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Abstract The human brain is distinct from those of other species in terms of size, organization, 
and connectivity. How do structural evolutionary differences drive patterns of neural activity enabling 
brain function? Here, we combine brain imaging and biophysical modeling to show that the anatom-
ical wiring of the human brain distinctly shapes neural dynamics. This shaping is characterized by a 
narrower distribution of dynamic ranges across brain regions compared with that of chimpanzees, 
our closest living primate relatives. We find that such a narrow dynamic range distribution supports 
faster integration between regions, particularly in transmodal systems. Conversely, a broad dynamic 
range distribution as seen in chimpanzees facilitates brain processes relying more on neural interac-
tions within specialized local brain systems. These findings suggest that human brain dynamics have 
evolved to foster rapid associative processes in service of complex cognitive functions and behavior.

Editor's evaluation
Your intriguing and original study investigates how the characteristic architecture of human brain 
networks leads to specific features of global neural dynamics. Your paper addresses a question that 
is of wide interest and provides a significant advance in understanding how connectomic features 
underlie aspects of the neural dynamics of human versus non- human (chimpanzee) brains. Moreover, 
the present approach showcases a powerful computational strategy for identifying structural factors 
that may help explain specific cognitive abilities of humans.

Introduction
An important and unresolved problem in neuroscience is how connectivity, between neurons and 
macroscopic brain regions, can give rise to the complex dynamics that underlie behavior and advanced 
cognitive functions (Seyfarth and Cheney, 2014). Identifying special features of the human brain that 
have evolved to support these complex neural dynamics is key in tackling this open question.

It is known that the human brain is approximately three times larger than would be expected in 
a primate with the same body mass (Rilling, 2006; Rilling, 2014). Beyond general growth, neuroim-
aging analyses via magnetic resonance imaging (MRI) have indicated that a greater proportion of the 
human brain’s cortical surface is allocated to higher- order association cortices compared to primary 
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sensory and motor areas (Smaers et al., 2017; Avants et al., 2006; Van Essen and Dierker, 2007). 
This expansion of association areas is accompanied by increased anatomical connectivity (Ardesch 
et al., 2019), providing a structural substrate assumed to enable efficient region- to- region commu-
nication and integration of remote neural processes. Studies of the brain’s structural wiring, known 
as the human connectome, have shown widespread overlapping topological properties (e.g., small- 
world and modularity properties; Ardesch et al., 2019) with those of other primates (like macaque 
and chimpanzees), accompanied by subtle but potentially consequential species differences (van den 
Heuvel et al., 2016).

Here, we ask how the abovementioned structural changes shape whole- brain patterns of neural 
activity supporting brain function. To address this knowledge gap, we combine MRI data with advanced 
biophysical modeling to generate neural dynamics supported by the human connectome and the 
connectome of one of our closest living primate relatives: the chimpanzee. The use of biophysical 
models is crucial to tease apart and explain the neural basis of inter- species differences in whole- brain 
function, which cannot be achieved with current neuroimaging techniques (Breakspear, 2017). By 
combining this innovative approach with a unique cross- species dataset, we reveal core neural princi-
ples likely to explain differences in brain function between humans and non- human primates.

Results
Human and chimpanzee connectomes
We begin by creating the connectomes of humans and chimpanzees. We use unique diffusion MRI 
data for adult humans (Homo sapiens) and sex- matched and age- equivalent chimpanzees (Pan trog-
lodytes) to reconstruct the connectomes (Ardesch et al., 2019; van den Heuvel et al., 2019). The 
connectomes represent cortico- cortical structural connections between 114 species- matched regions 
in both hemispheres (Supplementary file 1) from which we create group- averaged weighted human 
and chimpanzee connectomes (van den Heuvel et al., 2019; Figure 1A and B). We then normalize 
the group- averaged connectomes with respect to their maximum weights. Using the resulting connec-
tomes, we examine connections present in one species but absent in the other (labeled as human- 
specific and chimpanzee- specific connections; Figure 1C). We note that the use of the term ‘specific’ 
does not necessarily imply that said connections are unique to each of the species; that is, they 
are only specific based on comparison of the connectivity strength of connections between the two 
species in our dataset. We find that intrahemispheric pathways comprise 82.6% (19 out of 23) of 
human- specific connections and 50% (3 out of 6) of chimpanzee- specific connections, a finding consis-
tent with previous comparative connectome investigations (Ardesch et al., 2019; van den Heuvel 
et al., 2019). We also examine the set of connections that are present in both species, termed shared 
connections (Figure 1C), and confirm that there is a strong correlation between connectivity strengths 
across both species (Figure 1D), consistent with previous studies (Ardesch et al., 2019; van den 
Heuvel et  al., 2019). At the whole- brain level, the human and chimpanzee connectomes largely 
overlap in their topological organization. In particular, the connectomes show similar levels of small- 
worldness (small- world propensity [Muldoon et al., 2016] values of 0.83 and 0.84 in human and chim-
panzee, respectively) and modularity (modularity values of 0.54 and 0.56 in human and chimpanzee, 
respectively) (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). At the regional level, the 
connectomes exhibit similar distributions of clustering coefficients (Figure 1E). On the other hand, 
human brain regions have significantly shorter path lengths compared to chimpanzee brain regions 
(Figure 1F).

Modeling neural dynamics
Next, we combine the connectomic data (Figure 2A) with a biophysical (generative) model (Wang, 
2002; Wong and Wang, 2006; Deco et al., 2013; Wang et al., 2019; Figure 2B; see Materials and 
methods) to generate regional synaptic response  S  across time (neural dynamics) specific to each 
species. The variable  S  represents the fraction of activated NMDA channels; hence, higher  S  values 
correspond to higher neural activity and firing rates. This model has been shown to reproduce empir-
ical human functional neuroimaging data (Deco et al., 2013; Wang et al., 2019), which we confirmed 
(Figure 2—figure supplement 1). Notably, we also confirmed the model’s suitability to match non- 
human primate data (Figure 2—figure supplement 1). These validations of the model on human and 
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Figure 1. Human and chimpanzee connectome properties. (A, B) Parcellation and connectome. The surface plots show the 114- region atlas 
(Supplementary file 1) on inflated cortical surfaces. The matrices represent the group- averaged structural connectivity between brain regions. 
(C) Structural connections that are human- specific, chimpanzee- specific, and shared between humans and chimpanzees. (D) Association of the weights 
of the connections shared between humans and chimpanzees. The solid line represents a linear fit with Pearson’s correlation coefficient (r) and p value 
(p). (E) Violin plot of the distribution of regional clustering coefficients. Each violin shows the first to third quartile range (black line), median (white 
circle), raw data (dots), and kernel density estimate (outline). p is the p value of the difference in the mean of the distribution between the species 
(two- sample t- test). (F) Violin plot of the distribution of regional path lengths. Violin plot details are similar to those in E. The surface plots show the 
spatial organization of the difference in path length between the species (i.e., human – chimpanzee) visualized on inflated human cortical surfaces. The 
negative–zero–positive values are colored as blue–white–red.

https://doi.org/10.7554/eLife.80627
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non- human primate data are important to ensure that the outcomes of the model capture meaningful 
properties of brain activity.

