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Abstract
Background: We proposed a population graph with Transformer- generated and clinical features for 
the purpose of predicting overall survival (OS) and recurrence- free survival (RFS) for patients with 
early stage non- small cell lung carcinomas and to compare this model with traditional models.
Methods: The study included 1705 patients with lung cancer (stages I and II), and a public data 
set for external validation (n=127). We proposed a graph with edges representing non- imaging 
patient characteristics and nodes representing imaging tumour region characteristics generated by 
a pretrained Vision Transformer. The model was compared with a TNM model and a ResNet- Graph 
model. To evaluate the models' performance, the area under the receiver operator characteristic 
curve (ROC- AUC) was calculated for both OS and RFS prediction. The Kaplan–Meier method was 
used to generate prognostic and survival estimates for low- and high- risk groups, along with net 
reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve 
analysis. An additional subanalysis was conducted to examine the relationship between clinical data 
and imaging features associated with risk prediction.
Results: Our model achieved AUC values of 0.785 (95% confidence interval [CI]: 0.716–0.855) and 
0.695 (95% CI: 0.603–0.787) on the testing and external data sets for OS prediction, and 0.726 (95% 
CI: 0.653–0.800) and 0.700 (95% CI: 0.615–0.785) for RFS prediction. Additional survival analyses 
indicated that our model outperformed the present TNM and ResNet- Graph models in terms of net 
benefit for survival prediction.
Conclusions: Our Transformer- Graph model was effective at predicting survival in patients with early 
stage lung cancer, which was constructed using both imaging and non- imaging clinical features. 
Some high- risk patients were distinguishable by using a similarity score function defined by non- 
imaging characteristics such as age, gender, histology type, and tumour location, while Transformer- 
generated features demonstrated additional benefits for patients whose non- imaging characteristics 
were non- discriminatory for survival outcomes.
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Editor's evaluation
This work constructed a population graph deep learning model using machine learning- generated 
imaging features and non- imaging clinical characteristics that were proven to be effective at 
predicting the survival of patients with early- stage NSCLC, which help us understand the imaging 
and non- imaging features in determining NSCLC populations with a high risk of recurrence, and the 
high predictive accuracy proves its novelty and significance.

Introduction
Lung cancer is expected to account for more than 1.80 million deaths worldwide in 2021, making 
it the top cause of cancer- related mortality (Siegel et al., 2021). In early stage (stages I and II) non- 
small cell lung carcinomas (NSCLC), surgical resection remains the therapy of choice. However, almost 
40–55% of these tumours recur following surgery (Ambrogi et al., 2011). The clinical care of lung 
cancer patients would substantially benefit from accurate prognostic evaluation. Currently, TNM 
staging system of lung cancer based on the anatomic extent of disease is well recognised and widely 
adopted, which allows tumours of comparable anatomic extent to be grouped together (Goldstraw 
et al., 2016). Staging guides treatment and provides a broad prediction of prognosis, however indi-
vidual characteristics, histology, and/or therapy characteristics may impact survival results, as seen by 
variation within stage groups. In the refinement of the staging system, non- anatomical predictors such 
as gene mutations and biomarker profiles were proposed to be incorporated (Giroux et al., 2018). 
However, the gene profiling approach relies on tissue sampling, and in addition, may not fully explain 
the intratumoural heterogeneity seen in NSCLC. Besides, such tests have barriers in deploying to 
routine oncology workflows due to high turnaround time, complexity, and cost (Malone et al., 2020).

To predict the patient’s prognosis and to optimise individual clinical management, prognostic 
predictors such as TNM system and imaging- based high throughput quantitative biomarkers, radio-
mics, have been widely used to describe tumours (Du et  al., 2019; Aonpong et  al., 2020; Bera 
et al., 2022; Carmody et al., 1980; Chirra et al., 2019; Mirsadraee et al., 2012; van Griethuysen 
et al., 2017). Artificial intelligence (AI) methods, especially some deep learning (DL) models, have 
recently been regarded as potentially valuable tools (Chilamkurthy et al., 2018; Nabulsi et al., 2021; 
Xu et al., 2019). DL models generated multiple quantitative assessments for tumour characteristics, 
which have the potential to describe tumour phenotypes with more predictive power than the clin-
ical model (Xu et al., 2019). While the anatomical structures in a medical image are functionally and 
mechanically related, most AI- based methods do not take these interdependencies and relationships 
into account. This leads to instability and poor generalisation of performance (Zhou et al., 2021). With 
recent advancements in AI technology, several novel models have been proposed. Notably, the Trans-
former (Vaswani et al., 2017) model permits exceptional capabilities in natural language processing 
fields such as language translation and was later applied to the computer vision field and outper-
formed all state- of- the- art models given large amounts of training data (Dosovitskiy et al., 2020). 
This provides an intuitive reason to apply the Transformer model to the medical image to generate 
additional meaning for tumour features, as images were processed in sequence with inherent interde-
pendencies (Zhou et al., 2022).

