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Learning predictive cognitive maps 
with spiking neurons during behavior 
and replays
Jacopo Bono†, Sara Zannone†, Victor Pedrosa, Claudia Clopath*

Department of Bioengineering, Imperial College London, London, United Kingdom

Abstract The hippocampus has been proposed to encode environments using a representation 
that contains predictive information about likely future states, called the successor representation. 
However, it is not clear how such a representation could be learned in the hippocampal circuit. Here, 
we propose a plasticity rule that can learn this predictive map of the environment using a spiking 
neural network. We connect this biologically plausible plasticity rule to reinforcement learning, math-
ematically and numerically showing that it implements the TD-lambda algorithm. By spanning these 
different levels, we show how our framework naturally encompasses behavioral activity and replays, 
smoothly moving from rate to temporal coding, and allows learning over behavioral timescales with 
a plasticity rule acting on a timescale of milliseconds. We discuss how biological parameters such as 
dwelling times at states, neuronal firing rates and neuromodulation relate to the delay discounting 
parameter of the TD algorithm, and how they influence the learned representation. We also find 
that, in agreement with psychological studies and contrary to reinforcement learning theory, the 
discount factor decreases hyperbolically with time. Finally, our framework suggests a role for replays, 
in both aiding learning in novel environments and finding shortcut trajectories that were not experi-
enced during behavior, in agreement with experimental data.

Editor's evaluation
This is an important article that leverages a spiking network model of the hippocampal circuit to 
show how spike-time-dependent plasticity can implement predictive reinforcement learning and 
form a predictive map of the environment. The authors provide a convincing and solid framework 
for understanding the prediction based learning rules that may be employed by the hippocampus 
to optimize an animal's behavior. This paper will be of interest to theoretical and experimental 
neuroscientists working on learning and memory as it provides new ways to connect computa-
tional models to experimental data that has yet to be fully explored from a reinforcement learning 
perspective.

Introduction
Mid twentieth century, Tolman proposed the concept of cognitive maps (Tolman, 1948). These maps 
are abstract mental models of an environment which are helpful when learning tasks and in decision 
making. Since the discovery of hippocampal place cells, cells that are activated only in specific loca-
tions of an environment, it is believed that the hippocampus can provide the substrate to encode such 
cognitive maps (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978). More evidence of the 
role of the hippocampus in behavior was found in numerous experimental studies, such as the seminal 
water maze experiments (Morris, 1981; Morris et al., 1982), radial arm maze experiments (Olton 
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and Papas, 1979) as well as evidence of broader information processing beyond just cognitive maps 
(Wood et al., 1999; Eichenbaum et al., 1999; Aggleton and Brown, 1999; Wood et al., 2000).

While these place cells offer striking evidence in favour of cognitive maps, it is not clear what 
representation is actually learned by the hippocampus and how this information is exploited when 
solving and learning tasks. Recently, it was proposed that the hippocampus computes a cognitive 
map containing predictive information, called the successor representation (SR). Theoretically, this 
SR framework has some computational advantages, such as efficient learning, simple computation of 
the values of states, fast relearning when the rewards change and flexible decision making (Dayan, 
1993; Stachenfeld et al., 2014; Stachenfeld et al., 2017; Russek et al., 2017; Momennejad et al., 
2017). Furthermore, the SR is in agreement with experimental observations. Firstly, the firing fields of 
hippocampal place cells are affected by the strategy used by the animal to navigate the environment 
(known as the policy in machine learning), as well as by changes in the environment (Mehta et al., 
2000; Stachenfeld et al., 2017). Secondly, reward revaluation — the ability to recompute the values 
of the states when rewards change — would be more effective than transition revaluation (Russek 
et al., 2017; Momennejad et al., 2017).

In this work, we study how this predictive representation can be learned in the hippocampus with 
spike-timing dependent synaptic plasticity (STDP). Using STDP at the mechanistic level, we show that 
the learning is equivalent to TD(‍λ‍) on an algorithmic level. The latter is a well-studied and powerful 
algorithm known from reinforcement learning (Sutton and Barto, 1998), which we will discuss in more 
detail below.

Our model can thus learn over a behavioral timescale while using STDP timescales in the milli-
second range. We show mathematically that our proposed framework smoothly connects a tempo-
rally precise spiking code akin to replay activity with a rate based code akin to behavioral spiking. 
Subsequently, we show that the delay-discounting parameter ‍γ‍ allows us to consider time as a 
continuous variable, therefore we don’t need to discretize time as is usual in reinforcement learning 
(Doya, 1995; Doya, 2000). Moreover, the delay-discounting in our model depends hyperbolically 
on time but exponentially on state transitions. We show how the ‍γ‍ parameter can be modulated 
by neuronal firing rates and neuromodulation, allowing state-dependent discounting and in turn 
enabling richer information in the SR, such as the encoding of salient states, landmarks, reward 
locations, etc. Finally, replays have long been speculated to be involved in learning models of the 
environment, supported by experiments (Johnson and Redish, 2007; Pfeiffer and Foster, 2013; 
Kay et al., 2020) and models (Hasselmo and Eichenbaum, 2005; Erdem and Hasselmo, 2012; 
Kubie and Fenton, 2012). Here, we investigate how replays could play an additional role in learning 
the SR cognitive map. Following properties of TD(‍λ‍), we show how we can achieve both low bias and 
low variance by using replays, translating to both quicker initial learning and convergence to lower 
error. We show how we can use replays to learn offline. In this way, policies can be refined without 
the need for actual exploration.

Our framework allows us to make predictions about the roles of behavioral learning and replay-like 
activity and how they can be exploited in representation learning. Furthermore, we uncover a relation 
between STDP and a higher level learning algorithm. Our work therefore spans the three levels of 
analysis proposed by Marr, 2010. On the implementational level, our model consists of a feedforward 
network of excitatory neurons with biologically plausible spike-timing dependent plasticity. On the 
algorithmic level, we show that our model learns the successor representation using the TD(‍λ‍) algo-
rithm. On the computational theory level, our model tackles representation learning using cognitive 
maps.

Results
Cognitive maps are internal models of an environment which help animals to learn, plan and make 
decisions during task completion. The hippocampus has long been thought to provide the substrate 
for learning such cognitive maps (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978; Morris, 
1981; Morris et al., 1982; Wood et al., 1999; Eichenbaum et al., 1999), and recent evidence points 
towards a specific type of representation learned by the hippocampus, the successor representation 
(SR) (Stachenfeld et al., 2017).

https://doi.org/10.7554/eLife.80671
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The successor representation
In this section, we will give an overview of the successor representation and its properties, especially 
geared toward neuroscientists. Readers already familiar with this representation may safely move to 
the next section.

To understand the concept of successor representation (SR), we can consider a spatial environment 
— such as a maze — while an animal explores this environment. In this setting, the SR can be under-
stood as how likely it is for the animal to visit a future location starting from its current position. We 
further assume the maze to be formed out of a discrete number of states. Then, the SR can be more 
formally described by a matrix with dimension (‍Nstates × Nstates‍), where ‍Nstates‍ denotes the number of 
states in the environment and each entry ‍Rij‍ of this matrix describes the expected future occupancy 
of a state ‍Sj‍ when the current state is ‍Si‍. In other words, starting from ‍Si‍, the more likely it is for the 
animal to reach the location associated with state ‍Sj‍ and the nearer in the future, the higher the value 
of ‍Rij‍.

As a first example, we consider an animal running through a linear track. We assume the animal 
runs at a constant speed and always travels in the same direction — left to right (Figure 1a). We also 
split the track into four sections or states, ‍S1‍ to ‍S4‍, and the SR will be represented by a matrix with 
dimension (‍4 × 4‍). Since the animal always runs from left to right, there is zero probability of finding 
the animal at position ‍i‍ if its current position is greater than ‍i‍. Therefore, the lower triangle of the 
successor matrix is equal to zero (Figure 1b). Alternatively, if the animal is currently at position ‍S1‍, it 
will be subsequently found at positions ‍S2‍, ‍S3‍, and ‍S4‍ with probability 1. The further away from ‍S1‍, the 
longer it will take the animal to reach that other position. In terms of the successor matrix, we apply 
a discounting factor ‍γ‍ (‍0 < γ ≤ 1‍) for each extra ‘step’ required by the animal to reach a respective 
location (Figure 1b).

Even though we introduced the linear track as an illustrative example, the SR can be learned in 
any environment (see Figure 1—figure supplement 1 for an example in an open field). Note that the 
representation learned by the SR is dependent not only on the structure of the environment, but also 
on the policy — or strategy — used by the animal to explore the environment. This is because the 
successor representation is not purely concerned with the physical distance between two areas in the 
environment, but rather it measures how long it usually takes to reach one place when starting from 
the other. In this first example, the animal applied a deterministic policy (always running from left to 
right), but the SR can also be learned for stochastic policies. Furthermore, the SR is a multi-step repre-
sentation, in the sense that it stores predictive information of multiple steps ahead.

Because of this predictive information, the SR allows sample-efficient re-learning when the reward 
location is changed (Gershman, 2018). In reinforcement learning, we tend to distinguish between 
model-free and model-based algorithms. The SR is believed to sit in-between these two modalities. 
In model-free reinforcement learning, the aim is to directly learn the value of each state in the envi-
ronment. Since there is no model of the environment at all, if the location of a reward is changed, the 
agent will have to first unlearn the previous reward location by visiting it enough times, and only then 
it will be able to re-learn the new location. In model-based reinforcement learning, a precise model 
of the environment is learned, specifically, single-step transition probabilities between all states of 
the environment. Model-based learning is computationally expensive, but allows a certain flexibility. 
If the reward changes location it is immediate to derive the updated values of the states. As we 
have seen, however, the SR can re-learn a new reward location somewhat efficiently, although less 
so than model-based learning. The SR can also be efficiently learned using model-free methods and 
allows us to easily compute values for each state, which in turn can guide the policy (Dayan, 1993; 
Russek et al., 2017; Momennejad et al., 2017). This position between model-based and model-
free methods makes the SR framework very powerful, and its similarities with hippocampal neuronal 
dynamics have led to increased attention from the neuroscience community. Finally, in our examples 
above we considered an environment made up of a discrete number of states. This framework can be 
generalised to a continuous environment represented by a discrete number of place cells.

