Mutant SF3B1 promotes malignancy in PDAC

Patrik Simmler1,2, Eleonora I. Ioannidi2, Tamara Mengis2+, Kim F. Marquart1,2, Simran Asawa1, Kjong-Van Lehmann3,4, André Kahles3,4, Tinu Thomas3,4, Cornelia Schwerdel2, Nicola Aceto1, Gunnar Rätsch3,4,5,6, Markus Stoffel1, Gerald Schwank2

1 Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland. 2Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland. 3Department of Computer Science, Biomedical Informatics Group, ETH Zurich, 8092 Zurich, Switzerland, 4Swiss Institute of Bioinformatics, Lausanne, Switzerland. 5Department of Biology, ETH Zurich, 8093 Zurich, Switzerland, 6Biomedical Informatics Research, University Hospital Zurich, 8091 Zurich, Switzerland

+Present address: Center of Experimental Rheumatology, University Hospital Zurich, 8091 Zurich

*Correspondence: Gerald Schwank (schwank@pharma.uzh.ch)
ABSTRACT

The splicing factor SF3B1 is recurrently mutated in various tumors, including pancreatic ductal adenocarcinoma (PDAC). The impact of the hotspot mutation SF3B1^{K700E} on the PDAC pathogenesis, however, remains elusive. Here, we demonstrate that Sf3b1^{K700E} alone is insufficient to induce malignant transformation of the murine pancreas, but that it increases aggressiveness of PDAC if it co-occurs with mutated KRAS and p53. We further show that Sf3b1^{K700E} already plays a role during early stages of pancreatic tumor progression and reduces the expression of TGF-β1-responsive epithelial–mesenchymal transition (EMT) genes. Moreover, we found that SF3B1^{K700E} confers resistance to TGF-β1-induced cell death in pancreatic organoids and cell lines, partly mediated through aberrant splicing of Map3k7. Overall, our findings demonstrate that SF3B1^{K700E} acts as an oncogenic driver in PDAC, and suggest that it promotes the progression of early stage tumors by impeding the cellular response to tumor suppressive effects of TGF-β.

Keywords: SF3B1, K700E mutation, splicing, pancreatic cancer, TGF-β, apoptosis, MAP3K7
INTRODUCTION

Genes involved in RNA splicing are frequently mutated in various cancer types (Yoshida et al., 2011). The splicing factor subunit 3b 1 (SF3B1) is amongst the most commonly mutated components of the splicing machinery, with high incidence in myelodysplastic syndromes (MDS) (Je et al., 2013) and chronic lymphocytic leukemia (CLL) (Miao et al., 2019). However, also in various solid tumors, SF3B1 is recurrently mutated, including uveal melanoma (UVM) (Furney et al., 2013), breast cancer (BRCA) (Fu et al., 2017; Maguire et al., 2015; Sun et al., 2020), prolactinomas (Li et al., 2020) hepatocellular carcinoma (HCC) (Zhao et al., 2021) and pancreatic adenocarcinoma (PDAC) (Bailey et al., 2016; Yang et al., 2021). As part of the U2 small nuclear ribonucleoprotein (U2 snRNP) SF3B1 exerts an essential function in RNA splicing by recognizing the branchpoint sequence (BPS) of nascent RNA transcripts (Wahl et al., 2009; Zhang et al., 2020). This process is crucial for the definition of the 3’ splice site (3’ ss) of the upstream exon-intron boundary, a prerequisite for the accurate removal of introns (Wahl et al., 2009). It is well understood that hotspot mutations in SF3B1 at HEAT repeats 5-9 allow the recognition of an alternative BPS, resulting in the inclusion of a short intronic region into the mature messenger RNA (mRNA) (Alsafadi et al., 2016; Canbezdi et al., 2021; Darman et al., 2015; DeBoever et al., 2015; Kesarwani et al., 2017). These alternatively spliced transcripts are prone to degradation through nonsense mediated RNA decay (NMD) (Darman et al., 2015). Several recent studies have evaluated the mechanistic contribution of genes mis-spliced by oncogenic SF3B1 to tumor progression. So far, missplicing of PPP2R5A was found to increase malignancy through stabilizing c-Myc (Liu et al., 2020a; Yang et al., 2021), and aberrant MAP3K7 splicing was reported to promote NF-κB–driven tumorigenesis (Liu et al., 2021).

