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Abstract Allostery enables dynamic control of protein function. A paradigmatic example is the 
tightly orchestrated process of DNA methylation maintenance. Despite the fundamental importance 
of allosteric sites, their identification remains highly challenging. Here, we perform CRISPR scanning 
on the essential maintenance methylation machinery—DNMT1 and its partner UHRF1—with the 
activity-based inhibitor decitabine to uncover allosteric mechanisms regulating DNMT1. In contrast 
to non-covalent DNMT1 inhibition, activity-based selection implicates numerous regions outside 
the catalytic domain in DNMT1 function. Through computational analyses, we identify putative 
mutational hotspots in DNMT1 distal from the active site that encompass mutations spanning a 
multi-domain autoinhibitory interface and the uncharacterized BAH2 domain. We biochemically 
characterize these mutations as gain-of-function, exhibiting increased DNMT1 activity. Extrapolating 
our analysis to UHRF1, we discern putative gain-of-function mutations in multiple domains, including 
key residues across the autoinhibitory TTD–PBR interface. Collectively, our study highlights the utility 
of activity-based CRISPR scanning for nominating candidate allosteric sites, and more broadly, intro-
duces new analytical tools that further refine the CRISPR scanning framework.

Editor's evaluation
This manuscript describes the use of genome editing screens to identify mechanisms underlying 
resistance to the hypomethylating anti-cancer agent decitabine, an activity-based inhibitor of 
the DNA methyltransferase DNMT1. A specific focus is given to the development of tools and 
approaches to identify allosteric mechanisms of resistance that emerge, including those that appear 
to act as gain-of-function mutations in DNMT1 and its interacting partner UHRF1. These findings 
showcase the power of large-scale genome editing for uncovering novel resistance mechanisms and 
investigating protein allostery.

Introduction
Allostery is a fundamental property that enables proteins to translate the effect of a stimulus at one 
site to modulate function at another distal site. Despite intense study, the identification of allosteric 
sites across diverse protein targets remains challenging and highly contextual. Unlike orthosteric sites, 
allosteric sites are often less conserved between related proteins and the principles governing their 
structural features and properties are not as well understood (Garlick and Mapp, 2020; Nussinov 
et al., 2011). Due to these challenges, fewer experimental and computational approaches exist to 
identify and characterize allosteric sites (Lu et al., 2014). Nevertheless, there have been significant 
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efforts to develop small molecule allosteric modulators, as the structural diversity of allosteric sites 
offers the potential for greater selectivity, lower toxicity, and fine-tuning of protein function compared 
to orthosteric ligands (Garlick and Mapp, 2020; Nussinov et al., 2011). Therefore, the development 
of new tools that enable the identification of allosteric mechanisms would further our understanding 
of protein regulation and facilitate drug discovery.

Leveraging pharmacological and genetic perturbations in tandem has been widely successful for 
target deconvolution and elucidating drug mechanism of action (Schenone et al., 2013). In partic-
ular, the identification of drug resistance-conferring mutations provides critical validation of on-target 
engagement and can often illuminate underlying biology (Freedy and Liau, 2021). Although many 
resistance mutations occur proximally to the drug-binding site, they can also arise at distal positions 
of a target protein and operate by perturbing allosteric mechanisms (Azam et al., 2003; Ragland 
et al., 2014; Henes et al., 2019). For example, resistance mutations to ABL1 inhibitors, including 
both orthosteric and allosteric inhibitors, consistently arise outside the drug-binding site and drive 
resistance by destabilizing the inactive conformation or otherwise neutralizing ABL1 autoinhibition 
(Azam et al., 2003; Adrián et al., 2006; Sherbenou et al., 2010; Lee and Shah, 2017; Xie et al., 
2020). Such findings raise the prospect that identifying distal drug resistance mutations, either in the 
direct target or in interacting partners, can be exploited to systematically discover and characterize 
allosteric mechanisms.

Recently, we and others have used CRISPR–Cas9 tiling mutagenesis screens to uncover modes 
of small molecule action by identifying drug resistance mutations (Neggers et al., 2018; Donovan 
et al., 2017; Vinyard et al., 2019; Gosavi et al., 2022; Kwok et al., 2022). In our approach, termed 
CRISPR-suppressor scanning, Cas9 is used to systematically mutate a target protein with a pooled 
library of single-guide RNAs (sgRNAs) spanning its entire coding sequence (CDS) to generate large 
numbers of diverse protein variants in situ (Ngan et al., 2022). This surviving cellular pool is then 
treated with small molecule inhibitors to identify variants conferring drug resistance. Because resis-
tance mutations can occur beyond the drug-binding site, we posited that such mutations might 
operate by disrupting interactions involved in allosteric regulation of protein function (Vinyard et al., 
2019; Gosavi et  al., 2022; Kwok et  al., 2022). However, such distal mutations, which generally 
exhibit partial resistance phenotypes, are often overshadowed by the enrichment of drug-binding-
disrupting mutations that confer complete rescue to the drug. Consequently, we considered whether 
the use of an activity-based inhibitor that closely resembles the target protein’s native substrate might 
disfavor the formation of binding site mutations and could therefore be exploited to preferentially 
identify distal resistance mutations and potential allosteric mechanisms.

Results
Activity-based CRISPR scanning nominates distal allosteric sites of 
DNMT1 and UHRF1
Novel approaches to study allostery are particularly attractive for chromatin-modifying enzymes, 
whose activities are strictly regulated for proper gene expression. A paradigmatic example is the 
establishment and maintenance of DNA methylation by DNA methyltransferases (DNMTs). Canoni-
cally, DNMT1 performs maintenance methylation, ensuring faithful propagation of the methylation 
landscape (Smith and Meissner, 2013). Accordingly, DNMT1 activity is tightly controlled to prevent 
aberrant methylation (Song et al., 2011; Takeshita et al., 2011; Song et al., 2012; Zhang et al., 
2015; Ren et al., 2018). While structural and biochemical studies have uncovered important mech-
anistic details underlying DNMT1 regulation, in vitro studies cannot recapitulate the complexities of 
the cellular environment and dependence on cofactors such as UHRF1 for DNA methylation in vivo 
(Bestor and Ingram, 1983; Fatemi et al., 2001; Vilkaitis et al., 2005; Sharif et al., 2007; Bostick 
et al., 2007). These discrepancies highlight outstanding gaps in our understanding of DNMT1 regu-
lation and underscore the importance of investigating allosteric regulatory mechanisms within their 
endogenous context.

We reasoned that CRISPR-suppressor scanning of DNMT1 and UHRF1 with the activity-based 
inhibitor decitabine (DAC) could uncover mechanisms of DNMT1 allosteric regulation. DAC is a clini-
cally approved DNA hypomethylating agent that acts through mechanism-based inhibition of DNMTs 
(Christman, 2002; Jabbour et al., 2008). DAC is a near-identical analog of deoxycytidine—differing 
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only by two atoms—that is incorporated into genomic DNA during replication. When DNMT1 meth-
ylates DAC on the nascent strand, DAC’s unique structure prevents DNMT1 release, forming covalent 
DNMT1–DNA adducts that drive DNMT1 degradation and subsequent global DNA hypomethylation 
(Figure 1a, Figure 1—figure supplement 1a, b). At higher DAC doses, these adducts cause acute 
cytotoxicity independent of hypomethylation (Tsai et  al., 2012). Consistent with this mechanism, 
previous work has shown that reducing DNMT1 protein levels alleviates DAC-induced cytotoxicity by 
decreasing DNMT1–DNA crosslinks (Jüttermann et al., 1994). Because maintenance methylation is 
an essential process, we reasoned that mutations in DNMT1 arising in response to DAC treatment 
would be subject to the following constraints: (1) active site mutations disrupting DAC binding but 
not substrate recognition are highly unlikely due to its near-identical resemblance to DNMT1’s native 
substrate, deoxycytidine; (2) loss-of-function (LOF) mutations alleviating adduct-induced cytotoxicity 
by reducing DNMT1 copy number may incur fitness penalties from defects in maintenance meth-
ylation. Consequently, such LOF mutations may accompany hypermorphic gain-of-function (GOF) 
mutations that compensate for reduced DNMT1 protein levels. In light of these considerations, we 
hypothesized that DAC’s mechanistic requirements could be exploited as an activity-based selection 
to preferentially enrich for distal GOF mutations that alter DNMT1 allostery and enhance its activity.

We performed CRISPR scanning in K562 cells using a pooled sgRNA library targeting the DNMT1 
and UHRF1 coding sequences (Figure 1b). After lentiviral transduction of Cas9 and the sgRNA library, 
the cellular pool was split and treated with vehicle (dimethyl sulfoxide; DMSO) or DAC for 8 weeks. 
We collected genomic DNA from the surviving cells and performed targeted amplicon sequencing of 
the sgRNA cassette to quantify sgRNA frequencies. We then normalized sgRNA frequencies to their 
initial frequencies in the library and calculated ‘resistance scores’ by comparing relative sgRNA abun-
dance in DAC versus vehicle treatment (Figure 1c, d, Supplementary file 1).

We observed the enrichment of numerous sgRNAs after prolonged DAC treatment, consistent 
with the emergence and expansion of drug-resistant populations. As expected, the majority of these 
enriched sgRNAs targeted DNMT1 versus UHRF1 (Figure 1c, d). Many top enriched DNMT1 sgRNAs 
targeted N-terminal regulatory domains (e.g., RFTS, CXXC, and BAH2), supporting the notion that 
resistance mutations may arise in regions distal from the active site (Figure  1c). Indeed, the top 
enriched sgRNA in the screen, sgD702, targeted the CXXC–BAH1 linker region. Moreover, we also 
detected enriched sgRNAs targeting the UBL, TTD, and SRA domains of UHRF1, suggesting that 
mutations beyond the direct drug target may also confer a selective advantage to DAC (Figure 1d).

While our activity-based CRISPR scanning approach using DAC enriched for many sgRNAs 
targeting regions outside the catalytic domain of DNMT1, we have previously shown that revers-
ible inhibitors can also select for sgRNAs targeting regions distal to their binding sites; however, 
the enrichment of such sgRNAs is generally overshadowed by those targeting the drug-binding site 
(Vinyard et al., 2019; Gosavi et al., 2022; Kwok et al., 2022). Therefore, to more accurately assess 
whether the use of an activity-based inhibitor such as DAC can predispose a CRISPR scanning experi-
ment toward the enrichment of distal sgRNAs, we conducted CRISPR-suppressor scanning of DNMT1 
and UHRF1 using the non-covalent, reversible DNMT1 inhibitor GSK3484862 (Pappalardi et  al., 
2021) (GSKi, Figure  1—figure supplement 1d) to enable a head-to-head comparison of sgRNA 
enrichment profiles between activity-based and reversible inhibitors (Figure 1e, f). Whereas the top 
enriched sgRNA under DAC treatment targeted DNMT1 residue D702 in the CXXC–BAH1 linker 
(Figure 1c), the top enriched sgRNA under GSKi treatment targeted DNMT1 residue H1507, located 
in the target recognition domain (TRD), a subregion of the DNMT1 catalytic domain (Figure 1e, h, 
Figure  1—figure supplement 1e). Notably, previous work has demonstrated that H1507 directly 
interacts with and contributes to the binding of the structurally related GSKi derivatives GSK3685032 
and GSK3830052 (Figure 1h, Figure 1—figure supplement 1e), with the H1507Y mutation reducing 
GSK3685032 inhibition of DNMT1 by >350-fold compared to wild-type DNMT1 (Pappalardi et al., 
2021). Further comparison of sgRNA resistance scores across DAC and GSKi treatment conditions 
revealed highly distinct sgRNA enrichment profiles, with no sgRNAs labeled as hits in both conditions 
(Figure 1g). Taken together, our data support the notion that activity-based and reversible inhibitors 
may exert differential selective pressures that lead to unique enrichment profiles.