The majority of current prognostic prediction methods have focused mainly either specific to their 
own domains, such as focusing solely on imaging data, whereas in clinical practice non- imaging clin-
ical data such as sex, age, and disease history all play critical roles in disease prognosis prediction 
(Holzinger et al., 2019). Although some researchers have used multi- modal techniques (Xue et al., 
2018) to combine that information, it is not easy to explain how the various types of data interacted 
and how they contributed to the final prediction. Due to their lack of explanatory power, those models 
may not be easily applied in clinical practice (London, 2019). Another type of neural network, called a 
graph neural network (GNN) (Kipf and Welling, 2016), which deals with data that has a graph struc-
ture, enables researchers to create more flexible ways to embed various types of data. For example, 
nodes and edges in a graph might represent a variety of different types of data (imaging and clinical 
demographics information), and analysing these entities reveals the role of various data sources.

In this study, we proposed a GNN- based model that leverages imaging and non- imaging data 
for the prediction of the survival of patients with early stage NSCLC. Patients were represented as a 
population graph, whereby each patient corresponded to a graph node and was associated with a 
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tumour feature vector that was learnt from the Transformer model, and graph edge weights between 
patients were derived from a similarity score that was derived from phenotypic data, such as demo-
graphics, tumour location, cancer type, and TNM staging. This population graph was used to train a 
GraphSAGE (Hamilton et al., 2017) model for classifying individual patient’s risk of overall survival 
(OS) and recurrence. Additionally, we attempted to determine the relative importance of imaging and 
non- imaging features within this model. The proposed model was trained and tested on a large data 
set, followed by external validation using a publicly available data set.

2309 patients from Shanghai Pulmonary

Hospital (SHPH) for early 

stage non-small cell lung cancer

(NSCLC) from January 2011 to

December 2013 

 

Inclusion Criteria: 

1) Pathologically confirmed

stage I and Ⅱ NSCLC; 

2) Availability preoperative

thin-section CT image data; 

3) Complete follow-up survival

data.

Exclusion Criteria: 

patient receiving

neoadjuvant therapy

Training set  

(n = 1278)

Testing set 

(n = 214)

External validation set: 

 127 patients

Validation set 

(n = 213)

Internal dataset:  
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162 patients from Stanford University

School of Medicine and  Palo Alto

Veterans Affairs healthcare System for

early stage  NSCLC from April 2008 to

September 2012 

 

Figure 1. Overall flow of the study in both internal and external data set.
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Methods
Participants
The study included consecutive patients who received surgery for early stage NSCLC between 
January 2011 and December 2013 who matched the criteria. Inclusion criteria included: (1) patholog-
ically proven stage I or stage II NSCLC; (2) preoperative thin- section CT image data; and (3) complete 
follow- up survival data. Patients undergoing neoadjuvant therapy were excluded from the study. This 
retrospective study protocol was approved by the Shanghai Pulmonary Hospital’s Institutional Review 
Board (ref: L21- 022- 2) and informed consent was waived owing to retrospective nature. Additionally, 
patients who met our criteria were retrieved from the NSCLC Radiogenomics (Bakr et al., 2018) data 
set as an external validation set (see Figure 1 for the internal and external inclusion criteria flowchart).

We only used patients’ initial CT scans in this study. For the main cohort, all CT scans were acquired 
using Somatom Definition AS+ (Siemens Medical Systems, Germany) and iCT256 (Siemens Medical 
Systems, Germany; Philips Medical Systems, Netherlands). All image data were rebuilt using a 1- mm 
slice thickness and a 512×512 mm2 matrix. Intravenous contrast was administered in accordance with 
institutional clinical practice. Clinical data in this study were manually collected from medical records 
and were anonymised. Outpatient records and telephone interviews were used to collect follow- up 
data. The period between the date of surgery and the date of death or the final follow- up was defined 
as OS. Recurrence- free survival (RFS) was calculated from the date of surgery to the date of recurrence, 
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Figure 2. Tumour image processing and feature generation. (A) Tumour images normalisation, reshaping, and padding to standard sizes, then re- 
arranged into 2D images. (B) Generating 1D Transformer survival features from pretrained Transformer model.
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death, or last follow- up. (More details about internal scan parameters and follow- up strategies can be 
found in Appendix 1).

