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Abstract Skeletal muscles support the stability and mobility of the skeleton but differ in biome-
chanical properties and physiological functions. The intrinsic factors that regulate muscle-specific 
characteristics are poorly understood. To study these, we constructed a large atlas of RNA-seq 
profiles from six leg muscles and two locations from one muscle, using biopsies from 20 healthy 
young males. We identified differential expression patterns and cellular composition across the 
seven tissues using three bioinformatics approaches confirmed by large-scale newly developed 
quantitative immune-histology procedures. With all three procedures, the muscle samples clustered 
into three groups congruent with their anatomical location. Concomitant with genes marking oxida-
tive metabolism, genes marking fast- or slow-twitch myofibers differed between the three groups. 
The groups of muscles with higher expression of slow-twitch genes were enriched in endothelial 
cells and showed higher capillary content. In addition, expression profiles of Homeobox (HOX) 
transcription factors differed between the three groups and were confirmed by spatial RNA hybrid-
ization. We created an open-source graphical interface to explore and visualize the leg muscle atlas 
(https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/). Our study reveals the molecular special-
ization of human leg muscles, and provides a novel resource to study muscle-specific molecular 
features, which could be linked with (patho)physiological processes.
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Introduction
Skeletal muscles have grosso modo similar functions, generate the force for mobility and skeleton 
support, and maintain the body homeostasis. However, skeletal muscles differ in biomechanical and 
physiological features. These features include the size and contractile properties of the motor units 
and myofibers, differences in shortening velocity, resistance to fatigue, and differences in innervation 
and perfusion (Valentine, 2017). Yet, the molecular and cellular differences that contribute to this 
muscle specialization are not fully understood. A molecular atlas for different skeletal muscles could 
assist in deciphering the molecular basis of muscle-specific physiological features. Such an atlas may 
also be used to study differential muscle involvement in various conditions, such as muscular dystro-
phies, myopathies, differences in regenerative potential, physiological compensation in sports and 
sarcopenia.

During aging and in muscle diseases, some muscles are affected earlier than others. This is often 
referred as muscle involvement pattern, which can be characteristic of a given muscular pathology 
(Carlier et al., 2011; Raz et al., 2015; Albayda et al., 2018; Brogna et al., 2018; Diaz-Manera et al., 
2018; Servián-Morilla et al., 2020). Several studies suggested that muscle-specific intrinsic molec-
ular factors may explain this muscle involvement pattern (Kang et al., 2005; Rahimov et al., 2012; 
Huovinen et al., 2015; Raz et al., 2016; Terry et al., 2018; Hettige et al., 2020; Xi et al., 2020). 
For example, differences in the cellular pathways and myofiber type (slow- and fast-twitch myofibers) 
composition between muscles could play a role (De Micheli et al., 2020; Rubenstein et al., 2020; Xi 
et al., 2020), but may not fully explain the muscle involvement patterns.

Most of the studies characterizing the molecular variation between muscles were performed in 
mice (Campbell et al., 2001; Porter et al., 2001; Haslett et al., 2005; von der Hagen et al., 2005; 
Raz et al., 2018; Terry et al., 2018; Hettige et al., 2020), where muscle-specific mRNA profiles were 
linked to distinct myofiber type composition (Campbell et al., 2001; Raz et al., 2018; Hettige et al., 
2020).

Since human muscle-related pathologies are not always recapitulated in mouse models (van Putten 
et al., 2020), understanding molecular variations between skeletal muscles should be performed in 
human samples. Only a few studies compared mRNA profiles between muscles from healthy human 
adults, and these studies face several limitations. Skeletal muscles are highly affected by age (McCor-
mick and Vasilaki, 2018; Aversa et al., 2019), yet, the age range in previous studies was broad (Kang 
et al., 2005; Huovinen et al., 2015). Moreover, the number of sampled muscles and subjects were 
limited (Abbassi-Daloii et al., 2020). A study using postmortem material (Kang et al., 2005) only 
partly reflects molecular composition in living muscles due to storage in cooling conditions. Under-
standing muscle involvement in different pathologies can benefit from a molecular atlas of human 
muscles.

We generated a transcriptome atlas from six leg muscles and two locations from one muscle to 
explore molecular variations within and between muscles. Paired samples were obtained from 20 
healthy male subjects of 25±3.6 years old. We show that the seven muscle tissues clustered into three 
groups, distinguished by cell type composition and mRNA expression profiles. We confirmed the tran-
scriptome analyses with large-scale quantitative immunohistochemistry and RNA in situ hybridization 
procedures. We discuss the value of this skeletal muscle atlas resource to understand human health 
and pathologies affecting skeletal muscle tissues.

Results
Transcriptome atlas of adult human skeletal muscles
To determine molecular signatures marking leg muscles, we generated a transcriptome atlas of human 
skeletal muscles by sequencing biopsies from five upper leg muscles, gracilis (GR), semitendinosus 
(ST), rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles, and one lower leg 
muscle, gastrocnemius lateralis (GL; Figure 1A). We also investigated molecular differences within 
one muscle by including biopsies from the middle and distal end of the semitendinosus muscle (STM 
and STD, respectively). These two biopsies were treated as independent muscle samples in subse-
quent analyses (Figure 1B and C). In total, 128 samples from 20 individuals (aged 25±3.6 yr) were 
analyzed (Figure 1—figure supplement 1), making this currently the largest freely available human 
muscle atlas. Supplementary file 1 shows the sample characteristics.

https://doi.org/10.7554/eLife.80500
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Variation in cell type composition between different muscles
Skeletal muscle is a heterogeneous tissue containing multiple cell types. The differences in the abun-
dance of these cell types can be reflected in bulk RNA-seq profiles. Therefore, we used RNA-seq data 
to first explore possible cell type heterogeneity between leg muscles. We summarized the expression 
level of genes marking each cell type present in human skeletal muscles by calculating their first prin-
cipal components (eigenvectors; Supplementary file 2). We used the eigenvalues of the eigenvectors 
representing the different cell types to cluster the muscles (Figure 2A) and to identify cell types with 
significant differences in relative abundance between muscles (Figure 2—figure supplement 1). The 
muscle tissues clustered into three groups, Group 1 (G1): GR, STM, and STD; Group 2 (G2): RF, VL, and 
VM; GL was the only muscle in Group 3 (G3) (Figure 2A). The relative abundance of endothelial cells 
was statistically the most different between muscles, with higher abundance in G2 and G3 than in G1 
(Figure 2A–B, Figure 2—figure supplement 1). Other cell types marking blood vessels, namely peri-
cytes, post-capillary venule (PCV) endothelial cells, natural killer (NK) cells, T and B cells, and myeloid 
cells, clustered together with the endothelial cells and all showed a higher abundance in G2 and G3 

Figure 1. An overview of biopsies’ location and the study workflow. (A) A schematic overview of the leg muscles. Arrows point to the muscles that were 
included in this study. The biopsies, with exception of STM (semitendinosus-middle), were taken from the distal area. (B–D) The study overview includes 
cryosectioning, RNA-isolation and sequencing (B) data analysis (C) and validations (D). Created with BioRender.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Analysis framework.

Figure supplement 2. RNA isolation protocols.

Figure supplement 3. The overview of RNA-seq samples.

Figure supplement 4. The quality control and batch correction of RNA-seq data.

https://doi.org/10.7554/eLife.80500
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Figure 2. Muscles cluster into three main groups based on cell type composition. (A) The heatmap shows the mean eigenvalues of genes marking 
each cell type across all the individuals. Each row shows a muscle, and each column shows a cell type. FAP stands for fibro-adipogenic progenitors. 
(B) The boxplot shows the eigenvalues for the endothelial cells, fast-twitch, and slow-twitch myofibers per muscle. The boxes reflect the median and 
interquartile range.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.80500
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compared with G1 (Figure 2A–B). These results could suggest a higher capillary density and blood 
perfusion in/of the muscles in G2 and G3.

Genes marking fast-twitch myofibers showed overall higher expression levels in G1, while slow-
twitch genes were higher in G2 and G3 (Figure 2A–B). Differences in the relative abundance of non-
muscle cell types, pericytes, immune cells, and endothelial cells, distinguished G3 from the G1 and G2 
muscles (Figure 2—figure supplement 2, Figure 2A–B).

While STM and STD showed significant differences in the relative abundance of genes marking 
endothelial cells (higher expression in STD) and slow-twitch myofibers (higher expression in STM), 
there were no significant differences between ST and GR, and within the G2 muscles. This suggests 
that differences between regions of the same muscle may be larger than differences between distinct 
muscles (Figure 2—figure supplement 1).