As sgRNAs enriched under DAC treatment targeted diverse regions spanning DNMT1, we next 
considered whether their enrichment might indicate mutational hotspots. First, we investigated 
whether DNMT1-targeting sgRNAs exhibited any linear clustering, defined as contiguous amino acid 
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Figure 1. Activity-based CRISPR scanning of DNMT1 and UHRF1. (a) Schematic showing surface representations of the autoinhibited (PDB: 4WXX) 
and active (PDB: 4DA4) conformations of DNMT1 and DNMT1-mediated methylation of cytosine and decitabine (DAC). Methylation of DAC leads 
to the formation of a covalent DNMT1–DNA adduct and subsequent proteasomal degradation. SAM, S-adenosyl-l-methionine. (b) Schematic of the 
activity-based CRISPR scanning workflow. K562 cells were transduced with a pooled single-guide RNA (sgRNA) library targeting both DNMT1 and 
UHRF1 and treated with vehicle or DAC for 8 weeks. DAC treatment was performed at 100 nM for 5 weeks, followed by 1 μM for 3 weeks. For CRISPR-
suppressor scanning experiments using GSK3484862 (GSKi), cells were treated with vehicle or GSKi for 6 weeks. GSKi treatment was performed at 1 
μM for 3 weeks, followed by 5 μM for 3 weeks. Genomic DNA was isolated from vehicle- and drug-treated cells and sequenced to determine sgRNA 
abundance. Scatter plots showing resistance scores (y-axis) for sgRNAs targeting DNMT1 (c, e, n = 830) and UHRF1 (d, f, n = 475) in K562 cells after 8 
weeks of DAC treatment (c, d) or 6 weeks of GSK3484862 (GSKi) treatment (e, f). Resistance scores were calculated as the log2(fold-change) of sgRNA 
frequencies in drug versus vehicle treatment, followed by normalization to the mean of the negative control sgRNAs (n = 77). The sgRNAs are arrayed 
by amino acid position in the DNMT1 and UHRF1 coding sequences (x-axis) corresponding to the positions of their predicted cut sites. Protein domains 
are demarcated by the colored bars along the x-axis. The yellow bands in (c) and (e) demarcate the position of the catalytic cysteine (C1226) in the 
DNMT1 active site. Data points represent the mean resistance score across three replicate treatments. Enriched sgRNAs with resistance scores greater 
than 2 standard deviations (SDs) above the mean of the negative control sgRNAs are colored by their corresponding domain. (g) Scatter plot showing 
resistance scores of DNMT1- and UHRF1-targeting sgRNAs after 8 weeks of DAC treatment (x-axis) or 6 weeks of GSKi treatment (y-axis). Dotted lines 
represent two SDs above the mean of the negative control sgRNAs. sgRNAs that are enriched in DAC or GSKi treatment are colored in red and blue, 
respectively. (h) Structural view of DNMT1 complexed to DNA (yellow) with GSK3830052 (orange), a structural analog of GSK3484862, highlighting the 
location of H1507 (spheres) in the catalytic domain (purple), which is targeted by the top enriched sgRNA in the GSKi screen (PDB: 6X9J).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Activity-based CRISPR scanning of DNMT1 and UHRF1.

Figure supplement 1—source data 1. Raw unedited blot image for the blot shown in Figure 1—figure supplement 1B.

Figure supplement 1—source data 2. Annotated unedited blot image for the blot shown in Figure 1—figure supplement 1B.

https://doi.org/10.7554/eLife.80640
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intervals displaying greater enrichment than expected by chance. In brief, we used LOESS regression 
(Schoonenberg et al., 2018; Sher et al., 2019) to estimate per-residue resistance scores from sgRNA 
resistance scores and compared them to a simulated distribution generated by shuffling sgRNA resis-
tance scores (Figure 2a, see Methods). We identified three linear clusters of enriched residues in 
DNMT1, spanning amino acids (aa) 119–147 in the N-terminus, aa518–571 in the RFTS, and aa652–
701 in the CXXC and linker regions (Figure 2b, c).

Notably, aa518–571 reside in the C-terminal lobe of the RFTS that interfaces with the catalytic 
domain and aa652–701 span most of the CXXC and part of the CXXC–BAH1 linker, both of which 
are implicated in DNMT1 autoinhibition (Figure 2c; Song et al., 2011; Takeshita et al., 2011; Zhang 
et al., 2015). Finally, aa119–147 reside within the disordered N-terminus, which remains structurally 
unresolved and poorly characterized.

Functional protein regions can comprise spatially proximal residues that are distal on the linear 
CDS. Spatial clustering of cancer mutations at such regions is often used as evidence of protein func-
tion or positive selection (Kamburov et al., 2015; Martínez-Jiménez et al., 2020). Therefore, we 
next considered whether sgRNA enrichment patterns might emerge in 3D space that are not readily 
observed on the linear CDS. To assess 3D sgRNA clustering, we refined and applied a structure-
guided clustering methodology that we previously adapted (Vinyard et al., 2019; Kamburov et al., 
2015). In brief, we calculated proximity-weighted enrichment scores (PWES) for all pairwise combina-
tions of resolved sgRNAs using (1) their resistance scores and (2) the Euclidean distance between their 
targeted residues. Then, we performed hierarchical clustering on the resultant PWES matrix to define 
clusters of spatially proximal sgRNAs with similar PWES profiles (Figure 2d, see Methods).

For 3D sgRNA clustering, we used the structure of autoinhibited human DNMT1351–1600 (PDB: 
4WXX) (Zhang et al., 2015). This structure resolves the greatest number of residues and is the only 
human DNMT1 structure that includes the RFTS domain, which is involved in DNMT1 autoinhibition 
and implicated in our 1D clustering analysis (Figure 2b). We calculated PWES profiles for the 646 
sgRNAs targeting resolved DNMT1 residues and performed hierarchical clustering, identifying 19 
clusters of sgRNAs with varying mean resistance scores (Figure 2e–g, Figure 2—figure supple-
ment 1a, b). The top enriched cluster, cluster 1, comprised many sgRNAs targeting the same inter-
vals in the RFTS, CXXC, and linker regions previously found in our 1D clustering analysis (Figure 2b, 
f). Strikingly, these enriched cluster 1 residues span a multi-domain contact interface that is crit-
ical for mediating DNMT1 autoinhibition, suggesting that the prior linear clusters correspond to a 
singular 3D hotspot (Figure 2c, f; Song et al., 2011; Takeshita et al., 2011; Zhang et al., 2015). 
By contrast, the second-most enriched cluster, cluster 2, mainly comprised sgRNAs targeting a 
region of the catalytic domain, with two additional sgRNAs targeting the BAH2 domain (Figure 2c, 
f). Taken together, our findings suggest that enriched sgRNAs may target regions of DNMT1 that 
regulate its activity.

Cluster 1 mutations in the RFTS, CXXC, and linker regions enhance 
DNMT1 activity
We next investigated cluster 1 in further detail due to its consistent enrichment across our analyses. 
In particular, we considered (1) the overall composition and frequency of mutations found in cluster 
1 sgRNAs and (2) their functional consequences at the protein level. To assess the underlying muta-
tional outcomes, we individually transduced K562 cells with eight enriched cluster 1 sgRNAs targeting 
distinct DNMT1 regions distally positioned on the CDS (Figure 3a). Transduced cells were treated 
with vehicle or DAC for 8 weeks and genotyped. Raw sequencing data were processed and aligned 
with CRISPResso2 (Clement et al., 2019) to identify DNA variants and quantify their frequencies. We 
then characterized variants and their impact at the protein level with a custom pipeline (Figure 3—
figure supplement 1a, see Methods). Briefly, each DNA variant was classified by the size, location, 
and sequence context of its mutation, and those classified as in-frame were realigned, trimmed, and 
translated. For downstream analyses, variants were classified into three major categories: wild-type, 
in-frame, and loss-of-function. Coding variants retaining the reference protein sequence (e.g., uned-
ited, silent mutations) were considered wild-type. Coding mutations that maintain the reading frame, 
excluding nonsense and wild-type alleles, were classified as in-frame. Variants predicted to encode 
a non-functional protein product were classified as loss-of-function (i.e., frameshift, nonsense, splice 
site mutations).

https://doi.org/10.7554/eLife.80640
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Figure 2. Linear and spatial clustering of CRISPR scanning data identifies putative hotspots in DNMT1 that modulate enzyme activity. (a) Overview of 
the linear clustering workflow. LOESS regression and interpolation are applied to the single-guide RNA (sgRNA) resistance scores to estimate per-
residue resistance scores for the entire protein coding sequence. sgRNA scores are then shuffled (n = 10,000 iterations) and per-residue resistance 
scores are recalculated to simulate a null model of random enrichment. Empirical P values for each amino acid are determined by comparing the 
observed score to the simulated distribution and adjusted with the Benjamini–Hochberg procedure. Linear clusters are defined as contiguous intervals 
of amino acids with adjusted P values ≤0.05. (b) Line plot showing −log10-transformed adjusted P values for the observed per-residue resistance scores 
(y-axis) plotted against the DNMT1 CDS (x-axis). DNMT1 domains are demarcated by the colored background and bars along the x-axis. The dotted 

Figure 2 continued on next page
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We observed a dramatic enrichment of in-frame mutations and concomitant depletion of the wild-
type allele under DAC treatment for most cluster 1 sgRNAs (Figure 3b, c), supporting the notion that 
in-frame mutations in cluster 1 confer a fitness advantage to cells under DAC treatment. We next 
considered whether cluster 1 in-frame variants disrupt critical interactions that mediate DNMT1 auto-
inhibition. To explore this possibility, we identified the top enriched in-frame variants across cluster 
1 sgRNAs, excluding sgT1503 and sgG1504/N1505 due to their lack of enriched in-frame variants 
(Figure  3d–f, Supplementary file 2). Overall, enriched in-frame variants were primarily deletions 
ranging from −2 to −8 aa (Figure  3—figure supplement 1b, c). We first examined sgD702 as it 
exhibited an abundance of in-frame mutations (>70% in DAC and >50% in vehicle) and significant 
depletion of the wild-type allele (1.2% in DAC versus 26.4% in vehicle). Enriched in-frame mutations in 
sgD702 likely disrupt an α-helix in the linker, which includes a stretch of acidic residues (D700–E703) 
that contact the RFTS and catalytic domains to promote autoinhibition (Song et al., 2011; Takeshita 
et al., 2011; Zhang et al., 2015; Figure 3f). In fact, one of the top enriched in-frame variants, M694_
D701del, was identical to a previously characterized overactive DNMT1 mutant (Zhang et al., 2015).

Prompted by these observations, we sought to determine whether other enriched cluster 1 variants 
also structurally disrupt DNMT1 autoinhibition. Indeed, many of the top enriched variants perturbed 
key residues that mediate inter-domain contacts. For example, enriched in-frame mutations in the 
CXXC domain generated by sgR652 deleted up to 8 aa spanning F648–C656. This region contacts the 
linker (Figure 3f, right panel) and includes a conserved patch of basic residues (K649–R652) that when 
mutated has been shown to increase DNMT1 activity (Bashtrykov et al., 2012). Similarly, observed 
mutations in the RFTS domain also perturbed residues spanning three discrete intervals across this 
interface (D526–E532, L542–A554, and M581–L592), despite their distance on the CDS. These inter-
vals encompass α-helices that make extensive polar contacts with the linker and catalytic domains 
(vide infra). For sgI531, enriched in-frame variants likely compromise polar contacts with residues in 
the TRD, formed by the side chains of E525, D526, and E532 (Figure 3e, left panel).

Likewise, in-frame variants enriched in sgF545, sgT546, and sgI585 also presumably disrupt similar 
interactions with the TRD (E547, D548, and D583) and the CXXC–BAH1 linker (R582 and K586) 
(Figure 3e, f). Supporting these results, prior biochemical studies have demonstrated that DNMT1 
mutations at analogous or proximal positions exhibit increased methyltransferase activity compared 
to wild-type DNMT1 (Zhang et  al., 2015; Bashtrykov et  al., 2012; Bashtrykov et  al., 2014b; 
Berkyurek et al., 2014; Dolen et al., 2019). Taken together, our findings strongly suggest that cluster 
1 sgRNAs may confer a selective advantage to DAC by generating gain-of-function mutations that 
relieve DNMT1 autoinhibition and enhance its enzymatic activity.