Image annotation and pre-processing
Patients’ tumour region was manually labelled by experienced radiologists using 3D Slicer (Fedorov 
et al., 2012), with a centre seed point defining a bounding box. The regions of interest (ROIs) were 
first annotated by two junior thoracic surgeons (Y.S. and J.D. with 5 and 3 years of experience, respec-
tively), then the consensus on ROI was obtained by a discussion with a senior radiologist (with more 
than 25 years of experience).

For image pre- processing, we first normalised all CT images and removed the surrounding noises 
such as bones by manual thresholding. The size of all tumour segments was fixed to 128×128×64 
mm3. Small tumours were zero- padded. To reduce the computational cost, we resized the padded 
segments into 64×64×36  mm3 and subsequently resized them as 2D square images (each row 
contained six tumour slices) with the size of 384×384 mm2 as shown in Figure 2A.

Tumour Transformer feature generator
When pretrained on a large data set and transferred to image recognition benchmarks, it has been 
shown that Vision Transformer (ViT) can achieve excellent results while requiring significantly less 
computational resources to train than state- of- the- art convolutional models (Dosovitskiy et al., 2020). 
To this end, we reasoned that by replacing the traditional CNN feature generator architecture with a 
Transformer structure could be an approach to produce meaningful survival- relevant features. In this 
study, we used a ViT pretrained on a large- scale data set (ImageNet- 21k; Ridnik et al., 2021) as the 
feature generator, which takes 2D tumour segments as inputs. To meet the standard requirements of 
the sequence model, the input images were divided into 36 ordered patches and position embedding 
in the first step, followed by a linear projection function before entering the Transformer Encoder. We 
replaced the original classification layer with a fully connected layer to generate a 1D feature vector. 
The detailed implementation is illustrated in Figure 2B. The 1D feature vector was then assigned as 
the node feature for the individual patient in the graph network.

Patient survival graph network
A population graph method was used to leverage imaging and non- imaging data. Each patient was 
regarded as a node in a graph and its edge with neighbour was derived from a similarity score which 
was determined by the product between four component scores, namely demographics (gender 
and age), tumour location, cancer type (histology), and TNM staging (for more detail, refer to the 
Appendix 1 for a detailed explanation of similarity scores). Two patients would be connected to each 
other if they shared similar component scores. The features of an individual patient (node feature) 
were obtained from the Transformer Encoder trained on the tumour images mentioned above.

Graph-based neural network structure
We applied a graph- based deep neural network structure called GraphSAGE in this study. The 
proposed network took the whole population graph, along with the edge and node features as the 
input and generated a risk score in the last layer for each patient node as the output (see Figure 3). 
Within the network, every node feature was updated by an aggregation of information from its neigh-
bours and itself, while the importance of different neighbours varied by the corresponding edges’ 
weight.

We applied a two- layer GraphSAGE and global meaning pooling structure, aiming to allow each 
patient’s information to be updated, first from its second neighbours and then its neighbours and 
itself consequentially. In order to emphasise the target of survival prediction, we specifically replaced 
the cross- entropy loss with Cox proportional hazards loss function (Katzman et al., 2018) which both 
considered the survival time and events when training the network. The proposed network was imple-
mented in Python, using the Deep Graph Library with Pytorch backend.

Statistics analysis
All patients from the main data set were randomly separated into training, validation, and testing sets 
with the proportion of 75%, 12.5%, and 12.5% separately. We also tested the model on the external 
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Figure 3. Population graph building and model prediction pipeline. (A) Each patient was regarded as a node and the Transformer- generated feature 
was regarded as node features. (B) Graph edges and the relevant weights were defined by their similarity scores. (C) We then put the whole population 
graph to train the GraphSAGE network in order to make a prediction for each patient (pink indicates high risk and blue indicates low risk). (D) Node 
updating inside the GraphSAGE network.

https://doi.org/10.7554/eLife.80547
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validation data set. The proposed model was compared with the TNM staging system which was 
generally used in clinical practice and a ResNet- Graph model which has the same graph structure 
(using clinical features to define the similarity score) as our proposed model while the node feature 
was generated by a pretrained ResNet- 18 model (Khanna et al., 2020; Chen et al., 2019) (using 
imaging features).