Despite compelling evidence on the oncogenic role of mutated SF3B1 in hematologic malignancies, its contribution to the formation or progression of solid tumors is less well understood. Since splicing deregulation has been reported as a hallmark of PDAC, with SF3B1 being recurrently mutated (Bailey et al., 2016), we aimed at elucidating the impact of the frequently occurring SF3B1K700E mutation to the pathogenesis of this tumor type. We demonstrate that Sf3b1K700E increases malignancy in a mouse model for PDAC and decreases the sensitivity to TGF-β-responsive EMT genes. Experiments in pancreatic organoids and cell lines further provide evidence that SF3B1K700E protects from TGF-β-induced cell death.
and that TGF-β-resistance is partly mediated through missplicing of Map3k7. Together, our work suggests that SF3B1K700E exerts its oncogenic role in PDAC by dampening the tumor-suppressive effect of TGF-β.

RESULTS

SF3B1K700E is a tumor driver during early stages of PDAC formation

RNA processing has been previously identified as a hallmark of pancreatic cancer in the published Pancreatic Cancer Australian (PACA-AU) dataset (Bailey et al., 2016). Validating these findings, we found that genes encoding for the splice factors RBM10, SF3B1 and U2AF1 are also frequently mutated in the Pancreatic Cancer Canada (PACA-CA) cohort (Figure 1-figure supplement 1A). In accordance with its described function as a tumor suppressor (Hernández et al., 2016), 56% of the mutations found in RBM10 lead to a truncated protein. Conversely, in SF3B1 and U2AF1 the majority of mutations were missense mutations that occurred at hotspot sites, indicating a neomorphic function of the mutated proteins. Like in other cancer types, also in PDAC the most frequently found mutation in SF3B1 led to a lysine (K) to glutamic acid (E) change at position 700 (SF3B1K700E) (Figure 1-figure supplement 1B). Therefore, we experimentally tested if the SF3B1K700E mutation contributes to PDAC malignancy by generating a mouse model where the Sf3b1K700E mutation is specifically activated in the pancreas using Ptf1a-Cre (Fig. 1A, Figure 1-figure supplement 1C). First, we tested if Sf3b1$^{K700E/+}$ alone is sufficient to induce PDAC formation. However, heterozygous activation of the Sf3b1K700E allele did not have any effect on survival of mice or weight of the pancreas after 300 days (Fig. 1B, C). Furthermore, assessing the pancreata histologically for two prognostic markers for PDAC, Cytokeratine-19 (CK19) and Mucin 5AC (MUC5AC), revealed no difference to wild type control mice (CK19 was restricted to pancreatic ducts and MUC5AC was not expressed; Figure 1-figure supplement 1D, E). Next, we assessed if the K700E mutation increases aggressiveness of PDAC, and crossed the Sf3b1K700E allele into the Ptf1a-Cre; Kras$^{G12D/+}$; Trp53fl/fl (KPC) mouse model, which is known to induce PDAC within 2 to 3 months (Bardeesy et al., 2006; Hingorani et al., 2005; Marino et al., 2000). Importantly, KPC-Sf3b1$^{K700E/+}$ animals displayed a significantly shorter survival (mean survival 57 days vs. 64 days), and an increased tumor size compared to KPC mice at the age of 9 weeks (Fig. 1D-F). However, since at this
timepoint similar amounts of tissue fibrosis and CK19 positive cells were observed in
Sf3b1^{K700E} mutant vs. *Sf3b1⁺* KPC tumors (Figure 1-figure supplement 1F-I), we next
assessed if SF3B1^{K700E} already promotes malignancy at early stages of tumorigenesis. Indeed,
when we analyzed pancreata of 5-week-old mice, already 67% of KPC-*Sf3b1^{K700E/+}* mice vs.
25% of KPC mice developed PDAC. Moreover, we observed an increase in acinar-to-ductal
metaplasia (ADM) formation and the number of CK19 and MUC5AC positive cells, and a
reduction in β-amylase staining (Fig. 1G-J, Figure 1-figure supplement 1J, K). Further
supporting that SF3B1^{K700E} already plays a role in early stages of carcinogenesis, *Sf3b1^{K700E/+}*
also had an effect on tumor malignancy when introduced into *Kras^{G12D/+}* (KC) mice, which is
a model for pre-cancerous pancreatic neoplasms with sporadic PDAC formation after a
prolonged latency period (Hingorani et al., 2005). At 43 weeks of age the area of neoplastic
pancreas tissue was increased, and in 64% of KC-*Sf3b1^{K700E/+}* mice vs. 10% of KC mice the
lesions had already progressed into PDAC (Fig 1L; Figure 1-figure supplement 1L). In
addition, the time of disease-free survival was significantly shortened in KC-*Sf3b1^{K700E/+}*
mice vs. KC mice (Fig. 1K). Finally, in a model for advanced cancer, where KPC and KPC-*
Sf3b1^{K700E} cells were harvested from fully developed PDAC tumors and expanded *in vitro*
before being orthotopically transplanted, we did not observe differences in tumor growth
(Figure 1-figure supplement 1M, N). Together, our data demonstrate that the SF3B1^{K700E}
contributes to PDAC malignancy by accelerating the formation of precursor lesions.