To confirm whether these in-frame mutations indeed enhance DNMT1 activity, we biochemi-
cally characterized a subset of enriched cluster 1 mutations in the RFTS, CXXC, and linker regions, 

line corresponds to P = 0.05 and residues with P ≤ 0.05 are highlighted in red with linear clusters annotated. (c) Structural views of autoinhibited 
DNMT1 (PDB: 4WXX) highlighting its domains (left panel), the linear clusters (middle panel) spanning aa518–571 (red spheres) and aa652–701 (blue 
spheres), and the 3D clusters (right panel) 1 (red spheres) and 2 (blue spheres). The linear cluster spanning aa119–147 is not resolved in the structure. 
The DNMT1 active site is denoted (yellow circle) in the left panel. (d) Overview of the 3D clustering workflow. Normalized pairwise resistance scores 
for sgRNAs are calculated and then scaled relative to the Euclidean distance between their targeted residues in the structural data to generate the 
final proximity-weighted enrichment score (PWES) for all possible pairwise sgRNA combinations. Each row or column in the resultant PWES matrix thus 
represents a vector of PWES values for a single sgRNA against all other sgRNAs targeting resolved residues. Hierarchical clustering is applied to the 
PWES matrix to group sgRNAs by similarities in their overall PWES profiles. (e) Heatmap depicting the PWES matrix of all pairwise combinations of 
sgRNAs (n = 646) targeting resolved residues in the structure of autoinhibited DNMT1 (PDB: 4WXX). sgRNAs are grouped by cluster, with black lines 
demarcating each cluster on the heatmap. Cluster 1 sgRNAs (n = 29) and cluster 2 sgRNAs (n = 16) are highlighted in red and blue, respectively. (f) 
Scatter plot showing the targeted amino acid positions of the DNMT1-targeting sgRNAs used in the 3D clustering analysis. sgRNAs are grouped by 3D 
cluster (y-axis) derived from (e) and plotted against the DNMT1 CDS (x-axis). Clusters are numbered by the mean resistance score of their component 
sgRNAs, with cluster 1 representing the greatest mean resistance score. Clusters 1 and 2 are highlighted in red and blue, respectively. Amino acid 
intervals corresponding to the linear clusters in (b) are highlighted in yellow. (g) Box plot showing the sgRNA resistance scores (x-axis) for each of the 3D 
clusters (y-axis, left) derived from (e, f). The number of sgRNAs per cluster is shown on the y-axis (right) and individual sgRNAs within each cluster are 
shown as points. Clusters 1 and 2 are highlighted in red and blue, respectively. The central band, box boundaries, and whiskers represent the median, 
interquartile range (IQR), and 1.5 × IQR, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Linear and spatial clustering of CRISPR scanning data identifies putative hotspots in DNMT1 that modulate enzyme activity.

Figure 2 continued

https://doi.org/10.7554/eLife.80640
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Figure 3. Cluster 1 single-guide RNAs (sgRNAs) generate hypermorphic DNMT1 mutations in the RFTS, CXXC, and linker regions that abrogate 
autoinhibition. (a) Schematic showing the amino acid positions on the DNMT1 CDS targeted by selected cluster 1 sgRNAs (n = 8). (b) Box plots showing 
the observed frequencies (percentage of total reads, y-axis) of wild-type, in-frame, and loss-of-function alleles (x-axis) after 8 weeks of treatment with 
vehicle (gray) or 100 nM decitabine (DAC, red) for the cluster 1 sgRNAs shown in (a). Individual sgRNAs are shown as points. The central band, box 
boundaries, and whiskers represent the median, interquartile range (IQR), and 1.5 × IQR, respectively. (c) Stacked bar plot showing the observed 
frequencies (percentage of total reads, y-axis) of wild-type, in-frame, and loss-of-function alleles for selected cluster 1 sgRNAs (x-axis) after 8 weeks of 
treatment with vehicle or 100 nM DAC. (d) Table showing the amino acid sequence alignment and observed frequencies (percentage of total reads) 
of the wild-type and top enriched in-frame variants across cluster 1 sgRNAs after 8 weeks of treatment with vehicle or 100 nM DAC. In-frame variants 
were considered enriched if the observed frequency in DAC treatment was ≥1% and the log2(fold-change) of the observed frequency in DAC versus 
vehicle treatment was ≥2. Enriched in-frame variants meeting these criteria were sorted by their observed frequency in DAC treatment and the top 

Figure 3 continued on next page
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including the previously validated overactive M694_D701del mutation (Figure  3d). We purified 
recombinant wild-type and mutant DNMT1351–1616 constructs and evaluated their enzymatic activity 
(Dolen et  al., 2019; Hsiao et  al., 2016). Corroborating our structural predictions, these mutants 
exhibited 1.7- to 5.8-fold increased activity compared to wild-type DNMT1351–1616 (Figure 3g). To gain 
further insight into the increased activity of cluster 1 mutants, we evaluated their methyltransferase 
activity at multiple temperatures (Figure 3h). Whereas the autoinhibitory linker mutants were consis-
tently more active than wild-type DNMT1, the RFTS and CXXC mutants exhibited a temperature-
dependent decrease in relative activity compared to wild-type DNMT1. RFTS and CXXC mutants were 
three- to sixfold more active than wild-type at 23°C but exhibited comparable activity to wild-type 
at 37°C, apart from I585_L587del. Our results are in accordance with previous biochemical studies 
reporting similar temperature-dependent decreases in the relative activity of RFTS mutants compared 
to wild-type DNMT1 (Berkyurek et al., 2014), supporting a model where disruption of key contacts 
at the DNMT1 autoinhibitory interface lowers the activation energy barrier required to release the 
RFTS from the catalytic center. However, we cannot rule out the possibility of alternative mechanisms 
for the observed temperature-dependent trend in relative activity, such as reduced stability of the 
RFTS mutants (vide infra). Interestingly, the observed hyperactivity of the autoinhibitory linker mutants 
across increasing temperatures suggests these mutations may disrupt DNMT1 autoinhibition through 
distinct biochemical mechanisms.

As reducing DNMT1 protein levels attenuates DNMT1–DNA adduct-induced cytotoxicity, we next 
considered whether cluster 1 mutations influence DNMT1 protein abundance and/or DAC-induced 
depletion of DNMT1 (Patel et al., 2010). To address these questions, we evaluated cellular DNMT1 
levels with a fluorescent reporter system (Sievers et al., 2018; Słabicki et al., 2020) in which full-
length DNMT1 is fused to an EGFP–IRES–mCherry cassette. EGFP acts as a proxy for DNMT1 protein 
levels while mCherry serves as an internal standard, accounting for cell-to-cell variation in reporter 
integrations, expression, or homeostasis. We transduced K562 cells with reporter DNMT1 constructs 
encoding wild-type and mutant DNMT1 and assessed EGFP/mCherry fluorescence ratios after 3 days 
of treatment with vehicle or DAC (Figure  3—figure supplement 1d–f). Under vehicle treatment, 
EGFP/mCherry ratios for the CXXC and linker mutants were comparable to wild-type DNMT1, whereas 
RFTS mutants displayed significantly lower EGFP/mCherry ratios, suggesting that RFTS mutations 

3 most abundant are shown. sgT1503 and sgG1504/N1505 were excluded due to the lack of enriched in-frame variants. Amino acid deletions are 
represented as red dashes and substitutions are highlighted in blue. Red ellipses are used to denote amino acid deletions that exceed the length of 
the shown sequence alignment. (e, f) Structural views of various regions of the DNMT1 autoinhibitory interface (PDB: 4WXX) perturbed by enriched 
in-frame variants (from d) generated by cluster 1 sgRNAs. The panels highlight key inter-domain interactions disrupted by sgI531 (e, left), sgF545/
sgT546 (e, right), and sgI585/sgR652/sgD702 (f). Key residues in the RFTS (red), CXXC (blue), linker (green), and catalytic (purple) domains that mediate 
polar contacts are shown as sticks. Hydrogen bonds are represented by dotted yellow lines and water molecules are depicted as gray spheres. (g) 
Bar plot showing recombinant DNMT1 enzyme activity (luminescence, y-axis) for wild-type DNMT1 and selected cluster 1 variants (from d, x-axis) in 
the luminescence-based MTase-Glo assay. Wild-type is depicted in gray and variants are colored according to the domain in which the mutation is 
located. The dotted line represents the mean luminescence of the wild-type DNMT1 construct. (h) Bar plot showing the relative enzyme activity (y-
axis) of recombinant DNMT1 constructs (x-axis) in the MTase-Glo assay at the indicated temperatures. Relative enzyme activity was calculated as the 
fold-change in luminescence for the given construct relative to the wild-type construct at the specified temperature. The dotted line represents the 
mean activity of the wild-type construct. (i) Bar plot showing the relative cellular proliferation (y-axis) of wild-type and clonal DNMT1-mutated K562 cells 
(x-axis) treated with vehicle or DAC for 7 days. Relative cellular proliferation was calculated as the percent growth relative to vehicle treatment. (j) Bar 
plot showing the relative cellular proliferation (y-axis) of K562 cells treated with vehicle or DAC for 7 days following lentiviral transduction with vectors 
expressing a short hairpin RNA targeting endogenous DNMT1 transcripts and the specified DNMT1 construct (x-axis). Relative cellular proliferation was 
calculated as the percent growth relative to vehicle treatment. For bar plots in (g–j), bars represent the mean ± standard error of the mean (SEM) across 
three replicates and one of two independent experiments is shown.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Cluster 1 single-guide RNAs (sgRNAs) generate hypermorphic DNMT1 mutations in the RFTS, CXXC, and linker regions that 
abrogate autoinhibition.

Figure supplement 1—source data 1. Raw unedited blot image for the blot shown in Figure 3—figure supplement 1H.

Figure supplement 1—source data 2. Annotated unedited blot image for the blot shown in Figure 3—figure supplement 1H.

Figure supplement 1—source data 3. Raw unedited blot image for the blot shown in Figure 3—figure supplement 1I.

Figure supplement 1—source data 4. Annotated unedited blot image for the blot shown in Figure 3—figure supplement 1I.

Figure 3 continued
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may destabilize the protein (Figure 3—figure supplement 1d). While we note, however, that the use 
of EGFP fusion constructs may confound precise measurements of DNMT1 stability due to the long 
half-life of EGFP, our results are consistent with previous studies of clinical DNMT1 hotspot mutations 
found in hereditary sensory and autonomic neuropathy type 1E (HSAN1E) and autosomal dominant 
cerebellar ataxia, deafness, and narcolepsy (ADCA-DN) patients, demonstrating that mutations in the 
RFTS domain destabilize DNMT1 (Klein et al., 2011; Winkelmann et al., 2012; Smets et al., 2017). 
Upon treatment with DAC, cluster 1 mutants were degraded at similar levels as wild-type DNMT1, 
suggesting that these mutations are unlikely to confer a selective advantage through resistance to 
degradation (Figure 3—figure supplement 1e).

As an orthogonal means of validation and characterization, we isolated two clonal cell lines from the 
activity-based CRISPR scanning experiment containing endogenous DNMT1 mutations (Figure 3—
figure supplement 1g). Clone A08 contains an autoinhibitory linker mutation (A695_E698del) and 
clone D01 harbors heterozygous RFTS mutations (R544_D548del; F545_D548delinsL), one of which 
we note is identical to one of our selected cluster 1 mutations (Figure 3d, Figure 3—figure supple-
ment 1g). We observed a partial growth rescue in both clones compared to wild-type K562 in the 
presence of DAC (Figure 3i), supporting the notion that mutations perturbing DNMT1 autoinhibition 
confer resistance. In agreement with our fluorescent reporter results, we observed DAC-mediated 
degradation of DNMT1 in both clones, suggesting that these mutations are unlikely operate through 
resistance to degradation (Figure 3—figure supplement 1h).

To ensure that the observed resistance in the clonal lines was not driven by clone-specific prop-
erties independent of their DNMT1 mutations, we generated K562 cell lines expressing wild-type 
DNMT1 or the individual clone-derived mutants. Simultaneously, we selectively knocked down 
endogenous DNMT1 by transducing a short hairpin RNA (shRNA) targeting the 3′ untranslated region 
(UTR) of DNMT1 (Figure 3—figure supplement 1i). Consistent with our data from the clonal lines, 
cells expressing the autoinhibitory linker and RFTS mutants all exhibited partial resistance to DAC 
compared those expressing the wild-type DNMT1 construct (Figure 3j). Altogether, our results collec-
tively support a model in which cluster 1 mutations confer partial resistance to DAC and operate 
primarily by disrupting DNMT1 autoinhibition to enhance enzymatic activity.