To understand how whole- brain activity patterns emerge, we analyze the intrinsic characteristics of 
regional neural dynamics. In particular, we determine a brain region’s response function, describing the 
up- or downregulation of its mean activity following global (brain- wide) modulations in the strength 
of recurrent connections (Figure 2C). This process can be linked to how structures in the ascending 
neuromodulatory systems (e.g., noradrenergic) facilitate the reorganization of cortex- wide dynamics 
by allowing coordinated communication between otherwise segregated systems (Shine et al., 2016; 
Shine, 2019; Wainstein et al., 2022). In particular, previous work has shown that neuromodulatory 
agents can modify the biophysical properties of neurons through various cellular mechanisms (Shine 
et  al., 2021). One mechanism is via activation of metabotropic receptors that bring the resting 
membrane potential of neurons closer to their firing threshold (Leenders and Sheng, 2005). This 

Figure 2. Brain network modeling. (A) Group- averaged human and chimpanzee networks visualized on the same brain template. Top 20% of 
connections by strength are shown. (B) Schematic diagram of the model. Each brain region is recurrently connected with strength  w  and driven by an 
excitatory input  I0  and white noise with standard deviation  D . The connection between regions  i  and  j  is weighted by  Aij  based on the connectomic 
data. The regional neural dynamics are represented by the synaptic response variable  S ; high  S  translates to high neural activity. (C) Method 
for calculating the dynamic range of each brain region from its mean synaptic response  ̄S  versus global recurrent strength  w  curve. Note that 

 S̄x = S̄min +
(
x/100

)
∗
(
S̄max − S̄min

)
 , with  wx  being the corresponding global recurrent strength at  ̄Sx  and  x =

{
10, 90

}
 . (D) Example time series of 

regions with different (top panel) and similar (bottom panel) dynamic ranges at   w  = 0.6 and 0.8. The time series in the top panel have correlation values 
(Pearson’s r) of 0.06 and 0.08 at   w  = 0.6 and  w  = 0.8, respectively. The time series in the bottom panel have correlations of 0.40 and 0.14 at   w  = 0.6 and 
 w  = 0.8, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Validation of simulated dynamics on empirical functional neuroimaging data.

https://doi.org/10.7554/eLife.80627
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mechanism can mediate changes in the excitability of brain regions at the subsecond timescale (Bang 
et al., 2020), effectively driving modulations in the regional strength of recurrent connections (i.e., our 
model’s  w  parameter). However, we clarify that the neuromodulation mechanism described above is 
only one example of many potential mechanisms that can drive changes in regional excitability.

We characterize the shape of the response function (i.e., the slope) demonstrated in Figure 2C in 
terms of the neural dynamic range, such that high dynamic range means that a region can respond 
to a wide range of changes in excitability ( w ), albeit the transition between activity levels is slow (red 
curve in the top panel of Figure 2D). Conversely, regions with a low dynamic range can quickly tran-
sition to high levels of activity with small changes in excitability, specifically at a critical intermediate 
regime (blue curve in the top panel of Figure 2D). When the dynamic range is very close to zero, the 
response function in Figure 2C becomes like a step function with infinite slope; hence, the response 
jumps between low and high activity levels, analogous to a phase transition. Note that our dynamic 
range is based on an excitability- output function (Figure 2C) rather than an input stimulus- output 
function commonly used in previous studies (Kinouchi and Copelli, 2006). Moreover, our definition of 
dynamic range is different from other definitions based on temporal deviations of a signal with respect 
to its mean (Shafiei et al., 2020). Brain regions with similarly low or high dynamic ranges are more 
likely to reach equivalent functional states. This can be observed in the example time series at the 
bottom panel of Figure 2D, where regions with similarly low dynamic ranges have activity amplitudes 
fluctuating at similar levels across varying excitability regimes. Note that similar observations occur for 
regions with similarly high dynamic ranges. Moreover, regions with similar dynamic ranges have higher 
levels of correlated activity compared to regions with different dynamic ranges, suggesting better 
integration (e.g., see correlations of the time series in the bottom versus top panels of Figure 2D at 
corresponding  w  values). Using the neural dynamic range property, we aim to reveal key principles of 
whole- brain neural dynamics setting humans apart from other species.

Human brains have more constrained neural dynamics than chimpanzee 
brains
We find that the response functions of human brain regions (reflecting how activity changes vs. modu-
lations in global excitability) are more similar to one another compared to those of chimpanzees 
(Figure 3A). We quantitatively test this observation by calculating the distribution of dynamic ranges 
across regions (Figure 3B). The results show that the human brain has neural dynamic ranges charac-
terized by a narrower distribution (standard deviation   σ =0.12) as compared to the chimpanzee brain 
( σ =0.48). This finding is robust against differences in individual- specific connectomes (Figure 3—figure 
supplement 1A,B), brain volume (Figure 3—figure supplement 1C), connection density (Figure 3—
figure supplement 2), inter- individual variability of connection strengths (Figure 3—figure supple-
ment 3), data sample size (Figure  3—figure supplement 4), propagation delays between brain 
regions (Figure 3—figure supplement 5), and heterogeneous excitatory input across brain regions 
(Figure 3—figure supplement 6). Moreover, our results are replicated on independent human data 
from the Human Connectome Project (Van Essen et al., 2013; Figure 3—figure supplement 7) and 
a different computational model (Figure 3—figure supplement 8).

Neural dynamic range is spatially organized along the anterior-
posterior brain axis
When we map the dynamic ranges onto the anatomical locations of each brain region, we find that 
both species follow a dominant gradient of neural dynamic ranges spatially organized along the 
anterior- posterior axis (Figure  3C). Specifically, anterior brain regions show neural dynamics with 
higher dynamic ranges, while posterior regions have lower dynamic ranges. Interestingly, we observe 
that this dominant gradient is more prominent in chimpanzees than in humans (Figure  3—figure 
supplement 9A). A similar anterior- posterior gradient has also been found in empirical evolutionary 
expansion maps of the human cortex (Wei et al., 2019), with frontal regions being more expanded in 
humans compared to chimpanzees (Rilling, 2014; Smaers et al., 2017) and the occipital cortex having 
relatively similar sizes across the two species (Figure 3—figure supplement 9B). Taken together, we 
additionally observe that highly expanded anterior regions have higher dynamic ranges compared to 
lowly expanded posterior regions (Figure 3—figure supplement 9C).

https://doi.org/10.7554/eLife.80627
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Figure 3. Human and chimpanzee neural dynamics. (A) Regional neural dynamics as a function of global recurrent 
strength ( w ). (B) Violin plot of the distribution of dynamic ranges across brain regions. Each violin shows the first 
to third quartile range (black line), median (white circle), raw data (dots), and kernel density estimate (outline).  σ  
is the standard deviation of the distribution. (C) Spatial organization of dynamic ranges. Data are visualized on 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.80627
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Similar neural dynamic ranges across regions enables brain network 
integration
We next ask whether brain regions belonging to specific functional networks have neural dynamics 
with similar levels of dynamic range. We cluster brain regions into seven common large- scale brain 
networks according to Wei et al., 2019; Yeo et al., 2011: Visual (VIS), Somatomotor (SM), Dorsal- 
Attention (DA), Ventral- Attention (VA, also known as the Salience network), Limbic (LIM), Frontopa-
rietal (FP), and Default- Mode (DM) networks (Figure  3—figure supplement 10). These networks 
represent functionally coupled regions across the cerebral cortex. In humans, brain regions belonging 
to each functional network show relatively similar neural dynamic ranges (Figure 3D). Conversely, in 
chimpanzees, neural dynamic ranges follow a marked functional hierarchy with cognitive networks 
(i.e., VA, LIM, FP, and DM) having higher median values than sensory networks (i.e., VIS, SM, and DA). 
Furthermore, the patterns of within- network changes in functional connectivity (FC) versus modu-
lations in global excitability overlap strongly in humans but not in chimpanzees (Figure 3E). Thus, 
similar levels of regional dynamic ranges allow the human brain to better integrate activity within 
functionally specialized brain networks (colored lines in Figure 3E) and the whole brain (black line in 
Figure 3E). This finding is consistent with the higher level of structural integration imposed by the 
human connectome, as quantified by lower topological path length (Figure 1F). Moreover, we find 
that the heterogeneity in regional path lengths could explain the heterogeneity in neural dynamics, 
where regions with shorter paths (i.e., lower path length values reflecting higher ability to integrate 
information between regions) tend to have higher dynamic ranges (Figure 4).

