldham’s method does not address the possibility of 
ceiling effects; in our view, determining which process gives rise to observed correlations comes after 
assessing whether those correlations are artifacts driven by coupling.

Parametric hypothesis tests are available for both ‍k‍ and ‍cor
(
x, y

)
‍, but depend on assumptions that 

may be unmet in the context of stroke recovery. We also argue for specific null values of both ‍k‍ and 

‍cor
(
x, y

)
‍, although other choices are possible; one might instead choose ‘random recovery’ described 

in Lohse et  al., 2021, as a null distribution and identify corresponding values. Instead of a para-
metric or simulation-based approach (Tu et al., 2005), we suggest a resampling-based one that can 
compare to the null values we suggest, and we describe how this method can be used for other null 
distributions. See Methods for details. A web-based app is available to carry out this analysis (https://​
jeff-goldsmith.shinyapps.io/prr_dashboard/).

The statistical significance of the recovery proportion and ‍R2‍ values have often been used as 
evidence for the PRR. Appendix 1 provides a detailed description of the connections between these 
and ‍cor

(
x, δ

)
‍, ‍k‍, and ‍cor

(
x, y

)
‍. In short, null-value hypothesis testing for the recovery proportion and 

the interpretation of ‍R2‍ values can be difficult for reasons that are analogous to those for correlations: 
appropriate null values are available but non-standard, and the range of possible values for ‍R2‍ can 
be limited. We urge caution in interpreting these quantities and so prefer to use other measures of 
association.

Comparing distinct biological models for recovery
The PRR was developed as a model to explain recovery from motor impairment after stroke. Quan-
titative results, illustrated in Dataset C, show it’s possible for recovery, defined as the change from 
baseline to follow-up, to be related to baseline values even when follow-up is not predicted well by 
baseline. But the ability to predict patient outcomes at follow-up is important in itself, and predictive 
performance can form a basis for comparing the PRR to alternative biological models for recovery. We 

Figure 2. The top panels show three generated datasets with true outcome values and baseline (x) and follow-up (y); a horizontal line indicates a ceiling 
on observed values. In the bottom row, panels show the observed (ceiled) value at follow-up against the baseline value. Fitted values from an intercept-
only model (Int), a generalized additive model (GAM), and the proportional recovery rule (PRR) are shown in the bottom row.

https://doi.org/10.7554/eLife.80458
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suggest cross validation (CV) as a means to compare models, using median absolute prediction error 
(MAPE) in held-out data to measure predictive accuracy (lower MAPE values reflect higher prediction 
accuracy). Details are available in Methods.

To illustrate how prediction accuracy might be used to distinguish between competing models for 
recovery, we generate three datasets under different recovery mechanisms and use CV to evaluate 
candidate models. The first two datasets, which we’ll label C200 and D200, are generated using the same 
process as Datasets C and D above but consist of 200 patients. Dataset E200 is similar to Dataset B, 
but has a latent follow-up mean of 70 rather than 30. Follow-up values greater than 66 are subject 
to strict threshold. That is, Dataset E200 implements large, constant recovery (with some noise) and 
imposes a ceiling.

We consider several models for the association between ‍y‍ and ‍x‍. First, we assume that ‍y‍ values 
are randomly distributed around a common mean value, and do not depend on ‍x‍; this is an intercept-
only regression model, and the mean of observed ‍y‍ values is used to predict future outcomes. We 
implement constant recovery with a ceiling effect as a special case of Tobit regression, assuming 

‍y = min
{

x + c + ϵ, 66
}
‍, where the only free parameter is the constant ‍c‍. This uses all data points, 

including those at ceiling, when estimating model parameters. We adopt an exponential form for 
recovery, motivated by van der Vliet et al., 2020, which includes an explicit ceiling. Next, we assume 
that ‍y‍ depends on ‍x‍, but allow the association to be smooth and non-linear using an additive model 
(generalized additive model [GAM]); details of this model are given in Appendix 1. Finally, we imple-
ment the PRR to estimate ‍δ‍ given ‍x‍, with ‍y‍ taken to be ‍x + δ‍. In all cases, we use available data to 
estimate model parameters. Note that except for the PRR, models focus on predicting the follow-up 
value directly. Also, the additive model includes several other models as special cases, but may overfit 
due to its flexibility.

The top row in Figure 2 shows baseline and follow-up values, and the bottom row shows scatter-
plots of observed (ceiled) ‍y‍ against ‍x‍. The panels in the bottom row of Figure 2 clarify the relationship 
between the data generating mechanism and the ability of ‍x‍ to predict ‍y‍; in each panel, fitted values 
from each of the candidate models are overlaid. Unsurprisingly, for Dataset C200, there is no apparent 
relationship between ‍x‍ and ‍y‍ – these data are generated under ‍cor

(
x, y

)
= 0‍. Dataset D200 is a case 

when baseline values are predictive of change and outcomes. In Dataset E200, the expected ‍y‍ increases 
linearly with ‍x‍ until reaching a plateau, and then is uniformly near the maximum value.

Figure 3 shows the result of our CV procedure applied to Datasets C200, D200, and E200; panels show 
the distribution of MAPE across repeated training/testing splits. For Dataset C200, the intercept-only, 
exponential, and additive models are the best performers; the PRR suffers from the lack of an inter-
cept, which produces a bias in the predictions, while constant recovery with a ceiling is not well suited 
to this mechanism. For Dataset D200, the intercept-only and constant recovery models are the worst 
performers, while the (true) PRR, exponential, and additive models are similar. Finally, for Dataset E200, 

Figure 3. Each panel shows the distribution of median absolute prediction errors (MAPE) obtained using cross validation for each of five models. Panels 
correspond to the generated datasets shown in Figure 2. Models compared are an intercept-only model (Int), a generalized additive model (GAM), and 
the proportional recovery rule (PRR).

https://doi.org/10.7554/eLife.80458
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the (true) constant recovery model performs best. The additive model is flexible enough to capture 
the underlying non-linear association between ‍y‍ and ‍x‍, and very slightly underperforms compared to 
constant recovery. The exponential model is a reasonable approximation, but the PRR makes relatively 
poor predictions.