Integrative analysis reveals distinct mutational profiles between cluster 
1 and 2 sgRNAs
As our approach accurately identified a validated mechanism of DNMT1 autoinhibition, we next inves-
tigated how cluster 2 sgRNAs operate. We evaluated mutational outcomes generated by 10 of the 
top enriched cluster 2 sgRNAs targeting the BAH2 and catalytic domains (Figure 4a, Supplementary 
file 2). Like before, K562 cells were individually transduced, treated with vehicle or DAC for 8 weeks, 
and genotyped. Notably, observed mutational outcomes were highly dissimilar between cluster 1 and 
2 sgRNAs. Overall, cluster 2 sgRNAs exhibited preferential enrichment of the wild-type allele and loss-
of-function variants with concomitant depletion of in-frame variants, in stark contrast to the substan-
tial enrichment of in-frame mutations seen in cluster 1 sgRNAs (Figure 4b). Notably, the enrichment 
patterns of cluster 1 sgRNAs targeting the catalytic domain (sgT1503 and sgG1504/N1505) resem-
bled those of cluster 2 sgRNAs (Figure 3c). Based on these observations, we considered whether the 
prominent differences in their mutational profiles might (1) enable us to classify individual sgRNAs by 
the features of their mutational profiles and (2) indicate that clusters 1 and 2 operate through distinct 
mechanisms.

Subsequently, we first explored whether we could distinguish individual sgRNAs through char-
acteristics of their mutational profiles. In addition to sgRNA resistance scores, we included metrics 
such as the absolute frequencies (percentage of total reads) of wild-type and in-frame alleles and 
the relative frequency (percentage of edited reads) of in-frame alleles. Because mutational outcomes 
across sgRNAs can be highly complex, we also included additional features to represent the similarity 
and diversity of mutational outcomes. To assess mutational profile similarity in vehicle versus DAC 
treatment, we calculated the Pearson correlation of observed allele frequencies and the symmetric 
Kullback–Leibler (KL) divergence, which quantifies the similarity of two probability distributions with 
greater values indicating greater dissimilarity. To measure mutational diversity under DAC treatment, 
we calculated the Gini coefficient, a statistical measure of dispersion, with respect to all alleles and 
edited alleles. Finally, to capture the directionality of change across treatments, we calculated the 
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Figure 4. Integrative analysis reveals distinct mutational profiles between cluster 1 and 2 single-guide RNAs (sgRNAs). (a) Schematic showing the amino 
acid positions on the DNMT1 CDS targeted by selected cluster 2 sgRNAs (n = 10). (b) Box plots showing the observed frequencies (y-axis) of wild-type, 
in-frame, and loss-of-function (LOF) alleles (x-axis) after 8 weeks of treatment with vehicle (gray) or 100 nM decitabine (DAC, red) for cluster 1 (n = 8, 
from Figure 3a) and cluster 2 sgRNAs (n = 10, from a). Wild-type allele frequencies are plotted as the percentage of total reads. In-frame and loss-of-
function allele frequencies are plotted as the percentage of edited (i.e., non-wild-type) reads. (c) Scatter plot showing DNMT1-targeting sgRNAs from 
clusters 1 and 2 (n = 18) projected onto principal component space after principal component analysis on features of their mutational profiles. The 
sgRNAs were partitioned using k-means clustering (k = 2) to identify clusters K1 (red) and K2 (blue), corresponding primarily to the original 3D clusters 
1 and 2. sgRNAs reassigned from cluster 1 to K2 or cluster 2 to K1 are annotated and denoted with red and blue borders, respectively. Contours depict 
a bivariate kernel density estimation for clusters K1 (red) and K2 (blue). (d) Box plots showing the log2(fold-change) enrichment (y-axis) of wild-type (left) 
and in-frame variants (right) in DAC versus vehicle treatment for cluster K1 (n = 8, red) and K2 (n = 10, blue) sgRNAs. Log2(fold-change) was calculated 
based on the observed frequency (percentage of total reads) in DAC versus vehicle treatment. (e) Box plots showing the log2(odds ratio) in DAC versus 
vehicle treatment (y-axis) for edited versus wild-type odds (left) and in-frame versus LOF odds (right) for cluster K1 (red) and K2 (blue) sgRNAs. Edited/
wild-type odds were calculated using absolute frequencies (percentage of total reads) and in-frame/LOF odds were calculated using relative frequencies 
(percentage of edited reads). (f) Line plot showing the relative abundance of in-frame mutations (y-axis) over time (x-axis) for individual sgRNAs (n = 
6) targeting the DNMT1 N-terminus (‘Undefined’, gray), RFTS (red), and catalytic domains (purple). Relative in-frame abundance was calculated as the 
log2(fold-change) of the absolute frequency (percentage of total reads) of in-frame variants at the indicated time point versus day 0 and is represented 
by the colored points. Mutations were considered in-frame if they preserved the coding frame and did not disrupt a splice site or result in a premature 
stop codon. The dotted line corresponds to the relative abundance of in-frame mutations at day 0. (g) Bar plot showing recombinant DNMT1 enzyme 

Figure 4 continued on next page
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log2(fold-change) of wild-type and in-frame allele frequencies, as well as the ‘odds ratio’ of edited/
wild-type odds and in-frame/loss-of-function odds in DAC versus vehicle treatment. We defined the 
edited/wild-type odds as the proportion (percentage of total reads) of edited versus wild-type alleles 
and in-frame/loss-of-function odds as the proportion (percentage of edited reads) of in-frame versus 
loss-of-function alleles.

Using these features, we performed principal component analysis (PCA) and k-means clustering 
(k = 2) on the DNMT1-targeting sgRNAs to partition them by their mutational profiles and evaluate 
their similarity to our structure-derived clusters. Overall, the resultant k-means clusters, which we term 
clusters K1 and K2 to denote their resemblance to the 3D structure-derived clusters 1 and 2, respec-
tively, largely preserved the sgRNA compositions of their corresponding structure-derived clusters 
(Figure 4c). Notably, the TRD-targeting sgRNAs (sgT1503 and sgG1504/N1505) from cluster 1 were 
reassigned to cluster K2, in agreement with our previous observations. Conversely, our analysis also 
reassigned the BAH2-targeting sgRNAs from cluster 2 (sgM1077 and sgN1081/R1082) to cluster K1, 
suggesting that they share greater resemblance to core cluster 1 sgRNAs and enrich for in-frame gain-
of-function variants.

We next evaluated clusters K1 and K2 across the PCA feature set to determine their distinguishing 
characteristics. Supporting our previous findings, cluster K1 sgRNAs displayed a greater and lower 
abundance of in-frame and wild-type alleles, respectively, under DAC treatment compared to cluster 
K2 sgRNAs (Figure 4—figure supplement 1a). Similarly, when comparing DAC versus vehicle treat-
ment, cluster K1 sgRNAs exhibited preferential enrichment and depletion of in-frame and wild-type 
alleles, respectively, and greater edited/wild-type and in-frame/loss-of-function odds ratios relative 
to cluster K2 sgRNAs (Figure 4d, e). Finally, cluster K1 mutational profiles tended to have lower Gini 
coefficients (all alleles) and Pearson correlations compared to cluster K2 sgRNAs, consistent with the 
idea that DAC-mediated positive selection of in-frame variants drives greater allelic diversity and 
mutational divergence relative to no selection in cluster K1 sgRNAs (Figure 4—figure supplement 
1b). Taken together, our findings support the notion that cluster 1/K1 sgRNAs generate in-frame gain-
of-function variants that confer a fitness advantage to DAC.

Due to the (1) preponderance of wild-type and loss-of-function variants observed in cluster 2/K2 
sgRNAs (Figure 4b, Figure 4—figure supplement 1a) and (2) the exclusive catalytic-targeting sgRNA 
composition of cluster K2 after k-means reassignment (Figure 4c), we next considered whether these 
differences may signify an alternative resistance mechanism for cluster 2/K2 sgRNAs distinct from that 
of cluster 1/K1 sgRNAs. Whereas our data suggest that cluster 1 sgRNAs confer resistance through 
gain-of-function mutations that enhance DNMT1’s catalytic activity, we hypothesized that the rela-
tive abundance of loss-of-function mutations and lack of in-frame enrichment found in cluster 2/
K2 sgRNAs may be indicative of a knockout-mediated mechanism in which reducing DNMT1 gene 
dosage confers resistance to DAC by attenuating DNMT1–DNA adduct-related cytotoxicity.

An obvious question arising from this proposed gene dosage reduction mechanism is why cluster 
2/K2 sgRNAs would be particularly predisposed to such an effect, as presumably any DNMT1-
targeting sgRNA can generate loss-of-function (i.e., frameshift, nonsense, splice site disrupting) muta-
tions. The key insight underlying the proposed mechanism is that sgRNAs targeting essential protein 
regions and functional domains generate greater proportions of null (i.e., functional knockout) muta-
tions compared to sgRNAs targeting non-essential regions (Shi et al., 2015). This occurs because 
in-frame coding mutations in functionally important protein regions (e.g., DNMT1 catalytic domain) 
are more likely to disrupt protein function than those found in non-essential regions. Subsequently, 

activity (luminescence, y-axis) for wild-type DNMT1 and selected BAH2 variants (x-axis) enriched in sgM1077 (red) and sgN1081/R1082 (blue) in the 
luminescence-based MTase-Glo assay. The dotted line represents the mean luminescence of the wild-type DNMT1 construct. Bars represent the mean 
± standard error of the mean (SEM) across three replicates. One of two independent experiments is shown. (h) Structural view of the DNMT1 BAH2 
(yellow) region highlighting residues targeted by sgM1077 (red) and sgN1081/1082 (blue). The catalytic domain is shown in purple. Perturbed residues 
are shown as sticks and annotated (PDB: 4WXX). For box plots in (b, d, e) the individual sgRNAs are plotted as points and the central band, box 
boundaries, and whiskers represent the median, interquartile range (IQR), and 1.5 × IQR, respectively. P values (**P ≤ 0.01; ***P ≤ 0.001) were calculated 
with two-sided Mann–Whitney tests.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Integrative analysis reveals distinct mutational profiles between cluster 1 and 2 single-guide RNAs (sgRNAs).

Figure 4 continued
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in-frame mutations generated by sgRNAs targeting essential regions are more likely to encode a non-
functional protein product and are thus ‘effectively loss-of-function’. Importantly, the observation that 
the specific protein region targeted by an sgRNA influences its likelihood of generating null mutations 
also implies that (1) not all CDS-targeting sgRNAs are equally effective at driving knockout-mediated 
effects and (2) sgRNAs that are more effective at generating null mutations may preferentially cluster 
within functionally important protein regions.

Consequently, we reasoned that cluster 2/K2 sgRNAs, which target the essential catalytic domain, 
may be more successful at reducing DNMT1 gene dosage because in-frame mutations in the cata-
lytic domain are more likely to disrupt DNMT1’s essential function. That is, cluster 2/K2 sgRNAs 
may generate greater proportions of such ‘effectively loss-of-function’ in-frame mutations, and their 
observed spatial clustering likely reflects the functional importance and mutational intolerance of 
the catalytic domain. To test this hypothesis, we transduced wild-type K562 cells with 6 individual 
sgRNAs targeting the DNMT1 N-terminus, RFTS, and catalytic domains and monitored the mutational 
distribution of the cellular pools over 28 days through targeted amplicon sequencing (Figure 4f). We 
observed increasing frequencies of in-frame mutations over time for sgRNAs targeting the N-terminus 
and RFTS domain, consistent with the idea that in-frame mutations in these regions are functional and 
not under strong negative selection. By contrast, catalytic-targeting sgRNAs exhibited considerable 
depletion of in-frame mutations over time, supporting the notion that in-frame mutations in essential 
protein regions are functional knockouts and are thus subject to negative selection. These results are 
in accordance with a mechanism in which catalytic-targeting sgRNAs (e.g., cluster 2/K2) are more 
effective at conferring DAC resistance through a gene dosage reduction effect due to their enhanced 
ability to generate null mutations.

Because local DNA sequence context is a primary determinant of an sgRNA’s overall distribu-
tion of editing outcomes (Shen et al., 2018; Allen et al., 2018), we next considered whether the 
observed mutational frequencies in cluster K1 and K2 sgRNAs were consistent with their proposed 
mechanisms or a product of sequence context biases in Cas9 repair outcomes. We posited that if 
cluster K1 sgRNAs confer resistance through gain-of-function in-frame mutations, then positive selec-
tion for these in-frame variants should result in higher observed frequencies under DAC treatment 
than their predicted frequencies as repair outcomes. To test this hypothesis, we used inDelphi (Shen 
et al., 2018) to predict editing outcome frequencies from DNA sequence context. We then calculated 
the predicted in-frame/loss-of-function odds for each sgRNA, as well as the in-frame/loss-of-function 
odds ratio in DAC versus inDelphi to account for baseline variations in in-frame/loss-of-function 
odds across sgRNAs. As expected, cluster K1 sgRNAs exhibited significantly higher in-frame/loss-
of-function odds under DAC treatment than predicted by inDelphi (Figure 4—figure supplement 
1c) and significantly higher DAC/inDelphi ratios of in-frame/loss-of-function odds relative to cluster 
K2 sgRNAs (Figure 4—figure supplement 1d), in agreement with the idea that in-frame mutations 
observed in cluster K1 sgRNAs are under positive selection.