SF3B1^{K700E} reduces expression of EMT genes in pancreatic tumors

In order to elucidate the functional impact of SF3B1^{K700E} on the transcriptome, we isolated
cancer cells of mouse tumors by fluorescence-activated cell sorting (FACS) of Epithelial cell
adhesion molecule (EpCAM) positive cells and performed RNA-sequencing (RNA-seq)
(Supplementary File 1). High purity of isolated tumor cells was confirmed by the absence of
sequencing reads for *Trp53* exons 2–10, which are excised via Cre-recombination specifically
in tumor cells (Figure 2-figure supplement 1A), and by the presence of the *Sf3b1^{K700E}*
mutation in 38% of the transcripts (Fig. 1D). Principal component analysis separated the
sequenced replicates (3 KPC and 4 KPC-*Sf3b1^{K700E/+}* tumors) according to the genotype,
indicating a major impact of the K700E mutation on the transcriptome (Figure 2-figure
supplement 1B).
We next performed gene set enrichment analysis (GSEA), which revealed IFN-α-response as the most significantly enriched pathway in KPC-Sf3b1^K700E/+ tumor cells (Figure 2-figure supplement 1C). This result is in line with a previous study, which found that aberrant splicing caused by SF3B1 inhibition or oncogenic SF3B1 mutations induces an IFN-α-response through retinoic acid-inducible gene I (RIG-I) mediated recognition of cytosolic aberrant RNA-species (Chang et al., 2021). Interestingly, epithelial-mesenchymal transition (EMT) emerged as the most significantly attenuated gene set in KPC-Sf3b1^K700E/+ cells (Fig. 2A, B, Figure 2-figure supplement 1C). We first confirmed downregulation of the most significantly depleted gene of the EMT gene set, the glycoprotein Tenascin-C (Tnc), by qPCR on additional KPC-Sf3b1^K700E/+ tumor samples (Fig. 2C) and by histology in KPC-Sf3b1^K700E/+PDAC sections (Fig. 2D, E). Next, we assessed if the reduction of EMT genes was induced cell-autonomously by the Sf3b1^K700E/+ mutation, or if it was an indirect consequence of the altered micro-environment in Sf3b1^K700E KPC tumors. We therefore compared the expression of the 15 most significantly depleted EMT genes (Fig. 2B) in vitro in Sf3b1^K700E vs. Sf3b1 WT KPC pancreatic organoids. Importantly, 71% of the analysed genes were significantly reduced in KPC-Sf3b1^K700E/+ vs. KPC organoids, with none of the genes showing a trend towards elevated expression (Fig. 2F). To rule out that differences in EMT gene expression could be a consequence of differences in the tumor stage between Sf3b1^K700E versus Sf3b1 WT KPC tumors, we next established non-cancerous pancreatic organoids from LSL-KrasG12D/+; Trp53fl/fl; Sf3b1flK700E/+ or Sf3b1+/+ and LSL-KrasG12D/+; Trp53fl/fl mice and induced recombination in vitro through lentiviral Cre transduction. Importantly, also in this experimental setup 55% of the analysed EMT genes were significantly downregulated in Sf3b1^K700E vs. Sf3b1 WT organoids, with only one of the analysed genes showing a minor trend for elevated expression (Figure 2-figure supplement 1D). Together, these data indicate that Sf3b1^K700E mediates downregulation of EMT-related genes in PDAC a cell autonomous manner.