These results suggest that CV can effectively identify a best (or worst) model for prediction accuracy. 
When two or more models are similarly accurate, other considerations may be relevant. In Datasets 
C200 and D200, for example, the additive model contains the true, simpler model as a special case and 
is needlessly complex. We also emphasize a limitation of CV, which is the exclusive focus on prediction 
accuracy. This is analogous to using only ‍cor

(
x, y

)
‍ to understand recovery, rather than ‍cor

(
x, y

)
‍ and ‍k‍ 

together. As we have discussed elsewhere, dismissing observations like those in Dataset C200 as unin-
teresting because baseline does not predict follow-up would be a mistake: the correlation between 
baseline and change does not arise from mathematical coupling and may reflect important recovery 
mechanisms. We therefore suggest CV as one component of a careful analysis.

Results for reported datasets
We now evaluate three previously reported datasets, described in the Methods section, using the 
statistical techniques given above.

Figure 4 illustrates these example datasets. In the left panels, we show observed FM values for 
patients at baseline and follow-up (top row), and scatterplots of change against baseline (bottom 
row). Throughout, we differentiate recoverers and non-recoverers as specified in the original analyses. 
The right panel shows the contour plot of ‍cor

(
x, δ

)
‍, with points corresponding to observed values 

among recoverers for each dataset. These values cluster in the bottom right corner, with reasonably 
large values of ‍cor

(
x, y

)
‍ and ‍k < 1‍.

We next conducted a bootstrap analysis on the subsample of recoverers to obtain inference for ‍k‍ 
and ‍cor

(
x, y

)
‍. We display the results using 1000 bootstrap samples for each dataset in the contour plot 

in Figure 5, showing the null value corresponding to random recovery for reference, and summarize 
the results using 95% confidence intervals in Table 1. For each dataset, there is strong evidence that 
‍k‍ and ‍cor

(
x, y

)
‍ differ from our suggested null values (1 and 0, respectively), and from those corre-

sponding to random recovery. That is, we have evidence both that recovery is related to baseline 
values in a way that reduces variance at follow-up, and that baseline values are predictive of follow-up. 
These results inform conclusions about the statistical significance of observed associations between 
baseline, change, and follow-up values using plausible null hypotheses, and specifically address 

Figure 4. The left panels show three real datasets. In the top row, panels show outcome values and baseline (x) and follow-up (y); points are colored 
to indicate recoverers (purple) and non-recoverers (yellow) using the definitions from each paper describing the data. In the bottom row, panels show 
change (delta) against initial impairment (66 − x), again separating recoverers and non-recoverers. The right panel shows a contour plot of Equation 
1, with contours corresponding to values of the variance ratio k and the contour for k=1 highlighted. Points on this surface show correlation values 
obtained for the real datasets.

https://doi.org/10.7554/eLife.80458
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concerns about high correlations induced by canonical mathematical coupling. However, several 
mechanisms (including the PRR and constant recovery in the presence of strong ceiling effects) could 
give rise to these correlations.

We next compared the performance of five models in terms of predictive accuracy using CV. As for 
generated data, we considered an intercept-only model, a model assuming constant recovery with 
a ceiling effect, an additive model, an exponential model, and the PRR. For each dataset, we gener-
ated 1000 training/testing splits and summarize prediction accuracy using MAPEs. The plots below 
show the distribution of MAPE across splits for each model and dataset. In these examples, constant 
recovery with a ceiling underperforms against competing methods. The exponential model, additive 
model, and PRR prediction accuracies are often comparable, although the PRR appears superior for 
the Stinear and Byblow and Zarahn datasets. A figure in Appendix 1 shows fitted values for each 
model applied to training datasets. In keeping with the results for prediction accuracy, the constant 
recovery model is visually a poor fit. In some instances, the additive model is too flexible, especially for 
the Zarahn data. The additive and exponential models are similar to the PRR in terms of fitted values 
despite their additional flexibility and complexity.

To provide some frame of reference for the MAPEs reported in Figure 6, in Table 2, we provide 
values for the percent of outcome variation explained by the PRR for each dataset.

The preceding results suggest that data among recoverers is consistent with the PRR for each 
study. The strong correlations between baseline and follow-up are not driven by canonical forms of 
mathematical coupling or regression to the mean. While similar values of ‍k‍ and ‍cor

(
x, y

)
‍ can arise from 

a variety of mechanisms, the PRR clearly outperforms a model that assumes constant recovery in the 
presence of a ceiling effect in terms of prediction accuracy. Competing models for recovery, specifi-
cally those allowing for non-linear association between baseline and follow-up, do not produce more 
accurate predictions than the PRR, and are similar in their fitted values.

Figure 5. Each panel shows the results of the bootstrap procedure used to obtain inferences about the value of correlations and variance ratio. Red 
points are the values obtained for the full dataset, and blue points are values obtained in each of 1000 bootstrap samples; points are overlaid on the 
contour plot of Equation 1.

Table 1. Values and 95% confidence intervals for ‍k‍ and ‍cor(x, y)‍ for each of three datasets.
Confidence intervals are obtained through a bootstrap procedure with 1000 bootstrap samples.