Further study of differences in myofiber type composition between 
groups of muscles
To confirm the differences in myofiber types between muscles, we performed immunofluorescence 
staining for all muscles with a mixture of antibodies to three MyHC isoforms and anti-laminin anti-
body (Figure  3A). We developed a semi-automated image processing workflow to segment the 
myofibers using laminin staining and to quantify the fluorescence intensity of each MyHC isoform 
per myofiber. We next identified myofiber types by clustering all the myofibers using the MFI values 
of the three MyHC isoforms. The vast majority of the myofibers (94%) were assigned to three major 
clusters (Figure 3B). Each myofiber cluster had a major MyHC isoform (Figure 3C). Consistent with 
our study in human vastus lateralis muscle (Raz et al., 2020), the results here suggest that the myofi-
bers are generally not purely type -I, -IIA, or -IIX but contain a mix of myosin heavy chain isoforms. 
We observed relatively high correlations from 0.55 to 0.62 between normalized gene expression of 
the dominant MyHC in each cluster and the proportion of myofibers assigned to the corresponding 
cluster (Figure 3D–F, Figure 3—figure supplement 1A). This correlation demonstrates the reliability 
of our RNA-seq-based assessment of MyHC expression.

In agreement with the results of the RNA-seq cell type composition analysis (Figure 2A–B), the 
quantitative histology analysis demonstrated a higher proportion of slow-twitch (oxidative) myofibers 
and a lower proportion of MyHC2X-dominated myofibers in G2 and GL (G3) muscles than in G1 
muscles (Figure 3G, Figure 3—figure supplement 1B). The quantitative histology analysis further 
showed that G2 muscles had a higher proportion of MyHC2A-dominated myofibers than the G3 
muscle (Figure 3G, Figure 3—figure supplement 1B), highlighting a distinct myofiber type compo-
sition of the GL muscle.

The myofiber composition results further showed a higher proportion of MyHC2X-dominated myofi-
bers in STD than in STM, whereas STM had a higher proportion of MyHC1 and MyHC2A-dominated 
myofibers (Figure  3—figure supplement 1B). This confirms the existence of regional differences 
within a muscle (Bindellini et al., 2021).

Higher capillary density in GL
The RNA-seq cell type composition analysis suggested a higher proportion of endothelial and other 
cell types marking blood vessels in the GL muscle than in other muscles. To confirm this observa-
tion, we immunostained the endothelial cells using antibodies against Endoglin (ENG) and CD31 
proteins (Tey et al., 2019). We included cryosections of GL and STM with the largest differences in 
the expression of genes marking endothelial cells (Figure 4A). We observed a higher proportion of 
CD31-positive areas in GL (Figure 4B), which was consistent with higher CD31 RNA expression levels 
in this muscle (Figure 4C).

Next, we determined the muscles’ capillary density by counting small circular objects stained posi-
tive for both CD31 and ENG (Wehrhan et al., 2011). We observed a higher capillary density in GL 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Cell type composition pairwise comparison between muscles.

Figure supplement 2. Cell types’ eigenvalues.

Figure 2 continued

https://doi.org/10.7554/eLife.80500
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Figure 3. Myofiber type composition is consistent with the expression level of genes marking fast and slow-twitch myofibers. (A) A representative 
immunostaining image. The overlay of each myosin heavy chain isoform and laminin are shown separately. Scale bar is 1000 μm. (B) A 3-D scatterplot 
of the MyHC isoforms MFI. Each dot represents a myofiber. Myofibers in the three largest clusters are denoted with red (Cluster 1), blue (Cluster 2), 
and green (Cluster 3). The objects with low MFI values for all the isoforms are denoted in yellow (Cluster 4, ~2% of all the dots). In gray are ~4% of 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.80500
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compared with STM (Figure 4D). This observation is consistent with a higher proportion of endothelial 
cell types in GL compared with muscles in G1 or G2.

Gene and transcript expression profiles and molecular pathways 
distinguishing muscle clusters
We next investigated whether muscle-specific gene and transcript expression profiles, not explained 
by cell type composition, could also be found in our dataset. To this end, we determined the differ-
entially expressed genes (DEGs; Figure 5—figure supplement 1A, Supplementary file 3) and the 
differentially expressed transcripts (DETs; Figure 5—figure supplement 1B, Supplementary file 4) 
for every pairwise comparison. DEGs that were driven by differences in cell type composition were 
excluded (Pearson’s R>0.5 between gene expression levels and the eigenvector of any cell type). 
Similarly, the transcripts originating from genes related to differences in cell type composition were 
excluded from the list of DETs. The proportion of DEGs and DETs that were not driven by cell type 
composition but discriminated each pair of muscles are shown in Figure 5A and Figure 5B, respec-
tively. The muscles clustered in a similar way as was observed in the cell type composition analysis: GR, 
STM, and STD (G1), RF, VL, and VM (G2), and GL (G3) (Figure 5A–B).

We then investigated the transcript usage differences in each pair of muscles using the 
IsoformSwitchAnalyzeR algorithm (Vitting-Seerup and Sandelin, 2019). We found a total of 79 genes 
with at least one transcript usage difference in any pairwise comparison of muscles (Figure 5—figure 
supplement 1C, Supplementary file 5). Out of 79 significant genes, 14 were excluded as they were 
related to the differences in cell type composition (Figure 5—figure supplement 2). Figure 5C shows 
the number of genes with significant transcript usage differences in each pair of muscles. The limited 
number of genes with significant transcript usage differences compare to DEGs and DETs analyses 
could be, because we could not account for the individual effect in this analysis in the same as for the 
DEG and DET analyses.

To further study muscle-specific expression profiles, we applied weighted gene co-expression 
network analysis (WGCNA). We identified 34 modules of co-expressed genes (Supplementary file 6). 
For each module, we calculated the module eigengene (ME) that represents gene expression levels 
of the genes in the module. We then implemented a pairwise comparison to find modules showing 
significant differences in every pairwise comparison (Figure 5—figure supplement 1D, Figure 5—
figure supplement 3A). Out of the 34 modules, 27 showed a difference between at least two muscles 
(module size range: 38–1459; containing 10,695 genes in total). Nine out of the 27 muscle-related 
modules had at least five genes marking a specific cell type and were therefore defined as modules 
driven by differences in cell type composition and were not considered for further analysis (Figure 5—
figure supplement 3B). Figure 5D shows the remaining modules that were not driven by cell type 
composition, nevertheless distinguished pairs of muscles. We then plotted the mean eigenvalues of 
muscle-related modules in a heatmap (Figure 5E) to determine the clustering of muscles based on the 
expression patterns of genes in the modules. The WGCNA-based clustering was consistent with the 
cell type composition and differential expression groups (Figure 5E). In total, 7 out of the 18 muscle-
related modules demonstrated higher expression levels in G1, four modules had higher expression 
in G2 and G3, and three modules demonstrated higher expression levels in G3 only (Figure 5E). In 
addition, although none of the modules showed distinct expression patterns between muscles in G2 
and between ST and GR, M.21 module showed higher expression levels in STM than STD (Figure 5—
figure supplement 3A).

To explore the molecular and cellular pathways in the three groups, functional enrichment analysis 
was performed in the muscle-related modules. The most significantly enriched biological processes 

myofibers assigned to many small clusters. (C) Density plots show MFI distribution for each MyHC isoform in the three largest clusters. MFI values are 
scaled (without centering) and transformed. (D–F) Scatterplots show the proportion of the assigned myofibers to each of the largest clusters and the 
normalized expression of the gene coding the isoform with a relatively higher expression in that specific myofiber cluster. (G) The boxplot shows the 
proportion of myofibers in the three largest clusters per muscle. Each muscle is depicted with a different color, with G1 muscles in blue, G2 muscles in 
red and the G3 muscle in gray. The boxes reflect the median and interquartile range.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The association of myofiber clusters with MyHC expression, and myofiber composition differences between muscles.

Figure 3 continued

https://doi.org/10.7554/eLife.80500
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Figure 4. Immunostaining confirms higher capillary density in GL compared with STM muscles. A) Representative 
images of STM and GL cross-sections immunostained with CD31 (green), ENG (red), and laminin (white). An 
enlargement of the boxed region is shown on the right: merged and separate channels (CD31 and ENG). 
Examples of objects recognized as capillaries are depicted by yellow arrows. Examples of objects that were not 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.80500


 Tools and resources﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Neuroscience

Abbassi-Daloii et al. eLife 2023;12:e80500. DOI: https://doi.org/10.7554/eLife.80500 � 9 of 29

and molecular functions within these modules are listed in Table 1 (a complete list is in Supplemen-
tary file 6).