Neural dynamic range differentiates humans and non-human primates
To further test the hypothesis that neural dynamic range is a key feature setting the human brain 
apart from the brains of other species, we perform similar analyses on other non- human primate 
connectomic data: macaque (Macaca mulatta) (Shen et al., 2019) and marmoset (Callithrix jacchus) 
(Majka et al., 2020). Neural dynamics are obtained via the model in Figure 2B and using weighted 
connectomes generated from diffusion MRI (for macaques) and invasive tract tracing (for marmosets). 
The connectomes represent connections between 82 and 55 regions of the macaque and marmoset 
brains, respectively. Both species have neural response functions more similar to chimpanzees than to 
humans and with broad dynamic range distributions (Figure 5;  σ =0.23 for macaque and   σ =0.31 for 
marmoset), further validating our results in Figure 3 across species and across methodological differ-
ences in connectome data type and resolution. To verify that the macaque results are not driven by 

inflated cortical surfaces. Light color represents high dynamic range and dark color represents low dynamic range. 
(D) Violin plot of the distribution of dynamic ranges in seven canonical brain networks. Violin plot details are similar 
to those in B. (E) Simulated average functional connectivity ( FC  ) within the networks in D as a function of  w . The 
black line represents the average  FC   across the whole brain.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Confirmatory analysis on individual- specific connectomes and accounting for total brain 
volume.

Figure supplement 2. Confirmatory analysis on human and chimpanzee connectomes of equal connection 
density.

Figure supplement 3. Confirmatory analysis accounting for inter- individual variability of connectomic data.

Figure supplement 4. Confirmatory analysis on matched sample size.

Figure supplement 5. Confirmatory analysis accounting for activity propagation delays between brain regions.

Figure supplement 6. Confirmatory analysis accounting for heterogeneous excitatory input across brain regions.

Figure supplement 7. Replication of human neural dynamics on an independent dataset.

Figure supplement 8. Replication of human and chimpanzee neural dynamics using a different biophysical model 
(the Wilson- Cowan model).

Figure supplement 9. Gradient of dynamic ranges and regional chimpanzee- to- human cortical expansion along 
the anterior- posterior axis.

Figure supplement 10. Anatomical locations of regions clustered according to seven canonical brain networks.

Figure 3 continued

https://doi.org/10.7554/eLife.80627
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one apparent outlier, as seen in Figure 5A, we perform the analysis on independent macaque dataset 
and find that the results are replicated (Figure 5—figure supplement 1).

Neural dynamic range is linked to the temporal structure of brain 
activity
To this point, we have shown that the human connectome supports neural dynamics with a narrower 
distribution of dynamic ranges than the chimpanzee connectome (as well as other non- human 
primates). However, it remains unclear how dynamic range relates to the temporal structure of neural 
activity across the brain. Studies have shown that activity within brain regions exhibits a cortex- wide 
hierarchy of intrinsic neural timescales (Murray et al., 2014; Gao et al., 2020; Kiebel et al., 2008). 
From these findings, we examine whether a brain region’s neural timescale may be related to its neural 
dynamic range. We extract the timescale by fitting the autocorrelation of the simulated neural activity 
with a single exponential decay (Figure 6—figure supplement 1; see Materials and methods). We find 
that regional neural timescales (ranges: 0.12–0.24 s for humans and 0.12–0.55 s for chimpanzees) are 
significantly correlated with dynamic ranges, and this relation is stronger in chimpanzees (Figure 6A; 
this finding also holds for macaques and marmosets as shown in Figure 6—figure supplement 2A). 
This result is consistent with the examples in Figure 2D, such that the fast neural timescale of a region 
with a low dynamic range accommodates the quick transition in response amplitudes of that region 
when the excitability is increased.

Neural dynamic range affects the decision-making capacity of human 
and chimpanzee connectomes
We next ask what would be the implication of the differences in dynamic range distributions between 
humans and chimpanzees in terms of brain function. We hypothesize that these differences will likely 
impact the facilitation of whole- brain integration of neural processes, which has been found to be 
important for performing sensory- perceptual (Cocchi et  al., 2017b) and complex cognitive tasks 
(Shine et al., 2016) in humans. Note, however, that current whole- brain neuroimaging techniques 
cannot yet capture the direct effects of neural dynamic range on task performance. Moreover, new 
chimpanzee brain data via imaging or invasive recordings are not possible to be acquired for ethical 
reasons.

Figure 4. Association of the human and chimpanzee connectomes’ path length and dynamic range. Average regional path length as a function of z- 
score- transformed dynamic ranges.  ρ  is the Spearman rank correlation and p is the p value.

https://doi.org/10.7554/eLife.80627
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To provide insights into our question, we adopt a computational drift- diffusion model (Ratcliff 
et al., 2016; Figure 6B), which is widely used to predict behavioral responses of both humans and 
animals performing tasks such as decision- making. This model allows us to quantify the capacity of a 
brain region to achieve a decision threshold by integrating the evidence accumulated by its nearest 
neighbors. Here, we use the human and chimpanzee connectomes to define a region’s neighborhood. 
The model calculates the accumulation of evidence through time in each brain region via a noise- 
driven diffusion process until a set threshold is reached (Figure 6C; there are two possible thresholds 
corresponding to a correct or incorrect decision). Then, we estimate each brain region’s accuracy in 
reaching a correct choice across an ensemble of trials (Figure 6D) and average these values, repre-
senting the likely decision accuracy of the whole brain. Note that we adopt a generalized definition 
of decision accuracy based on the performance of the connectomes. Specifically, we do not take 
into account the possibility that only a subset of brain regions could be recruited in the decision- 
making process. At the end of our simulation, the human brain has a higher accuracy in achieving the 
correct choice compared to the chimpanzee brain (Figure 6E; this finding also holds for macaques 
and marmosets as shown in Figure 6—figure supplement 2B). Interestingly, we find that at earlier 
times ( t <0.36 s), the decision accuracy of the human brain is lower than the chimpanzee counterpart. 