Conversely, our gene dosage reduction hypothesis for cluster K2 sgRNAs relies on their ability to 
generate ‘effectively loss-of-function’ in-frame mutations that are functionally equivalent to formal 
loss-of-function mutations (i.e., frameshift, nonsense, splice site disrupting). This implies that cluster 
K2 sgRNAs should not exhibit preferential enrichment of in-frame or loss-of-function mutations 
under DAC treatment and the observed frequencies of these mutations should primarily reflect their 
predicted probabilities as editing outcomes. Supporting this notion, in-frame/loss-of-function odds in 
DAC for cluster K2 sgRNAs do not deviate significantly from their expected proportions as predicted 
by inDelphi (Figure 4—figure supplement 1c). Collectively, our results are consistent with a model 
where (1) in-frame variants found in cluster K1 sgRNAs are positively selected in the presence of DAC 
and (2) in-frame/loss-of-function variant frequencies in cluster K2 sgRNAs resemble their probabilities 
as editing outcomes due to being functionally equivalent.

Because our analysis reassigned the cluster 2 BAH2-targeting sgRNAs to cluster K1, we considered 
whether these sgRNAs also select for in-frame gain-of-function variants under DAC treatment. Conse-
quently, we evaluated the activity of the top 2 enriched in-frame variants generated by sgM1077 
(M1077_N1081delinsNRFY, V1074_M1077del) and sgN1081/R1082 (R1082del, P1080_R1082del) 
(Figure 4—figure supplement 1e). Although more modest than cluster 1 mutants, we observed 1.4- 
to 1.5-fold greater methyltransferase activities across the BAH2 mutants relative to wild-type, apart 
from R1082del, whose activity was comparable to wild-type (Figure 4g). Like the RFTS and CXXC 
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mutations in cluster 1, we also observed temperature-dependent decreases in relative activity for 
the BAH2 mutants versus wild-type DNMT1, except for R1082del whose activity was comparable to 
wild-type DNMT1 across temperatures (Figure 4—figure supplement 1f). The BAH2 mutants also 
displayed similar levels of protein stability and DAC-induced degradation as wild-type DNMT1 in 
our cellular protein reporter system (Figure 4—figure supplement 1g, h). These variants are located 
near the BAH2–TRD loop (Figure 4h), which is thought to restrain the TRD from contacting the DNA 
substrate in the autoinhibited conformation (Song et al., 2011) and we speculate that these BAH2 
mutations may perturb mechanisms regulating substrate binding and catalysis. Altogether, our results 
demonstrate how genotype-level analysis can resolve mutational heterogeneity across sgRNAs within 
screen-derived clusters, enabling the discovery of new functional protein sites.

Mutational profiles of individual sgRNAs nominate putative functional 
regions in UHRF1
UHRF1 is a multifunctional protein that directs DNMT1 to hemimethylated sites during DNA repli-
cation. Like DNMT1, UHRF1 is also indispensable for DNA methylation maintenance and ablation 
of UHRF1 causes global DNA hypomethylation (Sharif et al., 2007; Bostick et al., 2007). UHRF1-
mediated recruitment of DNMT1 to chromatin requires the coordinated function of its various domains 
(Xie and Qian, 2018; Bronner et al., 2019). Furthermore, direct and indirect interactions between 
UHRF1 and DNMT1 not only recruit DNMT1 to chromatin, but also stimulate its activity (Berkyurek 
et al., 2014; Xie and Qian, 2018; Bronner et al., 2019; Bashtrykov et al., 2014a; Li et al., 2018; 
Harrison et al., 2016; Mishima et al., 2020; Rothbart et al., 2012). Consequently, we sought to 
determine whether our approach could nominate gain-of-function mutations beyond the direct drug 
target (i.e., DNMT1). As our results indicate that DAC treatment enriches for hypermorphic DNMT1 
mutations, we speculated that DAC treatment may also enrich for mutations in UHRF1 that influence 
DNMT1 function.

Although UHRF1-targeting sgRNAs were enriched in our activity-based CRISPR scanning screen 
(Figure 1d), the lack of UHRF1 structural data precluded structure-guided clustering analysis. However, 
our genotype-level analysis of individual sgRNAs suggests that distinct mutational characteristics can 
indicate functional consequences at the protein level. We therefore reasoned that this approach might 
identify UHRF1-targeting sgRNAs harboring putative gain-of-function mutations based on their muta-
tional profile signatures.

Accordingly, we individually profiled 22 enriched UHRF1-targeting sgRNAs in K562 cells under 
vehicle or DAC treatment for 8 weeks like previously (Figure 5a, Supplementary file 3). We then 
performed PCA and k-means clustering analysis on the combined dataset of UHRF1- and DNMT1-
targeting sgRNAs with same set of features and number of clusters as before to enable comparisons 
with DNMT1 clusters K1 and K2 for reference. In particular, we considered (1) how the inclusion of 
UHRF1-targeting sgRNAs might affect the partitioning of DNMT1-targeting sgRNAs and (2) whether 
UHRF1-targeting sgRNAs clustering with DNMT1 cluster K1 sgRNAs enrich for gain-of-function vari-
ants upon DAC treatment. Our analysis identified two comparably sized clusters (19 and 21 sgRNAs) 
with 11 UHRF1-targeting sgRNAs each (Figure 5b). Reassuringly, the inclusion of UHRF1-targeting 
sgRNAs did not alter the clustering of DNMT1-targeting sgRNAs, indicating that these clusters may 
be partitioned analogously to DNMT1 clusters K1 and K2.

To nominate UHRF1-targeting sgRNAs that induce potential gain-of-function mutations, we 
examined the cluster containing DNMT1 cluster K1 sgRNAs, which we term ‘drug-divergent’. As the 
UHRF1-targeting sgRNAs doubled the total number of characterized sgRNAs, we first investigated 
whether drug-divergent sgRNAs were analogous to DNMT1 cluster K1 sgRNAs. Indeed, the muta-
tional profiles of drug-divergent sgRNAs shared similar characteristics to DNMT1 cluster K1 across 
multiple metrics (Figure 5—figure supplement 1a–g) suggesting that they may also enrich for gain-
of-function variants under DAC treatment.

We next investigated drug-divergent sgRNAs targeting UHRF1 to identify in-frame variants 
enriched in DAC treatment. We first examined sgQ519 and sgK592, which target the SRA domain, 
as they exhibited the greatest enrichment of in-frame variants and sgRNA resistance score, respec-
tively (Figure 1d). The SRA domain specifically binds hemimethylated DNA and is reported to directly 
interact with and stimulate DNMT1 activity (Bashtrykov et al., 2014a; Arita et al., 2008; Avvakumov 
et al., 2008; Hashimoto et al., 2008). We observed substantial depletion of the wild-type allele and 
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Figure 5. Mutational profiling analysis of individual single-guide RNAs (sgRNAs) nominates UHRF1-targeting 
sgRNAs with predicted gain-of-function outcomes. (a) Schematic showing the amino acid positions on the UHRF1 
CDS targeted by selected UHRF1-targeting sgRNAs (n = 22). (b) Scatter plot showing DNMT1- and UHRF1-
targeting sgRNAs (n = 40; 18 and 22 for DNMT1 and UHRF1, respectively) projected onto principal component 
space after principal component analysis on their mutational profile features. The sgRNAs were partitioned using 
k-means clustering (k = 2) into two categories: ‘drug-divergent’ (n = 19, red) or ‘other’ (n = 21, blue). Contours 
depict a bivariate kernel density estimation for drug-divergent (red) and other (blue) sgRNAs. sgRNAs highlighted 
in (c) and (e) targeting the SRA (blue border) and PBR (green border) regions of UHRF1 are annotated.(c) Table 
showing the amino acid sequence alignment and observed frequencies (percentage of total reads) of the wild-type 
and top enriched in-frame variants observed in the SRA-targeting sgRNAs sgQ519 (top) and sgK592 (bottom) after 
8 weeks of treatment with vehicle or 100 nM decitabine (DAC). In-frame variants were considered enriched if the 
observed frequency in DAC was ≥1% and the log2(fold-change) of the observed frequency in DAC versus vehicle 
treatment was ≥2. All enriched in-frame variants meeting these criteria are shown and ordered by their observed 
frequency in DAC treatment. Amino acid deletions are represented as red dashes and substitutions are highlighted 
in blue. Red ellipses are used to denote amino acid deletions that exceed the length of the shown sequence 
alignment. (d) Structural view of the human UHRF1 SRA domain (blue) bound to hemimethylated DNA (hmDNA, 
gray). Residues perturbed by enriched in-frame variants (from c) found in sgQ519 and sgK592 are highlighted 
as red spheres (PDB: 3CLZ). (e) Table showing the amino acid sequence alignment and observed frequencies 
(percentage of total reads) of the wild-type and top enriched in-frame variants observed in the PBR-targeting 
sgRNAs sgP662/R663 (top) and sgR664 (bottom) after 8 weeks of treatment with vehicle or 100 nM DAC. In-frame 
variants were considered enriched if the observed frequency in DAC was ≥1% and the log2(fold-change) of the 
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enrichment of multiple in-frame variants in DAC versus vehicle treatment for both sgRNAs (Figure 5c). 
By contrast, the top 9 most prevalent mutations in sgQ519 under vehicle treatment were loss-of-
function (Supplementary file 3). Strikingly, the top 2 enriched in-frame variants for sgK592 in DAC 
were 3- and 4-nt substitutions, corresponding to K592L and K592S/E593K, respectively (Figure 5c). 
Because point mutations are uncommon Cas9 repair outcomes (Shen et al., 2018; Hwang et al., 
2020) and given their low abundance in vehicle relative to DAC treatment (K592L, 12.1% in DAC 
versus <0.1% in vehicle; K592S/E593K, 1.2% in DAC versus 0.1% in vehicle), we speculate that these 
are rare editing outcomes that are highly selected for in DAC treatment. Our previous studies have 
also demonstrated that such strong selection pressures can indicate stringent mutational constraints 
imposed by structural or functional requirements of the local sequence (Vinyard et al., 2019; Gosavi 
et al., 2022; Kwok et al., 2022), suggesting that this region of the SRA may serve an important func-
tional role.

Notably, enriched variants in sgQ519 and sgK592 perturb residues distal from the DNA-binding 
pocket of the SRA domain and the core structural elements forming the twisted β-barrel motif 
(Figure 5d). Previous studies investigating intramolecular interactions within UHRF1 with crosslinking 
mass spectrometry identified extensive contacts between residues proximal to sgQ519 and sgK592 
(e.g., K524 and K595) and those in other UHRF1 domains (DaRosa et al., 2018; Foster et al., 2018). 
Accordingly, we speculate that these enriched variants are unlikely to disrupt DNA binding but may 
rather affect intra- or intermolecular interactions involving the SRA.

Beyond sgQ519 and sgK592, we observed several drug-divergent sgRNAs targeting the PBR 
region (sgP662/R663 and sgR664, Figure 5e), which mediates UHRF1 autoinhibition through an intra-
molecular interaction with the TTD domain (Gelato et al., 2014; Fang et al., 2016; Gao et al., 2018). 
This TTD–PBR interaction maintains a ‘closed’ conformation that prevents H3K9me3 binding and 
recruitment to chromatin. Disrupting this interaction, such as by SRA-mediated DNA binding, drives 
UHRF1 into an ‘open’ conformation that promotes H3K9me3 recognition and chromatin association. 
The top enriched in-frame variants induced by PBR-targeting sgRNAs perturb residues S657–G660, 
which are partially resolved in a structure of the zebrafish UHRF1 TTD complexed with human UHRF1 
PBR peptide (Figure 5f). These residues form extensive contacts with the TTD (human UHRF1 resi-
dues D145, N147, Y188, and N194), suggesting that these mutations likely disrupt the TTD–PBR 
interaction and promote the open conformation of UHRF1. Supporting this notion, we observed that 
sgK233, a drug-divergent sgRNA targeting the TTD, also generated DAC-enriched in-frame mutations 
disrupting key residues on the other side of the TTD–PBR interface (Figure 5—figure supplement 1h, 
i). Taken together, our results suggest that disrupting the TTD–PBR interaction and relieving UHRF1 
autoinhibition may confer a selective advantage to DAC. While further biochemical and cellular char-
acterization are required to experimentally validate these potential perturbations to UHRF1 autoin-
hibition, our approach demonstrates how genotype-level mutational profiling of individual sgRNAs 
can afford valuable insight for nominating putative gain-of-function mutations for deeper mechanistic 
follow-up studies, especially in the absence of extensive structural data.

observed frequency in DAC versus vehicle treatment was ≥2. All enriched in-frame variants meeting these criteria 
are shown and ordered by their observed frequency in DAC treatment. Amino acid deletions are represented as 
red dashes and substitutions are highlighted in blue. Red ellipses are used to denote amino acid deletions that 
exceed the length of the shown sequence alignment. (f) Structural view of the zebrafish UHRF1 TTD domain (gold) 
complexed to a human UHRF1 PBR peptide (green) showing the region (S657–G660) targeted by sgP662/R663 
and sgR664 (from e). Key residues forming polar contacts (yellow) are highlighted as sticks and annotated. For 
TTD residue annotations, the upper and lower (in parentheses) text indicate the residue identity and position in 
zebrafish and human UHRF1, respectively. Water molecules are shown as gray spheres (PDB: 6B9M).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Mutational profiling analysis of individual single-guide RNAs (sgRNAs) nominates UHRF1-
targeting sgRNAs with predicted gain-of-function outcomes.