SF3B1^K700E confers resistance to TGF-β1-induced apoptosis in organoids and cell lines

The two major EMT-promoting cytokines are TNF-α and TGF-β (Bulle and Lim, 2020). We therefore determined if the EMT genes that are most significantly downregulated by Sf3b1^K700E in KPC tumours are induced by TNF-α or TGF-β. Importantly, we found that 80% of the analysed genes were strongly induced by TGF-β in tumour derived KPC cells (Figure
2-figure supplement 1E), whereas TNF-α significantly upregulated only 20% of these genes (Figure 2-figure supplement 1F). Furthermore, we observed that in vitro induced \(Sf3b1^{K700E} \) KPC cells fail or only partially induce 6 of the 9 assessed EMT genes when stimulated with TGF-β (Figure 2-figure supplement 1G). In line with these results, in vitro induced \(Sf3b1^{K700E} \) KPC organoids exhibit a 6-fold decrease in matrigel invasion compared to KPC control organoids when stimulated with TGF-β (Figure 2G, H). Moreover, human PANC-1 cells expressing \(SF3B1^{K700E} \) display a reduced migratory rate compared to control PANC-1 cells expressing wildtype \(SF3B1 \) in a wound healing assay upon TGF-β stimulation (Figure 2I, J).

In pancreatic lesions TGF-β induces EMT, followed by apoptosis of the affected cells in a process termed lethal EMT (David et al., 2016). This prompted us to speculate that \(SF3B1^{K700E} \) could drive PDAC progression by reducing sensitivity of epithelial cells to TGF-β-mediated apoptosis. Performing immunofluorescence staining for cleaved caspase 3 in KPC tumors, we first confirmed that the majority of apoptotic cells reside in the lumen of PanINs (Figure 3-figure supplement 1A, B), and that these cells are negative for the epithelial marker E-cadherin and high for the mesenchymal marker Fibronectin-1 (Figure 3-figure supplement 1C) (Hruban et al., 2006). We then analysed \(Sf3b1^{K700E} \) tumors by immunofluorescence staining. In line with our hypothesis, we observed a reduction in luminally extruded cells and a reduction in cleaved caspase 3-positive cells (CC3, Fig. 3A, B, Figure 3-figure supplement 1D). To further analyse the impact of \(Sf3b1^{K700E} \) on the tumor suppressive effect of TGF-β, we exposed \(Sf3b1 \) WT and \(Sf3b1^{K700E} \) KPC tumor organoids to TGF-β1. We again observed reduced cleaved caspase 3 and 7 activity in \(Sf3b1 \) mutant organoids, and a greatly increased survival rate (72% vs. 17% surviving organoids, Fig. 3C-E). Since results from our mouse models indicate that the \(SF3B1^{K700E} \) mutation already plays a role during early stages of carcinogenesis (Fig. 1G-L, Figure 1-figure supplement 1G), and the tumor-suppressing effect of TGF-β is most prominent on pre-cancerous epithelial cells (Massagué, 2008), we additionally established organoid lines with- and without \(Sf3b1^{K700E} \) from non-cancerous mouse pancreata. While \(Sf3b1^{K700E} \) led to slightly reduced proliferation without supplementation of TGF-β1 (Figure 3-figure supplement 1E), treatment with TGF-β1 led to significantly lower caspase 3 and 7 activity in \(Sf3b1^{K700E/+} \) vs. wildtype organoids and to significantly enhanced survival (77% vs. 3%) (Fig. 3F-H). Likewise, also in \(Kras^{G12D/+} \) organoids, \(SF3B1^{K700E} \) led to increased survival in the presence of TGF-β1 (Figure 3-figure
Finally, exposure to low levels (1 ng/ml and 2 ng/ml) of TGF-β1 also allowed long-term expansion of Sf3b1K700E/+ organoids (analysed for over 120 days), while the number of Sf3b1 WT organoids rapidly declined within the first 15 days (Fig. 3I, Figure 3-figure supplement 1G, H).