Higher expression of mitochondrial genes in G2 and G3 muscles 
consistent with higher proportion of slow myofibers
In the M.13 module, with higher expression in G2 (VL, VM, and RF) and G3 (GL), the mitochondrial-
related genes were enriched (Table 1). Eighteen out of 122 genes enriched for mitochondria in this 
module were hub genes, highly interconnected genes in the module (Table 1). To assess a potential 
impact on mitochondrial metabolic processes, we mapped the 122 genes to mitochondrial pathways 
(Figure 6). The most enriched processes were the respiratory electron transport chain in oxidative 
phosphorylation, the tricarboxylic acid (TCA) cycle, and beta-oxidation. This observation suggests 
a higher oxidative metabolism in G2 and G3, which is consistent with a higher proportion of slow 
myofibers.

Homeobox transcription factors contribute to the mRNA diversity 
between the three groups of muscles
An enrichment for ‘anterior/posterior pattern specification’ in M.14 was observed, with higher 
expression in G2 and G3 (Table 1). This module included HOX hub genes (Figure 7A). To assess 
whether the diversity between the groups of muscles was associated with the pattern of HOX 
gene expression, we plotted the normalized expression of all expressed HOX genes across all 
samples (Figure  7B). Remarkably, clustering based on HOX gene expression clearly separated 
the G1 from the G2 and G3 muscles (Figure 7B). Additionally, we observed that VL muscle sub-
clustered apart from the two other muscles in G2 (Figure 7B). Moreover, 11 out of 36 HOX genes 
were assigned to three of the muscle-related modules (M.14, M.30, and M.32), which showed the 
largest differences between the three groups of muscles (Figure 7B). From each of these three 
muscle-related modules, one HOX gene was selected (HOXA11, HOXA10 and HOXC10) to further 
confirm the differences in expression between muscles using the in situ hybridization (ISH) proce-
dure (Figure 8A). We included samples from GL and STM showing the largest difference in HOX 
gene expressions. HOXA11 was excluded from quantification analysis as it showed a low signal-
to-noise ratio, in line with a lower expression level of RNA-seq-based assessment of HOXA11 
compare to HOXA10 and HOXC10. The HOX signal was mainly localized in myofibers (Figure 8A). 
Per sample, the average number of foci per myofiber was calculated revealing a higher number 
of HOXA10 and HOXC10 single molecule RNAs in STM compared with GL (Figure 8B). The ISH 
results were consistent with the RNA-seq data (Figure 8B–C), further demonstrating the robust-
ness of our RNA-seq data.

Web application for exploring transcriptome atlas of human skeletal 
muscles
To facilitate data reuse and exploration of the human skeletal muscle atlas, we developed a web 
application (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp), enabling users to look up the 
sample information and the expression of any gene of interest. In addition, users can explore the list 
of genes used for the cell type composition analysis and their expression levels across all the samples. 
Furthermore, users can list and visualize the differentially expressed genes and the modules and their 
hub genes.

considered as capillaries due to circularity values are shown by red arrows. Scale bar 1000 μm. (B) The box plot 
shows the percentage of CD31 positive area in the two muscles. (C) The box plot shows the normalized expression 
of CD31 gene in the two muscles. (D) The boxplot shows the estimated capillary density in the two muscles. The 
capillary density was defined as the number of objects (3–51 µm2) with an overlap between CD31 and ENG per unit 
cross-sectional area of the muscle. The boxes reflect the median and interquartile range (N=19 per muscle). The 
red dots on the boxes show the mean. **** p-value <1 × 10–6 (linear mixed-model).

Figure 4 continued

https://doi.org/10.7554/eLife.80500
https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp
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Figure 5. Gene expression differences between three groups of muscles not driven by cell type composition. A) Symmetric heatmap plot shows the 
percentage of DEGs in different pairwise comparisons. Genes with a high Pearson correlation (R>0.5) with the eigenvector of any cell type (cell type 
related genes) are excluded. (B) Symmetric heatmap plots show the percentage of DETs in pairwise comparisons. Transcripts originating from cell type 
related genes are excluded. (C) as in (B), but for the number of genes having at least a significant transcripts usage difference. (D) Symmetric heatmap 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.80500
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Discussion
We generated a large skeletal muscle transcriptome atlas from 20 young healthy males. We included 
six leg muscles and two locations within one muscle. The atlas presented in this study is unique in 
terms of the number of muscles, the individuals included, and the age range of the participants. We 
confirmed the RNA-seq analysis using large-scale quantitative immunohistochemistry and mRNA in 
situ hybridization. Based on cell type composition, differential gene and transcript expression anal-
yses, differential transcript usage analysis and WGCNA, the seven leg muscle tissues consistently 
clustered into three groups: (G1) GR, STM, and STD; (G2) VL, VM, and RF; (G3) GL. The muscles in G2 
and G3 (VL, VM, RF and GL) showed higher proportions of slow myofiber types and higher capillary 
densities. GL, the only lower leg muscle, was distinct from VL, VM, and RF in its lower proportion of 
type 2 A myofibers and a higher proportion of non-muscle cells. HOXA10 and HOXC10 expressions 
were lower in VL, VM, RF and GL than in GR, STM, and STD muscles.

Molecular diversity between muscles in different anatomical locations
The muscles included in this study mobilize and stabilize the knee joint. Muscles of the hamstrings (ST 
and GR) clustered together (G1), and muscles of the quadriceps (RF, VL and VM) clustered together 
(G2). The Hamstrings and quadriceps alternate in contraction and relaxation to flex, extend and stabi-
lize the knee and aid in moving the thigh. GL, the only lower leg muscle in our set, is in the posterior 
side of the leg, allowing flexion of the knee and plantar flexion of the ankle. Our study suggests that 
there is little molecular diversity between muscles of the same group, as compared to muscles in 
different groups of muscles.

We observed a higher proportion of fast-twitch myofibers in G1 compared with G2 and G3. This 
could be due to the role of the hamstrings in activities that require a large power output since fast-
twitch myofibers are used more in these activities than slow-twitch myofibers (Bottinelli et al., 1999; 
Willigenburg et al., 2014, Camic et al., 2015). Slow-twitch myofibers have a higher mitochondrial 
content compared with fast-twitch myofibers (Berchtold et  al., 2000; Gouspillou et  al., 2014). 
Consistently, G2 and G3 muscles showed higher expression of genes encoding for mitochondrial 
proteins and a higher ratio of slow-twitch myofibers compared with G1. Slow-twitch muscles are also 
supplied by a denser capillary network (Nishiyama, 1965; Murakami et al., 2010; Korthuis, 2011). 
Indeed, we observed a higher capillary density and higher endothelial cells in G3. The three groups of 
muscles also differed by the expression of HOX genes, specifically, HOXA and HOXC family members. 
Hox genes establish the anterior/posterior patterning during vertebrate embryonic limb development 
(Zakany and Duboule, 2007). Interestingly, the development of these groups of leg muscles differs in 
developmental time (Diogo et al., 2019), consistent with the expression of Hox genes (Zakany and 
Duboule, 2007). Hox genes expression is not limited to embryonic development, but was found also 
in adult mouse muscles (Houghton and Rosenthal, 1999; Yoshioka et al., 2021), and Hoxa10 gene 
was differentially expressed across adult limb mouse muscles (Yoshioka et al., 2021). Moreover, Yosh-
ioka et al., 2021 demonstrated that Hoxa10 expression in adult satellite cells affects muscle regenera-
tion in mice. Here, we show that both HOXA and HOXC gene families are expressed in myofibers, and 
their expression levels differ between leg muscles. Yoshioka et al., 2021 also showed the expression 
of HOX genes in adult human muscle tissues. Yet, Terry et al., 2018 concluded that the expression 
pattern of Hox genes in adult muscles is insufficient to explain the mRNA expression diversity in adult 

plot shows the number of modules that were not driven by cell type composition and were significantly different in each pairwise comparison. Each 
row or column in A–D) represents a muscle. (E) The heatmap shows the modules that reflect the intrinsic differences between groups of muscles. Each 
row represents a muscle, and each column shows a muscle-related module that was not driven by cell type composition. Color-coded cells show the 
corresponding average of eigenvalues across all individuals (N=20). Modules with an overall higher expression in G1 or G3 are underlined by a blue 
or gray dashed line, respectively. The red dashed line underlines the modules with an overall higher expression in both G2 and G3. The black asterisks 
show modules with the largest differences between the three groups of muscles.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. DEA and WGCNA also clustered muscles in three groups.