Figure 5 continued
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Discussion
Despite significant advances, the discovery of allosteric mechanisms remains challenging. Here, we 
performed activity-based CRISPR scanning with the mechanistic inhibitor DAC to nominate multiple 
allosteric mechanisms regulating DNMT1 and UHRF1 function. Our study serves as an instructive 
framework that demonstrates how CRISPR scanning can be expanded beyond drug mechanism of 
action studies to identify regulatory sites in the direct drug target and even protein complex partners.

This study presents several key innovations to the CRISPR scanning methodology. First, we demon-
strate how activity-based mechanistic inhibitors can enable rational screening of sophisticated pheno-
types. DAC’s unique properties as an activity-based inhibitor—being nearly identical to DNMT1’s 
native substrate—precludes the enrichment of mutations disrupting drug binding as they would likely 
also abrogate DNMT1 activity, which is essential for cell survival. Indeed, our results support the idea 
that such constraints drive the enrichment of mutations that operate through alternative resistance 
mechanisms (e.g., by enhancing DNMT1 activity) as we not only recapitulated mutations targeting 
known autoinhibitory mechanisms in DNMT1 and UHRF1, but also discovered novel hypermorphic 
mutations in the uncharacterized BAH2 domain of DNMT1. Nevertheless, we cannot rule out other 
independent mechanisms by which these mutations might contribute to DAC resistance in cells. By 
contrast, the top hit in our CRISPR scanning screen of DNMT1 and UHRF1 with the reversible DNMT1 
inhibitor GSK3484862 was sgH1507, which targets a key residue in the DNMT1 catalytic domain 
that is critical for drug binding. Although we have previously observed the enrichment of distal resis-
tance mutations using non-covalent reversible inhibitors (Vinyard et al., 2019; Gosavi et al., 2022; 
Kwok et al., 2022), the distinct sgRNA enrichment profiles between DAC and GSK3484862 treat-
ment suggest that activity-based probes can be leveraged to exert differential selection pressures that 
further predispose CRISPR scanning screens toward the enrichment of distal mutations. In this regard, 
elucidating the mechanistic details underlying how these distal DNMT1 mutations confer resistance 
to DAC is an avenue for future studies.

Second, our study significantly improves and expands the analysis toolkit that enables CRISPR 
scanning to identify putative functional hotspots. Our 1D and 3D sgRNA clustering analyses clearly 
implicate the DNMT1 autoinhibitory interface as a significantly enriched region of interest upon DAC 
treatment. Thus, our work emphasizes how an integrative approach incorporating orthogonal data, 
such as structural information, can nominate functional regions and provide mechanistic insights 
underlying their enrichment. We expect that improvements in computational approaches and the 
incorporation of other data (e.g., evolutionary conservation, human genetic variation, structural 
predictions; Jumper et al., 2021) may further increase the power of CRISPR scanning.

Although clustering of screen-level data is effective at nominating sgRNAs and putative hotspots 
for further validation, our findings demonstrate how the mutational profiles of individual sgRNAs at 
genotype-level resolution can uncover diverse responses to drug treatment that cannot be observed 
with screen-level enrichment scores. By clustering individual sgRNAs using their mutational profiles, 
we show that DNMT1 clusters K1 and K2 largely recapitulate the 3D structure-derived clusters with 
notable exceptions, such as the BAH2-targeting sgRNAs in cluster 2. Through an in-depth compar-
ative analysis, we demonstrate that cluster K1 and K2 sgRNAs exhibit unique mutational signatures 
upon DAC treatment and identify defining characteristics of cluster K1 sgRNAs, such as the enrich-
ment of in-frame mutations, that may be predictive of functional consequences. To validate our 
approach, we biochemically characterized a subset of these enriched BAH2 variants and show that 
these mutations are gain-of-function and enhance DNMT1 activity. Although overactive in vitro, these 
hypermorphic DNMT1 mutations require further characterization in cells, such as by genomic DNA 
methylation profiling, to mechanistically understand how they confer resistance to DAC. Nevertheless, 
our analysis collectively demonstrates that the greater resolution of genotype-level data can reveal 
significant mutational heterogeneity across enriched sgRNAs, and that their mutational signatures can 
be exploited as a heuristic to nominate those with unique functional outcomes.

Notably, our study uses Cas nuclease as the editing modality, which is biased toward the forma-
tion of insertion/deletion (indel) mutations. While lacking precision, indel formation was critical for 
our studies, where (1) the stronger effect sizes afforded by larger perturbations were likely required 
to identify partial resistance mechanisms and (2) the diversity of editing outcomes enabled our 
genotype-level analysis and subsequent mechanistic insight. However, smaller, more precise pertur-
bations such as point mutations may be more appropriate for other biological targets. In such cases, 
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our activity-based approach, which is primarily focused on the selection modality (i.e., mechanistic 
inhibitors), can also accommodate alternative editing technologies such as base editing or prime 
editing (Anzalone et al., 2019; Anzalone et al., 2020; Hanna et al., 2021; Lue et al., 2023) to assess 
distinct mutational perturbations. Indeed, we envision that integration of diverse editing modalities 
will further increase the utility of our activity-based approach.

Finally, we showcase how our approaches can be generalized to nominate sgRNAs that generate 
functional protein variants, especially in the absence of extensive structural information. We applied 
our mutational analysis methodology to nominate potential sites within UHRF1, a poorly character-
ized partner of DNMT1, that modulate DNMT1 function. Using a combined dataset of UHRF1- and 
DNMT1-targeting sgRNAs, we defined a set of ‘drug-divergent’ sgRNAs with similar characteristics as 
DNMT1 cluster K1 to identify putative gain-of-function variants in UHRF1. Strikingly, drug-divergent 
sgRNAs targeting UHRF1 enriched for in-frame variants that perturb key residues on both sides of 
the TTD–PBR interface that mediates UHRF1 autoinhibition, in addition to uncharacterized regions of 
the SRA domain. Further study is necessary not only to experimentally validate the putative perturba-
tions to UHRF1 autoinhibition described here, but also to contextualize how these UHRF1 mutations 
may influence DNMT1 activity, especially given the complex interplay between UHRF1 and DNMT1 
required to coordinate and regulate DNA methylation maintenance (Xie and Qian, 2018; Bronner 
et al., 2019). Nonetheless, our findings outline how evaluating enriched sgRNAs at the genotype level 
can nominate variants for further functional validation.

To the best of our knowledge, there are no known DNMT1 mutations reported to confer resistance 
to DAC or its structural analog 5-azacytidine (AZA) in the clinic. Rather, secondary resistance to these 
DNA hypomethylating agents develops primarily through adaptive responses in drug metabolism 
genes (e.g., DCK and UCK2) that disrupt the processing required for DAC/AZA incorporation into DNA, 
or drug transporter genes (e.g., SLC29A1 and SLC29A2) that disrupt cellular uptake of DAC/AZA (Qin 
et al., 2009; Gruber et al., 2020; Gu et al., 2021). Consistent with this, a recent study of DAC/AZA 
resistance mechanisms using genome-wide CRISPR-knockout screens observed overwhelming enrich-
ment of sgRNAs exclusively targeting DCK, UCK2, and SLC29A1 (Gruber et al., 2020). Compared to 
inducing hypermorphic DNMT1 mutations or reducing DNMT1 copy number, the ease by which drug 
metabolism or uptake pathways can be altered in response to DAC/AZA treatment may explain why 
DNMT1 mutations are not observed in patients with acquired resistance. The identification of hyper-
morphic DNMT1 mutations and other putative gain-of-function variants reported here is presumably a 
unique result of our selective Cas9-mediated mutagenesis of DNMT1 and UHRF1. These observations 
further underscore the utility of targeted CRISPR-mutagenesis approaches for interrogating protein 
function, as such variants are unlikely to arise in an unbiased screen. Thus, our approach can enable 
the discovery of resistance mutations that can afford valuable mechanistic insight into protein function 
but may otherwise be inaccessible due to the existence of alternative resistance mechanisms.

Altogether, here we demonstrate how activity-based CRISPR scanning can be leveraged to nomi-
nate allosteric regulatory mechanisms, using DNMT1 and UHRF1 as instructive paradigms. Through 
an array of genetic, biochemical, and computational approaches, we illustrate how integrative anal-
yses can offer mechanistic insights at increasing levels of resolution. In summary, our study establishes 
a framework for applying CRISPR scanning to systematically identify allosteric mechanisms and other 
complex phenotypes across various protein targets.

Materials and methods
Chemical reagents
Compounds were stored at −80°C in 100% dimethyl sulfoxide (DMSO; Sigma-Aldrich). The vehicle 
condition represents 0.1% DMSO treatment. Decitabine (DAC) was purchased from Selleck Chemicals 
(≥99% purity by high-performance liquid chromatography [HPLC]). GSK3484862 (GSKi) was purchased 
from ChemieTek (≥99% purity by HPLC).

Cell culture
K562 cells were obtained from ATCC (cat. #CCL-243, RRID: CVCL_0004). HEK293T cells were a gift from 
B.E. Bernstein (Massachusetts General Hospital). All cell lines were cultured in a humidified 5% CO2 
incubator at 37°C and routinely tested for mycoplasma (Sigma-Aldrich). All media were supplemented 
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with 100 U ml−1 penicillin and 100 µg ml−1 streptomycin (Gibco) and fetal bovine serum (FBS, Peak 
Serum). K562 cells were cultured in RPMI-1640 (Gibco) supplemented with 10% FBS. HEK293T cells 
were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco) supplemented with 10% FBS.

Lentivirus production and transduction
To produce lentivirus, transfer plasmids were co-transfected with GAG/POL and VSVG plasmids into 
HEK293T cells using FuGENE HD (Promega) and the medium was exchanged 6–8 hr after transfec-
tion. Viral supernatant was collected 48–60  hr after transfection, filtered (0.45  µm), and stored at 
−80°C until use. K562 cells were transduced by spinfection at 1800 × g for 90 min at 37°C with 8 µg 
ml−1 polybrene (Santa Cruz Biotechnology) and selected with 2 µg ml−1 puromycin (Gibco) starting 
48 hr post-transduction.

Plasmid construction
For individual sgRNA validation experiments, single-stranded oligonucleotides encoding the sgRNA 
(Sigma-Aldrich) were annealed and cloned into lentiCRISPRv2 (a gift from F. Zhang, Addgene 
#52961) using Golden Gate cloning with FastDigest Esp3I (Thermo Fisher Scientific) and T4 Ligase 
(New England Biolabs). For protein cellular stability and degradation experiments, full-length human 
DNMT1 was cloned into the Artichoke reporter plasmid (a gift from B. Ebert, Addgene #73320) using 
Gibson Assembly with NEBuilder HiFi (New England Biolabs). For DNMT1 knockdown and overex-
pression experiments, the DNMT1 3′ UTR shRNA (TRCN0000232751) lentiviral expression vector was 
obtained from Sigma-Aldrich and full-length human DNMT1 was cloned with an N-terminal HA-tag 
into a lentiviral expression vector using Gibson Assembly. For bacterial expression constructs, trun-
cated human DNMT1 (residues 351–1616) was cloned into pET15b containing an N-terminal His6-tag 
and TEV protease cleavage site using Gibson Assembly. The wild-type human DNMT1 CDS was 
subcloned from pcDNA3.1–HA–DNMT1, a gift from D. Tenen (Harvard Medical School) and mutations 
were introduced by modifying the primers used to amplify the DNMT1 CDS for Gibson Assembly.