To assess if reduced sensitivity to TGF-β is also observed in human pancreas cells containing the SF3B1K700E mutation, we stably overexpressed either wildtype or mutated SF3B1 in the human pancreatic duct cell line H6c7. This cell line is derived from healthy pancreatic tissue, which unlike all tested human PDAC-derived cell lines (BxPC-3, Mia PaCa-2, PANC-1 and PSN-1) is still partially responsive to the growth-suppressive effect of TGF-β signalling (Fig. 3J, Figure 3-figure supplement 1I). In line with our results from murine PDAC, overexpression of mutant SF3B1K700E resulted in an increased viability upon TGF-β1 exposure compared to overexpression of wildtype SF3B1 (Fig. 3J), while no effect of SF3B1K700E on proliferation was observed in absence of TGF-β1 treatment in human pancreatic duct cells and PDAC cell lines (Figure 3-figure supplement 1J).

SF3B1K700E reduces TGF-β sensitivity through Map3k7 missplicing in organoids and cell lines

To identify how SF3B1K700E could mediate the observed TGF-β resistance in pancreatic cells, we next assessed the impact of the mutation on RNA-splicing. By analysing RNA-seq data from sorted KPC vs. KPC-Sf3b1K700E/+ tumor cells we predominantly identified alternative 3’ splice events (Fig. 4A, Supplementary File 2), with cryptic 3’ ss showing an upstream adenosine enrichment and a less pronounced polypyrimidine tract most frequently located 8-14 bases upstream of the canonical 3’ ss (Fig. 4B, C). These findings are in accordance with previous splice-analyses performed in various murine SF3B1 mutant tissues (Liu et al., 2021, 2020a; Mupo et al., 2017; Obeng et al., 2016; Yin et al., 2019). Next, we sought to determine which of the identified SF3B1K700E-dependent alternative splice events are conserved between mice and humans. Due to limited publicly available RNA-seq datasets in human PDAC, we analysed a pan-cancer dataset containing samples of 32 different cancer types. In agreement with previous studies, we found that also in human cancers the SF3B1K700E hotspot mutation leads to a predominant use of cryptic 3’ ss (Figure 4-figure supplement 1A, B, Supplementary File 2) (Alsafadi et al., 2016; DeBoever et al., 2015; Kesarwani et al., 2017; Tang et al., 2020; Wang et al., 2016). Importantly, we further identified 11 genes that contained an alternative 3’ splice-event linked to SF3B1K700E in human tumors as well as in KPC mice (Fig. 4D). Of those genes, MAP3K7 (formerly known as TGF-β activated kinase 1
in particular raised our attention. It is a well-described effector of cytokine-signalling that mediates non-canonical TGF-β signalling (Kim and Choi, 2012), and it was recently shown to induce EMT and apoptosis in TGF-β stimulated human mammary cells (Tripathi et al., 2019). Using targeted RNA-seq, we discovered that one third of Map3k7 transcripts were misspliced in pancreata of Sf3b1K700E/+ and KPC-Sf3b1K700E/+ mice (Fig. 4E, F, Figure 4-figure supplement 1C). Confirming inter-species conservation of this alternative splice-event, MAP3K7 was also misspliced in H\textsubscript{6}c\textsubscript{7} cells and human PDAC cell lines overexpressing SF3B1K700E (Fig. 4F, Figure 4-figure supplement 1D). Notably, when we further assessed SF3B1K700E dependent alternative splicing of Ppp2r5a, which was reported to impair apoptosis via post-translational modification of BCL2 in leukaemia (Liu et al., 2020a), we did not observe significant alternative 3’ss usage or mRNA expression of Ppp2r5a in KPC-Sf3b1K700E tumor cells (Figure 4-figure supplement 1E, F). This observation indicates tissue-specificity of Ppp2r5a missplicing. Since Sf3b1K700E dependent missplicing in MAP3K7 was shown to result in reduced RNA and protein levels of MAP3K7 in leukaemia (North et al., 2022), we hypothesized that the reduced responsiveness to TGF-β signalling in SF3B1K700E mutant pancreas cells is caused by lower MAP3K7 levels. Indeed, RT-qPCR and western blotting confirmed a reduction in MAP3K7 levels in vitro and in vivo in Sf3b1K700E mutant pancreatic cells (Fig. 5A-D). Next, we tested whether this reduction could explain the observed resistance to TGF-β in Sf3b1- mutant PDAC, and assessed the expression of EMT genes in TGF-β treated KPC cells with a stable knock-down of MAP3K7 (Fig. 5E, Figure 5-figure supplement 1A). Indeed, a decrease of Map3k7 mRNA levels to 35% (SD ± 10%) led to a reduced expression in 7 out of 10 EMT genes (Figure 5-figure supplement 1B). Moreover, knocking down Map3k7 in pre-cancerous pancreas organoids led to increased viability upon TGF-β1-treatment (Fig. 5F, Figure 5-figure supplement 1C), and chemical inhibition of p38, one of the major effectors of MAP3K7, partially protected organoids against TGF-β1 induced cell death (Fig. 5G). Further supporting our hypothesis that Sf3b1K700E mediates resistance to TGF-β1 via MAP3K7, overexpression of the full-length isoform of MAP3K7 in TGF-β1-treated Sf3b1K700E mutant organoids significantly decreased their viability (Fig. 5H, I).