Dataset name ‍k‍ ‍cor
(
x, y

)
‍

Stinear and Byblow 0.39 [0.27, 0.54] 0.73 [0.66, 0.79]

Winters 0.07 [0.05, 0.09] 0.59 [0.49, 0.69]

Zarahn 0.13 [0.03, 0.24] 0.75 [0.55, 0.92]

https://doi.org/10.7554/eLife.80458
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Distinguishing between recoverers and non-recoverers
To this point, we have focused on recoverers under the implicit assumption that a biologically distinct 
group of non-recoverers exists and can be identified. This assumption is supported by prior studies 
of upper limb motor control and deficits in other domains (Prabhakaran et al., 2008; Byblow et al., 
2015; Winters et al., 2016; Zandvliet et al., 2020), and promising work suggests that it is possible to 
identify non-recoverers using baseline characteristics (Byblow et al., 2015). However, the identifica-
tion of non-recoverers has not been approached in the same way across studies, and there is concern 
that data-driven methods can produce misleading results in some circumstances (Hawe et al., 2018; 
Lohse et al., 2021). It is necessary to understand the limitations of some methods for data-driven 
subgroup identification before assessing related arguments about recovery and the PRR.

Clustering refers to a collection of methods for unsupervised learning that has several weaknesses 
in the context of recovery. It is unclear what clustering approach is best, and results can be sensitive to 
this choice. Perhaps more critically, determining the ‘true’ number of clusters present is imprecise and 
open to interpretation. Although tools like the Gap statistic (Tibshirani et al., 2002; James et al., 2013) 
can provide guidance, the choice between one, two, or more clusters is not supported by hypothesis 
tests, confidence intervals, or other methods for statistical inference. Practitioners are encouraged to 
try several numbers of clusters and cautioned to be aware that there is rarely a single best selection 
(James et al., 2013). Results are typically considered exploratory and assessed for validity based on 
visual inspection or additional supporting information. As such, clustering can provide only limited 
evidence for or against the existence of recoverers and non-recoverers (or finer partitions of patients) 
when examining a specific dataset. At worst, one might simply assume that distinct recoverer and 

Figure 6. Each panel shows the distribution of median absolute prediction errors (MAPEs) obtained using cross validation for each of five models. 
Panels correspond to the datasets shown in Figure 4. Models compared are an intercept-only model, a generalized additive model, and the 
proportional recovery rule (PRR).

Table 2. The proportion of follow-up (‍y‍) variation explained by the proportional recovery rule (PRR) 
for each of three datasets.
Follow-up fitted ‍yPRR

‍ values are obtained by adding predicted change from the PRR to observed 
baseline values, and we compute 

‍


1 −

∑
(yi−ŷ PRR

i )2
∑

(yi−ȳ)2



‍
. 

Dataset name Percent of outcome variation explained

Stinear and Byblow 0.55

Winters 0.35

Zarahn 0.56

https://doi.org/10.7554/eLife.80458
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non-recoverer clusters exist and can be separated using clustering. Failure to critically examine this 
assumption using visual and quantitative data checks can yield misleading results.

The weaknesses inherent to cluster identification can lead to flawed scientific conclusions. Hawe 
et al., 2018, and Lohse et al., 2021, show how errors can arise using ‘random’ recovery. Put briefly, 
random recovery assumes that follow-up values ‍y‍ are uniformly distributed between the baseline ‍x‍ 
and the maximum possible value. If data arise via this mechanism and it is assumed that two groups 
exist, the use of clustering will often uncover one cluster that appears to follow the PRR with a recovery 
proportion of roughly 0.75. Building on this observation, Lohse et al., 2021, propose an approach for 
comparing the PRR to random recovery. Data under random recovery can be generated by drawing 
baseline values ‍x‍ from the observed values with replacement (to mimic the distribution of baseline 
values in the sample) and then drawing follow-up values ‍y‍ from a uniform distribution between the 
baseline ‍x‍ and the maximum possible value. This generated data can be analyzed through clustering 
followed by regression to obtain an observed slope in the ‘recoverer’ cluster. By repeating this process 
many times, one can obtain the distribution of slopes in the ‘recoverer’ cluster under random recovery. 
Treating this as a null distribution, Lohse et al., 2021, argue, provides a way to quantify whether a 
slope obtained through the same analysis of real data is consistent with random recovery. The authors 
assert that ‘current data do not support the claim that recovery is proportional any more than that 
recovery is random’.

However, this narrow focus on the distribution of slopes that arises from random recovery bypasses 
a critical question – whether the results of the clustering analysis themselves are consistent with 
random recovery. Put differently, one must first ask whether there is evidence for the existence of 
distinct clusters in observed data using random recovery to generate a null distribution. Viewing 
data generated under random recovery alongside data obtained in a study of upper limb motor 
control recovery, as in Figure 7, emphasizes this difference. While clustering can misleadingly identify 
a ‘recoverer’ group when data actually follow random recovery, visual inspection suggests that an 
obviously different mechanism underlies the Winters dataset. The null distribution of within-cluster 
dispersion, rather than slopes, provides a way to quantify this difference; see Methods for details. 

Figure 7. Both panels show change between baseline and follow-up against initial impairment (66 – baseline). Left panel shows data generated under 
a ‘random recovery’ process, in which outcome values are drawn from a uniform distribution over the baseline value and ceiling. Right panel presents 
again data from Winters et al., 2015.

https://doi.org/10.7554/eLife.80458
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Given the contrast between panels in Figure 7, it is not surprising that this approach rejects the null 
of random recovery for these data (p<0.001).

From this, we conclude that an inappropriate application of unsupervised learning (i.e. one that 
presumes two clusters exists) can produce misleading results. This problem is exacerbated by the lack 
of concrete statistical guidance for determining the number of clusters in a sample. (Similar issues can 
arise in other ways, for example from a definition of non-recoverers as those who recover less than 
expected under the PRR.) Simulations of random recovery, like those in Hawe et al., 2018, and Lohse 
et al., 2021, are useful for illustrating these issues but should not be misinterpreted: the ability to 
produce slopes like the PRR through analyses of generated data does not refute the PRR (or any other 
model of recovery). Nor does it argue against the existence of meaningful recoverer and non-recoverer 
groups. In many studies of upper limb motor control recovery, a distinct group of non-recoverers is 
clear from a visualization of the data (and supported through appropriate hypothesis tests) or can be 
identified through a distinct biomarker, and does not artifactually arise through clustering.