Learning the successor representation in biologically plausible 
networks
We propose a model of the hippocampus that is able to learn the successor representation. We 
consider a feedforward network comprising of two layers. Similar to McNaughton and Morris, 1987; 

https://doi.org/10.7554/eLife.80671
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Figure 1. Successor representation and neuronal network. (A) Our simple example environment consists of a linear track with 4 states (S1 to S4) and 
the animal always moves from left to right — i.e. one epoch consists of starting in S1 and ending in S4. (B) The successor matrix corresponding to the 
task described in panel A. (C) Our neuronal network consists of a two layers with all-to-all feedforward connections. The presynaptic layer mimics 
hippocampal CA3 and the postsynaptic layer mimics CA1. (D) The synaptic plasticity rule consists of a depression term and a potentiation term. The 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.80671
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Hasselmo and Schnell, 1994; Mehta et al., 2000; Hasselmo et al., 2002, we assume that the presyn-
aptic layer represents the hippocampal CA3 region and is all-to-all connected to a postsynaptic layer 
- representing the CA1 network (Figure 1c). The synaptic connections from CA3 to CA1 are plastic 
such that the weight changes follow a spike-timing-dependent plasticity (STDP) rule consisting of two 
terms: a weight-dependent depression term for presynaptic spikes and a potentiation term for pre-
post spike pairs (Figure 1d).

For simplicity, we assume that the animal spends a fixed time ‍T ‍ in each state. During this time, a 
constant activation current is delivered to the CA3 neuron encoding the current location and, after a 
delay, to the corresponding CA1 place cell (see Materials and methods). On top of these fixed and 
location-dependent activations, the CA3 neurons can activate neurons in CA1 through the synaptic 
connections. In other words, the CA3 neurons are activated according to the current location of the 
animal, while the CA1 neurons have a similar location-dependent activity combined with activity 
caused by presynaptic neurons. The constant currents delivered directly to CA3 and CA1 neurons can 
be thought of as location-dependent currents from entorhinal cortex. These activations subsequently 
trigger plasticity at the synapses, and we can show analytically that, using the spike-timing dependent 
plasticity rule discussed above, the SR is learned in the synaptic weights (Figure 1e and f, and see 
Appendix).

Moreover, we find that, on an algorithmic level, our weight updates are equivalent to a learning 
algorithm known as TD(‍λ‍), a powerful and well-known algorithm in reinforcement learning that can be 
used to learn the successor representation. TD(‍λ‍) is based on a mixed methodology, which is regu-
lated by the parameter ‍λ‍. At one extreme, when ‍λ = 1‍, the SR is estimated by taking the average of 
state occupancies over past trajectories. This type of algorithm is called TD(1) or Monte Carlo (MC). 
At the other extreme, when ‍λ = 0‍, the estimate of the SR is adjusted ‘online’, with every step of the 
trajectory, by comparing the observed position with its predicted value. This algorithm is equivalent 
to TD(0). For all values of ‍λ‍ in between, the algorithm employs a mixture of both methodologies. The 
extreme cases of TD(1) and TD(0) have different strengths and weaknesses, as we will discuss in more 
detail in the next sections.

In practice, we prove analytically the mathematical equivalence of the dynamics of our spiking 
neural network, and the TD(‍λ‍) algorithm (see Appendix). Our calculations essentially prove that, at 
each step, our neural network tracks the reinforcement learning algorithm, known to converge to the 
theoretical values of the SR. This equivalence guarantees that our neural network weights will eventu-
ally converge to the correct SR matrix. As a proof of principle, we show that it is possible to learn the 
SR for any initial weights (Figure 1—figure supplement 2), independently of any previous learning in 
the CA3 to CA1 connections.

Importantly, from our analytical derivations (see Appendix), we find that the ‍λ‍ parameter depends 
on the behavioral parameter T (the time an animal spends in a state). We find that, the larger the 
time T, the smaller the value of ‍λ‍ and vice-versa. In other words, when the animal moves through the 
trajectory on behavioral time-scales (large T compared to the synaptic plasticity time-scales ‍τLTP‍), 
the network is learning the SR with TD(‍λ ∼ 0‍). For quick sequential activities (T → 0), akin to hippo-
campal replays, the network is learning the SR with TD(‍λ ∼ 1‍). As we will discuss below, this framework 
therefore combines learning based on rate coding as well as temporal coding. Furthermore, from 
our model follows the prediction that replays can also be used for learning purposes and that they 
are algorithmically equivalent to MC, whereas during behavior, the hippocampal learning algorithm 
is equivalent to TD(‍λ‍). This strategy of using replays to learn is in line with recent experimental and 
theoretical observations (see Momennejad, 2020 for a review).

depression term is dependent on the synaptic weight and presynaptic spikes (blue). The potentiation term depends on the timing between a pre- and 
post-synaptic spike pair (red), following an exponentially decaying plasticity window (bottom). (E–F) Schematics illustrating some of the results of our 
model. (E) Our spiking model learns the top row of the successor representation (panel B) in the weights between the first CA3 place cell and the CA1 
cells. (F) Our spiking model learns the third row of successor representation (panel B) in the weights between the third CA3 place cell and the CA1 cells.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Learning the SR in a two-dimensional environment.

Figure supplement 2. The equivalence with TD(‍λ‍) guarantees convergence even with random initial synaptic weights.

Figure 1 continued

https://doi.org/10.7554/eLife.80671
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To validate our analytical results, we use again a linear track with a deterministic policy. Using our 
spiking model with either rate-code activity on behavioral time-scales (Figure 2a top) or temporal-
code activity similar to replays (Figure 2b top), we show that the synaptic weights across trials match 
the evolution of the TD(‍λ‍) algorithm closely (Figure 2a and b middle). While convergence to the SR 
is guaranteed (Figure 2a and b bottom) due to the mathematical equivalence between our setup 
and TD(‍λ‍) (Figure 2—figure supplement 1), the learning trajectory has more variance in the neural 
network case due to the noise introduced by the randomness of the spike times. This noise can be 
mitigated by averaging over a population of neurons. Moreover, due to the equivalence with TD(‍λ‍), 
our setup is general for any type of task where discrete states are visited, in any dimension, and which 
may not need to be a navigation task (see e.g. Figure 1—figure supplement 1 for a 2D environment).

In summary, we showed how the network can learn the SR using a spiking neural model. We analyt-
ically showed how the learning algorithm is equivalent to TD(‍λ‍), and confirmed this using numerical 
simulations. We derived a relationship between the abstract parameter ‍λ‍ and the timescale T repre-
senting the animal’s behavior — and in turn the neuronal spiking — allowing us to unify rate and 
temporal coding within one framework. Furthermore, we predict a role for hippocampal replays in 
learning the SR using an algorithm equivalent to Monte Carlo.

Figure 2. Comparison between TD(‍λ‍) and our spiking model. (A-top) Learning during behavior corresponds to TD(‍λ ≈ 0‍). States are traversed on 
timescales larger than the plasticity timescales and place cells use a rate-code. (A-middle) Comparison of the learning over epochs for two synaptic 
connections (full line denotes the mean over ten random seeds, shaded area denotes one standard deviation) with the theoretical learning curve of 
TD(‍λ‍) (dotted line). (A-bottom) Final successor matrix learned by the spiking model (left) and the theoretical TD(‍λ‍) algorithm (right). Star and diamond 
symbols denote the corresponding weights shown in the middle row. (B-top) Learning during replays corresponds to TD(‍λ ≈ 1‍). States are traversed on 
timescales similar to the plasticity timescales and place cells use a temporally precise code. (B-middle and bottom) Analogous to panel A middle and 
bottom.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of the exact and approximate equations for the parameters.

https://doi.org/10.7554/eLife.80671
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Learning over behavioral time-scales using STDP
An important observation in our framework is that the SR can be learned using the same under-
lying STDP rule over time-scales ranging from replays up to behavior. One can now wonder how it is 
possible to learn relationships between events that are seconds apart during awake behavior, without 
any explicit error encoding signal typically used by the TD algorithm, and while the STDP rule is char-
acterised by millisecond time-scales (Figure 3a).

From a neuroscience perspective, this can be understood when considering the trajectory of the 
animal. Each time the animal moves from a position ‍Sj−1‍ to a position ‍Sj‍, the CA3 cell encoding the 
location ‍Sj−1‍ stops firing and the CA3 cell encoding the location ‍Sj‍ starts firing. Since in our example 
this transition is instantaneous, these cells are activating the same CA1 cells consecutively. Therefore, 
the change in the weight ‍wi,j−1‍ depend on the synaptic weight of the subsequent state ‍wi,j‍ (Figure 3b, 
yellow depends on orange, orange depends on red, etc). Indeed, in our example of an animal in a 
linear track subdivided into four locations, the weights on the diagonal, such as ‍w4,4‍, are the first ones 
to be learned, since they are learned directly. The off-diagonal weights, such as ‍w3,4‍, ‍w2,4‍, and ‍w1,4‍, 
are learned consecutively more slowly as they are dependent on the subsequent synaptic weight. 