Figure supplement 2. Overview of genes with significant transcript usage difference.

Figure supplement 3. WGCNA modules.

Figure 5 continued

https://doi.org/10.7554/eLife.80500
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mouse skeletal muscles. Whether HOX genes are transcriptionally active in adult myofibers is a subject 
for future studies.

Potential relevance to muscle disease and aging
In several muscle-related diseases like muscular dystrophies (MDs), muscle weakness and pathological 
features like replacement of muscle tissue with fat starts in specific muscles and spreads to others as 
the disease progresses (Emery, 2002). This pattern differs between diseases, and the reason for the 
disease-specific involvement pattern is unknown. Exploring the molecular signatures that contribute to 
the differences between muscles may elucidate the pathophysiology of these diseases. For example, 
in Duchenne muscular dystrophy (DMD), which is caused by mutations in the DMD gene, the quad-
riceps is involved earlier, whereas the hamstring muscles are less involved, and the GR is spared 
(Wokke et al., 2014; Hooijmans et al., 2017). The observed higher expression level of the DMD gene 
in ST and GR may be related to the late involvement in DMD patients during disease progression. 

Table 1. Top enrichment results of muscle-related modules not driven by cell type composition.

Module Term FDR #Enriched genes Hub genes

Higher expression in G1 (GR, STM, and STD)

M.30 (75 genes) IRE1-mediated unfolded protein 
response

4×10–4 4

M.32 (236 genes) Hormone-mediated signaling 
pathway

9×10–3 11 CARM1, WBP2, 
ZBTB7A

M.7 (308 genes) Negative regulation of 
nucleobase-containing 
compound metabolic process

6×10–4 51 CREBBP, DAB2IP, 
FOXK2, LARP1, 
RXRA, THRA

Chromatin organization 1×10–2 27 ARID1B, CREBBP, 
HUWE1

M.17 (176 genes) Chromatin modifying enzymes 4×10–3 11 HCFC1, SETD1A

Higher expression in G2 (RF, VL, and VM) and G3 (GL)

M.31 (945 genes) RNA splicing 6×10–5 54 SNRNP70

Histone modification 3×10–3 47 KAT2A

M.33 (538 genes) Apical junction complex 2.4×10–2 11 MICALL2

M.13 (300 genes) Mitochondrion 4×10–45 122 AIFM1, ATP5F1A, 
ATP5F1B, CKMT2, 
COQ9, DLD, 
DLST, FH, GHITM, 
HADHA, HADHB, 
IMMT, MFN2, 
NDUFS2, PDHA1, 
PDHB, TRAP1, 
UQCRC2

M.14 (162 genes) Anterior/posterior pattern 
specification

4×10–3 7 HOXA11

Higher expression in G3 (GL)

M.5 (190 genes) Regulation of lipid metabolic 
process

8×10–4 15 ADIPOQ, 
ADRA2A, CIDEA, 
LEP, LGALS12, 
PDE3B, SCD

M.25 (188 genes) Ameboidal-type cell migration 5×10–3 15 CFL1, PML, TGFB1

Positive regulation of muscle cell 
differentiation

9×10–3 6 EHD2, ENG, 
NIBAN2, TGFB1

M.11 (299 genes) Golgi membrane 2×10–3 30 ASAP2, MAN1A1

Regulation of nervous system 
development

8×10–3 30 IQGAP1

https://doi.org/10.7554/eLife.80500
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Accessing the expression level of genes and implementing a quantitative approach (Veeger et al., 
2021) to evaluate the association between leg muscle architectural characteristics and gene expres-
sion levels could be performed for other muscle diseases.

Regional differences within muscles
The molecular and cellular differences between the samples from distal and middle locations of ST 
were larger than the differences between ST and GR (Figure 2—figure supplement 1, Figure 2—
figure supplement 2). One module of co-expressed genes, M.21, showed a different expression 
pattern between STM and STD. This module was enriched for the cellular amino acid catabolic 
process and monocarboxylic acid catabolic process (Supplementary file 7). While the distal side of 
the ST muscle has a rounded tendon, the differences between STM and STD cannot be explained by 
contamination of tendon tissue or closer proximity to the tendon, because we did not find a differ-
ence in the estimated tenocyte proportions between biopsies collected from the distal and middle 
parts of the muscle (Figure 2—figure supplement 1, Figure 2—figure supplement 2). The myofiber 
composition was different between the distal and medial parts of the ST muscle (Figure 2—figure 
supplement 1, Figure 3—figure supplement 1B). A divergent myofiber type composition of biopsies 
from superficial and deep areas of the same human muscle was reported by Johnson et al., 1973 
for the GL, RF, VL, VM, adductor magnus, soleus, and tibialis anterior muscles in the leg and thigh. 
Bindellini et al., 2021 also reported different proportions of MyHC2A myofibers in distal and middle 
parts of tibialis anterior in mice.

Interindividual differences were larger than differences between 
muscles
Despite the narrow age range and an inclusion of only one gender in our study, we observed that the 
percentage of variance explained by the individual surpassed the variance explained by the muscles 

Figure 6. A schematic representation of genes with higher expression in G2 and G3, related to oxidative phosphorylation and metabolic pathways in 
the mitochondria. 60 (out of the 122) mitochondrial genes with higher expression in G2 and G3 are shown in red. The electron transport chain, lysin and 
tryptophan catabolism, TCA cycle, and beta-oxidation are shown. The hub genes are underlined and in bold. Created with BioRender.

https://doi.org/10.7554/eLife.80500
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Figure 7. The expression patterns of HOX genes cluster muscles in the same groups. A) The graph shows the co-expression subnetwork of HOX 
genes and genes related to anterior/posterior pattern specification assigned to the M.14 module. Diamonds indicate transcription factors while 
other genes are indicated by circles. Pink and purple nodes represent the hub genes and non-hub genes, respectively. The genes related to anterior/
posterior pattern specification have a black border. The edge thickness reflects the degree of topological overlap. Topological overlap is defined as 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.80500
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(Figure 1—figure supplement 4D). This is in agreement with findings from Kang et al., 2005. The 
inter-individual variations are possibly resulting from genetic and environmental (activity, exercise, 
diet, etc.) factors. To account for inter-individual variation, we included the individual as a random 
effect in the statistical models in cell type and differential expression analyses. In the WGCNA, we 
constructed a consensus gene co-expression network by merging the co-expression networks sepa-
rately constructed per individual. In the downstream steps of the WGCNA workflow, the same as in 
cell type analysis and differential expression analyses, individuals were included as a random effect 
in the models. Only after properly accounting for interindividual differences, we could identify the 
intrinsic differences between leg muscles.

Study limitations
Differences in cell type composition between muscles are best captured using single-cell sequencing. 
Previous single-cell (De Micheli et al., 2020; Rubenstein et al., 2020; Xi et al., 2020) and single 
nucleus (Orchard et al., 2021; Perez et al., 2021) studies reported the cellular composition of adult 
human muscles, where single nucleus profiling is preferred because myofibers cannot be dispersed 
into single cell suspensions. The high costs associated with single-cell technologies are currently 
prohibitive for performing large scale analyses of >100 samples such as performed in our study. Here, 
we evaluated differences in cellular composition by deconvolution of bulk RNA-seq based on marker 
genes reported in single-cell studies. This approach appeared to be suitable for analyzing differ-
ences in cellular composition between large sets of samples, as we observed good consistency with 
immunohistochemistry-based analyses of myofiber type and endothelial cell composition. A limitation 
of the deconvolution approach is, however, that this only captures cell types for which discriminative 
marker genes are available.

We further acknowledge that RNA expression levels do not necessarily match protein abundance 
in muscles and do not reflect post-translational modifications (Greenbaum et al., 2003; Liu et al., 
2016). Although a protein atlas could relate to muscle cell function better than RNA expression 
profiles, generating a genome-wide proteome in skeletal muscles is challenging, as muscle proteomes 
are dominated by the high abundance of high-molecular-weight sarcomeric proteins, and capturing 
the low abundance proteins is challenging. Despite this limitation, we showed consistency between 
results obtained by mRNA expression profiling and immunohistochemical staining of the proteins that 
were in focus in our study.