Finally, we distinguish the identification of a biologically distinct group comprising non-recoverers 
from the stratification of patients into severe and non-severe groups based on initial impairment. 
Zarahn et al., 2011, for example, used a subjective approach to classify patients with baseline FM ≤ 
10 as severely affected. More recently, Bonkhoff et al., 2022, used Bayesian hierarchical models and 
formal model selection approaches to identify a threshold (also found to be FM = 10) above and 
below which patients exhibit different recovery patterns. Our point in this section, meanwhile, is that 
the severely affected population contains biologically meaningful subgroups – recoverers and non-
recoverers – and that these can be identified using appropriate unsupervised learning methods.

Discussion
The PRR was discovered while searching for a possible regularity in the relationship between initial 
impairment, as measured by the FM-UE, and recovery in the context of upper limb paresis in the 
time shortly after stroke (Krakauer and Marshall, 2015). It was understood as a description of the 
biological change process that underlies observed recovery, and subsequently evaluated in other 
recovery settings. Although it was not intended to form the basis for patient-level predictions, the 
strong correlations between initial impairment and recovery has suggested that accurate predictions 
are possible. At its core, the PRR models the association between baseline and change; this is always 
a fraught statistical problem, and recent publications on the PRR have revived longstanding concerns 
in the context of stroke recovery (Hope et al., 2018; Hawe et al., 2018; Bonkhoff et al., 2020).

We have revisited the arguments for the PRR as a descriptive and predictive model, focusing on 
key statistical questions at each step. We identified scenarios in which observed correlations are ‘arti-
factual’ – induced either by mathematical coupling or by regression to the mean due to measurement 
error – versus those when they are real signals, emphasizing the variance ratio and tests similar to 
Oldham’s method. For non-artifactual signals, we used CV to compare models for recovery (e.g. PRR 
versus constant recovery with a ceiling); this also provides a concrete metric for the clinical usefulness 
of predictions made by each method. Finally, we considered the problem of distinguishing recoverers 
from non-recoverers, and the limitations of unsupervised learning for this problem.

Our findings in these datasets suggest that the association between initial impairment and change 
is non-artifactual, and the PRR is better as a biological and predictive model than several competing 
models, including constant recovery with a ceiling effect. These data also suggest that a biologi-
cally distinct group of non-recoverers exists. We distinguish between the usefulness of the PRR as a 
biological and a predictive model deliberately: biological models are important for understanding 
the recovery process itself, and accurate predictions are important in clinical care. Although the PRR 
is useful for both, it isn’t necessary that a single model address both considerations simultaneously.

We acknowledge several limitations and caveats. The statistical considerations for recovery are 
nuanced and often counterintuitive. Our arguments deviate from usual null-value hypothesis testing, 
and recognize that zero is often not the appropriate null value. This is related to the important obser-
vation that ‘large’ correlation values can arise in a variety of settings, which complicates but does not 
invalidate statistical approaches. While we distinguish between the usefulness of a model as either 
biological or predictive, our preferred method for comparing models is based only on their predictive 
accuracy. CV can identify models that have better or worse predictive performance, but in itself does 
not examine the validity of underlying model assumptions or ensure that better-performing models 
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are accurate enough to make meaningful clinical predictions. Recoverers and non-recoverers should 
be identified in a way that is not artificial, and that does not serve to introduce evidence for a model 
of recovery that would not otherwise exist. Lastly, we recognize that not every dataset will be similar 
to those we presented; in those cases, we hope the tools we suggest will be used to evaluate the PRR 
against other models.

Indeed, a recent large-scale cohort study examining the PRR presents data that differ in notable 
ways from the studies we consider (Lee et al., 2021). The authors are concerned about ceiling effects 
in the FMA-UE, but use an analysis approach that differs from the framework presented here. Lee 
et al., 2021, use a logistic regression to model the probability of achieving full recovery; they observe 
that more than half of all patients, and more than 60% of patients with baseline FMA-UE above 46, 
recover to the maximum possible value. These data mimic those in our generated Dataset E200, and 
might benefit from the comparison between the PRR and a non-linear model in terms of predictive 
accuracy. Certainly, the FMA-UE lacks resolution, especially at higher values, and a refined outcome 
measure that ameliorates such ceiling effects is needed. There is nothing in this study that precludes 
the possibility that PRR would apply for this new measure. Meanwhile, we’re skeptical of broader 
claims made regarding the non-generalizability of the PRR. The cohort in Lee et al., 2021, is much 
more mildly impaired at baseline than data we have observed; this could have several causes, but the 
choice to exclude patients with FMA-UE hand subscore of 0 at day 7 likely removes many moderate 
and severely affected patients who are unlikely to recover to ceiling. Thus, in a sense the study selected 
for a cohort that is not only clinically non-representative, but one that makes it hard to derive the PRR 
by looking for changes at the high-end of the FMA-UE, a range known to fail to detect subtle residual 
deficits.

The PRR provides an appealingly simple model for understanding recovery, even if the statistical 
approaches for evaluating it are not direct. We argue that the PRR is and will continue to be relevant 
as a model for recovery, but we agree with others that more complex analytic strategies are necessary 
to move beyond it. Recovery depends on factors other than initial impairment. The PRR estimates an 
average recovery proportion, but individuals will recover more or less than that average; determining 
whether this is ‘noise’ or heterogeneity that can be predicted using other forms of measure at base-
line is an important next step. Similarly, reliable techniques to identify non-recoverers at baseline are 
needed. Different outcome measures and different recovery settings may not be well described by 
the PRR. A specific focus on predicting long-term outcomes is an important goal; supervised learning 
methods may be helpful in this, although many of these methods have unclear interpretations.