Figure 3. Learning on behavioral timescales and state-dependent discounting. (A) In our model, the network can learn relationships between neurons 
that are active seconds apart, while the plasticity rule acts on a millisecond timescale. (B) Due to transitions between subsequent states, each synaptic 
weight update depends on the weight from the subsequent CA3 neuron to the same CA1 neuron. In other words, the change of a synaptic weight 
depends on the weight below it in the successor matrix. The top panel visualizes how weights depend on others in our linear track example, where each 
lighter color depends on the darker neighbor. The bottom panel shows the learning of over 50 epochs. Notice the lighter traces converge more slowly, 
due to their dependence on the darker traces. (C) Place fields of the place cells in the linear track — each place cell corresponding to a column of the 
successor matrix. Activities of each place cell when the animal is in each of the four states (dots) are interpolated (lines). Three variations are considered: 
(i) the time spent in each state and the CA3 firing rates are constant (blue and panel D); (ii) the time spent in state 3 is doubled (orange and panel E); 
(iii) the CA3 firing rate in state 3 is doubled (green and panel F). Panels E and F lead to a modified discount parameter in state 3, affecting the receptive 
fields of place cells 3 and 4.

https://doi.org/10.7554/eLife.80671
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Eventually, weights between neurons encoding positions that are behaviorally far apart can be learnt 
using a learning rule on a synaptic timescale (Figure 3b).

From a reinforcement learning perspective, the TD(0) algorithm relies on a property called boot-
strapping. This means that the successor representation is learned by first taking an initial estimate 
of the SR matrix (i.e. the previously learned weights), and then gradually adjusting this estimate (i.e. 
the synaptic weights) by comparing it to the states in the environment that the animal actually visits. 
This comparison is achieved by calculating a prediction error, similar to the widely studied one for 
dopamine neurons (Schultz et  al., 1997). Since the synaptic connections carry information about 
the expected trajectories, in this case, the prediction error is computed between the predicted and 
observed trajectories (see Materials and methods).

The main point of bootstrapping, therefore, is that learning happens by adjusting our current 
predictions (e.g. synaptic weights) to match the observed current state. This information is available 
at each time step and thus allows learning over long timescales using synaptic plasticity alone. If the 
animal moves to a state in the environment that the current weights deem unlikely, potentiation will 
prevail and the weight from the previous to the current state will increase. Otherwise, the opposite will 
happen. It is important to notice that the prediction error in our model is not encoded by a separate 
mechanism in the way that dopamine is thought to do for reward prediction (Schultz et al., 1997). 
Instead, the prediction error is represented locally, at the level of the synapse, through the depression 
and potentiation terms of our STDP rule, and the current weight encodes the current estimate of the 
SR (see Materials and methods). Notably, the prediction error is equivalent to the TD(‍λ‍) update. This 
mathematical equivalence ensures that the weights of our neural network track the TD(‍λ‍) update at 
each state, and thus stability and convergence to the theoretical values of the SR. We therefore do 
not need an external vector to carry prediction error signals as proposed in Gardner et al., 2018; 
Gershman, 2018. In fact, the synaptic potentiation in our model updates a row of the SR, while the 
synaptic depression updates a column.

On the other extreme, for very fast timescales such as replays, TD(1) is equivalent to online Monte 
Carlo learning (MC), which does not bootstrap at all. Instead, MC samples the whole trajectory and 
then simply takes the average of the discounted state occupancies to update the SR (see Materials 
and methods). During replays, the whole trajectory falls under the plasticity window and the network 
can learn without bootstrapping. For all cases in between, the network partially relies on bootstrap-
ping and we correspondingly find a ‍λ‍ between 0 and 1.

In summary, in our framework, synaptic plasticity leads to the development of a successor repre-
sentation in which synaptic weights can be directly linked to the successor matrix. In this framework, 
we can learn over behavioral timescales even though our plasticity rule acts on the scale of millisec-
onds, due to the bootstrapping property of TD algorithms.

Different discounting for space and time
In reinforcement learning, it is usual to have delay-discounting: rewards that are further away in the 
future are discounted compared to rewards that are in the immediate future. Intuitively, it is indeed 
clear that a state leading to a quick reward can be regarded as more valuable compared to a state that 
only leads to an equal reward in the distant future. For tasks in a tabular setting, with a discrete state 
space and where actions are taken in discrete turns, such as for example chess or our simple linear 
track discussed in section ‘The Successor Representation’, one can simply use a multiplicative factor 

‍0 < γ ≤ 1‍ for each state transition. In this case the discount follows an exponential dependence, where 
rewards that are ‍n‍ steps away are discounted by a factor of ‍γ

n
‍.

In order to still use the above exponential discount when time is continuous, the usual approach 
is to discretize time by choosing a unit of time. However, this would imply one can never remain in a 
state for a fraction of this unit of time, and it is not clear how this unit would be chosen. Our frame-
work deals naturally with continuous time, through the monotonically decreasing dependence of the 
discount parameter ‍γ‍ on the time an agent remains in a state, T. The dependence on T can be inter-
preted as an increased discounting the longer a state lasts.

In this way, instead of discounting by ‍γ
n
‍ when the agent stays ‍n‍ units of time in a certain state, 

we would discount by ‍γ(n · T)‍. More generally, for any arbitrary time T, a discount corresponding to 

‍γ(T)‍ will be applied. This allows the agent to act in continuous time (Figure 3c and e). Interestingly, 
the dependence of ‍γ‍ on T in our model is not exponential as in the tabular case. Instead, we have a 

https://doi.org/10.7554/eLife.80671
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hyperbolic dependence. This hyperbolic discount is well studied in psychology and neuroeconomics 
and appears to agree well with experimental results (Laibson, 1997; Ainslie, 2012).

The difference between a hyperbolic discount and an exponential discount lays in the fact that 
we will attribute a different value to the same temporal delay, depending on whether it happens 
sooner or later. A classic example is that, when given the choice, people tend to prefer 100 dollars 
today instead of 101 dollars tomorrow, while they tend to prefer 101 dollars in 31 days instead of 100 
dollars in 30 days. They therefore judge the 1 day of delay differently when it happens later in time. 
Exponential discounting, on the other hand, always attributes the same value to the same delay no 
matter when it occurs.

Our model therefore combines two types of discounting: exponential when we move through 
space — when sequentially activating different place cells — and hyperbolic when we move through 
time — when we prolong the activity of the same place cell.

The discount factor ‍γ‍ also depends on other parameters such as firing rate and STDP amplitudes 
(see Equation 22 in the Appendix). This gives our model the flexibility to encode state-dependent 
discounting even when the trajectories and times spent in the states are the same. Such state-
dependent discounting can be useful to for example encode salient locations in the environment such 
as landmarks or reward locations (Figure 3c and f).

Bias-variance trade-off
As discussed previously (section ‘Learning the successor representation in biologically plausible 
networks’), the TD(‍λ‍) algorithm unifies the TD algorithm and the MC algorithm. In our framework, 
replay-like neuronal activations are equivalent to MC, while behavioral-like activity is equivalent to 
TD. In this section, we will discuss how the replays and behavior can work together when learning the 
cognitive map of an environment, leveraging the strengths of MC and TD.

The MC algorithm effectively works by averaging over the sampled trajectories. As such, the esti-
mated SR matrix will be a close approximation of the theoretical value. The difference between the 
estimated and theoretical value is commonly referred to as bias. We can therefore say that the MC 
algorithm presents low bias. However, if the agent moves in the environment at random, the sampled 
trajectories will be quite different from each other. When taking the average, the estimated value will 
therefore fluctuate a lot. In this case, we say that the MC estimate has high variance as well (Figure 4A 
and B).

Unlike MC, the TD algorithm updates its estimate of the SR by comparing the current estimate of 
the SR with the actual state the agent transitioned to. Because of the dependence on the current esti-
mate, this estimate will be incrementally refined with small updates. In this way, the SR estimate will 
not fluctuate much, and be lower in variance. However, by this dependence on the current estimate, 
we introduce a bias in the algorithm, which will be especially significant when our initial estimate of 
the SR is bad (Figure 4A and B). The TD algorithm therefore presents high bias and low variance.

We now apply these concepts to learning in a novel environment. Since the MC algorithm is unbi-
ased by the initial estimate of the SR, replays should initially speed up learning in an unfamiliar envi-
ronment. Later on, when the environment becomes familiar, the SR estimate is already closer to the 
exact value. At this point, we prefer to have low variance and thus the TD algorithm will be preferred. 
We confirm this logic using our spiking neural networks, and show how we can have both quick 
learning and low error at convergence if we proportionally have more replays at the first trials in a 
novel environment (Figure 4a–e). In contrast, when having an equal proportion of replays throughout 
the whole simulation, we do not yield as quick learning as MC and as low asymptotic error as TD 
(Figure 4—figure supplement 1). Interestingly, the pattern of proportionally more replays in novel 
environments versus familiar environments has also been experimentally observed (Cheng and Frank, 
2008; Figure 4f). Please note that, while we implemented an exponentially decaying probability for 
replays after entering a novel environment, different schemes for replay activity could be investi-
gated. Note also that other mechanisms besides the successor representation could account for these 
results, including model-based reinforcement learning.

https://doi.org/10.7554/eLife.80671


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Bono, Zannone et al. eLife 2023;12:e80671. DOI: https://doi.org/10.7554/eLife.80671 � 10 of 29

Figure 4. Replays can be used to control the bias-variance trade-off. (A) The agent follows a stochastic policy starting from the initial state (denoted 
by START). The probability to move to either neighboring state is 50%. An epoch stops when reaching a terminal state (denoted with STOP). (B) Root 
mean squared error (RMSE) between the learned SR estimate and the theoretical SR matrix. The full lines are mean RMSEs over 1000 random seeds. 
Three cases are considered: (i) learning happens exclusively due to behavioral activity (TD STDP, green); (ii) learning happens exclusively due to replay 
activity (MC STDP, purple); (iii) A mixture of behavioral and replay learning, where the probabilities for replays drops off exponentially with epochs (Mix 
STDP, pink). The mix model, with a decaying number of replays learns as quickly as MC in the first epochs and converges to a low error similar to TD, 
benefiting both from the low bias of MC at the start and the low variance of TD at the end. (C, D, E) Representative weight changes for each of the 
scenarios. Full lines show various random seeds, shaded areas denote one standard deviation over 1000 random seeds. (F) More replays are observed 
when an animal explores a novel environment (day 1). Panel F adapted from Figure 3A in Cheng and Frank, 2008.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Combining equal amounts of replays and behavioral learning.