In summary, we demonstrated divergent molecular and cellular compositions between skeletal 
muscles in different anatomically adjacent locations. Overall, the consistency of the gene expression 
patterns, and the results obtained from the immunohistochemistry and RNA in situ hybridization exper-
iments indicate the high accuracy and reliability of the transcriptome atlas generated in this study. 
Therefore, this atlas provides a resource for exploring the molecular characteristics of muscles and 
studying the association between molecular signatures, muscle (patho)physiology and biomechanics.

Materials and methods
Subject characteristics and biopsy collection
Healthy male subjects (aged 18–32) undergoing surgery of the knee for anterior cruciate ligament 
(ACL) reconstruction using hamstring autografts were recruited from outpatient clinics of two hospi-
tals: Erasmus Medical Center and Medisch Centrum Haaglanden. Inclusion criteria included age, sex, 
and the amount of routine exercise. Subjects eligible for reconstructive ACL surgery were mobile, had 
full range of knee motion, minimal to no knee swelling and had physiotherapy until the surgery.

A total of seven biopsies were taken from six different leg muscles (Figure 1A). To study molecular 
differences within the muscle, two biopsies from the middle and distal sides of the semitendinosus 

a similarity measure between each pair of genes in relation to all other genes in the network. High topological overlaps indicate that genes share the 
same neighbors in the co-expression network. (B) Normalized expression of all HOX genes (scaled by row) represented as a heatmap. The hierarchical 
clustering was generated using the normalized expression values. Each row represents a gene and each column represents a sample. The side color 
of columns indicates different muscles. The module in which the gene assigned is given between parentheses. Eleven highlighted HOX genes are 
assigned into muscle-related modules which showed the largest differences between the groups of muscles (M.14, M.30, and M.32).

Figure 7 continued

https://doi.org/10.7554/eLife.80500
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Figure 8. Distinct expression of HOX genes confirmed by RNAscope. (A) Representative in situ hybridization images of HOXC10 and HOXA10 in 
cryosections of STM and GL. The image is a merge image of the channels used for laminin, DAPI, HOXC10 and HOXA10 staining. Scale bar is 100 
μm. (B) The boxplots show the average number of foci per myofiber (y-axis) in STM and GL muscles (x-axis). (C) The boxplots show the normalized 

Figure 8 continued on next page

https://doi.org/10.7554/eLife.80500
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muscle (STM and STD, respectively) were collected. During the surgery, the tendons of the gracilis 
(GR) and semitendinosus muscles were used to reconstruct the ACL, and biopsies from these muscles 
were taken directly from the graft after harvesting the autografts at the beginning of the operation. 
After the ACL construction, biopsies from gastrocnemius lateralis (GL) rectus femoris (RF), vastus 
lateralis (VL), and vastus medialis (VM) muscles were taken by percutaneous biopsy (modified Berg-
strom, 1975) using a minimally invasive biopsy needle. All biopsies were immediately frozen in liquid 
nitrogen and were kept at –80 °C.

The study was approved by the local Medical Ethical Review Board of The Hague Zuid-West and 
the Erasmus Medical Centre and conducted in accordance with the ethical standards stated in the 
1964 Declaration of Helsinki and its later amendments (ABR number: NL54081.098.16). All subjects 
provided written informed consent prior to participation.

Sample processing, RNA isolation, and cDNA library preparation
Biopsies were cryosectioned for RNA isolation, immunofluorescence staining, and in situ hybrid-
ization. For each sample, three cryosections of 16 µm thick were collected onto SuperFrost slides 
(Thermo Fisher Scientific, 12372098) and stored at −20  °C prior to staining. For in situ hybridiza-
tion, the cryosections were mounted on SuperFrost Plus Adhesion slides (Thermo Fisher Scientific, 
12625336) and stored at −80 °C. For the RNA isolation, cryosections were transferred into MagNA 
lyser green beads tubes (Roche, 3358941001). Then, they were homogenized in QIAzol lysis reagent 
(Qiagen, 79306) using the MagNA Lyser. Subsequently, total RNA was purified with chloroform. For 
samples from a subset of individuals, RNA was precipitated with isopropyl alcohol (Supplementary 
file 1). For the other samples total RNA was mixed with an equal volume of 70% ethanol and further 
purified with miRNeasy Mini Kit (217004, Qiagen) using the manufacturer’s protocol (Supplementary 
file 1). To evaluate the effect of two different RNA isolation protocols, RNA from five GR samples were 
isolated with both protocols (Figure 1—figure supplement 2). For both protocols, DNA was removed 
using RNAse-free DNAse set (Qiagen, 79254) using the manufacturer’s protocol. RNA integrity was 
assessed with the Agilent 2100 Bioanalyzer using Eukaryote Total RNA Nano chips according to the 
manufacturer’s protocol (Agilent BioAnalyzer, 824.070.709) (Supplementary file 1).

Poly(A) library preparation was performed in four batches each with 39 samples at Leiden Genome 
Technology Center (LGTC, the Netherlands). Information on the RNA isolation protocol and library 
preparation batches used for each sample can be found in Supplementary file 1. Samples from 
different muscles and individuals were equally distributed in each library batch to minimize a batch 
effect bias. Approximately 200 ng of total RNA was used as starting material. mRNA was enriched using 
oligo dT beads (polyA +bead-based enrichment), fragmented, and converted to cDNA using random 
hexamers and SuperScript III (Invitrogen). End-repair, A-tailing, and adapter ligation were performed 
using NEBNext chemistry (New England Biolabs) and xGen dual index UMI adapters (Integrated DNA 
Technologies) according to the manufacturer’s protocol. Finally, USER digest (New England Biolabs) 
and 15 cycles of library amplification were performed. Libraries were purified with XP beads and 
analyzed for size and purity on a Bioanalyzer DNA HS chip (Agilent BioAnalyzer, 5067–1504).

Bulk RNA-sequencing and analysis
Illumina sequencing was performed by GenomeScan BV (Leiden, the Netherlands) on a Novaseq-6000 
producing paired-end 2×150 bp reads. Fastq files were processed using the BioWDL pipeline for 
processing RNA-seq data (v3.0.0, https://zenodo.org/record/3713261#.X4GpD2MzYck) developed 
by the sequencing analysis support core (SASC) team at LUMC. The BioWDL pipeline performs FASTQ 
pre-processing, RNA-seq alignment, deduplication using unique molecular identifiers (UMIs), variant 
calling, and read quantification. FastQC (v0.11.7; ) (https://www.bioinformatics.babraham.ac.uk/proj-
ects/fastqc/) was used for checking raw read QC. Adapter clipping was performed using Cutadapt 

expression of HOXA10 (top) and HOXC10 (bottom) in STM and GL muscles. The boxes reflect the median and interquartile range (N = 12 per muscle). 
The red dots on the boxes show the mean. **** p-value < 1 × 10–6 (linear mixed-model).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. A representative image of negative control probes in the RNAscope experiment in STM muscle cryosections.

Figure 8 continued
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(v2.4; Martin, 2011) with default settings, followed by checking the QC using FastQC. RNA-Seq 
reads’ alignment was performed using STAR (v2.7.3a; Dobin et al., 2013) against the GRCh38 refer-
ence genome. PCR duplications were removed based on UMIs using UMI-tools (v0.5.5; Smith et al., 
2017). Gene read quantification was performed using HTSeq-count (v0.11.2; Anders et al., 2015). 
The expression of known transcripts were quantified using StringTie (3.7.3)(Pertea et  al., 2015). 
Ensembl version 98 (http://sep2019.archive.ensembl.org/) was used for genes and transcripts annota-
tion. Samples with less than 5 M reads assigned to annotated exons were re-sequenced or excluded 
from all downstream analyses. A SNP calling was performed using GATK4 (v4.1.0.0; McKenna et al., 
2010). Possible sample swapping was checked using an SNP panel with 50 SNPs (Yousefi et  al., 
2018). The similarity for calls of these SNPs showed that two samples in the same RNA isolation batch 
were swapped. We revised the labels of these two samples in our dataset for downstream analyses.

We performed all the analyses in RStudio Software (v1.3.959; RStudio-Team, 2020) using R Statis-
tical Software (v4.0.2) (R Development Core Team, 2020). Samples with more than 5 M reads assigned 
to annotated exons were included in all downstream analyses (Figure 1—figure supplement 3). The 
HTSeq count table was used to create a DGEList object using the edgeR Bioconductor package 
(v3.30.3) (Robinson et al., 2010). The filterByExpr function from the edgeR Bioconductor package 
was used to keep genes with 10 or more reads in at least 16 samples (the number of samples in the 
smallest muscle group). The dataset was normalized using the calcNormFactors function (considering 
trimmed mean of M-values [TMM] method) from the edgeR Bioconductor package.