More complex models than the PRR do not inherently resolve the statistical issues we’ve raised 
and may in fact make them harder to identify. For example, it’s been suggested that mixed models 
could account for differences in baseline values and change across subjects in a way that avoids math-
ematical coupling by modeling baseline and follow-up values directly (van der Vliet et al., 2020). This 
is not the case. Consider a model for outcome values at baseline (time = 0) and a single follow-up 
(time = 1) that includes both random intercepts and random slopes. When such a model is applied 
to Datasets A, C, and D, the random intercepts and slopes will be correlated; low random intercepts 
will suggest steeper random slopes in a way that mimics baseline and change scores. Put differently, 
to predict a follow-up value from baseline, one must use the baseline value to predict a random slope 
using the correlation between random effects. Indeed, for Dataset A that correlation will equal –0.71 
– the same as ‍cor

(
x, δ

)
‍. Distinguishing between mathematical coupling and recovery that changes 

the variance ratio remains a problem, but now one that involves the correlation of random effects. 
Alternative coding for the time variable can induce a model that mimics Oldham’s method, and avoids 
coupling based on similar arguments (Blance et al., 2005).

Our point is not that mixed models are a wrong choice – in fact, we are enthusiastic about work that 
combines serial measurement, non-linear trends, random effects, and mixture models (van der Vliet 
et al., 2020). Taken together, these elements can overcome many of the limitations introduced by 
studies that include only baseline and single follow-up observations. Serial measurements and careful 
modeling provide insight into patients’ recovery trajectory, reduce effects of measurement error, and 
identify non-recoverers early in the recovery process. Nonetheless, non-linear mixed models fit to 
serial measurements are not a panacea, and do not avoid the challenges described in this paper. The 
same fundamental issues that arise from within-subject correlation and changing variances over time 
due to recovery and measurement ceilings should be considered when using this or any other model 
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framework. Indeed, more complex models may serve to mask these basic issues by making them 
implicit rather than explicit.

Allowing for differences in datasets, implementations, and performance criteria, our results are 
consistent with those reported in recent papers examining the PRR as a predictive model. Bonkhoff 
et al., 2020, fit several models to a subset of patients selected to mitigate ceiling effects and avoid 
including non-recoverers, and found that that PRR was among the best performing models in terms 
of out-of-sample prediction accuracy. The percent of outcome variation explained was lower in their 
work than in our analyses (21% versus 35–56%), leading the authors to suggest that the PRR may be 
better than other models but insufficient for making clinical predictions in the context of precision 
neurology. Our view is a less pessimistic take on the same information: that the PRR outperforms 
competing models (including those intended to account for ceiling effects) attests to its value, and 
the percent of outcome variation explained is suggestive of an important biological mechanism that 
should be investigated and understood — even if ‍R2‍ values are not as high as has been suggested. 
After all, if it were found that a risk factor accounted for greater than 20% of the variance in the chance 
of getting a disease it would immediately be investigated and prevention attempted. From the stand-
point of clinical prediction, it seems likely that accurate models developed in the future will include 
initial impairment as a covariate, and may include a term that reflects proportional recovery.

There is growing consensus around the need for careful comparisons of different models for 
recovery and for analytic strategies that minimize the impact of ceiling effects. Bonkhoff et al., 2020, 
and Bonkhoff et  al., 2022, use a statistically rigorous model selection approach based on leave-
one-out cross-validated deviances, which is particularly well suited to comparing Bayesian hierarchical 
models. These papers also consider only patients with initial impairments below 45 to avoid ceiling 
effects induced by mildly affected stroke patients. We use cross-validated MAPE because it explic-
itly focuses on prediction accuracy, and the results can therefore be interpreted in the context of 
single-subject predictions. We also hesitate to discard a substantial fraction of our data and miss the 
opportunity to model recovery for mildly affected patients at baseline, although we recognize that 
the narrower outcome distribution for patients at or near ceiling can affect measures of model perfor-
mance. These analytic preferences reflect different approaches to questions and challenges whose 
importance is increasingly agreed upon.

In light of this, we stress again that the PRR is intended as a model for recovery from a specific 
form of impairment as measured by the FM, and is best understood as an attempt to mathemati-
cally capture a component of the recovery process. The emphasis on change between baseline and 
follow-up is deliberate: biological recovery is a process that causes a change, which then leads to the 
final value. Understanding whether recovery varies across patients and what mechanism might drive 
such variability is a fundamental scientific question. That the PRR also has some value for predicting 
final outcomes is to be welcomed but not necessary for its biological importance.

Applications of the PRR in studies of upper limb motor control recovery have often found that, 
averaging across recoverers, roughly 70% of lost function is regained in the time shortly after stroke. 
We’ve argued that this is attributable to spontaneous biological recovery (Cramer, 2008; Zeiler and 
Krakauer, 2013; Cassidy and Cramer, 2017). The existence of such a mechanism does not imply that 
behavioral interventions are unable to improve patient outcomes. Instead, future clinical trials should 
seek to improve on the proportion of impairment reduction, reduce the proportion of non-recoverers, 
or induce changes that are distinct from (and better than) those expected under the PRR.

Conclusions
Consideration of associations between baseline, follow-up, and change continues to be of interest 
across scientific domains despite the statistical challenges, and for good reason: these can be and 
often are related in ways that are not due to artifacts. Our goal here was to clarify statistical reasoning 
concerning the problem of relating baseline to change in the context of stroke recovery. It is for the 
reader to decide whether the work presented here is either a bumpy statistical detour or an inter-
esting scenic route. In either case, rigor about this issue is essential for continued biological and clin-
ical progress, and it would be unfortunate if the recent spate of papers leads to dismissal of the PRR 
out of either confusion or exhaustion.