Figure supplement 2. Setting the noise for replays.

https://doi.org/10.7554/eLife.80671
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Leveraging replays to learn novel trajectories
In the previous section, the replays re-activated the same trajectories as seen during behavior. In this 
section, we extend this idea and show how in our model replays can be useful during learning even 
when the re-activated trajectories were not directly experienced during behavior.

For this purpose, we reproduce an place-avoidance experiment from Wu et al., 2017. In short, 
rats are allowed to freely explore a linear track on day 1. Half of the track is dark, while the other half 
is bright. On day 2, the animals did four trials separated by resting periods: in the first trial (pre), the 
animals were free to explore the track; in the second trial (shock), they started in the light zone and 
received two mild footshocks when entering in the shock zone; in the third and fourth trial (post and 
re-exposure, respectively), they were allowed to freely explore the track again, but starting from the 
light zone or the shock zone respectively (Figure 5a). In the study, it was reported that during the 
post trial, animals tended to stay in the light zone and forward replays from the current position to the 
shock zone were observed when the animals reached the boundary between the light and the dark 
zone (Figure 5b and c).

Figure 5. Reproducing place-avoidence experiments with the spiking model. (A–C) Data from Wu et al., 2017. (A) Experimental protocol: the animal is 
first allowed to freely run in the track (Pre). In the next trial, a footshock is given in the shock zone (SZ). In subsequent trials the animal is again free to run 
in the track (Post, Re-exposure). Figure redrawn from Wu et al., 2017. (B) In the Post trial, the animal learned to avoid the shock zone completely and 
the also mostly avoids the dark area of the track. Figure redrawn from Wu et al., 2017. (C) Time spent per location confirms that the animal prefers the 
light part of the track in the Post trial. Figure redrawn from Wu et al., 2017. (D) Mimicking the results from Wu et al., 2017, the shock zone is indicated 
by the black region, the dark zone by the gray region and the light zone by the white region. Left: without replays, the agent keeps extensively exploring 
the dark zone even after having experienced the shock. Right: with replays, the agent largely avoids entering the dark zone after having experienced the 
shock (replays not shown). (E) The value of each state in the cases with and without replays. (F) Occupancy of each state in our simulations and for the 
various trials. Solid line and shaded areas denote the average and standard deviation over 100 simulations, respectively. Notice we do not reproduce 
the peak of occupancy at the middle of the track as seen in panel c, since our simplified model assumes the same amount of time is spent in each state.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Doubling the time-steps in the scenario without replays.

Figure supplement 2. The value of states can be read out by downstream neurons.

Figure supplement 3. Dependency of ‍γ ‍, ‍λ‍ and the place-tuned input to CA1 on ‍θ/T ‍, for various values of T and depression amplitude ‍Apre‍.

Figure supplement 4. Readout of the state value for various parameters.

https://doi.org/10.7554/eLife.80671
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We simulated a simplified version of this task. Our simulated agent moves through the linear track 
following a softmax policy, and all states have equal value during the first phase (pre) (Figure 5d, blue 
trajectories). Then, the agent is allowed to move through the linear track until it reaches the shock 
zone and experiences a negative reward. Finally, the third phase is similar as the first phase and the 
animal is free to explore the track. Two versions of this third phase were simulated. In one version, 
there are no replays (Figure 5d, orange trajectories in left panel), while in the second version a forward 
replay until the shock zone is simulated every time the agent enters the middle state (Figure 5d, 
orange trajectories in right panel, replays not shown). The replays affect the learning of the successor 
representation and the negative reward information is propagated towards the decision point in the 
middle of the track. The states in the dark zone therefore have lower value compared to the case 
without replays (Figure 5e). In turn, this different value affects the policy of the agent which now 
tends to avoid the dark zone all together, while the agent without replays still occupies many states 
of the dark zone as much as states in the light zone (Figure 5f). Moreover, even when doubling the 
amount of SR updates in the scenario without replays, the behavior of the agent remains unaltered 
(Figure 5—figure supplement 1). This shows that it is not the amount of updates, but the type of 
policy that is important when updating the SR, and how using a different policy in the replay activity 
can significantly alter behavior.

Our setup for this simulation is simplified, and does not aim to reproduce the complex decision 
making of the rats. Observe for example the peak of occupancy of the middle state by the animals 
(Figure 5c), which is not captured by our model because we assume the agent to spend the same 
amount of time in each state. Nonetheless, it is interesting to see how replaying trajectories that were 
not directly experienced before, in combination with a model allowing replays to affect the learning of 
a cognitive map, can substantially influence the final policy of an agent and the overall performance. 
This mental imagination of trajectories could be exploited to refine our cognitive maps, avoiding 
unfavourable locations or finding shortcuts to rewards. It is important to note here that, while we 
are suggesting a potential role for the SR in solving this task, the data itself would also be compat-
ible with a model-based strategy. In fact, experimental evidence suggests that humans may use a 
mixed strategy involving both model-based reinforcement learning and the successor representation 
(Momennejad et al., 2017).

Discussion
In this article, we investigated how a spiking neural network model of the hippocampus can learn the 
successor representation. Interestingly, we show that the updates in synaptic weights resulting from 
our biologically plausible STDP rule are equivalent to TD(‍λ‍) updates, a well-known and powerful rein-
forcement learning algorithm.

Reinforcement learning
Our network learns the SR in the CA3-CA1 weights. Since we have modeled neurons to integrate the 
synaptic EPSPs and generate spikes using an inhomogeneous Poisson process based on the depo-
larization, the firing rate is proportional to the total synaptic weights. Therefore, the successor repre-
sentation can be read out simply by a downstream neuron. Moreover, since the value of a state is 
defined by the inner product between the successor matrix and the reward vector, it is sufficient 
for the synaptic weights to the downstream neuron to learn the reward vector, and the downstream 
neuron will then encode the state value in its firing rate (see Figure 5—figure supplement 2). While 
the neuron model used is simple, it will be interesting for future work to study analogous models with 
non-linear neurons.

It is worth noting that, during learning, both pre-synaptic and post-synaptic layers receive external 
inputs representing the current state (Equation 10 and Equation 11 in Materials and methods). This 
may induce a distortion in the read out of the diagonal elements of the SR matrix (see Equations 
13 and 15, and Figure 5—figure supplement 2). At a first glance, this may indicate that learning 
and reading out are antagonistic. However, there are multiple ways we could resolve this apparent 
conflict: (i) Since the external current in CA1 is present for only a fraction of the time T in each state, 
the readout might happen during the period of CA3 activation exclusively; (ii) The readout may be 
over the whole time T but becomes more noisy towards the end. Even in the case where the readout is 

https://doi.org/10.7554/eLife.80671
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noisy, the distortion would be limited to the diagonal elements of the matrix; (iii) Learning and readout 
may be separate mechanisms, where the CA3 driving current is present during readout only. This 
could be for instance signaled by neuromodulation (e.g. noradrenaline and acetylcholine are active 
during learning but not exploration Micheau and Marighetto, 2011; Hasselmo and Sarter, 2011; 
Robbins, 1997; Teles-Grilo Ruivo and Mellor, 2013; Palacios-Filardo et al., 2021), or it could be that 
readout happens during replays; (iv) The weights to or activation functions of the readout neuron may 
learn to compensate for the distorted signal in CA1.

Furthermore, we can notice that the external inputs encoding the current state activate CA3 first, 
and CA1 later. The delay between these activations ‍θ/T ‍ (Equation 10 and Equation 11 in Materials 
and methods) is an arbitrary parameter that can be adjusted. Varying this delay will change the rein-
forcement learning representation, especially parameters ‍λ‍ and ‍γ‍, but also the strength of the input 
current (see Figure 5—figure supplement 3). However, this will not impact the distortion of the diag-
onal elements of the SR matrix, which remains similar across various delay values ‍θ/T ‍ (see Figure 5—
figure supplement 4).

Biological plausibility
Uncovering a connection between STDP and TD(‍λ‍) shows how, using minimal assumptions, a theoret-
ically grounded learning algorithm can emerge from a biological implementation of plasticity. Similar 
learning rules have indeed been observed in the hippocampus (Shouval et al., 2002 and proposed on 
theoretical grounds Mehta et al., 2000; Waddington et al., 2012; van Rossum et al., 2012).

The TD algorithm is most commonly known in neuroscience for describing how reward prediction 
can be computed in the brain. More specifically, it is widely believed that dopamine neurons in the 
ventral tegmental area (VTA) and substantia nigra (SNc) encode the prediction error between the 
observed and expected reward (Schultz et al., 1997), dopamine thus acts as a global signal that can 
be broadcasted to other areas of the brain like the striatum to compute the expected reward. In our 
model, the TD algorithm estimates the SR (i.e. expected future occupancy), rather than the value. 
However, since the prediction error for the SR is different for every synaptic connection (i.e. each pair 
of states), it is not clear how it could be carried by a global signal analogous to dopamine. The SR 
would need multiple signals, or a matrix transformation of the global signal. Furthermore, we would 
need to postulate that such error – or errors – are computed elsewhere in the brain. Instead, in our 
model, the prediction error simply emerges from the synaptic plasticity rule itself. Furthermore, thanks 
to the presynaptic depression, our STDP rule alone allows us to compute negative prediction errors, 
which still poses an open challenge for computation with dopamine because of the low baseline dopa-
minergic firing rate (Glimcher, 2011; Daw et al., 2002; Matsumoto and Hikosaka, 2007).