Quality control and batch effect correction
We performed principal component analysis (PCA) to evaluate the main difference between samples 
in an unsupervised manner. Log-transformed expression values after normalization by counts per 
million (CPM) were used to calculate principal components using the base function prcomp with the 
center and scale argument set to TRUE.

We then performed the analysis of variance to determine the factors driving gene expression varia-
tions. We estimated the contribution of known biological (muscle tissues and Individuals) and technical 
(RNA isolation protocol, RIN score, initial RNA concentration, library preparation batch, sequencing 
lane, and library size) factors on variation of gene expression. Data transformed by the voom function 
from the limma Bioconductor package (v3.44.3; Law et al., 2014; Ritchie et al., 2015) was used to 
fit a linear model for each gene. We included all biological and technical factors as fixed effects and 
fitted the following linear model:

	﻿‍

voom−transformedexpressiongenemuscle+individual+RNAisolationprotocol+RINscore+concentration+

librarypreparationbatch + sequencinglane + library ‍�

We used ANOVA from the car R package (v3.0–10; Fox and Weisberg, 2019) to estimate the rela-
tive contribution of each of these factors in the total variation of gene expression. Outcomes from both 
PCA and ANOVA revealed a strong library preparation batch effect (Figure 1—figure supplement 4A 
and C), while the effect of other technical factors (RNA isolation protocol, initial RNA concentration, 
RIN score, and library size) was minimal (Figure 1—figure supplement 4C). Accordingly, the HTSeq 
count table was corrected for the batch effect by the ComBat-seq Bioconductor package (Zhang 
et  al., 2020). The muscle was included in the ComBat-seq model to preserve possible molecular 
differences between muscles. The ComBat-Seq count table was used to create a DGEList object, 
followed by removing the low expressed genes and additional normalization using filterByExpr and 
calcNormFactors functions, respectively.

Similarly, the batch effect was corrected for the StringTie transcript count table using the same 
ComBat-seq’s model. Next, a DGEList object was generated and the low expressed transcripts were 
filtered considering the same threshold used for gene dataset. The transcripts were further filtered to 
only include the transcripts of genes that were present in the filtered gene dataset. Finally, the tran-
script dataset was normalized with TMM method.

Outcomes of PCA and ANOVA confirmed the proper removal of the batch effect (Figure 1—figure 
supplement 4B and D). In addition, the percentage of variance explained by the individual was found 
to be bigger than the variance explained by the muscle (Figure  1—figure supplement 4D). We, 
therefore, included the individual as a random effect in all different analyses. Moreover, the RIN score 

https://doi.org/10.7554/eLife.80500
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was not considered as an exclusion criterion as it did not contribute to gene expression variation 
(Figure 1—figure supplement 4D).

Cell type composition estimation
We collected lists of genes marking different cell types that are present in human skeletal muscles from 
different studies (Smith et al., 2013; Kendal et al., 2019; Perucca Orfei et al., 2019; Rubenstein 
et al., 2020; Supplementary file 2). The expression of genes marking each cell type was summarized 
by their eigenvector (first principal component). We subsequently fitted a linear-mixed model to the 
eigenvector of each cell type using the lmer function from the lmerTest R package (3.1–3; Kuznetsova 
et al., 2017). These models included muscle as a fixed effect and individual as a random effect shown 
in the formula below:

	﻿‍ eigenvectorcelltypemuscle +
(
1 ∨ individual

)
+ error‍�

We tested the significance of fixed effects with the ANOVA from the car R package. The Benjamini-
Hochberg false-discovery rate (FDR) was applied to adjust for multiple testing. We conducted post-hoc 
pairwise comparisons using the lsmeans R package (v2.30–0; Lenth, 2016) to identify a significant 
difference in the expression level of genes marking different cell types between different muscles. 
We used the pheatmap function from the pheatmap R package (v1.0.12; https://CRAN.R-project.org/​
package=pheatmap) with the difficult setting to draw all the heatmaps.

Differential expression analysis (DEA)
We used the voom-transformed data to fit linear mixed-effects models for each gene using the lmer 
function from the lmerTest R package. The individual and muscle were included in the models as a 
random-effect and a fixed-effect, respectively, similarly to the formula-2. The voom precision weights 
showing the mean-variance trend for each observation were incorporated into the models. We tested 
the significance of fixed effects with the ANOVA from the car R package and the FDR was applied 
to adjust for multiple testing. We conducted post-hoc pairwise comparisons using the lsmeans R 
package to identify significant differences between each pair of muscles.

We calculated the Pearson correlation between differentially expressed genes (DEGs, FDR <0.05) 
and the eigenvector of each cell type using the cor and ​cor.​test from the stats R package. We adjusted 
for multiple testing using the FDR. DEGs which were significantly associated with a cell type eigen-
vector (Pearson correlation >0.5 and FDR <0.05) were defined as cell type related.

To find differentially expressed transcripts (DETs), we performed the DEA using the same model 
(formula-2) for the voom-transformed transcript data. We defined cell type related DETs as transcripts 
originating from genes with significant association with a cell type eigenvector.

Differential transcript usage analysis
We computed the isoform usage differences using IsoformSwitchAnalyzeR Bioconductor package 
(v1.20.0; Vitting-Seerup and Sandelin, 2019). Breifly, the Ballgown input table files generated by 
StringTie were imported by the importIsoformExpression function. A switchAnalyzeRlist was created 
considering the muscle and batch in the design matrix using importRdata function. The transcripts of 
genes that were not present in the filtered gene dataset were filtered out using subsetSwitchAnalyz-
eRlist function. Finally, isoformSwitchAnalysisCombined function was used to determine splice switch 
changes (differential transcript usage) between each pair of muscles. The significant splice switch 
changes were identified using significant FDR (<0.05).

Consensus gene co-expression network analysis
In order to construct a gene network, we used the weighted gene co-expression network analysis algo-
rithm using the WGCNA R package (v1.69) (Langfelder and Horvath, 2008). We used the voom trans-
formed data as an input. In order to calibrate the parameters of the network, we used the approach 
published by our group (Abbassi-Daloii et al., 2020). Briefly, prior knowledge of gene interactions 
from a pathway database was used to select the most optimal set of WGCNA parameters. We used 
the biweight midcorrelation (median-based) function in WGCNA of the signed hybrid type to define 
the adjacency matrix. We performed a full parameter sweep, testing various combinations of settings 
for power (6, 8, 10, 12, 14, 18, and 22), minClusterSize (15, 20, and 30), deepSplit (0, 2, and 4), and 

https://doi.org/10.7554/eLife.80500
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CutHeight (0.1, 0.15, 0.2, 0.25, and 0.3). These different settings were assessed using the knowledge 
network obtained from the Reactome database using g:ProfileR2 R package (v0.2.0) (Kolberg et al., 
2020). All possible pairs of genes were assigned into four different groups: (1) in the same module 
and in the same pathway, (2) in the same module but not in the same pathway, (3) not in the same 
module but in the same pathway and (4) neither in the same module nor in the same pathway. The 
enrichment factor (‍

No.pairs∈group1×No.pairs∈group4
No.pairs∈group2×No.pairs∈group3‍) was calculated. The optimal set of parameters with the 

highest enrichment factor was: power: 8, MinModuleSize: 20, deepSplit: 0, Cut Height: 0.2. To iden-
tify gene co-expression networks that were consistent across individuals, we constructed first co-ex-
pression networks for each individual separately and merged these subsequently into a consensus 
co-expression network. To achieve this, the adjacency matrices per individual were raised to power 
8 and converted into topological overlap matrices (TOM). TOM of some individuals may be overall 
lower or higher than TOM of other individuals. To account for this, we performed percentile (0.95) 
normalization over all the TOMs. The consensus TOM was then calculated by taking the elementwise 
40th percentile of the TOMs. The consensus TOM was used to calculate the TOM dissimilarity matrix 
(‍dissTOM = 1 − TOM ‍) which was then input to agglomerative hierarchical clustering (Langfelder and 
Horvath, 2012). Finally, modules were identified using a dynamic tree-cutting algorithm from the 
resulting dendrogram (Langfelder et al., 2008) specifying MinModuleSize =20 and deepSplit =0. The 
module labeled ‘gray’ was not considered in the analysis as it consisted of genes that did not assign to 
any specific module. The summary expression measure for each module, the module eigengene (ME), 
was calculated (Zhang and Horvath, 2005). Modules with similar expression profiles were merged at 
the threshold of 0.2. In addition, we calculated the intramodular connectivity to identify highly inter-
connected genes, called hub genes, per module.