To further assess conservation of this mechanism between mice and humans, we next treated human pancreatic H\textsubscript{6}c\textsubscript{7} cells as well as human pancreatic organoids before TGF-β1 exposure with Takinib (TAKi), a chemical inhibitor for MAP3K7. In line with our results in murine
cells, also in human pancreatic cells inhibition of MAP3K7 led to a significant increase in survival (Fig. 5J, K). Moreover, conditioning human PANC-1 PDAC cells with TAKi prior to TGF-β1 exposure resulted in a significant decrease in migratory capacity in wound healing assays (Fig. 5L, M). Taken together, our results suggest that Sf3b1^{K700E} mediates resistance of pancreatic epithelial cells to TGF-β1 via MAP3K7, providing a potential mechanism for its role of in PDAC progression.

DISCUSSION

While the roles of the most frequently mutated tumor driver genes in PDAC are well understood, oncogenes occurring at lower rates are less well studied (Hudson et al., 2010). One of these genes is SF3B1, for which hotspot mutations occur in various tumor types, including PDAC. While the molecular function of oncogenic SF3B1 on RNA-splicing is well described, how deregulation of misspliced genes contribute to malignancy in different cancer entities is only partially understood. Previous studies have shown that in chronic lymphocytic leukaemia (CLL) SF3B1^{K700E} leads to missplicing of PPP2R5A, which in turn stabilizes c-Myc and thereby promotes aggressiveness of tumor cells (Liu et al., 2020a; Yang et al., 2021). Furthermore, in breast cancer SF3B1^{K700E} causes a tumor-promoting effect through missplicing in MAP3K7 and downstream activation of NF-κB-signalling (Liu et al., 2021).