Figure 5. Neural dynamics of human and non- human primates. (A) Regional neural dynamics as a function of global recurrent strength ( w ) for human, 
chimpanzee, macaque, and marmoset. (B) Violin plot of the distribution of dynamic ranges across brain regions. Each violin shows the first to third 
quartile range (black line), median (white circle), raw data (dots), and kernel density estimate (outline). The data are mean- subtracted for visual purposes. 
 σ  is the standard deviation of the distribution.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Replication of macaque neural dynamics on an independent dataset (CoCoMac).

https://doi.org/10.7554/eLife.80627
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Figure 6. Human and chimpanzee neural timescales and connectome decision- making capacity. (A) Ranked neural 
timescales as a function of ranked dynamic ranges. The solid line represents a linear fit with Pearson’s correlation 
coefficient (r) and p value (p). (B) Exemplar connectome and schematic diagram of the drift- diffusion model. In the 
model, each brain region accumulates decision evidence via a diffusion (Brownian) process with drift rate  β  and 
driving white noise with standard deviation  D . Regions  i  and  j  are connected with Laplacian weight  Lij  based 
on the connectomic data. (C) Example time series of regional decision evidence across time for regions  i  and  j , 
demonstrating how each region reaches a correct or incorrect decision. (D) Regional accuracy curves obtained 
by simulating the model for an ensemble of trials and calculating the rate of achieving the correct decision. 
(E) Difference in whole- brain accuracy across time between humans and chimpanzees. Whole- brain accuracy 
represents the average of the accuracy of all regions. The dashed line shows the time ( tmin ) at which the difference 
in accuracy between humans and chimpanzees is most negative (i.e., chimpanzee accuracy>human accuracy). 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.80627
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This finding is driven by regions in the chimpanzee brain with low dynamic ranges that can reach 
correct decisions quickly (Figure 6F).

We next investigate whether levels of excitation and inhibition could have also influenced the differ-
ence between the decision accuracy of human and chimpanzee brains at earlier times (Figure 6E). 
Hence, we extend the drift- diffusion model in Figure 6B by incorporating a self- coupling term parame-
trized by  λ  (Figure 6—figure supplement 3A;  λ > 0  and  λ < 0  corresponds to increased excitation 
and inhibition, respectively) (Carland et al., 2015; Lam et al., 2022). We find that increased excitation 
leads to faster decision times (Figure 6—figure supplement 3B) but poorer overall decision accuracy 
(Figure 6—figure supplement 3C). We also find that increased inhibition extends periods of inferior 
whole- brain decision accuracy of the human brain compared to the chimpanzee brain at earlier times 
(Figure 6—figure supplement 3D). Interestingly, we also find that the human brain requires the addi-
tional level of excitation (i.e.,  λ = 2.03 ) at earlier times in order to reach the level of decision accuracy 
achieved by the chimpanzee brain (Figure 6—figure supplement 3E). This result suggests that our 
original finding in Figure 6E could also be driven by higher intrinsic levels of inhibition in the human 
brain.

Testing of model predictions on empirical data
We have shown that a brain region’s neural dynamic range is tightly linked to the temporal structure 
of its activity (i.e., neural timescale), suggesting a role of dynamic range in local processing speeds. To 
test this prediction, we compare empirical cortical T1w:T2w maps, which is an MRI contrast sensitive to 
myelination, of humans and chimpanzees (Hayashi et al., 2021; Figure 7A) to each region’s dynamic 
range. T1w:T2w maps have been shown to be a good macroscale proxy of the cortical processing 
hierarchy in humans and non- human primates (Hayashi et al., 2021; Glasser et al., 2014; Burt et al., 
2018), where unimodal sensory- motor regions tend to be highly myelinated and transmodal regions 
lightly myelinated. Crucially, myelination has been found to be tightly coupled with electrophysiolog-
ical measures of a region’s temporal processing speed (Gao et al., 2020). Accordingly, we find that 
T1w:T2w is inversely related to neural dynamic range (Figure 7B). The inverse relation of dynamic 
range and T1w:T2w is consistent with other studies (Shafiei et al., 2020), although their dynamic 
range metric quantifies the diversity in the fluctuations of activity amplitudes. This result provides an 
empirical neurobiological support to our findings in Figure 6A, demonstrating that dynamic range is 
related to a region’s processing speed.

We have also shown that the more constrained neural dynamics of the human brain compared to the 
chimpanzee brain allows better integration of whole- brain activity. We test this prediction on empirical 
neuroimaging (i.e., functional MRI [fMRI]) data. Because we do not have access to chimpanzee fMRI 
data, we compare human with macaque data (the same data used in Figure 2—figure supplement 
1 to validate our model’s suitability). As predicted, we find that  FC  within large- scale networks is 
generally higher and more homogeneous in humans compared to macaques (Figure 8A). The human 
brain also has higher network FC, as demonstrated by a higher whole- brain  FC  (p<0.001). Moreover, 
the human brain has shorter functional paths (i.e., lower path length values) than the macaque brain 
(Figure 8B; similar metric used in Figure 1F but applied here on FC matrices), which corresponds to 
better functional integration. We also estimated regional timescales by applying the same technique 
described in Figure 6—figure supplement 1 on fMRI signals, finding that the human brain has faster 

(F) Regional accuracy at  tmin  (found in E) as a function of z- score- transformed dynamic ranges. The solid line 
represents a linear fit with Pearson’s correlation coefficient (r) and p value (p).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Method for calculating neural timescales.

Figure supplement 2. Macaque and marmoset neural timescales and their connectome’s decision- making 
capacity.

Figure supplement 3. Effects of excitation and inhibition on decision- making capacity of the human and 
chimpanzee connectomes.

Figure supplement 4. Difference in Default- Mode Network (DMN) accuracy across time between humans and 
chimpanzees.

Figure 6 continued
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timescales than the macaque brain (Figure 8C). Overall, we have used available empirical human and 
non- human primate neuroimaging data to validate two key predictions of our model: neural dynamic 
range is linked to local processing speed and a narrower dynamic range distribution in humans allows 
better integration of whole- brain activity.

Discussion
There is converging evidence that the human brain, as compared to that of our primate relatives, has 
experienced significant structural reorganizations in association regions throughout evolution (Rilling, 
2014; Ponce de León et al., 2021). Here, we took advantage of a unique neuroimaging dataset of 
sex- matched and age- equivalent humans and chimpanzees to study how the structural brain wirings of 
these species support different patterns of whole- brain neural dynamics underpinning brain function. 
Our results show that these differences determine how the activities of segregated regions are inte-
grated across the brain, giving rise to distinct computational capacities of humans and chimpanzees.

For each species, we determined their brain regions’ response functions, which describe the regu-
lation of intrinsic neural activity following brain- wide modulations in excitability. Modulations in global 
excitability could come from various sources, from external inputs (Zhang et al., 2020) to internal 

Figure 7. Testing of model predictions on T1w:T2w data. (A) T1w:T2w maps visualized on inflated cortical surfaces. Light color represents high T1w:T2w 
value (high myelination) and dark color represents low T1w:T2w value (low myelination). (B) Regional T1w:T2w as a function of z- score- transformed 
dynamic ranges. The solid line represents a linear fit with Pearson’s correlation coefficient (r) and p value (p).

https://doi.org/10.7554/eLife.80627
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influences such as neuromodulation (Shine, 2019; Wainstein et al., 2022; Bang et al., 2020). The 
response function of each region encapsulates all these phenomena, differentiating it from typical 
input- output response curves (Kinouchi and Copelli, 2006; Gollo et al., 2016), with its shape, partic-
ularly its slope, characterized by the neural dynamic range. A high dynamic range means that a region 
can slowly change its activity in response to a wide range of modulations in excitability. Conversely, a 
low dynamic range means that a region can quickly transition between low and high levels of activity 
within a narrow range of changes in excitability. We reasoned that the up- or downregulation of local 
neural activity is crucial to facilitate communication across brain regions, enabling large- scale func-
tional integration and related computations.