As a model that relates baseline values to change, the PRR requires the application of careful, 
and sometimes counterintuitive, statistical techniques. We have described well-established but 
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non-standard approaches to distinguish between artifacts due to coupling from signals that arise from 
true associations, introduced tools to compare competing models for recovery based on their predic-
tive accuracy, and elaborated on issues that can arise when using some data-driven methods to distin-
guish recoverers and non-recoverers. In our analyses of real data, we found evidence for signals not 
attributable to coupling, and obtained better predictions using the PRR than a model that assumes 
constant recovery (with some noise) up to a ceiling. This suggests that the PRR is non-artifactual and 
remains relevant, at the very least, as a model for recovery. Future work should seek to both explain 
the mechanistic basis for PRR and improve upon it as a predictive model.

Methods
Reported datasets
Details of inclusion and exclusion criteria are available in the referenced literature. All patients received 
usual care according to evidence-based stroke guidelines for physical therapists, but no systematic 
interventions.

•	 Stinear and Byblow: combined data from two studies. First, Byblow et al., 2015, assessed an 
a priori prediction of proportional recovery based on corticospinal tract integrity using tran-
scranial magnetic stimulation to determined motor evoked potential status (MEP+, MEP-) for 
93 patients within 1 week of first-ever ischemic stroke stroke. FMA-UE were obtained at 2, 6, 
12, and 26 weeks. Second, Stinear et al., 2017, added data from recurrent ischemic stroke and 
intracerebral hemorrhage patients with new upper limb weakness to form a larger dataset of 
157 patients, all with known MEP status. Following this work, we define recoverers and non-
recoverers as MEP+ and MEP-, respectively.

•	 Winters: first-ever ischemic stroke patients were recruited for the prospective cohort study enti-
tled Early Prediction of functional Outcome after Stroke (EPOS) (Nijland et al., 2010; Veerbeek 
et al., 2011). Data comprise baseline (day 2 post-stroke) and follow-up (day 187 post-stroke) 
FMA-UE observations for 223 patients; 211 were originally reported in Winters et al., 2015, 
with recoverers and non-recoverers identified using a hierarchical clustering based on average 
pairwise Mahalanobis distances.

•	 Zarahn: data consist of patients with first time ischemic stroke with some degree of clinical 
hemiparesis (NIH stroke scale for the arm ≥ 1). FMA-UE was assessed both at ~2 days post-
stroke and ~3 months post-stroke and were originally reported in Zarahn et al., 2011. We focus 
on the 30 patients in the imaged subsample with publicly available FMA-UE values. Recoverers 
and non-recoverers are determined using baseline FMA-UE >10.

Ethical approvals were obtained for each dataset; see referenced literature for details. The Winters 
and Zarahn datasets are included in supplementary materials. The Stinear and Byblow data were 
collected under ethical approvals that do not permit placing data online. Data can be made available 
under reasonable request to the author.

Resampling approach for inference on ‍cor
(
x, y

)
‍ and ‍k‍

We suggest a bootstrap procedure to obtain confidence intervals for ‍cor
(
x, y

)
‍ and ‍k‍. A single boot-

strap sample can be constructed by selecting subjects (pairs of both ‍x‍ and ‍y‍ values) from a full dataset 
with replacement. Next, we compute the values ‍k‍ and ‍cor

(
x, y

)
‍ for the bootstrap sample. This is 

repeated a large number of times (e.g. 1000) to produce an empirical distribution for the quantities of 
interest, which can be used to derive corresponding confidence intervals. Simulations evaluating this 
approach suggest that coverage of 95% CIs is roughly 0.95 for moderate sample sizes.

Our suggested null values for ‍k‍ and ‍cor
(
x, y

)
‍ are 1 and 0, respectively, but other values can be used. 

For null hypotheses framed in terms of data generating mechanisms rather than parameter values, 
such as the ‘random’ recovery null hypothesis (Lohse et al., 2021), it can be difficult to derive the 
corresponding null values. In these cases, we suggest to obtain empirical values by generating a large 
dataset under the null and computing the ‍k‍ and ‍cor

(
x, y

)
‍ directly.

CV to compare models
Data are divided into training and testing sets; training data are used to fit models, and these models 
are applied to data in the testing set to obtain predicted outcomes. The difference between predicted 
and observed outcomes in the testing data reflects each model’s ability to make accurate predictions 

https://doi.org/10.7554/eLife.80458
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of data not used in model development. Comparing models in terms of their MAPE is an established 
technique for choosing among candidate models, and the MAPE provides a measure of the antici-
pated prediction error for a given model.

CV has several possible implementations; here, random training and testing splits are comprised of 
80% and 20% of the data, respectively, and the training data is used to fit each model. Given model 
fits, predictions are made for the testing dataset and compared to actual outcomes, and the differ-
ence is summarized using the MAPE. This process is then repeated 1000 times, so that the distribution 
of MAPE across training and testing splits is obtained.

Defining a null distribution for within-cluster dispersion
Although the Gap statistic does not allow for inference to determine the number of clusters within 
a sample, it provides a useful metric for comparing observed data to a null hypothesis of random 
recovery. Intuitively, for a given number of clusters ‍k‍, the Gap statistic ‍Gap

(
k
)
‍ compares the observed 

degree of within-cluster similarity to the expected degree of within-cluster similarity under a refer-
ence distribution. Suppose a clustering analysis has produced clusters ‍C1, C2, . . . , Ck‍ . Assuming the 
Euclidean distance is used to measure distance between observations in the same cluster, we measure 
overall within-cluster dispersion using the pooled within cluster sum of squares around the cluster 
mean:

	﻿‍
Wk =

k∑
r=1

∑
zi ∈Cr

∥zi − µr∥2 .
‍�

Here, ‍µr‍ is the within-cluster mean and ‍zi‍ is the vector of observed values for subject ‍1 ≤ i ≤ n‍ (e.g. 

‍zi =
(
xi, yi

)
‍).