In our study we analysed the oncogenic function of SF3B1^{K700E} in the context of PDAC. Using a conditional mouse model, we provide the first experimental evidence that Sf3b1^{K700E} indeed promotes PDAC progression. While the Sf3b1^{K700E} mutation alone did not induce malignant transformation in the mouse pancreas, co-occurrence with KRAS and p53 mutations increased the severity of PDAC. Effects of SF3B1^{K700E} were already observed during early stages of tumor progression and resulted in reduced expression of TGF-β-responsive EMT genes. Our experiments further revealed that SF3B1^{K700E} reduces TGF-β induced cell-death in pancreatic duct cell lines and organoids, providing a potential mechanism for the oncogenicity of SF3B1^{K700E} in PDAC. In line with this hypothesis, pancreatic epithelial cells have previously been found to undergo lethal EMT when stimulated with TGF-β (David et al., 2016), and acquiring TGF-β resistance is considered to be essential in early stages of PDAC tumorigenesis (Hezel et al., 2012). Interestingly, akin to Sf3b1^{K700E}, deletion of the vital TGF-β signalling component Smad4 only triggered malignant
transformation of the pancreas in combination with oncogenic Kras mutations (Bardeesy et al., 2006).

Splicing analysis of RNA-seq datasets from both murine and human cancers identified several genes that are mis-spliced in the SF3B1K700E background. Among the identified genes was Map3k7, which is known to mediate non-canonical TGF-β signaling (Kim and Choi, 2012) and to induce EMT and apoptosis in TGF-β stimulated human mammary cells (Tripathi et al., 2019). In this study we show that reducing Map3k7 levels by shRNA mediated knockdown in pancreatic cell lines and organoids also impairs TGF-β-mediated EMT and cell death, although not to the same extend as Sf3b1K700E. Thus, while aberrant splicing of other genes is likely also contributing to the observed resistance to TGF-β, our experiments indicate that TGF-β resistance in SF3B1K700E mutant pancreatic ducts is at least partly mediated via MAP3K7. Importantly, this hypothesis is also supported by previous studies, which demonstrated that SF3B1 mutations induce 3’ missplicing of MAP3K7 in various tumor entities (Bondu et al., 2019; Li et al., 2021; Lieu et al., 2022; Liu et al., 2020b; Wang et al., 2016; Zhang et al., 2019), that aberrant splicing by SF3B1K700E reduces MAP3K7 protein levels (North et al., 2022), and that MAP3K7 mediates TGF-β-induced EMT and apoptosis in mammary epithelial cells (Tripathi et al., 2019). Notably, depending on the cellular context, MAP3K7 has been shown to exert pro-apoptotic stimuli through activation of MAPK p38 and Jun N-terminal kinase (JNK) (Mihaly et al., 2014), or anti-apoptotic stimuli through activation of the NF-κB pathway (Rashighi and Harris, 2017). Thus, while our results show that SF3B1K700E mediated missplicing and inactivation of MAP3K7 protects pancreatic duct cells from TGF-β induced cell death, in other tissues or in combination with other mutations the reduction MAP3K7 levels by SF3B1K700E could trigger different phenotypic responses.

One limitation of our study is the lack of in vivo evidence supporting our hypothesis that SF3B1K700E promotes PDAC progression through MAP3K7 missplicing. We attempted to study the effect of altered MAP3K7 levels in orthotopic PDAC transplantation models, but found that this method is not a suitable for answering this question since introducing SF3B1K700E in KPC cells had no significant impact on tumor growth after transplantation. This outcome aligned with our expectations, given that in the orthotopic transplantation model KPC cells were isolated from fully established PDAC, where SF3B1K700E does not
appear to play the same role as in early-stage PDAC. Additional studies using autochthonous PDAC models, where Map3k7 levels are modulated in early stage KPC or KPC-Sf3b1K700E/+ tumors would be required to provide in vivo evidence for the functional role of Map3k7 in SF3B1K700E mutant PDAC.

Taken together, this study provides a first demonstration that oncogenic SF3B1K700E promotes tumor progression in vivo in a mouse model for PDAC. Based on data from pancreatic organoids and cell lines, we further suggest that SF3B1K700E promotes PDAC progression by reducing tumor-suppressive TGF-β signalling through missplicing of MAP3K7.

COMPETING INTERESTS

The authors declare no competing interests.