Figure 8. Testing of model predictions on functional neuroimaging data. (A) Functional connectivity ( FC  ) within large- scale networks and across the 
whole brain of humans and macaques. The human large- scale networks are similar to those defined in Figure 3D. The macaque large- scale networks 
are: FRONT = Frontal; TEMP = Temporal; PAR = Parietal; OCC = Occipital; LIM = Limbic. The error bars are standard errors of the mean across 
participants (100 humans and 8 macaques). (B) Violin plot of the distribution of regional functional path length across brain regions calculated from 
group- averaged FC matrices. Each violin shows the first to third quartile range (black line), median (white circle), raw data (dots), and kernel density 
estimate (outline). (C) Violin plot of the distribution of fMRI signal timescales. Violin plot details are similar to those in B. For B, C, p is the p value of the 
difference in the mean of the distribution between the species (two- sample t- test).

https://doi.org/10.7554/eLife.80627
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In humans, brain regions showed response functions that were more similar to one another than 
their chimpanzee counterparts. Moreover, the distribution of neural dynamic ranges in humans was 
narrower than that in chimpanzees and in other non- human primate species (i.e., macaques and 
marmosets). Thus, neural dynamic range seems to be a unifying feature that sets human brains apart 
from other primate species. Note, however, that the generalization of the relationship between 
dynamic range and the evolutionary trajectory of non- human primates is beyond the scope of the 
current study and remains to be established. These results also propose the hypothesis that relatively 
subtle evolutionary differences in the connectomes of humans and chimpanzees (van den Heuvel 
et al., 2016) have a marked impact on large- scale neural dynamics supporting the ability of the brain 
to process information. This could be why human- specific features of connectome organization are 
vulnerable to brain dysfunction (van den Heuvel et al., 2019; Gollo et al., 2018).

It has recently been shown that the structural, functional, and genetic properties of cortical 
regions are spatiotemporally organized in a hierarchical manner (Kiebel et  al., 2008; Burt et  al., 
2018; Felleman and Van Essen, 1991; Mesulam, 1998; Wagstyl et  al., 2015; Margulies et  al., 
2016; Hasson et al., 2008). Accordingly, we found that neural dynamic ranges follow a dominant 
spatial gradient along the anterior- posterior brain axis, with anterior associative regions having 
higher dynamic ranges than posterior sensory regions. This spatial gradient mirrors the cytoarchitec-
tonic (e.g., cell density) organization observed in the brains of several mammalian species, including 
rodents and primates (Charvet et al., 2015; Collins et al., 2010; Collins et al., 2016). By analyzing 
the intrinsic timescales of fluctuations of neural activity (Murray et al., 2014; Gao et al., 2020; Kiebel 
et al., 2008), we showed that regional neural dynamic ranges correlated with regional neural times-
cales. Thus, dynamic range seems to capture local information processing speed, providing support to 
our prior hypothesis that brain regions with similar dynamic ranges are more likely to reach equivalent 
functional states due to similar processing capacity. At the level of large- scale networks, chimpanzees 
showed a marked functional hierarchy in neural dynamic ranges compared to humans, with unimodal 
sensory- perceptual networks having lower values than transmodal associative networks. Importantly, 
this more pronounced hierarchy in dynamic ranges limits brain network integration in chimpanzees 
compared to humans. Human brain connectivity appears therefore to have evolved to support neural 
dynamics that maintain relatively high levels of integration between functionally segregated brain 
systems (Ardesch et al., 2019; van den Heuvel et al., 2016).

By using a computational drift- diffusion model (Ratcliff et al., 2016), we assessed the functional 
consequences of neural dynamic range to the human and chimpanzee connectomes’ decision- making 
capacity. Over relatively long processing periods, the human connectome had a higher accuracy in 
achieving a correct choice compared to the chimpanzee connectome. However, over short periods 
of processing time, the human connectome performed worse than the chimpanzee counterpart. This 
latter result was attributed to the (i) more heterogeneous distribution of dynamic ranges in chimpan-
zees, supporting that diversity in local neural properties is important for rapid computations (Gollo 
et al., 2016), and (ii) higher intrinsic levels of inhibition in the human brain (Carland et al., 2015; Lam 
et al., 2022). This regional diversity and intrinsic inhibition may explain why chimpanzees are able to 
perform at least as well as, or better than, humans in simple sensory- motor tasks (Martin et al., 2014). 
Moreover, our findings provide a possible neural mechanism for why humans generally outperform 
chimpanzees in tasks requiring longer computational processing (Tomasello et al., 2005; Thornton 
et al., 2012). In line with our results, studies have suggested that behavioral differences between 
humans and chimpanzees are more prominent in complex tasks involving intersubjectivity (e.g., theory 
of mind; Herrmann et al., 2007). This important brain capacity is known to be supported by the 
activity of the Default- Mode Network (DMN) (Buckner et  al., 2008; Spreng et  al., 2009), which 
displays significant genetic, anatomical, and functional differences between humans and non- human 
primates (Wei et al., 2019; Bruner et al., 2017; Xu et al., 2020). By making use of our simulations 
assessing decision- making capacity, we found that the accuracy of DMN for relatively long computa-
tions was more accurate in humans compared to chimpanzees (Figure 6—figure supplement 4). This 
finding further suggests that the DMN may be critical in differentiating the functions of human and 
chimpanzee brains.

Results from the current study suggest that evolution has shaped the human brain to optimize 
fast transmodal integration of neural activity across brain regions supporting complex functions 
including social- cultural skills (Margulies et al., 2016; Buckner and Krienen, 2013). While our results 
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are consistent with the hypothesis that the human brain has evolved to facilitate rapid associative 
computations (Herrmann et  al., 2007), they also highlight that this evolutionary adaptation may 
hinder rapid processing within functionally specialized systems. The unique properties of human and 
chimpanzee brain dynamics may therefore be understood as an evolutionary tradeoff between func-
tional segregation and integration. Collectively, our findings inform on the likely neural principles 
governing evolutionary shifts that could explain the differences in brain function between humans 
and our closest primate relatives (Burkart et al., 2017). Moreover, our work provides a framework 
to investigate the relationship between whole- brain connectivity and neural dynamics across a wider 
family of species (e.g., across the mammalian species; Assaf et al., 2020) and its effects on complex 
cognitive processes (e.g., decision- making with more than two alternatives; Roxin, 2019).

Materials and methods
Connectomic data
Human and chimpanzee
Diffusion MRI data for 58 humans (H. sapiens, 42.5±9.8 years, female) and 22 chimpanzees (P. trog-
lodytes, 29.4±12.8 years, female) were taken from previous studies (Ardesch et al., 2019; van den 
Heuvel et  al., 2019). Procedures were carried out in accordance with protocols approved by the 
Yerkes National Primate Research Center and the Emory University Institutional Animal Care and Use 
Committee (YER- 2001206). All humans were recruited as healthy volunteers with no known neurolog-
ical conditions and provided informed consent (IRB00000028). We only provide below a brief account 
of details of the data and we refer the readers to previous studies for further details. The diffusion MRI 
acquisition parameters for humans were: spin- echo echo planar imaging (EPI), isotropic voxel size of 
2 mm, b- weighting of 1000 s/mm2, 8 b0- scans, and scan time of 20 min. For chimpanzees: spin- echo 
EPI, isotropic voxel size of 1.8 mm, b- weighting of 1000 s/mm2, 40 b0- scans, and scan time of 60 min. 
The acquired data were then preprocessed to correct for eddy- current, motion, susceptibility, and 
head motion distortions. Each participant’s cortex was then parcellated using a 114- area subdivision 
of the Desikan- Killiany atlas (Desikan et al., 2006; Supplementary file 1; Figure 1A,B). Individual 
undirected connectome matrices were constructed via deterministic tractography to establish cortico- 
cortical connections between the 114 regions. In line with previous research (van den Heuvel et al., 
2019), we removed idiosyncratic variations by taking the average weight across individuals of each 
connection that was consistently found in  ≥60% of the individuals, resulting in a group- averaged 
weighted connectome for each species.