The value of ‍Wk‍ decreases as ‍k‍ increases, regardless of whether additional true clusters are identi-
fied. The Gap statistic therefore standardizes ‍log

(
Wk

)
‍ to provide guidance on the choice of ‍k‍ within 

a dataset. To standardize ‍log
(
Wk

)
‍, one compares the observed value to its expectation under a refer-

ence distribution:

	﻿‍ Gapn
(
k
)

= E∗
n
{

log
(
Wk

)}
− log

(
Wk

)
.‍�

The expectation ‍E
∗
n
{

log
(
Wk

)}
‍ is approximated through the analysis of multiple datasets gener-

ated under the reference distribution. For each dataset one computes ‍log
(
W∗

k
)
‍, and the expected 

value is taken as the average across these. The reference distribution in the calculation of the Gap 
statistic is often uniform over the range of each feature in the clustering analysis. In the context of 
recovery, this suggests a square over all possible values of ‍x‍ and ‍y‍ rather than the triangular region 
defined by random recovery, but the spirit is similar.

We use the Gap statistic to measure the strength within-cluster dispersion against that expected 
under a reference distribution. To compare observed data to a null distribution, we suggest a 
resampling-based approach to construct a null distribution for ‍Gapn

(
k
)
‍. For random recovery, to 

construct a single resampled dataset, we suggest to sample observed ‍x‍ values with replacement; 
generate corresponding ‍y‍ values under random recovery; and obtain ‍Gap∗n

(
k
)
‍. This process is 

repeated many times, and the observed value ‍Gapn
(
k
)
‍ is compared to the distribution of ‍Gap∗n

(
k
)
‍. 

This process is very similar to one suggested by Lohse et al., 2021, with the exception that we focus 
on evidence for clustering through ‍Gapn

(
k
)
‍ rather that the distribution of slope values obtained in 

analyses of resulting clusters.
The Gap statistic can be computed for any clustering method. By extension, our method for 

comparing the observed amount of within-cluster dispersion to that expected under a null distri-
bution can as well. In our analyses we follow recent literature, and use hierarchical clustering based 
on Mahalanobis distances between points. Simulations suggest that our testing approach achieves 
nominal size: when data are in fact generated under random recovery, we reject the null hypothesis 
5% of the time under ‍α = 0.05‍.

Implementation and reproducibility
All analyses were implemented in R; supplementary materials contain source code and RMarkdown 
documents to reproduce all figures and analyses.

https://doi.org/10.7554/eLife.80458
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and all data that can be made publicly available (i.e. "Winters" and "Zarahn") are included with 
the submission.
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Appendix 1
Table of null values
In the table below, we provide values of ‍cor

(
x, δ

)
‍ for a range of input values ‍cor

(
x, y

)
‍, keeping ‍k‍ 

fixed at 1. These are a result of Equation 1 in the manuscript, and are intended to provide context 
for correlations between baseline and change that arise through coupling rather than as a result of 
a recovery process that affects the variance ratio.

‍k‍ ‍cor
(
x, y

)
‍ ‍cor

(
x, δ

)
‍

1 0 –0.707

1 0.1 –0.671

1 0.2 –0.632

1 0.3 –0.592

1 0.4 –0.548

1 0.5 –0.5

1 0.6 –0.447

1 0.7 –0.387

1 0.8 –0.316

1 0.9 –0.224

Correlations, variance ratios, and regression
A simple linear regression of ‍δ‍ on ‍ii = max−x‍, where ‍max‍ is the maximum possible value of the scale 
and ‍max−x‍ is initial impairment, can be written

	﻿‍ δ = β0 + β1ii + ϵ.‍�

The following expressions relate regression parameters and diagnostics to ‍cor
(
x, δ

)
,‍‍cor

(
x, y

)
‍ and 

‍k‍:

•	 ‍
�β1 = 1 − cor

(
x, y

)√
k‍

•	

‍
R2 = cor

(
x, δ

)2 =

(
�β1√

k−2�β1−1

)2

‍
The next subsection contains derivations of these expressions. From these, we conclude first that 

‍cor
(
x, y

)
= 0‍ implies ‍̂β1 = 1‍. This suggests that usual hypothesis tests of the slope which assume a 

null value of 0 should instead assume a null value of 1. Moreover, this test measures the association 
between baseline and follow-up, and slopes that differ significantly from one suggest that baselines 
can be used to predict follow-up values. Second, we see that the amount of variation explained 
depends on both ‍cor

(
x, y

)
‍, through the estimated slope, and on the variance ratio; for example, in 

the canonical example of mathematical coupling, ‍R2 = 0.5‍. Resampling-based tests for the slope 
and ‍R2‍ can be performed analogously to those for ‍k‍ and ‍cor

(
x, y

)
‍ using these (or other) null values.

Like ‍cor
(
x, δ

)
‍, ‍R

2‍ should be interpreted with caution: the preceding expression provides a way 
to determine the expected or null ‍R2‍ for a given slope and ‍k = 1‍, which can be used as a frame of 
reference for observed ‍R2‍ values. ‍R2‍ values that depart from the null value may suggest ‍k ̸= 1‍ and, 
by extension, changes that are related to baseline in a way that systematically reduces the variance 
ratio. As in the previous section, based on this analysis it will remain unclear whether a statistically 
significant difference is attributable to proportional recovery, ceiling effects, or some other process; 
distinguishing between models is the subject of later sections.

The above expression for ‍R2‍ is in the context of a regression of change on initial impairment, which 
will differ from the ‍R2‍ arising from a regression of the follow-up value on the baseline observation. 
Because these ‍R2‍ values are the square of ‍cor

(
x, δ

)
‍ and of ‍cor

(
x, y

)
‍, respectively, much of our previous 

discussion applies here. The initial value ‍x‍ may explain a higher proportion of variation in ‍δ‍ than in ‍y‍; 
this setting is not necessarily artifactual, and high ‍R2‍ in the regression of change on baseline can be 
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important even when ‍R2‍ in the regression of follow-up on baseline is low, just as high ‍cor
(
x, δ

)
‍ can 

be important even when ‍cor
(
x, y

)
‍ is low.