Our framework smoothly connects a temporally precise spiking code with a fully rate-based code, 
and anything in between. As we have proven mathematically, this translates in moving smoothly from 
Monte Carlo to Temporal Difference by means of TD(‍λ‍). Fast spiking sequences (temporal code) can 
be used for consolidation of previous experiences using Monte Carlo learning, while the behavioral 
timescale activity (rate code) results in TD updates, allowing learning on the timescale of seconds 
even with plasticity timeconstants on the order of milliseconds. This type of Hebbian learning over 
behavioral timescale exploits the bootstrapping property of TD, and is different than the one-shot 
behavioral plasticity described in Bittner et  al., 2017. However, these two mechanisms could be 
complementary, where the latter could play a more significant role in the formation of new place fields, 
while the former would be more relevant to shape the existing place fields to contain predictive infor-
mation. Learning on behavioral timescales using STDP was also investigated in Drew and Abbott, 
2006. The main difference between Drew and Abbott, 2006 and our work, is that the former relies 
on overlapping neural activity between the pre- and post-synaptic neurons from the start, while in our 
case no such overlap is required. In other words, our setup allows us to learn connections between a 
presynaptic neuron and a postsynaptic neuron whose activities are separated by behavioral timescales 
initially. For this to be possible, there are two requirements: (1) the task needs to be repeated many 
times and (2) a chain of neurons are consecutively activated between the aforementioned presynaptic 
and postsynaptic neuron. Due to this chain of neurons, over time the activity of the postsynaptic 
neuron will start earlier, eventually overlapping with the presynaptic neuron.

In our work, we did not include theta modulation, but phase precession and theta sequences 
could be yet another type of activity within the TD lambda framework. A recent work (George et al., 
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2023) incorporated the theta sweeps into behavioral activity, showing it approximately learns the SR. 
Moreover, theta sequences allow for fast learning, playing a similar role as replays (or any other fast 
temporal-code sequences) in our work. By simulating the temporally compressed and precise theta 
sequences, their model also reconciles the learning over behavioral timescales with STDP. In contrast, 
our framework reconciles both timescales relying purely on rate-coding during behavior. Finally, their 
method allows to learn the SR within continuous space. It would be interesting to investigate whether 
these methods co-exist in the hippocampus and other brain areas. Furthermore, (Fang et al., 2023) 
et al. recently showed how the SR can be learned using recurrent neural networks with biologically 
plausible plasticity.

There are three different neural activities in our proposed framework: the presynaptic layer (CA3), 
the postsynaptic layer (CA1), and the external inputs. These external inputs could for example be 
location-dependent currents from the entorhinal cortex, with timings guided by the theta oscillations. 
The dependence of CA1 place fields on CA3 and entorhinal input is in line with lesion studies (see e.g. 
Brun et al., 2008; Hales et al., 2014; O’Reilly et al., 2014). It would be interesting for future studies 
to further dissect the role various areas play in learning cognitive maps.

Notably, even though we have focused on the hippocampus in our work, the SR does not require 
predictive information to come from higher-level feedback inputs. This framework could therefore be 
useful even in sensory areas: certain stimuli are usually followed by other stimuli, essentially creating 
a sequence of states whose temporal structure can be encoded in the network using our frame-
work. Interestingly, replays have been observed in other brain areas besides the hippocampus (Kurth-
Nelson et al., 2016; Staresina et al., 2013). Furthermore, temporal difference learning in itself has 
been proposed in the past as a way to implement prospective coding (Brea et al., 2016).

Replays
We have also proposed a role for replays in learning the SR, in line with experimental findings and RL 
theories (Russek et al., 2017; Momennejad et al., 2017). In general, replays are thought to serve 
different functions, spanning from consolidation to planning (Roscow et al., 2021). Here, we have 
shown that when the replayed trajectories are similar to the ones observed during behavior, they play 
the role of speeding up and consolidating learning by regulating the bias-variance trade-off, which 
is especially useful in novel environments. On the other hand, if the replayed trajectories differ from 
the ones experienced during wakefulness, replays can play a role in reshaping the representation 
of space, which would suggest their involvement in planning. Experimentally, it has been observed 
that replays often start and end from relevant locations in the environment, like reward sites, deci-
sion points, obstacles or the current position of the animal (Ólafsdóttir et al., 2015; Pfeiffer and 
Foster, 2013; Jackson et al., 2006; Mattar and Daw, 2017). Since these are salient locations, it is 
in line with our proposition that replays can be used to maintain a convenient representation of the 
environment. It is worth noticing that replays can serve a variety of functions, and our framework 
merely proposes additional beneficial properties without claiming to explain all observed replays. For 
example, in addition to forward replays, also reverse replays are ubiquitous in hippocampus (Pfeiffer, 
2020). The reverse replays are not included in our framework, and it is not clear yet whether they 
play different roles, with some evidence suggesting that reverse replays are more closely tied to the 
reward encoding (Ambrose et al., 2016). Moreover, while indirect evidence supports the idea that 
replays can play a role during learning (Igata et al., 2021), it is not yet clear how synaptic plasticity is 
manifested during replays (Fuchsberger and Paulsen, 2022).

Learning flexibility
Multiple ideas from reinforcement learning, such as TD(‍λ‍), state-dependent discounting and the 
successor representation, emerge quite naturally from our simple biologically plausible setting. We 
propose in our work that time and space can be discounted differently. Moreover, the flexibility to 
change the discounting factor by modulating firing rates and plasticity parameters — which is ubiqui-
tous in neural circuits — suggests that these mechanisms could be used to encode a variety of infor-
mation in a cognitive map. Moreover, the specific dependence of the discount factor on the biological 
parameters leads to experimentally testable predictions. Indeed, our framework predicts well-defined 
changes in place fields after modulations of firing rates, speed of the agent or neuromodulation of the 
plasticity parameters (Figure 3). Importantly, the discount parameter also depends on the time spent 
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in each state. This eliminates the need for time discretization, which does not reflect the continuous 
nature of the response of time cells (Kraus et al., 2013).

Limitations of the reinforcement learning framework
We have already outlined some of the benefits of using reinforcement learning for modeling behavior, 
including providing clear computational and algorithmic frameworks. However, there are several 
intrinsic limitations to this framework. For example, RL agents that only use spatial data do not provide 
complete descriptions of behavior, which likely arises from integrating information across multiple 
sensory inputs. Whereas an animal would be able to smell and see a reward from a certain distance, an 
agent exploring the environment would only be able to discover it when randomly visiting the exact 
reward location. Furthermore, the framework rests on fairly strict mathematical assumptions: typically 
the state space needs to be markovian, time and space need to be discretized (which we manage to 
evade in this particular framework) and the discounting needs to follow an exponential decay. These 
assumptions are simplistic and it is not clear how often they are actually met. Reinforcement Learning 
is also a sample-intensive technique, whereas we know that some animals, including humans, are 
capable of much faster or even one-shot learning.

Even though we have provided a neural implementation of the SR, and of the value function as its 
read-out (see Figure 5—figure supplement 2), the whole action selection process is still computed 
only at the algorithmic level. It may be interesting to extend the neural implementation to the policy 
selection mechanism in the future.

Taken together, our work joins — in a single framework — a variety of concepts from the neuronal 
level over cognitive theories to reinforcement learning.

Materials and methods
The successor representation
In a tabular environment, we define the value of a state ‍s‍ as being the expected cumulative reward 
that an agent will receive following a certain policy starting in ‍s‍. The future rewards are multiplied by 
a factor ‍0 < γn ≤ 1‍, where ‍n‍ is the number of steps until reaching the reward location and ‍0 < γ ≤ 1‍ 
is the delay discount factor. It is usual to use ‍0 < γ < 1‍, which ensures that earlier rewards are given 
more importance compared to later rewards. Formally, the value of a state ‍s‍ under a certain policy ‍π‍ 
is defined as

	﻿‍
Vπ(s) = Eπ

[∞∑
k=0

γkRt+k
��St = s

]

‍�
(1)

	﻿‍
=
∑
a
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[
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∑
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]

‍�
(2)

Here, ‍a‍ denotes the action, ‍R(s, a)‍ is the reward function and ‍P(s′|s, a)‍ is the transition function, i.e. 
the probability that taking an action ‍a‍ in state ‍s‍ will result in a transition to state ‍s′‍. Following (Dayan, 
1993), we can decompose the value function into the inner product of reward function and successor 
matrix

	﻿‍
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∑
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‍� (3)

with

	﻿‍
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]
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This representation is known as the successor representation (SR), where each element ‍Mij‍ 
represents the expected future occupancy of state ‍j‍ when in state ‍i‍. By decomposing the value into 
the SR and the reward function (Equation 3), relearning the state values ‍V ‍ after changing the reward 
function is fast, similar to model-based learning. At the same time, the SR can be learned in a model-
free manner, using for example temporal difference (TD) learning (Russek et al., 2017).
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Derivation of the TD(‍λ‍) update for the SR
The TD(‍λ‍) update for the SR is then implemented according to (see e.g. Sutton and Barto, 1998)

	﻿‍ ∆M(j, i) = δTD
0 + γλδTD

1 + (γλ)2δTD
2 + . . .‍� (5)

Using ‍δ
TD
i ‍ for the TD error at step ‍i‍ and ‍δxy‍ for the Kronecker delta,

	﻿‍ δTD
n = δj+n,i+n + γM(j + n + 1, i + n) − M(j + n, i + n)‍� (6)

corresponds to the TD error for element ‍M(j + n, i + n)‍ of the successor representation after the tran-
sition from state ‍j + n‍ to state ‍j + n + 1‍. Combining Equations 5 and 6, we find
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and
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(8)

Neural network model
Plasticity rule
The synaptic plasticity rule (Figure 1d) consists of a weight-dependent depression for presynaptic 
spikes and a spike-timing dependent potentiation, given by

	﻿‍

dwij(t)
dt = ηSTDPALTP · Trj

LTP(t) ·
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i
δ(t − ti) − ηSTDPALTD · wij(t) · δ(t − tj)
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∑

j
δ(t − tj)

‍�

(9)

Here, ‍wij‍ represents the synaptic connection from presynaptic neuron ‍j‍ to postsynaptic neuron ‍i‍, 

‍Trj
LTP‍ is the plasticity trace, a low-pass filter of the presynaptic spike train with time constant ‍τLTP‍, ‍tj‍ 

and ‍ti‍ are the spike times of the postsynaptic and presynaptic neuron respectively, ‍ALTP‍ and ‍ALTD‍ are 
the amplitudes of potentiation and depression respectively, ‍ηSTDP‍ is the learning rate for STDP and 
the ‍δ(·)‍ denotes the Dirac delta function.