Macaque
The whole- brain macaque (M. mulatta) connectome was derived from eight adult males using diffu-
sion MRI. The data were taken from an open- source dataset, which provides in- depth description of 
the data (Shen et al., 2019). In brief, the diffusion MRI acquisition parameters were: 2D EPI, isotropic 
voxel size of 1 mm, b- weighting of 1000 s/mm2, 64 directions, and 24 slices. The acquired data were 
then preprocessed to correct for image distortion and to model fiber directions. Each macaque’s 
cortex was then parcellated into 82 regions following the Regional Map (RM) atlas (Kötter and 
Wanke, 2005). Individual- directed connectome matrices were constructed via probabilistic tractog-
raphy to establish connections between the 82 regions and thresholded to remove weak connections 
(thresholds of 0%–35%; see Shen et al., 2019 for specific optimal threshold values used per indi-
vidual). A group- averaged weighted connectome was obtained by taking the average weight of non- 
zero elements of the connectome matrices. It was then thresholded to match the connection density 
of the group- averaged chimpanzee connectome.

Marmoset
The marmoset (C. jacchus) connectome data were downloaded from the Marmoset Brain Connectivity 
atlas (marmosetbrain.org) (Majka et al., 2020), which is a publicly available repository of cellular reso-
lution cortico- cortical connectivity derived from neuroanatomical tracers. In brief, the connectome 
was reconstructed from 143 injections of six types of retrograde fluorescent tracers performed on 
52 young adult marmosets (1.4–4.6 years, 21 females). Connection weights represent the fraction of 
labeled neurons found in the target area with respect to the total number of labeled neurons excluding 
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the neurons in the injected area. The connections were projected onto the Paxinos stereotaxic atlas 
(Paxinos et al., 2012), comprising 116 cortical areas. Individual- directed connectome matrices were 
constructed by including only areas with pairwise- complete connection values. Thus, the final connec-
tome matrices were 55×55 in size. A group- averaged weighted connectome was obtained by taking 
the average weight of non- zero elements of the connectome matrices. It was then thresholded to 
match the connection density of the group- averaged chimpanzee connectome.

Human HCP
For replication of human results (Figure 3—figure supplement 7), minimally preprocessed diffusion 
MRI data from 100 unrelated healthy young adult participants (29.1±3.7  years, 54  females) were 
obtained from the Human Connectome Project (HCP) (https://db.humanconnectome.org/; Van Essen 
et al., 2013). In brief, the diffusion MRI acquisition parameters were: isotropic voxel size of 1.25 mm, 
TR of 5520 ms, TE of 89.5 ms, b- weightings of 1000, 2000, and 3000 s/mm2, and 174 slices. The data 
were then preprocessed for bias- field correction and multi- shell multi- tissue constrained spherical 
deconvolution to model white matter, gray matter, and cerebrospinal fluid using the MRtrix software 
(Tournier et al., 2012). For each participant, tractograms were generated using 100 million probabi-
listic streamlines, anatomically constrained tractography (ACT) (Smith et al., 2012), the second- order 
Integration over Fiber Orientation Distributions algorithm (iFOD2), dynamic seeding (Smith et al., 
2015), backtracking, streamline lengths of 5–250 mm, and spherical- deconvolution informed filtering 
of tractograms (SIFT2). Each participant’s tractogram was projected onto the cortex that was parcel-
lated into 100 regions following the Schaefer atlas (Schaefer et al., 2018) to obtain the connectome 
matrices. A group- averaged weighted connectome was obtained by taking the average weight of 
non- zero elements of the connectome matrices. It was then thresholded to match the connection 
density of the chimpanzee connectome.

Macaque (CoCoMac)
For replication of macaque results (Figure 5—figure supplement 1), a directed binary connectome 
was taken from an open- source dataset (the CoCoMac database) (Kötter, 2004; Honey et al., 2007). 
The connectome represents cortico- cortical structural connections between 71 regions derived from 
histological tract- tracing studies.

fMRI data
Human
The empirical human FC in Figure 2—figure supplement 1B was derived from preprocessed fMRI 
data of 100 unrelated healthy young adults from HCP (same participants used to calculate the HCP 
group- averaged connectome above) (Van Essen et al., 2013). For each participant,  FC  was calculated 
by taking pairwise Pearson correlations of the BOLD- fMRI signal across 114 regions (Supplementary 
file 1). A group- averaged FC was obtained by taking the average of the individual FC matrices.

Macaque
The empirical macaque FC in Figure 2—figure supplement 1B was derived from preprocessed fMRI 
data of eight adult rhesus macaques (same subjects used to calculate the macaque group- averaged 
connectome above) (Shen et  al., 2019). For each subject,  FC  was calculated by taking pairwise 
Pearson correlations of the BOLD- fMRI signal across 82 regions (Kötter and Wanke, 2005). A group- 
averaged FC was obtained by taking the average of the individual FC matrices.

Cortical T1w:T2w data
Human and chimpanzee cortical T1w:T2w data, serving as a proxy for myelination, were obtained 
from Hayashi et al., 2021. The T1w:T2w maps were parcellated using our 114- region atlas (Supple-
mentary file 1).

Cortical expansion data
Human and chimpanzee cortical expansion data were obtained from Wei et  al., 2019. The data 
represent the ratio of the normalized cortical surface area of each region in the 114- region atlas 
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(Supplementary file 1) between humans and chimpanzees. The normalization was obtained by 
dividing each region’s surface area by the whole cortex’s total surface area. Hence, an expansion 
value greater than 1 means that the relevant region in humans is more expanded compared to the 
same region in chimpanzees.

Cortical surfaces
For visualization purposes, we mapped some results into template human and chimpanzee inflated 
cortical surfaces (Figure  1A and B, Figure  3C, Figure  7A, Figure  3—figure supplement 9B, 
Figure 3—figure supplement 10, and Figure 6—figure supplement 4) obtained from https://balsa. 
wustl.edu/study/Klr0B, which is a public repository of data from Hayashi et al., 2021.

Graph theoretical analysis
To investigate the structural property of the connectomes, we leveraged concepts from the field of 
graph theory (Muldoon et al., 2016; Rubinov and Sporns, 2010; Fornito et al., 2016). In particular, 
we quantified small- world propensity, modularity, regional clustering coefficient, and regional path 
length. Small- world propensity quantifies the extent to which the network exhibits a small- world struc-
ture (Muldoon et al., 2016). Modularity quantifies the extent to which the network may be subdivided 
into distinct modules (i.e., groups of regions). The clustering coefficient quantifies the probability of 
finding a connection between the neighbors of a given node (region). Specifically, this metric was 
estimated by calculating the fraction of triangles around a region. The path length quantifies the level 
of integration in the network (short path length implying high integration). Path length corresponds 
to the total topological distance of the shortest path between two regions. For our weighted connec-
tomes, we defined the topological distance to be inversely proportional to the weight of connection 
(i.e., distance=1/weight). For each brain region, the regional path length was calculated by taking the 
average of the path lengths between that region and all other regions.