Cell line generation and validation
For DNMT1 knockdown and overexpression experiments, lentivirus for the DNMT1 shRNA and HA–
DNMT1 overexpression constructs was produced as described above. Wild-type K562 cells were then 
co-transduced with the DNMT1 shRNA construct lentivirus in addition to the appropriate DNMT1 
overexpression construct lentivirus as described above and treated with 2 µg ml−1 puromycin and 5 µg 
ml−1 blasticidin (Gibco) for 7 days to select for cells transduced with both constructs. Additionally, a 
DNMT1 shRNA construct-only transduction was performed and selected with 2 µg ml−1 puromycin 
as a control for shRNA knockdown of endogenous DNMT1. After selection, shRNA knockdown of 
endogenous DNMT1 and expression of the exogenous HA–DNMT1 construct was validated by immu-
noblotting analysis. To generate the DNMT1-mutant clonal cell lines, the surviving cells after 8 weeks 
of DAC treatment in the CRISPR scanning experiment were sorted as single cells in 96-well plates 
(Corning) and then expanded before isolating genomic DNA. The sgRNA expression cassette was 
amplified from the genomic DNA by polymerase chain reaction (PCR) and Sanger sequenced to deter-
mine the protospacer sequence and its corresponding genomic locus. The target region was then 
amplified using genomic primers with Illumina adapters and sequenced on an Illumina MiSeq using 
300-cycle, single-end reads. Sequencing data were processed with CRISPResso2 (Clement et  al., 
2019) to determine the genotypes of the clonal lines.

Cell growth assays
For cell growth assays with GSKi treatment, wild-type K562 cells were seeded in 24-well plates 
(Corning) at a density of 2 × 105 cells ml−1 and treated with GSKi or vehicle in triplicate. For cell 
growth assays performed with clonal cell lines or cell lines transduced with DNMT1 shRNA and over-
expression vectors, wild-type and mutant (clonal or transduced) K562 cells were seeded in 96-well 
plates at a density of 1 × 105 cells ml−1 and treated with DAC or vehicle in triplicate. In all cell growth 
assays, the cells were passaged with fresh media containing drug (GSKi or DAC) or vehicle on day 3 
and cell viability was assessed at day 7 by flow cytometry after viability staining with Helix NP NIR dye 
(BioLegend). Relative growth was then calculated by comparing cell viability at the indicated treatment 
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condition to vehicle treatment. Dose–response curves were determined by fitting a 4-parameter 
logistic regression to the data using the SciPy (Virtanen et al., 2020) package (v.1.7.1).

Cellular protein stability and degradation assays
Lentivirus was produced for wild-type and mutant DNMT1–EGFP–IRES–mCherry (Artichoke) reporter 
constructs as described above. Wild-type K562 cells were then transduced with the appropriate 
lentivirus and selected with puromycin for 3 days as described above. The selected cells for each 
construct were then split into two pools and treated with vehicle or 100 nM DAC for 3 days in trip-
licate, after which EGFP and mCherry fluorescence were measured on a NovoCyte 3000RYB flow 
cytometer (Agilent). The geometric mean of the ratio of EGFP to mCherry fluorescence was calculated 
for mCherry-positive cells (see Figure 3—figure supplement 1f) in each sample using the NovoEx-
press software (Agilent). To assess cellular stability, the EGFP/mCherry ratios of the mutant constructs 
in vehicle treatment were normalized to the wild-type EGFP/mCherry ratio in vehicle treatment. To 
assess degradation, the EGFP/mCherry ratios in DAC treatment for each construct were normalized 
to their respective EGFP/mCherry ratios in vehicle treatment.

Immunoblotting
Cells were harvested, washed three times with cold phosphate-buffered saline (Corning), and lysed 
in radio-immunoprecipitation assay (RIPA) buffer (Boston BioProducts) supplemented with 1× Halt 
Protease Inhibitor Cocktail and 5 mM ethylenediaminetetraacetic acid (EDTA; Thermo Fisher Scien-
tific) on ice for 30 min. Lysates were clarified by centrifugation and total protein concentration in 
clarified lysates was determined using the BCA Protein Assay Kit (Thermo Fisher Scientific) prior to 
preparing samples for sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Immu-
noblotting was performed according to standard procedures using the following primary antibodies: 
anti-DNMT1 (clone D63A6, Cell Signaling Technology, cat. #5032, RRID: AB_10548197, 1:1000), anti-
GAPDH (clone 0411, Santa Cruz Biotechnology, cat. #sc-47724, RRID: AB_627678, 1:2000), anti-HA 
(clone C29F4, Cell Signaling Technology, cat. #3724, RRID: AB_1549585, 1:1000), and anti-LMNB1 
(Abcam, cat. #ab16048, RRID: AB_443298, 1:2000).

Protein expression and purification
Wild-type and mutant human DNMT1351–1616 bacterial expression constructs were cloned as described 
above. Recombinant DNMT1 expression and purification were performed according to published 
protocol (Dolen et  al., 2019) with some modifications. DNMT1 expression constructs were trans-
formed and expressed recombinantly in Escherichia coli Rosetta2(DE3)pLysS cells (Novagen). Freshly 
transformed cells were grown in LB broth supplemented with ampicillin and chloramphenicol at 37°C 
to an OD600 of 0.6, after which the cells were cooled on ice and induced with 0.4 mM isopropyl-β-d-
thiogalactoside (Research Products International) at 16°C overnight. Cells were harvested, pelleted by 
centrifugation, and stored at −80°C until use. Cells were resuspended in lysis buffer containing 25 mM 
Tris–HCl (pH 7.5), 500 mM NaCl, 4 mM β-mercaptoethanol (BME), 5% glycerol, 3 U ml−1 DNase I (New 
England Biolabs), and 1× cOmplete EDTA-free protease inhibitor cocktail (Roche), lysed by sonication, 
and clarified by centrifugation. Clarified lysate was incubated with His60 Ni Superflow resin (Takara 
Bio) for 1 hr at 4°C and then washed with buffer containing 20 mM Tris–HCl (pH 7.5), 500 mM NaCl, 
4 mM BME, 5% glycerol, and 20 mM imidazole. Protein was eluted with buffer containing 20 mM Tris–
HCl (pH 7.5), 500 mM NaCl, 4 mM BME, 5% glycerol, and 400 mM imidazole. The eluate was diluted 
with an equal volume of buffer containing 20 mM sodium phosphate (pH 7.5), 2 mM dithiothreitol 
(DTT), and 5% glycerol and then further purified on a HiTrap Heparin HP column (Cytiva) using a linear 
gradient of 0.25–1.5 M NaCl in buffer containing 20 mM sodium phosphate (pH 7.5), 2 mM DTT, and 
5% glycerol. Fractions containing DNMT1 were pooled and concentrated with Amicon Ultra 30 kDa 
centrifugal filters (EMD Millipore) and purity was verified by SDS–PAGE. Purified proteins were quan-
tified by absorbance at 280 nm and stored in 40% glycerol at −80°C until use.

DNMT1 enzymatic activity assays
DNMT1 enzymatic activity was measured using the MTase-Glo Methyltransferase Assay (Promega) 
with recombinant DNMT1351–1616 and a 14-bp oligonucleotide substrate (Integrated DNA Technolo-
gies) containing a single hemimethylated CpG site. Methyltransferase reactions were prepared with 
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800  nM recombinant DNMT1351–1616, 10  μM hemimethylated DNA substrate, 10  μM S-adenosyl-l-
methionine, and 1× MTase Glo Reagent in reaction buffer (20 mM Tris–HCl [pH 8.0], 50 mM NaCl, 
3  mM MgCl2, 1  mM DTT, 1  mM EDTA, 0.1  mg ml−1 BSA) and incubated for 90  min at 30°C. For 
temperature-dependent enzyme activity assays, additional reactions were prepared and incubated at 
23, 30, and 37°C. Following incubation, an equal volume of MTase-Glo Detection Solution was added 
to each reaction and further incubated for 30 min at room temperature. Reactions were then plated 
in technical triplicate in 20 μl volumes into a white, opaque 384-well plate (Corning) and endpoint 
luminescence was measured using a SpectraMax i3x plate reader (Molecular Devices). To account for 
baseline luminescence, raw luminescence values were corrected by subtracting the average lumines-
cence values of control reactions prepared without DNMT1. All activity assays were independently 
conducted at least twice.

Pooled sgRNA library cloning and CRISPR scanning experiments
The pooled sgRNA tiling library was designed with CRISPOR (Concordet and Haeussler, 2018) using 
the following criteria: (1) the 20-nt protospacer sequence must be upstream of an NGG PAM, (2) 
the predicted cleavage site falls within the coding sequence of DNMT1 (NP_001370.1) or UHRF1 
(NP_001041666.1), and (3) the sgRNA must have an off-target score (MIT Specificity Score) greater 
than 20. All sgRNAs meeting, these criteria were synthesized as an oligonucleotide pool (Twist Biosci-
ences) and their sequences are listed in Supplementary file 1. The sgRNA oligo pool was amplified, 
cloned into lentiCRISPRv2, and sequenced to confirm sgRNA representation as previously described 
(Ngan et al., 2022; Joung et al., 2017; Canver et al., 2018). Lentivirus carrying the resulting pooled 
sgRNA tiling library was produced as described above and titered according to published procedure 
(Ngan et al., 2022; Joung et al., 2017; Canver et al., 2018).

For CRISPR scanning experiments, K562 cells (40 × 106) were transduced at a multiplicity of infec-
tion <0.3 and subsequently selected with puromycin for 4 days. Cells were then split into pools and 
treated with DAC (100 nM for 5 weeks and then 1 μM for 3 weeks) or vehicle in triplicate. For the 
GSKi CRISPR scanning experiment, cells were treated with GSKi (1 μM for 3 weeks followed by 5 μM 
for 3 weeks) or vehicle in triplicate. The cells were passaged every 3–4 days at a seeding density of 
0.1–0.2 × 106 cells ml−1 into fresh media containing drug or vehicle. Genomic DNA was isolated using 
the QIAamp DNA Blood Mini Kit (Qiagen). To measure the sgRNA composition of the population, 
the sgRNA expression cassette was PCR amplified using barcoded primers, purified, and sequenced 
as previously described (Vinyard et al., 2019; Ngan et al., 2022; Joung et al., 2017; Canver et al., 
2018). All samples were sequenced on a MiSeq (Illumina) using 150-cycle, single-end reads. Sufficient 
coverage of the sgRNA library was maintained in accordance with published recommendations (Ngan 
et al., 2022; Joung et al., 2017; Canver et al., 2018).

CRISPR scanning data analysis
All data processing and analysis were performed using Python v.3.8.3 (https://www.python.org/). 
Raw sequencing data were processed as previously described (Vinyard et al., 2019; Gosavi et al., 
2022). In brief, reads were counted by identifying the 20-nt sequence downstream of the ‘CGAA​
ACAC​CG’ prefix and mapped against a reference file containing all library sgRNA sequences with 
no mismatch allowance. sgRNAs with zero reads in the plasmid library were excluded from the 
analysis. Read counts were then converted to reads per million, increased by a pseudocount of 
1, log2-transformed, and then normalized by subtracting the log2-transformed sgRNA counts in 
the plasmid library. Library-normalized scores were averaged across replicates for each condition 
and sgRNA ‘resistance scores’ were calculated by first subtracting the scores in vehicle treatment 
from their corresponding scores in DAC treatment, and then further normalized by subtracting 
the mean resistance score of the negative control sgRNAs from all sgRNAs. sgRNAs were clas-
sified as ‘enriched’ if their resistance scores were greater than the mean resistance score plus 
2 standard deviations (SDs) of the negative control sgRNAs. sgRNAs were assigned to protein 
amino acid positions by using the genomic coordinates of their predicted cut sites in the DNMT1 
(NP_001370.1) or UHRF1 (NP_001041666.1) coding sequences. sgRNAs were assigned to a single 
amino acid if the cut site fell within a codon or assigned to the two flanking amino acids if the cut 
site fell between codons.

https://doi.org/10.7554/eLife.80640
https://www.python.org/
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Linear clustering analysis
As proximal sgRNAs can exhibit significant variation due to sgRNA-specific factors (e.g., off-target 
activity, cutting efficiency), per-residue resistance scores were estimated with respect to local sgRNAs 
by using LOESS regression to fit the observed sgRNA resistance scores as a function of amino 
acid position. To estimate resistance scores for each amino acid in DNMT1, LOESS regression was 
performed using the ‘lowess’ function of the statsmodels package (v.0.12.1) in Python with a 100 AA 
sliding window (‘frac = (100 AA/L)’, where L is the total length of the protein), and ‘it = 0’. For amino 
acid positions that were not targeted by sgRNAs, resistance scores were interpolated by performing 
quadratic spline interpolation on the LOESS output scores using the ‘interp1d’ function of the SciPy 
(Virtanen et al., 2020) package (v.1.7.1).