Place cell activation
We assume that each state in the environment is represented by a population of place cells in the 
network. In our model, this is achieved by delivering place-tuned currents to the neurons. Whenever 
a state ‍S = j‍ is entered, the presynaptic neurons encoding state ‍j‍ start firing at a constant rate ‍ρ

pre
‍ 

for a time ‍θ‍, following a Poisson process with parameter ‍ρ
pre
h (t)‍. The other presynaptic neurons are 

assumed to be silent:

	﻿‍

ρ
pre
h (t) =



ρpreδhj, if t ∈

[
0, θ

)

0 otherwise ‍�
(10)

where the Kronecker delta function is defined as ‍δhj = 1‍ if ‍h = j‍ and zero otherwise. Here we use the 
index ‍j‍ to denote any neuron belonging to the population of neurons encoding state ‍j‍. After a short 
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delay, at time ‍t∗‍, a similar current ‍ρ
bias

‍ is delivered to the postsynaptic neuron encoding state ‍j‍, for a 
duration of time ‍ω‍.

	﻿‍

ρbias
i (t) =



ρbiasδij, if t ∈

[
t∗, t∗ + ω

)

0, otherwise ‍�
(11)

Besides the place-tuned input current, CA1 neurons receive inputs from the presynaptic layer (CA3). 
The postsynaptic potential ‍ρ

post
i ‍ when the agent is in state j is thus given by

	﻿‍
ρ

post
i (t) =

Npop∑
k

∑
tfk<t

wijk (t)κ(t − tf) + ρbias
i (t),

‍�
(12)

with the first sum running over all ‍Npop‍ presynaptic neurons encoding state ‍j‍, and the second sum over 
all presynaptic firing times ‍t

f
k‍ of neuron ‍k‍ happened before ‍t‍. The excitatory postsynaptic current ‍κ‍ is 

modeled as an exponential decay described as ‍κ(x) = ϵ0e−x/τm‍ for ‍x ≥ 0‍ and zero otherwise. Each CA1 
neuron ‍i‍ fires following an inhomogeneous Poisson process with rate ‍ρ

post
i (t)‍.

Note that, in most simulations we will use a single neuron in the population ‍Npop = 1‍. In addition, 
we normally set ‍t∗ = θ‍ and ‍ω = T − θ‍. However, we will keep these as explicit parameters for theoret-
ical purposes.

Equivalence with TD(‍λ‍)
Total plasticity update
Since we have the mathematical equation for the plasticity rule, and CA3 and CA1 neurons follow an 
inhomogeneous Poisson process with time-dependent firing rate, we can calculate analytically the 
average total weight change for the synapse ‍wij‍, given a certain trajectory (details in the Appendix). 
Please notice that our calculation is based on Kempter et al., 1999, which takes into account the fact 
that our plasticity rule is sensitive to spike timing and involves a spike-spike correlation term. We find 
that:

	﻿‍
∆wij = A wij +

N∑
n=0

[B(e−T/τLTP )nδij+n + C(e−T/τLTP )n+1wi,j+n+1]
‍�

(13)

where ‍N ‍ is the number of states until the end of the trajectory and

	﻿‍

A = ηSTDPALTP Npopϵ0(ρpre)2 τLTP τm(1 − e−θ/τm )
[
θ − τLTP(1 − e−θ/τLTP )

]

+ηSTDPALTPθρ
preNpop

τmτLTP
τm+τLTP

ϵ0 − ηSTDPApre ρ
preθ ‍�

(14)

	﻿‍ B = ηSTDPALTPρ
preτ2

LTP(e
θ

τLTP − 1)e−
t∗

τLTP (1 − e−
ω

τLTP )ρbias = B′ρbias
‍� (15)

	﻿‍ C = ηSTDPALTPNpopϵ0τmτ
2
LTP(ρpre)2(1 − e−

θ
τm )(e

θ
τLTP − 1)(1 − e−

θ
τLTP )‍� (16)

Comparison with TD(‍λ‍)
Comparing the total weight change due to STDP (Equation 13) to the TD(‍λ‍) update (Equation 8), we 
can see that the two equations are very similar in form:

	﻿‍

wij ← wij − A{−wij +
N∑

n=0
[−B

A (e−T/τLTP )nδij+n − C
A e−T/τLTP (e−T/τLTP )nwi,j+n+1]}

M(j, i) ← M(j, i) + η{−M(j, i) +
N∑

n=0
[(γλ)nδj+n,i + (1 − λ)γ(γλ)nM(j + n + 1, i)]}

‍�

We impose ‍wij = M(j, i)‍, and find:

	﻿‍ −A = η‍� (17)

	﻿‍ −B
A = 1 → ρbias = − A

B′ ‍� (18)

	﻿‍ e−T/τLTP = λγ‍� (19)

https://doi.org/10.7554/eLife.80671
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	﻿‍ −Ce−T/τLTP

A = 1−λ
γ ,‍� (20)

where ‍A, B, B′
‍ and ‍C‍ are defined as in Equations 14, 15, and 16.

Hence, our plasticity rule is learning the Successor Representation through a TD(‍λ‍) model with 
parameters:

	﻿‍ η = −A‍� (21)

	﻿‍ γ = A−C
A e−

T
τLTP ‍� (22)

	﻿‍ λ = A
A−C‍� (23)

To ensure the learning rate ‍η‍ is positive, one condition resulting from Equation 21 is

	﻿‍
Apre > ALTP NpopτLTP τmϵ0

(
ρpre (1 − e−θ/τm ) θ−τLTP(1−e−θ/τLTP )

θ + 1
τm+τLTP

)
‍� (24)

Learning during normal behavior (‍θ >> τLTP‍)
During normal behavior, we assume the place-tuned currents are on larger timescales than the plas-
ticity constants: ‍θ,ω >> τLTP‍. We can see from Equations 14 and 16 that the factor ‍A‍ grows linearly 
with ‍θ‍ while ‍C‍ grows exponentially with ‍θ‍. From Equation 23, we then have

	﻿‍ λ → 0‍� (25)

(See also Figure 2—figure supplement 1).

Learning during replays (‍θ << τLTP‍)
Assumptions
For the replay model we assume the place-tuned currents are impulses, which make the neurons emit 
exactly one spike at a given time. Specifically, we can make the duration of the place-tuned currents 
go to 0,

	﻿‍ θ,ω → 0‍� (26)

while the intensity of the currents goes to infinity. For simplicity, we will take:

	﻿‍ ρpre(θ) = 1
θ → limθ→0 ρ

pre = ∞ ρbias(ω) = 1
ω → limω→0 ρ

bias = ∞‍�

Furthermore, we assume that the contribution of the postsynaptic currents due to the single presyn-
aptic spikes is negligible in terms of driving plasticity, allowing us to set

	﻿‍ ϵ0 → 0‍�

Calculations of TD parameters
Given the assumptions above, we can see from Equations 14 and 16 that:

	﻿‍

A = −ηSTDPApre

C = 0 ‍�

For Equation 15, we can use the Taylor expansion for ‍e
x
τ ‍ around ‍x = 0‍, such that: 

‍
e

x
τ ≈ 1 + x

τ ‍
 :

	﻿‍

B = ηSTDPALTPτ
2
LTPρ

pre θ
τLTP

e−
t∗

τLTP ω
τLTP

ρbias

= ηSTDPALTPe−
t∗

τLTP ‍�

Using Equations 21, 22, 23 and 18, we can calculate the parameters and constraints for the TD 
model:

https://doi.org/10.7554/eLife.80671
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	﻿‍

λ = A
A−C = 1

η = −A = ηSTDPApre

γ = A−C
A e−

T
τLTP = e−

T
τLTP

1 = −B
A = ALTPe

− t∗
τLTP

Apre ‍�

(27)

As expected, the bootstrapping parameter ‍λ = 1‍ (see also Figure 2—figure supplement 1).

Alternative derivation of replay model
Place cell activation during replays
We model a replay event as a precise temporal sequence of spikes. Since every neuron represents a 
state in the environment, a replay sequence reproduces a trajectory of states. We assume that, when 
the agent is in state ‍S = j‍, the neurons representing state ‍j‍ fire ‍npre‍ spikes at some point in the time 
interval ‍t ∈ [0,σ]‍, where the exact firing times are uniformly sampled. After a short delay, the CA1 
neurons representing state ‍j‍ fire ‍npost‍ spikes at a time uniformly sampled from the interval ‍[t∗, t∗ + σ]‍. 
The time between two consecutive state visits is ‍T ‍. The exact number of spikes in each replay event 
is random but small. Specifically, it is sampled from the set ‍{0, 1, 2}‍ according to the probability vector

	﻿‍ p = ( p1
2 , 1 − p1, p1

2 )‍� (28)

It is worth noting here that other implementations are possible but that we assume the average 
number of spikes in each state is 1, and that the average time between a presynaptic and a postsyn-
aptic spike is ‍t∗‍. The model could be further generalized for a higher number of average spikes per 
state.