To evaluate whether there were statistically significant variations in survival between positive and 
negative groups, the area under the receiver operator characteristic curve (AUC) was determined for 
OS and RFS prediction to compare the models' performance. The Kaplan–Meier (KM) method was 
used to generate prognostic and survival estimates for groups with low and high risk (both for OS 
and RFS), which were stratified according to the training set’s median prediction probability, with the 
log- rank test employed to establish statistical significance. To quantify the net benefits of survival 
prediction, we quantified the net reclassification improvement (NRI) and integrated discrimination 
improvement (IDI), as well as performed a decision curve analysis (DCA). All of the analyses above 
were performed in Python using the Lifelines package.

An additional subanalysis was performed on the test data set to explore the relationship between 
patients’ clinical information and imaging features contributing to risk prediction. We generated a 
sub- graph visualisation using PyVis and a KM analysis was used for several sub- graphs to evaluate our 
model’s ability to separate high- risk patients. Finally, as a proof of concept, we plotted two patients’ 
nodes feature changes before and after one layer processing using a correlation heatmap, along with 
its neighbours’ edge weights analysis to try to understand the inner workings of our model.

Results
Data description
In the main cohort, we initially enrolled 2309 patients and after exclusion based on our criteria, a 
total of 1705 NSCLC patients were included in the study. The median age was 61 (interquartile range, 
55–66 years). There were 1010 males (59.2%) and 695 women (40.8%). Tumours were more frequently 
located in the upper lobes (1018, 59.7%). A total of 1235  patients (72.4%) had adenocarcinoma, 
while 391 patients (22.9%) had squamous cell carcinoma. The distribution of pathologic stages was 
as follows: stage IA was present in 791 patients (46.4%), stage IB was present in 607 patients (35.6%), 
stage IIA was present in 133 patients (7.8%), and stage IIB was present in 174 patients (10.2%). The 
OS and RFS rates were 78·2% (95% confidence interval [CI]: 76.2–80.2%) and 74.2% (70.8–77.6%), 
respectively. The external validation data set included a total of 127 patients of which 32 (25.2%) were 
females and 95 (74.8%) males, with a median age of 69 (interquartile range, 46–87 years). Upper lobe 
tumours were also more prevalent (76 patients, 59.8%). Among them 95 patients were diagnosed with 
adenocarcinoma and 30 with squamous cell carcinoma. The OS and RFS rates were 68.5% (95% CI: 
60.4–77.7 %) and 59·1% (95% CI: 50.4–67.8 %), respectively. Please refer to Table 1 for more detailed 
information.

Model performance
To develop deep transformer graph learning- based biomarkers for OS prediction, we trained on the 
main cohorts, separated into training and validation data sets and then evaluated them separately 
on the testing set (213 patients) and the external set (127 patients). For OS prediction, our model 
achieved AUC values of 0.785 (95% CI: 0.716–0.855) and 0.695 (95% CI: 0.603–0.787) on the testing 
and external data sets, respectively, compared to 0.690 (95% CI: 0.600–0.780) and 0.634 (95% CI: 
0.544–0.724) for the TNM model, and 0.730 (95% CI: 0.640–0.820) and 0.626 (95% CI: 0.530–0.722) 
for ResNet- Graph model. For RFS prediction, our model achieved AUC values of 0.726 (95% CI: 
0.653–0.800) and 0.700 (95% CI: 0.615–0.785) on the testing and external data sets, respectively, 
compared to 0.628 (95% CI: 0.542–0.713) and 0.650 (95% CI: 0.561–0.732) for the TNM model, and 
0.681 (95% CI: 0.598–0.764) and 0.595 (95% CI: 0.615–0.785) for ResNet- Graph model (Figure 4A 
and B).

Additional survival analyses were performed using KM estimates for groups with low and high risk 
of mortality and recurrence, respectively, based on the median stratification of patient prediction 
scores (Figure 4C and D). All three models showed statistically significant differences in 5- year OS. 
For RFS prediction, the ResNet- Graph model was unable to distinguish between individuals at low 
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and high risk (p>0.05), while both Transformer- Graph and TNM models were able to separate high 
and low risk of RFS groups (p<0.05). The KM plots for the external set were reported in Figure 4—
figure supplement 1.