To assess statistical significance of the resulting clusters, we simulated a null model of random 
sgRNA enrichment. sgRNA cut site positions were kept fixed while sgRNA resistance scores were 
randomly shuffled, and per-residue resistance scores were recalculated by performing LOESS regres-
sion and interpolation on the randomized sgRNA resistance scores for each of 10,000 permutations. 
Empirical p values were calculated for each amino acid by comparing its observed resistance score to 
the null distribution of random resistance scores. Empirical p values were adjusted using the Benja-
mini–Hochberg procedure to control the false discovery rate to ≤0.05. Finally, linear clusters were 
called by identifying all contiguous intervals of amino acids with adjusted p values ≤0.05.

3D spatial clustering analysis
To perform the 3D spatial clustering analysis, we first calculated PWES between pairs of sgRNAs. We 
employed a modified version of previously published procedures (Vinyard et al., 2019; Kamburov 
et al., 2015), using a scoring function involving (1) the pairwise score for a given pair of sgRNAs and 
(2) the Euclidean distance between their targeted residues. First, for all combinations of DNMT1-
targeting sgRNAs ‍i‍ and ‍j‍, the pairwise score ‍pwi,j‍ was calculated using the following function:

	﻿‍
pwi,j = tanh

(
xi,j−x̄

sx

)
‍�

where ‍xi,j‍ is the sum of the sgRNA resistance scores for a given pair of sgRNAs ‍i‍ and ‍j‍ (‍i ̸= j‍), while 
‍̄x‍ and ‍sx‍ are the mean and SD, respectively, of the summed resistance scores for all pairwise combina-
tions of DNMT1-targeting sgRNAs. The hyperbolic tangent function was used to scale pairwise scores 
in order to minimize the disproportionate influence of highly enriched or depleted (i.e., jackpotted) 
sgRNAs and normalize them into the interval of [−1,1].

Next, we determined the distances between all pairwise combinations of resolved amino acids in 
the structure of human DNMT1351–1600 (PDB: 4WXX) by calculating the Euclidean distance between 
the centroids of the two residues using PyMOL (v.2.5.0, Schrödinger). We then isolated the subset of 
sgRNAs whose assigned amino acid positions were resolved in the structure. sgRNAs predicted to cut 
between residues were assigned to the even-numbered residue. Thus, the final PWES for all pairwise 
combinations of resolved sgRNAs ‍i‍ and ‍j‍ were calculated as follows:

	﻿‍ PWESi,j = pwi,j · e
−d2

i,j
2t2 ‍�

where ‍di,j‍ is the Euclidean distance between the targeted residues of sgRNAs ‍i‍ and ‍j‍ and ‍t = 16‍. 
Hierarchical clustering was performed as previously described on the resultant pairwise PWES matrix 
to group sgRNAs by their PWES profiles (Vinyard et al., 2019).

To assess the significance of clusters 1 and 2, their sgRNA resistance scores were kept fixed while 
their targeted amino acid positions were randomly shuffled (n = 10,000) across the amino acids 
targeted by resolved sgRNAs to simulate a null distribution of PWES values with randomized spatial 
proximity. We then took the sum of the absolute values of PWES for all intra-cluster pairwise sgRNA 
combinations to calculate the ‘summed PWES’ score per cluster. Empirical p values were calculated by 
comparing the observed summed PWES score for a cluster to the simulated distribution of summed 
PWES scores.

https://doi.org/10.7554/eLife.80640


 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology | Genetics and Genomics

Ngan et al. eLife 2023;12:e80640. DOI: https://doi.org/10.7554/eLife.80640 � 23 of 30

Individual sgRNA validation experiments and genotyping data analysis
Individual sgRNAs selected for further validation were cloned into lentiCRISPRv2 as described above. 
The sequences for the sgRNAs used in these experiments are listed in Supplementary file 4. Lenti-
virus was produced separately for each sgRNA construct as described above and K562 cells were 
transduced and selected with puromycin for 5 days. For the individual sgRNA timecourse experiment, 
the selected cells were cultured in standard growth conditions and passaged every 3–4 days, and cells 
were harvested at the indicated timepoints. For all other individual sgRNA experiments, the selected 
cells in each sgRNA transduction condition were then split into two pools and treated with vehicle 
or 100  nM DAC for 8 weeks before harvesting. Genomic DNA was isolated from harvested cells 
using QuickExtract DNA Extraction Solution (Biosearch Technologies) and used to prepare libraries for 
next-generation sequencing as described previously (Joung et al., 2017). Briefly, the genomic region 
surrounding the predicted cut site of each sgRNA was first PCR amplified using genomic primers with 
Illumina adapters, followed by a second round of PCR to attach barcodes to the final amplicons. The 
final amplicons were then gel-purified using the Zymoclean Gel DNA Recovery Kit (Zymo Research), 
pooled, and sequenced on an Illumina MiSeq using 300-cycle, single-end reads. Primer sequences are 
provided in Supplementary file 4.

To identify genomic variants and quantify allele frequencies, raw sequencing data were processed 
and aligned to DNMT1 and UHRF1 using CRISPResso2 (Clement et  al., 2019) (v.2.0.40) with the 
following parameters: ‘-w 30 -q 10 –min_bp_quality_or_N 10 –exclude_bp_from_left 5 –exclude_bp_
from_right 5 –plot_window_size 30’. CRISPResso2 allele frequency outputs were further processed 
with custom Python scripts to classify and characterize variants at the protein level for downstream 
analysis. Reads with no editing were classified as ‘wild-type’. For all variants with mutations within the 
coding sequence, variants were classified as ‘in-frame’ if the net indel size was a multiple of three and 
‘frameshift’ if not. Variants with mutations that span an intron–exon junction or otherwise disrupted 
canonical splice site positions (the 2 nt immediately flanking each exon) were classified as ‘splice site 
disrupting’. In-frame variants were then further processed into their corresponding protein variants 
by performing global re-alignment to the reference CDS at the nucleotide level using a custom-
ized codon-based implementation of the Needleman–Wunsch algorithm using the ‘PairwiseAligner’ 
module of Biopython (Cock et al., 2009) (v.1.7.8), followed by trimming and translation. Translated 
in-frame variants were further classified as ‘nonsense’ if the mutation led to a premature stop codon 
or merged with ‘wild-type’ if the translation protein variant matched the reference protein sequence 
(e.g., silent mutations, SNPs). Finally, all variants identified as frameshift, splice site disrupting, or 
nonsense were further classified as ‘loss-of-function’. After processing, the final allele tables for each 
sgRNA were filtered to only include variants with read frequencies ≥0.1% in either vehicle or DAC 
treatment and frequencies re-normalized to 100%. Processed variants and their read frequencies are 
supplied in Supplementary files 2 and 3.

Editing outcome predictions for individual gRNAs were obtained using the inDelphi (Shen et al., 
2018) web server (https://indelphi.giffordlab.mit.edu) in single mode with K562 as the cell type. As 
inDelphi does not consider intron-exon boundaries or translated protein products, inDelphi-predicted 
genotypes were also processed similarly as above in order to classify variants and accurately deter-
mine the predicted frequencies of in-frame versus loss-of-function mutations.

Individual sgRNA mutational profile analysis and clustering
Processed and filtered allele tables were used to calculate the various metrics for the mutational 
profile analysis of individual sgRNAs. Absolute variant frequencies were calculated by dividing the 
reads assigned to a particular variant by the total number of reads. Relative variant frequencies were 
calculated with respect to the total number of reads assigned to edited (i.e., in-frame or loss-of-
function, wild-type excluded) variants. Log2(fold-change) metrics for wild-type, in-frame, and loss-
of-function mutation types were calculated as the absolute frequency of the mutation type in DAC 
divided by the absolute frequency in vehicle, followed by log2-transformation.

Log-odds were calculated for the two binary outcomes of edited versus wild-type (edited/WT) and 
in-frame versus loss-of-function (IF/LOF) as follows:

	﻿‍
log2

(
oddsedited/WT

)
= log2

(
(fabs(IF) + fabs(LOF))

fabs(WT)

)
‍�

https://doi.org/10.7554/eLife.80640
https://indelphi.giffordlab.mit.edu
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	﻿‍
log2

(
oddsIF/LOF

)
= log2

(
frel

(
IF
)

frel
(

LOF
)
)
‍�

	﻿‍ fabs(IF) + fabs(LOF) + fabs(WT) = 1‍�

	﻿‍ frel
(
IF
)

+ frel
(
LOF

)
= 1‍�

where ‍fabs‍ and ‍frel‍ refer to the absolute and relative frequency, respectively, of the mutation type. 
Log-odds for edited versus wild-type alleles were calculated using absolute frequencies, whereas log-
odds for in-frame versus loss-of-function alleles were calculated using relative frequencies. Log-odds 
ratios comparing DAC to vehicle or inDelphi were calculated by subtracting the log-odds in vehicle or 
inDelphi from the log-odds value in DAC.

Pearson correlations were calculated on the absolute variant frequencies in DAC and vehicle treat-
ments using the ‘stats.pearsonr’ function of SciPy (Virtanen et al., 2020) Gini coefficients were calcu-
lated as follows:

	﻿‍ Gini coefficient = 2 · AUC − 1‍�

where AUC is the area under the curve of the empirical cumulative distribution function of allele 
frequencies. Gini coefficients were calculated with respect to all alleles using absolute frequencies as 
well as edited alleles using relative frequencies.

To assess the similarity of mutational profiles across treatment conditions, we used the symmetric 
KL divergence, which is calculated for two probability distributions ‍P‍ and ‍Q‍ (i.e., allele frequency 
distributions in DAC and vehicle, respectively) as the sum of the standard KL divergences of ‍P‍ from ‍Q‍ 
and ‍Q‍ from ‍P‍ as follows:

	﻿‍ KL = DKL
(
P∥Q

)
+ DKL

(
Q∥P

)
‍�

where the standard KL divergence of ‍P‍ from ‍Q‍ is calculated as:

	﻿‍
DKL

(
P∥Q

)
=
∑

i Pilog
(

Pi
Qi

)
‍�

where ‍i‍ indexes the alleles found in each sgRNA, and ‍Pi‍ and ‍Qi‍ are the frequencies of allele ‍i‍ in 
samples ‍P‍ and ‍Q‍ (i.e., DAC and vehicle treatments). To avoid division by zero, a pseudocount of 0.01% 
was added to all allele frequencies.

Subsequent data preprocessing, PCA, and k-means clustering were performed in Python using 
the scikit-learn package (v.0.24.2) (Pedregosa, 2012). Feature input data were first preprocessed by 
independently applying a rank-based quantile transformation on each feature using the ‘QuantileT-
ransformer’ function. PCA was performed on the transformed dataset using the ‘sklearn.decompo-
sition.PCA’ function with ‘n_components = 10’. To cluster sgRNAs based on their mutational profile 
features, k-means clustering was performed on the resultant PCA matrix using the ‘sklearn.cluster.
KMeans’ function with ‘n_clusters = 2’ and ‘n_init = 1000’. To verify the fidelity of the clusters, k-means 
clustering was performed 1000 times and the most common outcome was used for the final k-means 
cluster assignments.

Statistical methods and replication
Statistical parameters including the exact value and definition of n, the definition of center, disper-
sion, precision measures (mean ± SD or standard error of the mean), and statistical significance are 
reported in figures and figure legends. All statistical tests were performed as two-sided tests using the 
SciPy (Virtanen et al., 2020) package (v1.7.1). All experiments were performed at least twice except 
for those involving next-generation sequencing, which were conducted once.

Code availability
Custom code used in this study is available at https://github.com/liaulab/DNMT1_eLife_2022 (Liau 
Lab, 2028; copy archived at swh:1:rev:18d3fc1571a461096a7baaf4251439ce39123d65).
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