Plasticity update
We can consider again our learning rule, composed of a positive pre-post potentiation window and 
presynaptic weight-dependent depression (Equation 9). Let’s consider the synapse ‍wij‍, we can see 
that on average the total amount of depression will be determined by the number of times the state 

‍j‍ is visited in the trajectory replayed:

	﻿‍ LTD = −Apre · wijNj,‍�

where ‍Nj‍ is the number of times the state ‍j‍ is visited. The amount of potentiation will be determined, 
instead, by the time difference between the postsynaptic and presynaptic firing times, which encode 
the distance between state ‍j‍ and state ‍i‍:

	﻿‍
LTP = ALTP

∑
k

e−
kT+t∗
τLTP nij

k ,
‍�

where ‍n
ij
k ‍ represents the number of times the agent visited state ‍i‍ k steps after ‍j‍. Combining the 

equations above we find that:

	﻿‍
∆wij = ηSTDPALTP

∑
k

e−
kT+t∗
τLTP nij

k − ηSTDPApre · wijNj.
‍�

(29)

If we assume that the this value has converged to its stationary state, ‍∆wij = 0‍;

	﻿‍ w⋆
ij = ALTP

Apre
e−

t∗
τLTP ·

∑
k

(e
− T

τLTP )knij
k

Nj ‍�
(30)

Comparison with online Monte Carlo learning
Given the stable weight ‍w∗‍ from Equation 30, we can impose that:

	﻿‍
ALTP
Apre

e−
t∗

τLTP = 1 and‍� (31)
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	﻿‍ e−
T

τLTP = γ‍� (32)

we find that the stable weight is:

	﻿‍
w⋆

ij =

∑
k
γknij

k

Nj
≈ E

[∑
k
γkI(Sk = i|S0 = j)

]
= M(j, i)

‍�
(33)

which is the definition of the Successor Representation matrix (Equation 4). Indeed, ‍w
⋆
ij‍ is computing 

the sample mean of the discounted distance between states ‍i‍ and ‍j‍, which is equivalent to performing 
an every-state Monte Carlo or TD(‍λ‍=1) update. Notably, from Equation 29, we have that the learning 
rate for the Monte Carlo update is given by:

	﻿‍ η = ηSTDPALTPe−
t∗

τLTP = ηSTDPApre‍� (34)

Simulation details for Figure 2
A linear track with four states is simulated. The policy of the agent in this simulation is to traverse the 
track from left to right, with one epoch consisting of starting in state 1 and ending in state 4. One 
simulation consists of 50 epochs, and we re-run the whole simulation ten times with different random 
seeds. Over these ten seeds, mean and standard deviation of the synaptic weights are recorded after 
every epoch.

Our neural network consists of two layers, each with a single neuron per state (as in Figure 1). 
Synaptic connections are made from each presynaptic neuron to all postsynaptic neurons, resulting in 
a 4-by-4 matrix which is initialized as the identity matrix. The plasticity rule and neuronal activations 
follow Equations 9–12.

The STDP parameters are listed in Table 1.
To obey Equation 24, we set ‍Apre‍ equal to the right hand side augmented with 5.
For the behavioral case, we choose T=100ms, ‍θ‍=80ms, ‍ω = T − θ‍, which correspond to TD(‍λ‍) 

parameters ‍λ = 0.21‍, ‍γ = 0.89‍, ‍η = 0.12‍.
In the replay case, we have a sequence of single spike per neuron (see Figure 2b and section 

‘Alternative derivation of replay model’). Following Equation 27, we choose ‍T = − log
(
γ
)
τLTP ≈‍ 

7ms, where ‍γ‍ and ‍τLTP‍ are the same as in Table 1. We set ‍θ = 2‍ ms and ‍σ = 0.5‍ ms. By setting the 

‍
ηstdp = η

ALTP exp(θ/τLTP)‍
, the corresponding TD(‍λ‍) parameters are ‍λ = 1‍, ‍γ = 0.89‍, ‍η = 0.12‍ just as in the 

behavioral case.
More details on the place cell activation during replays in our model can be found in section ‘Alter-

native derivation of replay model’. Using exactly one single spike per neuron with the above param-
eters would allow us to follow the TD(1) learning trajectories without any noise. For more biological 
realism, we choose ‍p1 = 0.15‍ in Equation 28, in order to achieve an equal amount of noise due to the 
random spiking as in the case of behavioral activity (see Figure 4—figure supplement 2).

Table 1. Parameters used for the spiking network.

‍ϵ0‍ 1

‍ρpre‍ 0.1ms-1

‍τm‍ 2ms

‍Npost‍ 1

‍Npretot‍ 1

‍Npre‍ 1

stepsize 0.01ms

‍ηstdp‍ 0.003

‍τLTP‍ 60ms

‍ALTP‍ 1 ms-1

https://doi.org/10.7554/eLife.80671
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Simulation details for Figure 3
Using the same neural network and plasticity parameters as the behavioral learning in Figure 2 (see 
previous section), we simulate the linear track in the following two situations:

•	 The third state has T=200ms instead of 100ms. All other parameters remain the same as in 
Figure 2. Results plotted in Figure 3E.

•	 The third state has ‍ρpre = 0.2 ms−1
‍ instead of ‍0.1 ms−1‍. All other parameters remain the same as 

in Figure 2. Results plotted in Figure 3F.

Simulation details for Figure 4
A linear track with three states is simulated, and the agent has 50% probability to move left or right in 
each state (see Figure 4A). One epoch lasts until the agent reaches one of the STOP locations.

We then use the same neural network and plasticity parameters as used for Figure 2. We simulate 
three scenarios:

•	 Only replay-based learning during all epochs (no behavioral learning). This scenario corre-
sponds to MC STDP in Figure 4B and to Figure 4C.

•	 Mixed learning using both behavior and replays. The probability for an epoch to be a replay is 
decaying over time following ‍exp(−i/6)‍, with ‍i‍ the epoch number. This scenario corresponds to 
Mix STDP in Figure 4B and to Figure 4E.

•	 Only behavioral learning during all epochs (no replays). This scenario corresponds to TD STDP 
in Figure 4B and to Figure 4D.

Simulation details for Figure 5
A linear track with 21 states is simulated. The SR is initialized as the identity matrix, and the reward 
vector (containing the reward at each state) is also initialized as the zero vector. We simulate the 
learning of the SR during behavior using the theoretical TD(0) updates and during replays using the 
theoretical TD(1) updates. The value of each state is then calculated as the matrix-vector product 
between the SR and the reward vector, resulting in an initial value of zero for each state.

The policy of the agent is a softmax policy (i.e. the probability to move to neighboring states is 
equal to the softmax of the values of those neighboring states). The first time the agent reaches the 
leftmost state of the track (state 1), the negative reward of –2 is revealed, mimicking the shock in the 
actual experiments, and the reward vector is updated accordingly for this state.

We now simulate two scenarios: in the first scenario, the agent always follows the softmax policy 
and no replays are triggered (see Figure 5D, left panel). In the second scenario, every time the agent 
enters the dark zone from the light zone (i.e. transitions from state 12 to state 11 in our simulation), a 
replay is triggered from that state until the leftmost state (state 1) (see Figure 5D, right panel). Both 
scenarios are simulated for 2000 state transitions. We then run these two scenarios 100 times and 
calculate mean and standard deviation of state occupancies (Figure 5F).

Finally, since the second scenario has more SR updates than the first scenario, we also simulate the 
first scenario for 4000 state transitions (Figure 5—figure supplement 1) and show how the observed 
behavior of Figure 5 is unaffected by this.
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Appendix 1
Analytical derivations for the total weight change in the behavioural 
model
Presynaptic rate during state ‍j‍
Whenever a state ‍S = j‍ is entered, the presynaptic neurons encoding state ‍j‍ start firing at a constant 
rate ‍ρ

pre
‍ for a time ‍θ‍, following a Poisson process with parameter ‍ρ

pre
j (t)‍:

	﻿‍

ρ
pre
j (t) =



ρpre, if t ∈

[
0, θ

)

0, otherwise ‍�
(35)

The other presynaptic neurons are silent.

Postsynaptic rate during state ‍j‍
The average postsynaptic rate can be calculated as follows. The probability of a presynaptic spike 
between ‍t‍ and ‍t + dt‍ is equal to ‍ρj(t)dt‍. The size of the presynaptic population encoding state ‍j‍ is 
equal to ‍Npop‍ and each excitatory postsynaptic potential (EPSP) is modeled by an immediate jump 
with amplitude ‍ϵ0wij‍, followed by exponential decay of EPSP with time constant ‍τm‍.

Following Equation 12 in the main paper, reproduced below,

	﻿‍
ρ

post
i (t) =

Npop∑
k

∑
tfk<t

wijk (t)κ(t − tf) + ρbias
i (t)

‍�

we find that the average postsynaptic potential at time ‍t‍ is given by (assuming t=0 when entering 
the state ‍j‍):

	﻿‍
ρ̄

post
i (t) =

ˆ t

0
[Npopρ

pre
j (t′)ϵ0wij(t′)e−

t′
τm + ρbias

i (t′)]dt′
‍�

(36)

We assume that ‍wij(t)‍ changes slowly compared to the timescale ‍θ‍ allowing us to consider the weight 
constant during that time. We can then approximate the average postsynaptic rate as:

	﻿‍

ρ̄
post
i (t) =





Npopρ
preϵ0wijτm(1 − e−

t
τm ), if 0 ≤ t < θ

ρbiasδij, if t∗ ≤ t < t∗ + ω

0, otherwise ‍�

(37)

If ‍t⋆ < θ‍, both the first and the second term will contribute to the postsynaptic rate in the time 
between ‍t⋆‍ and ‍θ‍.

LTP trace during state ‍j‍
Given Equation 9 in the main paper, reproduced below,

	﻿‍
τLTP

dTrj
LTP(t)
dt = −Trj

LTP(t) +
∑

j
δ(t − tj)

‍�

and combined with Equation 35, we can calculate the evolution of the LTP trace for neuron ‍j‍ during 
state ‍j‍:

	﻿‍

Trj
LTP(t) =




ρpre ´ t

0 e−
t′

τLTP dt′, if 0 ≤ t < θ

ρpreτLTP(1 − e−
θ

τLTP )e−
t−θ
τLTP , if t ≥ θ

=



ρpreτLTP(1 − e−

t
τLTP ), if 0 ≤ t < θ

ρpreτLTP(e
θ

τLTP − 1)e−
t

τLTP , if t ≥ θ
‍� (38)
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For ‍0 ≤ t < θ‍, the presynaptic neuron ‍j‍ is active and therefore the trace builds up with the presynaptic 
spikes, for ‍t ≥ θ‍, the trace decays exponentially with time constant ‍τLTP‍.