Additionally, the DCA (Figure 4E) and net benefit analysis (IDI, NRI) indicated that the Transformer- 
Graph model significantly outperformed the present TNM and ResNet- Graph models in terms of net 
benefit for both OS and RFS survival prediction. As for detailed net benefit analysis, Transformer- 
Graph model outperformed the present TNM and ResNet- Graph models in terms of IDI and NRI. Our 
proposed model improved the survival prediction significantly compared with TNM regarding NRI 
(OS: 0.284, 95% CI: –0.112 to 0.519, p<0.0001; RFS: 0.175, 95% CI: –0.115 to 0.486, p<0.0001) and 
IDI (OS: 0.159, 95% CI: 0.103–0.214, p=0.00032; RFS: 0.137, 95% CI: 0.086–0.189, p=0.00074). The 
results comparing with ResNet- Graph were reported in Appendix 1.

Patients’ clinical-based graph analysis
We visualised the whole internal set (Figure 5A) along with the testing cohort’s subplot (Figure 5B) 
and analysed two challenging cases to better understand the population- based graph structure and 
how clinical data was integrated with node attributes (i.e., patients' tumour images). The testing 
subplot showed that while the graph structure (specified by the similarity score) was capable of 
broadly separating at- risk patients, several clusters had both high- and low- risk patients intermingled 

Table 1. Feature distribution in the total patient cohorts, training and validation cohorts and the test 
cohorts.

TRAIN and 
VAL
(n=1492)

TEST
(n=213)

EXTERNAL
(n=127)

Feature Content Mean, SD, 95% CI/Count, % p Mean, SD, 
95% CI/Count, %

p

Age Age 60.6, 8.7, (CI: 
60.1, 61.0)

60.7, 9.5, (CI: 
59.4, 62.0)

>0.05 68.7, 9.1, (CI: 
67.2, 70.1)

<0.01**

Sex Female no. (%);
Male no. (%)

602 (33.3); 890 
(66.7)

93 (33.3); 120 
(66.7)

>0.05 32 (25.2); 95 (74.8) <0.01**

Resection Sublobar resection 
no. (%);
Lobectomy no. (%);
Bilobectomy no. (%); 
Pneumonectomy no. 
(%)

123 (8.2);
1292 (86.6);
59 (3.95);
18 (1.2)

23 (10.8);
180 (84.5);
7 (3.3);
3 (1.4)

>0.05 / /

Histology Adenocarcinoma no. 
(%);
Squamous Cell 
Carcinoma no. (%);
Others no. (%)

1072 (71.4);
351 (23.5);
69 (4.6)

163 (76.5);
40 (18.8);
10 (4.7)

>0.05 95 (74.8);
30 (23.6);
2 (1.6)

>0.05

Tumour
location

LUL no. (%);
LLL no. (%);
RUL no. (%);
RML no. (%);
RLL no. (%)

384 (25.7);
211 (14.1);
504 (33.8);
146 (9.8);
247 (16.6)

51 (23.9);
37 (17.4);
79 (37.1);
15 (7.0)
31 (14.6)

>0.05 30 (23.6);
22 (17.3);
46 (36.2);
15 (11.8);
14 (11.0).

>0.05

Tumour size Tumour size 2.68, 1.38,
(CI: 2.61, 2.75)

2.55, 1.25,
(CI: 2.38, 2.71)

>0.05 / /

pTNM stage Stage I no. (%);
Stage II no. (%);

1219 (81.7);
273 (18.3)

179 (84.0);
34 (16.0)

>0.05 97 (76.3);
30 (23.7)

<0.01**

RFS status RFS no. (%) 1089 (73.0) 154 (72.3) >0.05 75 (59.1) >0.05

RFS month RFS month 57.5, 24.5,
(CI: 56.2, 58.7)

58.4, 23.4,
(CI: 55.2, 61.5)

>0.05 39.5, 26.9,
(CI: 34.8, 44.2)

<0.01**

OS status OS no. (survival %) 1166 (78.2) 167 (78.4) >0.05 87 (68.5) >0.05

OS month OS month 62.4, 19.9,
(CI: 61.4, 63.4)

63.4, 18.4,
(CI: 60.9, 65.9)

>0.05 44.8, 27.8,
(CI: 40.9, 50.0)

<0.01**

https://doi.org/10.7554/eLife.80547
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together, making them difficult to separate using traditional clinical information (see Figures 5C and 
4D). The subsequent KM analysis indicated that by using Transformer- generated tumour attributes, 
high- and low- risk patients could be significantly discriminated.