Module-muscle association
To identify modules that differ in expression levels between muscles (named as muscle-related 
modules), we fitted linear mixed-effect models on the module eigengenes (MEs) using the lmer func-
tion from the lmerTest R package. These models included individual as a random-effect and muscle 
as a fixed-effect, similar to formula-2. We tested the significance of fixed effects with ANOVA from 
the car R package. We used ranova from the LmerTest R package to test the significance of random 
effects. To identify significant differences between each pair of muscles, we used a post-hoc multiple 
comparison tests as implemented in the lsmeans R package.

We performed a functional enrichment analysis for the muscle-related modules using ClueGO App 
(v2.5.7) (Bindea et al., 2009) in Cytoscape (v3.8.1) (Kohl et al., 2011). We used the CyREST API (Ono 
et al., 2015) to execute the ClueGO by R script (http://www.ici.upmc.fr/cluego/cluegoDocumenta-
tion.shtml). Pathways and gene annotations from Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Gene Ontology (GO), Reactome, and WikiPathways (WP) were included. The Benjamini-Hochberg 
FDR was applied to adjust for multiple testing. The annotations with any differentially expressed 
genes or hub genes or a transcription factor were included. To eliminate the redundant annotations, 
we only included an annotation with the lowest FDR for each ‘GoGroups’ defined by ClueGO and the 
annotations marked as ‘LeadingGoTerm’ by ClueGO.

We next determined muscle-related modules which showed the largest differences between the 
three groups of muscles. These modules were selected based on the FDR of GlueGO enrichment 
(<0.01) and the F-value of the genes resulting from DEA in each module (third quantile >5.5).

Immunofluorescence staining, imaging, image analysis
The immunofluorescence staining included myofiber typing and capillary staining. Prior to the staining, 
slides were allowed to equilibrate to room temperature, blocked for 30 min using 5% milk powder 
(FrieslandCampina, Amersfoort, The Netherlands) in phosphate-buffered saline containing 0.05% 
tween (PBST).

Myofiber type composition
The myofiber immunostaining, image quantification and myofiber type composition analysis are 
detailed in a STAR protocol (Abbassi-Daloii et al., 2023).

https://doi.org/10.7554/eLife.80500
http://www.ici.upmc.fr/cluego/cluegoDocumentation.shtml
http://www.ici.upmc.fr/cluego/cluegoDocumentation.shtml
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Myosin staining
The antibodies for three myosin heavy chain (MyHC) isoforms (MyHC1, MyHC2A, and MyHC2X) and 
laminin were used as described by Riaz et al., 2016. Briefly, cryosections were stained with rabbit 
anti‐laminin (1:1000, Sigma-Aldrich, L9393) and mouse anti‐6H1 (1:5, DSHB; AB_2314830) detecting 
MyHC2X, for two hours at room temperature. Following the PBST washing, the secondary antibodies 
goat anti‐rabbit‐conjugated‐Alexa Fluor 750 (1:1000, Thermo Fisher Scientific, A21039) and goat anti‐
mouse‐conjugated‐Alexa Fluor 488 (1:1000, A11001, Thermo Fisher Scientific) were incubated for an 
hour at room temperature. After PBST washing, sections were incubated overnight at four degrees 
with a mix of fluorescently conjugated monoclonal antibodies: BA‐D5‐conjugated‐Alexa Fluor 350 
(1:600, DSHB, AB_2235587) and SC‐71‐conjugated‐Alexa Fluor 594 (1:700, DSHB, AB_2147165), 
detecting MyHC1 and MyHC2A, respectively. Lastly, after washing with PBST, the cryosections were 
mounted with ProLong Gold antifade reagent (P36930, Thermo Fisher Scientific) and stored at four 
degrees prior to imaging.

Image acquisition, processing, and quantification
The stained slides were imaged with the Axio Scan.Z1 slidescanner (Carl Zeiss, Germany) using the 
ZEN Blue software (v2.6), capturing the entire section. The images were acquired with a 10×/0.45 
Plan-Apochromat objective lens and the same image settings were used for all slides.

After imaging all cryosections, a shading profile was calculated using the ‘Shading Reference From 
Tile Image’ in ZEN Lite (v3.3) for each channel in each slide. This procedure produces a shading profile 
for each channel per slide and does not apply the shading correction. To improve the accuracy of 
the shading profile, we calculated the median over all the shading profiles over all scanned slides for 
each channel. These median shading profiles were then used to perform the shading correction using 
‘Shading Correction’ in ZEN Lite (v3.3).

Further image processing was performed using Fiji (v 1.51) (Schindelin et al., 2012). Since the 
aggregated dataset is relatively large, we created a modular set of Fiji macros that process each step 
independently.

First, we converted the slidescanner datasets from the Carl Zeiss Image format (CZI) to multi-
channel 16 bit TIFF files using BioFormats (Linkert et al., 2010). In this step, the images were 4 x 
downsampled, by averaging, to improve the processing speed and reduce the dataset size. After 
downsampling the effective pixel size was 2.6 µm.

Next, we applied a semi-automated process to generate tissue masks from the laminin channel to 
determine the (parts of) cryosections to be quantified. To generate masks, we first used an automated 
procedure, inspired by ‘ArtefactDetectionOnLaminin’ method from MuscleJ (Mayeuf-Louchart et al., 
2018). Subsequently, a manual step was incorporated to check and correct the generated masks. For 
each sample, we performed manual corrections to remove artifacts such as tissue folds, out-of-focus 
regions, scratch, and dirt objects.

Then, we generated ‘masked’ copies of the laminin channel. To reduce any possible artifacts due 
to this binary mask, we applied a gaussian blur of 4 pixels to the masks and we set the pixel values of 
the laminin channel that were outside the mask to the median intensity of these pixels. The masked 
laminin images were then fed into the Ilastik pixel classification algorithm (Berg et al., 2019). In Ilastik 
we trained a classifier to identify two classes: ‘myofiber boundary’ and ‘not myofiber boundary’. This 
classifier was then used to process all images in this dataset. This classification step greatly improved 
the subsequent laminin segmentation outputs.

Next, the laminin objects were segmented based on the output of the previous step. In short, the 
image was slightly blurred with a Gaussian Blur, after which the image was segmented using the Fiji 
method ‘Find Maxima’ with output ‘Segmented Particles’, followed by binary dilation, and closing. 
Finally, the regions-of-interest (ROI; individual laminin segmented objects) were generated using the 
‘Analyze Particle’ method from Fiji.

After laminin segmentation, we measured the mean fluorescence intensity (MFI) as well as other 
properties in ROIs for all three channels using the Fiji measurement: ‘Mean gray value’. In addition, 
we recorded the ‘Area’, ‘Standard deviation’, ‘Modal gray value’, ‘Min & max gray value’, ‘Shape 
descriptors’, and ‘Median’ features. We also quantified the results of the pixel-classification step by 
measuring its ‘Mean gray value’ in each ROI as well as on the border (3-pixel enlargement) of each 
ROI. This quantification allows the assessment of the myofiber ‘segmentation certainty’, the certainty 

https://doi.org/10.7554/eLife.80500
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is high when the pixel-classification is high for the ‘myofiber boundary’ class all around the myofiber 
and low in the interior of the myofiber.

Myofiber type composition analysis
First, we filtered out the non-myofiber objects since the laminin segmentation was automatic. We 
applied a percentile filtering for a ‘segmentation certainty’ on the cross-sectional area (CSA) and the 
circularity values. The objects with (1) pixel-classification on the object boundary less than 5th percen-
tile or (2) pixel-classification in the interior of the object greater than 95th percentile or (3) CSA less 
than 10th percentile or greater than 99th percentile or (4) circularity greater than 1st percentile were 
excluded. Samples from different muscles were pooled for all different filtering criteria except for the 
filtering for CSA, as the density distributions of CSA were found to differ between different muscles. 
In the next step, we selected the cryosection with the largest number of myofibers for each sample 
for further analysis. Samples with a minimum of a hundred myofibers were included in the myofiber 
type analysis. The final dataset contained 1,287,729 myofibers from 96 samples, with a median of 888 
myofibers per sample. As previously described by Raz et al., 2020, per myofiber, the MFI values for 
each of three MyHC isoforms were scaled per sample (without centering). Subsequently, the compo-
sition of myofiber types was determined by clustering of the transformed (natural logarithm) MFI 
values. Each myofiber was assigned to a cluster using the mean-shift algorithm (bandwidth (h)=0.02), 
a density-based clustering approach, implemented in the LPCM R package (v0.46–7) (Cheng, 1995; 
Durham University and Einbeck, 2011). All the small clusters, with less than 1% from the total myofi-
bers, were excluded. Then, per myofiber type cluster, the proportions of the total myofibers were 
calculated per sample.