Total amount of LTP during state ‍j‍
Following (Kempter et al., 1999), first we calculate the amount of LTP without taking into account 
spike-to-spike correlation:

The probability for a postsynaptic spike between ‍t‍ and ‍t + dt‍ is ‍̄ρ
post
i (t) dt‍. The amount of LTP due 

to a single spike at time ‍t‍ is ‍ALTP Trj
LTP(t)‍. Hence, combining Equations 37 and 38, the total amount 

of LTP during a state (i.e. between time 0 and ‍T ‍) becomes:

	﻿‍ LTPnon-causal = ALTP
´ T

0 ρ̄
post
i (t) Trj

LTP(t) dt‍� (39)

	﻿‍

= ALTPNpopρ
preϵ0wijτm(1 − e−

θ
τm )ρpreτLTP

´ θ
0 (1 − e−

t′
τLTP )dt′

+ALTPρ
bias ρpreτLTP(e

θ
τLTP − 1)e−

t∗
τLTP
´ t⋆+ω

t⋆ e−
t′

τLTP dt′

= ALTP wij Npopϵ0(ρpre)2 τLTP τm(1 − e−
θ
τm )

[
θ − τLTP(1 − e−

θ
τLTP )

]

+ALTPρ
bias ρpreτ2

LTP(e
θ

τLTP − 1)e−
t∗

τLTP [1 − e−
ω

τLTP ]‍�

(40)

Following (Kempter et al., 1999), the amount of LTP due to the causal part (each presynaptic spike 
temporarily increase the probability of a postsynaptic spike) is given by:

	﻿‍ LTPcausal = ALTPθρ
preϵ0wij

τmτLTP
τm+τLTP ‍� (41)

Combining equations for the non-causal 40 and causal 41 parts, we get the total amount of LTP 
during a state (assuming ‍τm << τLTP)‍:

	﻿‍

LTP = ALTP wij Npopϵ0(ρpre)2 τLTP τm(1 − e−
θ
τm )

[
θ − τLTP(1 − e−

θ
τLTP )

]

+ALTPρ
bias ρpreτ2

LTP(e
θ

τLTP − 1)e−
t∗

τLTP [1 − e−
ω

τLTP ]

+ALTPθρ
pre τmτLTP

τm+τLTP
ϵ0wij ‍�

(42)

Total amount of LTD during state ‍j‍
There is a weight-dependent depression for each presynaptic spike, hence the amount of LTD during 
a state is given by:

	﻿‍ LTD = −Apreρ
preθwij‍� (43)

Total plasticity during state ‍j‍
Combining Equations 42 and 43, we can calculate the total amount of plasticity during the time the 
agent spends in the current state ‍j‍:

	﻿‍ ∆0wij = A wij + Bδij‍� (44)

with

	﻿‍

A = ηSTDPALTP Npopϵ0(ρpre)2 τLTP τm(1 − e−θ/τm )
[
θ − τLTP(1 − e−θ/τLTP )

]

+ηSTDPALTPθρ
pre τmτLTP

τm+τLTP
ϵ0 − ηSTDPApre ρ

preθ ‍�
(45)

and

	﻿‍ B = ηSTDPALTP ρpreτ2
LTP(e

θ
τLTP − 1)e−

t∗
τLTP [1 − e−

ω
τLTP ]ρbias

‍� (46)

Plasticity due to states transitioning
Once the agent leaves state ‍j‍, the decaying LTP trace can still cause potentiation due to the activity 
in the following states, ‍j + n‍, with ‍n = 1, 2, ...‍ . Given that the agent spends a time ‍T ‍ in each state, we 
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find that the agent visits state ‍j + n‍ during time ‍t ∈ [nT, nT + T)‍. We will now calculate the contribution 
to plasticity due to these state transitions.

Postsynaptic rate during the new state ‍j + n‍
During state ‍j + n‍, the activity of the postsynaptic neurons is driven by the presynaptic neurons 
coding for ‍j + n‍, and the bias current. We can thus generalize Equation 37 and find that the average 
postsynaptic rate ‍̄ρ

post
i ‍ during state ‍j + n‍ is:

	﻿‍

ρ̄
post
i (t) =





Npopρ
preϵ0wij+nτm(1 − e−

θ
τm ), if nT ≤ t < nT + θ

ρbiasδij+n, if nT + t∗ ≤ t < nT + t∗ + ω

0, otherwise ‍�

(47)

LTP trace from state ‍j‍, during the new state ‍j + n‍
Following Equation 38, we find that the amplitude of the LTP trace from state ‍j‍ during state ‍j + n‍ is:

	﻿‍

Trj
LTP(nT + t′) = ρpreτLTP(e

θ
τLTP − 1)e−

(t′+nT)
τLTP

= ρpreτLTP(e
θ

τLTP − 1)(e−
T

τLTP )ne−
t′

τLTP ‍�
(48)

with ‍0 < t′ < T ‍.

LTP due to state transitioning
We can then calculate the amount of LTP between the presynaptic neuron ‍j‍ and the postsynaptic 
neuron ‍i‍, when the agent is in state ‍j + n‍. We refer to Equation 39 and find:

	﻿‍

LTPswitch = ALTP
´ nT+T

nT ρ̄
post
i (t′) Trj

LTP(t′) dt′

= ALTPNpopρ
preϵ0wij+nτm(1 − e−

θ
τm )ρpreτLTP(e

θ
τLTP − 1)(e−

T
τLTP )n ´ nT+θ

nT e−
t′

τLTP dt′

+ALTPρ
biasδij+nρ

preτLTP(e
θ

τLTP − 1)e−
t∗

τLTP (e−
T

τLTP )n ´ nT+t∗+ω
nT+t∗ e−

t′
τLTP dt′

= ALTPNpopρ
preϵ0wij+nτm(1 − e−

θ
τm )ρpreτLTP(e

θ
τLTP − 1)(e−

T
τLTP )nτLTP(1 − e−

θ
τLTP )

+ALTPρ
biasδij+nρ

preτLTP(e
θ

τLTP − 1)e−
t∗

τLTP (e−
T

τLTP )nτLTP(1 − e−
ω

τLTP ) ‍�

The amount of plasticity in state ‍j + n‍ when starting from state ‍j‍ is thus:

	﻿‍ ∆nwij = C(e−
T

τLTP )nwij+n + B(e−
T

τLTP )nδij+n‍� (49)

where

	﻿‍ C = ηSTDPALTPNpopρ
preϵ0τm(1 − e−

θ
τm )ρpreτLTP(e

θ
τLTP − 1)τLTP(1 − e−

θ
τLTP )‍� (50)

	﻿‍ B = ηSTDPALTPρ
preτ2

LTP(e
θ

τLTP − 1)e−
t∗

τLTP (1 − e−
ω

τLTP )ρbias
‍� (51)

It is worth noting that the parameter B derived here is the same as Equation 46.

Summary: total STDP update
If we combine together Equations 44 and 49, we have that the total weight change for the synapse 

‍wij‍ is given by:

	﻿‍
wij = ∆0wij +

N∑
n=1

∆nwij = A wij +
N∑

n=0
[B(e−T/τLTP )nδij+n + C(e−T/τLTP )n+1wi,j+n+1]

‍�
(52)

where ‍N ‍ is the number of states until the end of the trajectory and A, B, C are as defined in Equations 
45, 46 and 50 respectively.
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Analytical calculations for hyperbolic discounting
From Equation 22 in the main paper, we have that, in the behavioural model 

‍
γ = (1 − C

A
)e−

T
τLTP

‍
. 

Here, we will derive an approximation to this value.
If we assume that ‍θ >> τm, τLTP‍, we can approximate ‍A‍ and ‍C‍ as:

	﻿‍

Ã = ηSTDPALTP Npopϵ0(ρpre)2 τLTP τm(θ − τLTP)

+ηSTDPALTPθρ
pre τmτLTP

τm+τLTP
ϵ0 − ηSTDPApre ρ

preθ

= ηSTDPρ
pre(aθ + b), ‍�

(53)

	﻿‍

with a = ALTP ϵ0τLTP τm(Npopρ
pre + 1

τm+τLTP
) − Apre

b = −ALTP Npopϵ0ρ
preτ2

LTP τm ‍�
(54)

	﻿‍

C̃ = ηSTDPALTPNpop(ρpre)2ϵ0τmτ
2
LTPe

θ
τLTP

= −ηSTDPρ
pree

θ
τLTP · b ‍�

(55)

If we define ‍ψ‍ such that ‍θ + ψ = T ‍, we can rewrite and approximate the discount parameter as:

	﻿‍

γ = (1 − C
A )e−

θ+ψ
τLTP ≈ − C̃

Ã
e−

θ
τLTP e−

ψ
τLTP

= be
− ψ

τLTP
aθ+b = 1

1+ a
b θ

· e−
ψ

τLTP
‍�

(56)

From Equation 56, we can see that the discount ‍γ‍ follows a hyperbolic function if we increase the 
duration of the presynaptic current ‍θ‍. If, instead, we vary ‍ψ‍, the discount becomes exponential 
(Figure 2—figure supplement 1a and b).

Notice that this analysis extends to the replay model. Following what was done after Equation 
26, we can connect the behavioural model with the replay model by making ‍θ, ϵ0 → 0‍, which implies 

‍ψ → T ‍. From Equation 56 we find that:

	﻿‍
lim

θ,ϵ0→0
γ = e−

T
τLTP ,

‍�

which is exactly the definition of ‍γ‍ in the replay model (Equations 27 in Materials and methods). For 
replays, the discount is therefore strictly exponential.

Furthermore, using the same calculations and Equations 21 and 19 in the main paper, we can 
find approximated values for the other parameters too (Figure 2—figure supplement 1c and d).

	﻿‍

η = −A ≈ −ηSTDPρ
pre(aθ + b)

λ = e−T/τLTP

γ ≈ (1 + a
bθ)e

ψ
τLTP e−

ψ+θ
τLTP = (1 + a

bθ)e−
θ

τLTP
‍�
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