Additionally, we analysed specifically as an example, patient No. 44 (high- risk node), and surrounding 
neighbours’ edge weights distribution, as well as the initial and subsequent one layer node features. 
This patient was a high- risk patient who died after 38 months, with 42 neighbours. Initially, we anal-
ysed the correlation coefficient between neighbours' node features in order to determine the role that 
Transformer- generated image features played prior to graph training. As illustrated in Figure 5E, the 
correlation matrix of Transformer- generated features revealed that almost all of patient No. 44’s high- 
risk (dashed box nodes) and low- risk neighbours were highly correlated, implying that image features 

Predicted OS of ROC-AUC on Test Set Predicted OS of ROC-AUC on External Set Predicted RFS of ROC-AUC on Test Set Predicted RFS of ROC-AUC on External Set

Predicted OS KM Curves Predicted RFS KM Curves

A B

C D

0.0 0.1 0.4 0.50.2 0.3 0.0 0.1 0.4 0.50. 0.

Predicted OS Decision Curves Predicted RFS Decision CurvesE

Figure 4. Model performance: (A) ROC- AUC curve on test data and external set for OS and (B) RFS prediction and (C) KM curve on test data set for 
OS and (D) RFS prediction. (E) Decision curve on test data set for OS and RFS prediction. KM, Kaplan–Meier; OS, overall survival; RFS, recurrence- free 
survival; ROC- AUC, area under the receiver operator characteristic curve.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Kaplan- Meier survival analysis.

https://doi.org/10.7554/eLife.80547
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Figure 5. Testing set graph analysis. (A) A visual representation of the whole cohort population graph of 1705 patients. (B) A visual representation of 
the testing sub- graph of 213 patients. (C) and (D) two sub- graphs containing challenging cases where the graphs contained both high- and low- risk 
patients. (E) Node features’ correlation heatmaps and edge weights distribution of patient No. 44: Each square represents a neighbour’s node features’ 
correlation coefficient, higher values (red colour) reveal closer relation with the target node; the box plot of 42 neighbours indicates that the high- risk 
neighbours (blue box) have higher edge weights median. (F) Node features’ correlation heatmaps and edge weights distribution of patient No. 182: The 
box plot of 25 neighbours indicates that the low- risk neighbours (orange box) have higher edge weights median.
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did not contain directly discriminative survival information before learning. We next then examined 
the distribution of neighbours' edge weights. As illustrated in Figure 5E, despite the fact that there 
were only five high- risk neighbours, the median value of similarity scores was slightly higher than that 
of low- risk neighbours (2.50 vs. 2.00), indicating that the high- risk neighbour group was more closely 
connected to the target nodes from non- imaging information aspects. After one layer of GraphSAGE 
updating, we discovered that the high- risk neighbours were more correlated with patient No. 44 (see 
Figure 5E GraphSAGE Layer 1, nodes in the dash boxes showed higher coefficient values), revealing 
that within our model, both neighbours’ nodes and edge features contained survival- related informa-
tion, and they contributed together to efficiently provide information for the target node learning.

Then, we analysed the correlation between patient No. 182 (a patient with low risk) and its 25 
neighbours (see Figure 5F). The majority of patient No. 182’s neighbours were low- risk patients (22 
out of 25), and the median value of their similarity scores was significantly higher than that of their 
high- risk neighbours (3.00 vs. 1.00). With the help of edge weights (clinical data) updated on node 
features, high- risk neighbours could be separated after only one layer (see Figure 5, three nodes in 
GraphSAGE Layer 1’s dashed boxes had lower coefficient values).

Discussion
The patient’s prognosis is relevant for both treatment estimation and future treatment planning. In 
practice, clinical information and some hand- crafted medical imaging features were used to predict 
outcomes (Du et al., 2019). With the advent of AI technologies, methods that incorporate deep- 
learning- based features have been developed, generating more medical imaging- related features 
from a variety of perspectives (Xu et al., 2019), resulting in improving the prediction performance. In 
previous studies (Aonpong et al., 2020; Nabulsi et al., 2021; Xu et al., 2019; Wang et al., 2018), 
convolutional models such as ResNet were commonly used, whereas ViT, which outperformed novel 
convolutional- based DL models in computer vision tasks on nature image data sets, could generate 
medical imaging features in a different manner. Besides, the design of the combination of imaging and 
non- imaging data is always a challenge. In the past, linear models were commonly used (Liao et al., 
2019), treating imaging and non- imaging equally, which may have resulted in inefficient information 
utilization. The proposal of multimodal data integration allows for effective information fusion over 
different modalities (Brown et al., 2018), while the relation between modalities is not well- explained.