The inclusion of the intercept ‍β0‍ in the simple linear regression differs from the usual formulation 
of the PRR and helps to establish clear connections between a correlation-based and a regression-
based perspective. This is helpful for evaluating the results of past studies, especially results 
expressed in terms of percent variation explained, and refines the use of both correlations and 
regressions as evidence for the PRR.

Similar to correlations and variance ratios, results from a regression-based analysis can, when 
understood correctly, help assess evidence for the PRR in a given dataset: establishing statistical 
significance using appropriate tests, along with evaluation of regression diagnostics, will suggest 
whether data are consistent with the PRR. However, all these approaches measure only linear 
associations, and neither compare the PRR to alternative models for recovery nor evaluate the ability 
of the PRR to make accurate predictions about patient outcomes.

Derivation of expressions for ‍̂β1‍ and R2

In the preceding section, we discuss a simple linear regression of ‍δ‍ on ‍ii = max − x‍, where ‍max‍ is the 
maximum possible value of the scale and ‍max − x‍ is initial impairment. This regression can be written

	﻿‍ δ = β0 + β1ii + ϵ.‍�

The inclusion of an intercept in the simple linear regression differs from the usual formulation of 
the PRR, but we find model helpful because it connects correlations to regression parameters and 
summaries. Specifically, the following expressions relate regression parameters and diagnostics to 

‍cor
(
x, y

)
‍ and ‍k‍:

•	 ‍
�β1 = 1 − cor

(
x, y

)√
k‍

•	

‍
R2 = cor

(
x, δ

)2 =

(
�β1√

k−2�β1−1

)2

‍
In a simple linear regression, the OLS estimate of the intercept is the ratio of the covariance of the 
predictor and response and the variance of the predictor. In this specific regression, we have:

	﻿‍

�β1 = cov
(
δ,ii

)
var

(
ii
)

= cov
(

y−x,max−x
)

var
(

max−x
)

= cov
(

y,−x
)

+cov
(
−x,−x

)
var

(
x
)

= var
(

x
)

var
(

x
) − cov

(
y,x

)
var

(
x
)

= 1 − cor
(

x,y
)
σxσy

var
(

x
)

= 1 − cor
(
y, x

) σy
σx

= 1 − cor
(
y, x

)√
k ‍�

Next, we note that in a simple linear regression, ‍R2‍ is the squared correlation between the 
outcome and response. Then:

	﻿‍

R2 = cor
(
ii, δ

)2

= cor
(
max − x, δ

)2

= cor
(
x, δ

)2
‍�

Lastly, for linear regressions that include an intercept, ‍R2‍ is the squared correlation between the 
outcome and fitted values obtained from the model. Starting from this, we find:
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	﻿‍

R2 = cor
(�β0 + �β1ii, δ

)2

=


 cov

(�β0+�β1ii,δ
)

√
var

(�β0+�β1ii
)

var
(
δ
)




2

=


 cov

(�β0+�β1
(

max−x
)

,y−x
)

√
var

(�β0+�β1
(

max−x
))

var
(

y−x
)




2

=


 cov

(
−�β1x,y−x

)
√

var
(
−�β1x

)
var

(
y−x

)




2

=


 cov

(
−�β1x,y−x

)
√

var
(
−�β1x

)
var

(
y−x

)




2

=

(
�β1cov

(
−x,y−x

)

�β1

√
var

(
x
)

var
(

y−x
)

)2

=

(
var

(
x
)
−cov

(
x,y

)
√

var
(

x
)[

var
(

x
)

+var
(

y
)
−2cov

(
x,y

)]

)2

=


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var
(

x
)
−cor

(
x,y

)√
var

(
x
)

var
(

y
)

√
var

(
x
)[

var
(

x
)

+var
(

y
)
−2cor

(
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var

(
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)
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(
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

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
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(
x
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(
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(
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)√
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)
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(

x
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(
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(
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k−1
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=
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k−2�β
1
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‍�

Specification of the GAM
We use a GAM to allow smooth, non-linear associations between baseline ‍x‍ and follow-up ‍y‍. This 
is intended to provide a flexible candidate model for comparison with other mechanistic model 
implementations, including the PRR and constant recovery in the presence of strong ceiling effects.

Our implementation uses the gam function in the mgcv R package (Wood, 2012). A thorough 
overview of the theoretical and practical underpinnings of this widely used package can be found in 
related monograph (Wood, 2017). Briefly, the default gam approach estimates non-linear associations 
using a rich thin-plate spline expansion with an explicit penalization to enforce smoothness in the 
result; for intuition, a high degree of penalization results in linear fits, while less penalization allows 
for greater non-linearity. The smoothing parameter(s) are selected using generalized CV as part of 
the model-fitting procedure.

Code supplements contain all model fitting procedures; for clarity, we note that our 
implementations are of the form: mgcv::gam (y ~ s(x), data = winters_df).

Fitted values across training/testing splits
We use CV to compare the performance of five models in terms of predictive accuracy. We 
considered an intercept-only model, a model assuming constant recovery with a ceiling effect, an 
additive model, an exponential model, and the PRR. For each dataset, we generated 1000 training/
testing splits; results for prediction accuracy using MAPEs are shown in Figure 6 in the main paper. 
The Appendix 1—figure 1 shows fitted values for each model (except the intercept-only model) 
applied to training datasets generated in the CV procedure. The constant recovery model is visually 
a poor fit, and occasionally the additive model is too flexible, especially for the Zarahn data. The 
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additive and exponential models yield fitted values that are similar to the PRR despite their additional 
flexibility and complexity.

Appendix 1—figure 1. Fitted values for each of four models, obtained within separate training / testing splits as 
part of the cross validation procedure.

https://doi.org/10.7554/eLife.80458
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