Capillary density
Staining and image acquisition
Sections were stained with the primary antibodies: anti-human CD105 (endoglin, ENG) biotin-
conjugated (1:100, BioLegend, 323214), anti-human CD31-Alexa Fluor 594 conjugated (1:400, 
BioLegend, 303126), and rabbit anti‐laminin for two hours at room temperature. After PBST washing, 
the slides were incubated with streptavidin-Alexa Fluor 647 conjugated (1:500, Life Technologies, 
S21374) and goat anti‐rabbit Alexa Fluor 750-conjugated for an hour. After final PSBT washing, nuclei 
were counterstained with 4’,6-diamidino-2-phenylindole (DAPI) (0.5 μg/mL, Sigma-Aldrich) and were 
mounted with ProLong Gold antifade reagent. Cryosections were imaged with Axio Scan.Z1 slide 
scanner.

Image processing and quantification
We used Fiji macros created for the myofiber composition analysis to convert CZI files to TIFF files, 
to generate the masks, and for the laminin segmentation. We then measured the cross-sectional area 
for laminin segmented objects using the Fiji ‘Area’ measurement. Next, a Gaussian Blur filter with 
an σ value set to 1 was implemented on the CD31 channel, followed by thresholding using setAuto-
Threshold (“Li dark” algorithm) and processing using Watershed algorithm to separate touching and 
overlapping cells. The lumens were filled using the Fill Holes algorithm in Fiji. We then measured the 
properties in ROIs using the Fiji measurements: ‘Area’, ‘Mean gray value’, ‘Standard deviation’, and 
‘Shape descriptors’. We then implemented the same processing on the ENG channel to select the 
ROIs but measured the ‘Mean gray value’ and ‘Standard deviation’ in the CD31 channel to determine 
the CD31 and ENG colocalization.

For the image quantification, we first calculated the ratio between the total positively stained areas 
for CD31 and the total area of the muscle section, expressed as a percentage. We then determined 
the capillaries as the objects with (1) positive signals for both CD31 and ENG (Wehrhan et al., 2011), 
(2) larger than 3 µm2 and smaller than 51 µm2 (Poole et al., 2013), and (3) circularity larger than 0.5. 
Finally, we defined capillary density as the number of capillaries per unit (µm²) of muscle area.

RNAscope in situ hybridization
We detected single-molecule RNA using Multiplex Fluorescent Reagent Kit v2 (ACDBio, 323135) 
according to the manufacturer’s protocol for fresh-frozen cryosections, with the following adjustments 
to optimize the experiment for human muscles: fixation with 4% paraformaldehyde at 4 degrees for 

https://doi.org/10.7554/eLife.80500
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an hour, and all washing steps with washing buffer were performed three times for 2 min each. The 
protocol was optimized on control muscle cryosections by negative and positive probe sets provided 
by ACDBio. Figure 8—figure supplement 1 shows a representative image of negative control probes 
in a muscle cryosection. We performed the hybridization using probes for Hs-HOXA11 (ACDBio, 
1061891-C1), Hs-HOXA10 (ACDBio, 867141-C2), and Hs-HOXC10 (ACDBio, 803141-C3). Following 
the completion of the RNA probe hybridization, we carried out an immunostaining step at room 
temperature to label myofibers with rabbit anti‐laminin followed by secondary labeling with goat anti‐
rabbit‐conjugated‐Alexa Fluor 555 (1:1000, Abcam, ab150078). Lastly, following PBST washing, the 
nuclei were counterstained with DAPI (ACDbio, 323110). Cryosections were mounted with ProLong 
Gold antifade reagent. Slides were imaged with a Leica SP8 confocal microscope, equipped with 
a white light laser (WLL) source (Leica Microsystems, Germany) using a 40 x/1.3 OIL objective. For 
each sample, multiple tiles at different regions across the muscle cryosection were images with seven 
z-planes (z-step size = 0.35 μm). The images for DAPI and HOXA11 channels were acquired using a 
HyD 2 detector with 414 nm-532nm excitation lasers and with 504 nm-543nm excitation lasers, respec-
tively. A HyD 4 detector was used to image anti-laminin and HOXA10 channels with 558 nm-585nm 
excitation lasers and with 603 nm-665nm excitation lasers, respectively. A HyD 5 detector was used 
to image HOXC10 channel with 675 nm-800nm excitation lasers. The same image settings were used 
for all samples.

We performed the image processing in multiple steps and created a modular set of Fiji macros 
that process each step independently. We first merged and converted the Leica Image File (LIF) to 
a multichannel 16 bit TIFF file using the Grid/Collection Stitching Plugin (Preibisch et al., 2009). 
We segmented myofibers using the following steps: (1) creating the maximum intensities projec-
tions of the laminin channel, (2) creating ‘probability’ maps of the laminin channel in Ilastik, (3) 
adding a point selection to the TIFF files, which seed the watershed, and (4) implementing water-
shed segmentation with two halting points for user interaction, first watershed segmentation and 
then making the ROI list (individual segmented myofibers) generated using the ‘Analyze Particle’ 
command.

After myofiber segmentation, we implemented a Gaussian Blur filter with an σ value set to 1 on each 
probe channel. We then applied the color threshold settings using setAutoThreshold (‘RenyiEntropy 
dark’ algorithm). Finally, for each probe channel, we measured the foci properties in each segmented 
myofiber using the Fiji measurements: ‘Area’, ‘Mean gray value’, ‘Standard deviation’, and ‘Shape 
descriptors’.

The RNA foci were defined as speckles smaller than 3.5 µm2 with circularity above 0.98. We excluded 
HOXA11 from further analysis due to a low signal-to-noise ratio. Based on the negative controls, we 
defined threshold values to filter out false-positive signals for the 2 other HOX genes. These threshold 
values were set such that approximately all the foci in the negative control were classified as negative. 
Finally, to compare the expression of two genes between muscles, we calculated the average number 
of foci per myofiber per sample.

Availability of data and scripts
All scripts are publicly available on GitHub: https://github.com/tabbassidaloii/HumanMuscleTranscrip​
tomeAtlasAnalyses, (Abbassi-Daloii, 2023 copy archived at swh:1:rev:4d885b7612c66147c99a26c-
4503559deabc610ac). The raw data is publicly available at the European Genome Archive (Dataset 
ID: EGAS00001005904, https://ega-archive.org). Figure  1C and Figure  1—figure supplement 1 
show our analyses workflow used to explore genes contributing to the intrinsic differences between 
muscles.

Graphical user interface
The muscle transcriptomics atlas is available for exploration through a graphical user interface 
(https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/) implemented using shiny, a web applica-
tion framework for application shiny R package (v1.5.0)(Chang et al., 2020).

https://doi.org/10.7554/eLife.80500
https://github.com/tabbassidaloii/HumanMuscleTranscriptomeAtlasAnalyses
https://github.com/tabbassidaloii/HumanMuscleTranscriptomeAtlasAnalyses
https://archive.softwareheritage.org/swh:1:dir:3ccb442f70b6eb050174a286fcf19ac46891f276;origin=https://github.com/tabbassidaloii/HumanMuscleTranscriptomeAtlasAnalyses;visit=swh:1:snp:3e8074c94622a90295faa6bc4203c108e2a303c4;anchor=swh:1:rev:4d885b7612c66147c99a26c4503559deabc610ac
https://archive.softwareheritage.org/swh:1:dir:3ccb442f70b6eb050174a286fcf19ac46891f276;origin=https://github.com/tabbassidaloii/HumanMuscleTranscriptomeAtlasAnalyses;visit=swh:1:snp:3e8074c94622a90295faa6bc4203c108e2a303c4;anchor=swh:1:rev:4d885b7612c66147c99a26c4503559deabc610ac
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Gene network visualization
The subnetwork was exported and visualized in Cytoscape (v3.8.1).
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