In this project, we demonstrated the feasibility of using ViT on CT images of lung tumours to 
generate features for cancer survival analysis. Additionally, we used a graph structure to embed 
patients' imaging and non- imaging clinical data separately in the GNN and attempted to explain how 
clinical data communicates with Transformer- generated imaging features for survival analysis. While 
Transformer and GNN models have been widely used in computer vision, their application in the 
medical field, particularly for survival prediction, is still evolving due to the complexity and unbalanced 
nature of medical data (high dimension, multiple data formats, including non- imaging data). In our 
study, we combined these two methods and created a specially designed graph structure to handle 
a variety of data formats, demonstrating the utility of Transformer- generated features in survival anal-
ysis and emphasising the extent to which clinical data and imaging features contribute to the predic-
tion. To our knowledge, this is the first work to demonstrate the feasibility of using Transformer in 
survival prediction using a graph data structure and exploratory analysis of the models’ intuitions in an 
attempt to explain these state- of- the- art methods.

Our experiments indicated that the proposed model outperformed the commonly used TNM 
model in predicting survival not only on the testing data set but also on the external dataset, despite 
the fact that the data distributions were significantly different (refer to Table 1, the survival distri-
bution on the external data set is significantly different from the internal data set), demonstrating 
the model’s generalisability for unseen data. The model also outperformed the generally regarded 
current state- of- the- art model, the Res- Net model which in our study incorporated both imaging and 
non- imaging data when we performed survival analyses based on KM estimates. The model’s good 
performance indicated that both the Transformer- generated imaging features and the structure of 
our population graph (i.e., using graph edges and nodes to combine non- imaging clinical data and 
imaging data) contained useful information for survival. Additionally, the subplot graph on the testing 
data set (Figure 5B) indicated that our graph structure was capable of approximate clustering high- 
and low- risk groups and segregating the majority of the high- risk patients. Meanwhile, when patients 

https://doi.org/10.7554/eLife.80547


 Research article      Computational and Systems Biology | Medicine

Lian, Deng et al. eLife 2022;11:e80547. DOI: https:// doi. org/ 10. 7554/ eLife. 80547  12 of 16

were similar in terms of demographic information and it was hard to determine the risk patients by 
traditional clinical methods (refer to Figure 5C and D the dense graphs containing both pink and blue 
nodes), the Transformer- generated image features and edge weights had more roles to play in deter-
mining the differences between neighbours. More specifically, the Transformer- generated features 
did not contain directly discriminative survival information before learning, while with edge weights 
together, effective information from neighbours’ node features could be determined. In this case, all 
patient node features could be effectively updated, and high- risk patients could be better discrimi-
nated as in Figure 5E.

Our study contains several strengths. First, our data set is relatively large, encompassing both 
contrast and non- contrast CT scans. This not only aided in the model’s generalisation learning but also 
allows for flexibility in the imaging standards in clinical settings. Second, our graph model demon-
strated the ability to combine non- imaging clinical features with imaging features in an understand-
able manner, implying a new direction of embedding multi- data with DL models. Finally, we sought 
to understand the roles of imaging and non- imaging features in determining high- risk nodes within 
the GNN, which could aid clinicians in comprehending the internal workings of the neural networks.