Computational models
Reduced Wong-Wang neural model
To simulate local neural dynamics on the connectome, we used the reduced Wong- Wang biophysical 
model, also known as the dynamic mean- field model, which is an established model derived from 
a mean- field spiking neuronal network (Wang, 2002; Wong and Wang, 2006; Deco et al., 2013; 
Wang et al., 2019). Each brain region  i  is governed by the following nonlinear stochastic differential 
equation:

 
Ṡi = − Si

τs
+ γs(1 − Si)H(xi) + Dνi(t),

  
(1)

 
H(xi) = axi − b

1 − exp
[
−d

(
axi − b

)]
  

(2)

 
xi = wJSi + GJ

∑
j

AijSj + I0,
  

(3)

where  Si ,  H(xi) , and  xi  represent the synaptic response variable, firing rate, and total input current, 
respectively. In the original formulation of the model, the synaptic response variable  Si  in Equation 1 
acts as a gating variable that represents the fraction of open (or activated) NMDA channels (Wang, 
2002; Wong and Wang, 2006; Deco et al., 2013). Thus, higher values of  Si  correspond to higher 
neural activity. The synaptic response variable is governed by the time constant   τs  = 0.1 s, saturation 
rate   γs  = 0.641, firing rate  H  , and independent zero- mean Gaussian noise  νi  with standard deviation  
 D  = 0.003. The firing rate  H   is a nonlinear input- output function defined in Equation 2 governed by 
the total input current  xi  with constants   a  = 270 (V nC)–1,  b  = 109 Hz, and   d  = 0.154 s. The total input 
current  xi  is determined in Equation 3 by the recurrent connection strength  w , synaptic coupling   J   
= 0.2609 nA, global scaling constant   G  = 0.2, connection strength  Aij  between regions  i  and  j , and 
excitatory subcortical input   I0  = 0.33 nA. The parameter values were taken from previous works (Deco 
et al., 2013; Wang et al., 2019). Note that the value of the global scaling constant was fixed for all 
species. This is to ensure that we can directly compare variations in neural dynamics. We simulated the 
model by numerically solving Equation 1 using the Euler- Maruyama scheme for a time period of 720 s 
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and a time step of 0.01 s. We then calculated the time- average value of the synaptic response variable 
 ̄S  after removing transients, which we used to represent neural dynamics in our analyses.

Balloon-Windkessel hemodynamic model
To obtain the simulated FC in Figure 3E and Figure 2—figure supplement 1, we fed the neural activity 

 Si  from Equation 1 to the Balloon- Windkessel hemodynamic model, which is a well- established model 
for simulating BOLD- fMRI signals (Stephan et al., 2007). Note though that this is a simple approxima-
tion to more detailed hemodynamic models (Pang et al., 2017). Each brain region  i  is governed by 
the following nonlinear differential equations:

 żi = Si − κzi − γ(fi − 1),  (4)

 ḟi = zi,  (5)
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where  zi ,  fi ,  vi ,  qi , and  Yi  represent the vasodilatory signal, blood inflow, blood volume, deoxyhe-
moglobin content, and BOLD- fMRI signal, respectively. The model parameters and their values are 
defined as follows: signal decay rate   κ  = 0.65 s–1, elimination rate   γ  = 0.41 s–1, hemodynamic transit 
time   τ   = 0.98 s, Grubb’s exponent   α  = 0.32, resting oxygen extraction fraction   ρ  = 0.34, resting 
blood volume fraction   V0  = 0.02, and fMRI parameters   k1  = 4.10,  k2  = 0.58, and  k3  = 0.53. The param-
eter values were taken from previous works (Stephan et al., 2007). We simulated the model for a time 
period of 720 s and the time series were downsampled to a temporal resolution of 0.72 s to match 
the resolution of typical empirical BOLD- fMRI signals.  FC  was calculated by taking pairwise Pearson 
correlations of  Yi  (after removing transients) across all regions. The within- network FC in Figure 3E 
was obtained by taking the average of the  FC  between regions comprising each network.

Wilson-Cowan neural model
To show that our results generalize beyond our choice of biophysical model, we also simulated local 
neural dynamics using the Wilson- Cowan model (Wilson and Cowan, 1972; Figure 3—figure supple-
ment 8). We chose this model because of its known ability to reproduce diverse large- scale neural 
phenomena (Papadopoulos et al., 2020). Each brain region  i  comprises interacting populations of 
excitatory ( E ) and inhibitory ( I  ) neurons governed by the following nonlinear stochastic differential 
equations:
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where  Si ,  H(xi) , and  xi  represent the firing rate, non- linear activation function, and weighted sum 
of firing rates, respectively, for  E  and  I   populations. The dynamics of the firing rates  S

E
i   and  S

I
i   in 

Equations 9; 10 are parameterized by the excitatory time constant   τE  = 2.5×10–3 s, inhibitory time 
constant   τI   = 3.75×10–3 s, activation functions  HE  and  HI  , and independent zero- mean Gaussian noise 

 ν
E
i   and  ν

I
i   with standard deviations   DE  = 5×10–5 and  DI   = 5×10–5, respectively. The activation functions 
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 HE  and  HI   in Equations 11; 12 are defined by sigmoids parameterized by the gain constants   aE  = 
1.5 and  aI   = 1.5 and firing thresholds   µE  = 3 and  µI   = 3.  x

E
i   and  x

I
i   are determined in Equations 13; 14 

by the excitatory- excitatory recurrent connection strength   wEE  = 16, excitatory- inhibitory connection 
strength   wEI   = 12, inhibitory- excitatory connection strength   wIE  = 15, inhibitory- inhibitory recurrent 
connection strength   wII   = 3, global scaling constant   G  = 2, connection strength  Aij  between regions 
 i  and  j , and excitatory drive   PE  = 1 scaled by   GE  = 0.5. The parameter values were taken from 
previous works (Wilson and Cowan, 1972; Papadopoulos et al., 2020). We simulated the model by 
numerically solving Equations 9; 10 using the Euler- Maruyama scheme for a time period of 15 s and 
a time step of 0.001 s. We then calculated the time- average value of the excitatory firing rate  SE  after 
removing transients, which we used to represent neural dynamics in our analyses.

Drift-diffusion model
To simulate the ability of human and chimpanzee connectomes to reach a binary decision, we imple-
mented a computational drift- diffusion model (Ratcliff et al., 2016; Carland et al., 2015; Lam et al., 
2022; Figure 6B). Each brain region  i  is governed by the following stochastic differential equation:

 
ẏi = βi + λyi −

∑
j

Lijyj + Dνi(t),
  

(15)

where  yi  is the evidence at time  t ,  βi  is the drift rate,  λ  is the self- coupling parameter,  Lij  is the Lapla-
cian weight of the connection between regions  i  and  j , and  νi  is an independent zero- mean Gaussian 
noise with standard deviation  D . The Laplacian matrix  L  is obtained via  L = D− A , where  A  is the 
connectivity matrix and  D  is a diagonal matrix of node strengths such that the ith diagonal element 
is  
∑

j Aij . To focus on the contribution of the connectome itself, we fixed the drift rates of the regions 
to  βi = 1  and  D = 1 . We verified that changing these parameter values did not change the results of 
the study. We also set  λ = 0  in our main results in Figure 6, but also extensively varied it in Figure 6—
figure supplement 3 to investigate the effects of excitation (i.e.,  λ > 0 ) and inhibition (i.e.,  λ < 0 ) on 
the decision- making capacity of the connectomes. Through the simple diffusion process implemented 
by the model, each region accumulates the decision evidence through time until it reaches a boundary 
threshold  θ  = ±1 where a decision is said to be reached. Without loss of generality, we assumed   θ  = 
1 to be the correct decision (Figure 6C). We simulated the model by numerically solving Equation 15 
using the Euler- Maruyama scheme for a time period of 5 s and a time step of 0.01 s. We then calcu-
lated the decision accuracy versus time of each region across an ensemble of 1000 trials (Figure 6D).