There are some limitations worth noting. First, whilst the proposed model significantly outper-
formed the TNM model on the external data set (OS prediction AUC 0.693 vs. 0.633, RFS prediction 
RFS 0.700 vs. 0.650), the model’s performance on the external set was below that of the testing set 
(AUC 0.783 and 0.726 for OS and RFS). One reason could be that the patients' demographics were 
different, particularly in terms of age (the external group’s average age was 10 years older than the 
main cohort), cancer staging (84.0% stage I in the main cohort while 76.3% in the external testing set), 
and gender (male percentage 66.7% vs. 74.8%). The fact that the two data sets originate from distinct 
countries, as well as the differences in ethnicity, treatment, and follow- up strategies (see Table 1, 
especially the mean follow- up time) may also have an impact on the prediction performance (see 
Supplementary file 1 for ethnicity and smoking information of external set). Second, smoking history 
played important role in the development of lung cancer, which may help to improve the model’s 
performance and reduce the performance difference between the testing set and the external set, 
despite the fact that relevant information was not collected in the main set. Besides, we only found 
one applicable public external in this project, whereas more external data can improve the convince 
of our model’s generalization ability. (We tried to search on the Cancer Imaging Archive, and only 2 
of 40 lung cancer data sets meet our requirements. We used the first as our current external set; the 
second has a death rate of 95.88% for early stage lung cancer patients with no explanation, so we did 
not include it.) Finally, the initial step requires the human observer to identify the tumour and draw a 
bounding box which in our study was still a manual procedure. As the pipeline for automatic tumour 
detection and segmentation becomes more mature, this step can potentially be automated allowing 
for ease of translation into the clinics.

In conclusion, the population graph DL model constructed using Transformer- generated imaging 
and non- imaging clinical features was proven to be effective at predicting survival in patients with 
early stage lung cancer. The subanalysis concluded that by developing a meaningful similarity score 
function and comparing patients' non- imaging characteristics such as age, gender, histology type, 
and tumour location, the majority of high- risk patients can already be separated. Additionally, when 
high- and low- risk patients shared very similar demographic information, TNM information provided 
additional information for survival prediction when combined with tumour imaging features.
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Appendix 1
Scanner parameter and follow-up strategies
CT scans ranged from thoracic inlet to subcostal plane and were obtained before surgical resection 
from two CT machines: Brilliance (Philips Medical Systems Inc, Cleveland, OH) and SOMATOM 
Definition AS (Siemens Aktiengesell- schaft, Munich, Germany).

CT parameters of Brilliance (Philips Medical Systems Inc) were as follows: 64×1 mm2 acquisition; 
0.75  s rotation time; slice width 1  mm; tube voltage, 120 kVp; tube current, 150–200 mA; lung 
window centre: –700 Hounsfield units (HU) and window width: 1200 HU; mediastinal window centre: 
60 HU and window width: 450 HU level; pitch: 0.906; and field of view (FOV): 350 mm.

CT parameters of the SOMATOM Definition AS (Siemens Aktiengesell- schaft) were as follows: 
128×1 mm2 acquisition; 0.5 s rotation time; slice width: 1 mm; tube voltage: 120 kVp; tube current: 
150–200 mA; lung window centre: –700 HU and window width: 1200 HU; mediastinal window centre: 
60 HU and window width: 450 HU level; FOV: 300 mm; pitch: 1.2; and FOV: 350 mm. CT images were 
reconstructed into 0.67 to 1.25 mm section thicknesses according to a high- resolution algorithm.

Follow- up was conducted through outpatient examinations or telephone calls.
Chest CT scan and abdominal ultrasound/CT were performed on follow- up visits within a duration 

of 3, 6, and 12  months after operation and annually thereafter for 5  years. Magnetic resonance 
imaging for brain and bone scan were annually performed for 5 years or when the patient had signs 
or symptoms of recurrence.

Similarity score definition
Similarity score for patient  x  and patient  y : 

 Sim
(
x, y

)
= Cxy ∗ Lxy ∗ Hxy ∗ Txy  

 Cxy  : if  x  and  y  have same gender, get 1 point; if  x  and  y ’s age difference is within 5 year, get another 
1 point.

 Lxy  : if  x  and  y ’s tumours locate at the same lung lobes, get 1 point.

 Hxy  : if  x  and  y ’s histology of tumours is the same type, get 1 point.

 Txy  : if  x  and  y  have the same T stage, get 1 point; if  x  and  y  have the same N stage, get another 
point; if  x  and  y  have the same M stage, get another 1 point.

When   Sim
(
x, y

)
> 0 , patient  x  and  y  can be connected.

ResNet-Graph NRI and IDI results
Transformer- Graph comparing with ResNet- Graph, regarding NRI (OS: 0.240, 95%  CI: –0.325 to 
0.600, p<0.001; RFS: 0.104, 95% CI: –0.41 to 0.389, p<0.001) and IDI (OS: 0.075, 95% CI: 0.068–
0.082, p<0.05; RFS: 0.063, 95% CI: 0.027–0.098, p<0.05).
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