Measures of neural dynamics properties
Neural dynamic range
For each brain region, we analyzed its response function reflecting how mean activity changes versus 
global modulations in the strength of recurrent connections (i.e.,  ̄S  vs.  w  for the reduced Wong- Wang 
model and  SE  vs.  wEE  for the Wilson- Cowan model). The response function was characterized in terms 
of the neural dynamic range, mathematically defined as:

 
dynamic range = 10 log10

w90
w10

,
  

(16)

where  wx  is the corresponding global recurrent strength at  ̄Sx  , with  x =
{

10, 90
}
  and

 
S̄x = S̄min +

( x
100

) (
S̄max − S̄min

)
.
  (17)

We then pooled together the dynamic ranges of brain regions for each species of interest to create a 
distribution with standard deviation  σ .

Neural timescale
To estimate neural timescales for each brain region, we simulated neural activity via the model 
described in Equations 1–3. We used a global recurrent strength of   w  = 0.45  to produce neural 
dynamics in a biologically plausible regime; that is, dynamics with relatively low firing rate and not fully 
synchronized (Cocchi et al., 2017a). Following recent studies (Murray et al., 2014; Gao et al., 2020), 
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we quantified the neural timescale of each brain region  i  by fitting the autocorrelation of  Si
(
t
)
  with a 

single exponential decay function (via nonlinear least- squares) with form

 autocorrelationi = c1e−
t
τi + c2,  (18)

where  c1  and  c2  are fitting constants and  τi  is the estimated neural timescale (Figure 6—figure supple-
ment 1). We verified that fitting with a double exponential decay function did not change the results 
of the study.

Additional confirmatory analyses
We performed several confirmatory analyses to check the robustness of our results. In particular, 
we addressed potential effects of differences in individual- specific connectomes (Figure 3—figure 
supplement 1), differences in connection density (Figure  3—figure supplement 2), variability of 
connection strengths across participants (Figure 3—figure supplement 3), differences in human and 
chimpanzee data sample size (Figure  3—figure supplement 4), existence of activity propagation 
delays between brain regions (Figure  3—figure supplement 5), and heterogeneity of excitatory 
inputs to brain regions (Figure 3—figure supplement 6). The procedures for each confirmatory anal-
ysis are described below.

Individual-specific analysis
Brain dynamics resulting from group- averaged connectomes could differ when individual- specific 
connectomes are used. Hence, we repeated the analysis in Figure  3 to the connectome of each 
human and chimpanzee participant to produce Figure 3—figure supplement 1.

Connection density
The resulting connection densities of the group- averaged human and chimpanzee connectomes were 
different (13.7% vs. 11.6%, respectively). Hence, we created a new human connectome by pruning 
weak connections such that its density matches the density of the chimpanzee connectome. We then 
repeated the analysis in Figure 3 to produce Figure 3—figure supplement 2.

Inter-individual variability of connection strengths
The quality of connectomic data across participants in each species may be different due to potential 
additional confounds unable to be corrected by the implemented data preprocessing methods. Thus, 
within each species, we calculated the variability of weights of each connection  Aij  across partici-
pants ( σ

human
ij   and  σ

chimpanzee
ij  ). We then rescaled the human and chimpanzee connectomes to match 

each other’s inter- individual variability. Specifically, we multiplied the human connectome weights by 

 σ
chimpanzee
ij /σhuman

ij   and the chimpanzee connectome weights by  σ
human
ij /σchimpanzee

ij   . We then repeated 
the analysis in Figure 3 to produce Figure 3—figure supplement 3.

Sample sizes
The sample sizes of the human and chimpanzee connectomic data differ (N = 58 for humans and N = 
22 for chimpanzees). Hence, we randomly sampled 22 human participants to match the sample size 
of the chimpanzee data and calculated the corresponding new group- averaged human connectome. 
The resampling procedure was repeated for 100 trials. For each trial, we repeated the analysis in 
Figure 3 to produce Figure 3—figure supplement 4.

Activity propagation delay
The model we used, as described in Equations 1–3, assumes that the activity of a brain region prop-
agates and affects instantaneously the activity of all other regions connected to it (i.e., propagation 
time delay is 0). However, due to the spatial embedding of the brain and the finiteness of activity 
propagation speeds, we modified the second term of Equation 3 to incorporate non- zero time delays 
as follows:

 
xi(t) = wJSi(t) + GJ

∑
j

AijSj

(
t − tdij

)
+ I0,

  (19)
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where  t
d
ij  is the propagation time delay between regions  i  and  j . We approximated the time delays 

as  t
d
ij = Dij/v , where  Dij  is the Euclidean distance between the centroids of regions  i  and  j  and  v  is the 

propagation speed. We assumed  v  to be a constant with value 10 m/s (Deco et al., 2009) and was the 
same for both human and chimpanzee brains; choosing other values of  v  did not change our results. 
Meanwhile,  Dij  is specific to human and chimpanzee brains to account for differences in brain sizes. 
In our analysis, we obtained  Dij  from one randomly chosen representative human and chimpanzee; 
the resulting distributions of time delays are shown in Figure 3—figure supplement 5A. We then 
repeated the analysis in Figure 3 to produce Figure 3—figure supplement 5B,C.

Heterogeneous excitatory input
The model we used, as described in Equations 1–3, assumes that the activities of brain regions are 
driven by a constant excitatory input  I0  . We tested whether varying  I0  per region affects the results of 
the study. In particular, we incorporated a gradient of excitatory input across the anatomical cortical 
hierarchy, with unimodal regions having higher inputs and transmodal regions having lower input 
(Wang et al., 2019). Inspired by previous works using a region’s total connection strength as a proxy 
of the cortical hierarchy (Gollo et al., 2017; Pang et al., 2021), we modified the last term of Equation 
3 as follows:

 
xi = wJSi + GJ

∑
j

AijSj + Ii,
  

(20)

 
Ii = Imax −

(
Imax − Imin

)( rank
(
si
)
− 1

N − 1

)
,
  

(21)

where  Imax = 0.33  nA,  Imin = 0.28  nA,  si =
∑

j Aij  is the total connection strength of region  i , and  N   is 
the total number of regions. The resulting excitatory input of regions in human and chimpanzee brains 
are shown in Figure 3—figure supplement 6A. We then repeated the analysis in Figure 3 to produce 
Figure 3—figure supplement 6B,C. Note that the values of  Imax  and  Imin  were chosen to match the 
spread of estimated excitatory inputs found in Wang et al., 2019. However, we verified that using 
other values of  Imax  and  Imin  did not change the results of the study.
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