ACKNOWLEDGEMENTS

We are grateful to E. A. Obeng (Dana-Farber Cancer Institute, Boston) and B. L. Ebert (Brigham and Women's Hospital, Harvard Medical School, Boston) for providing the Sf3b1K700E/+ mice used in our study. This work was supported by the Swiss National Science Foundation (grant number 185293 and 176317). The Aceto laboratory is supported by the European Research Council (101001652), the strategic focus area of Personalized Health and Related Technologies at ETH Zurich (PHRT-541), the Swiss National Science Foundation (212183), the Swiss Cancer League (KLS-4834-08-2019), the ETH Lymphoma Challenge (LC-02-22) and the ETH Zürich. TT., AK., KL are supported by ETH core funding to Gunnar Rätsch.

METHODS

Animal models

Sf3b1K700E/+ mice were a gift from E. A. Obeng (Dana-Farber Cancer Institute, Boston, USA) and B. L. Ebert (Brigham and Women's Hospital, Harvard Medical School, Boston, USA). LSL-KrasG12D/+, LSL-Trp53R172H/+ and Ptf1a-Cre mice were purchased from the Jackson Laboratory (Bar Harbor, Maine, USA). All LSL-KrasG12D/+ and KPC- Sf3b1K700E/+ mice were bred in a C57BL/6J background, Sf3b1K700E/+; KrasG12D/+ mice were a C57BL/6J-BALB/c strain. Female and male mice were used for all experiments. Animals displaying dwarfism were excluded from analysis. The minimum of animals needed for the study was estimated
by Fisher-Yates analysis. Due to the observed variance of the mouse model, more mice than initially estimated were used for the study. For the orthotopic transplantation models, KPC cells were derived from the autochthonous model described above by digestion of fully grown tumors and plating the digest in cell culture dishes. After multiple passages, KPC cells were grown to 80% confluency, and 10^5 cells were injected into the pancreas of BALB/cJ mice in matrigel, diluted in a 1:1 ratio with DMEM. 2 weeks upon transplantation, mice were sacrificed. Mice were held in a specific-pathogen-free (SPF) animal facility at the ETH Phenomics Center EPIC (ETH Zurich, Switzerland). All animal experiments were conducted in accordance with the Swiss Federal Veterinary Office (BVET) guidelines (license no. ZH055/17).

Cell lines

The human cell lines AsPC-1 (CRL-1682), BxPC-3 (CRL-1687), MIA-PaCa-2 (CRM-CRL-1420), PANC-1 (CRL-1469), PSN-1 (CRL-3211) and HEK293T (CRL-1573) cells were purchased from ATCC. H6c7 cells (ECA001-FP) were purchased from Kerafast. MIA-PaCa-2, PANC-1 and HEK293T cells were maintained in DMEM with 4.5 g/l D-Glucose and GlutaMAX (Gibco), supplemented with 10% fetal calf serum (FCS, Sigma-Aldrich) and 1% Penicillin-streptomycin (P/S, Invitrogen). AsPC-1, BxPC-3 and PSN-1 were cultured in RPMI1640 (Thermo Fisher), supplemented with 10% FCS and 1% P/S. H6c7 cells were cultured in Keratinocyte serum-free medium (Thermo Fisher), supplemented with recombinant EGF and bovine pituitary extract according to the manufacturer’s instructions (Thermo Fisher), as well as 100 μg/ml Primocin (Invivogen). Cell lines were regularly checked for mycoplasma-infections by Mycoplasma PCR-detection test (Thermo-Fisher).

Murine organoids

Murine organoid lines from WT and $Sf3b1^{K700E/+}$ animals (B6.129S4) were established as previously described (Boj et al., 2015). Briefly, 43-week-old animals of both sexes were euthanized and their pancreata excised. The organs were dissected to thin pieces and digested in 4 mg/ml collagenase IV for 7 minutes at 37°C. Then, pancreatic ducts were manually picked under a light microscope and seeded in drops of growth factor reduced matrigel. In vitro activated (pre-) cancer organoid lines ($Kras^{G12D/+}$, $Kras^{G12D/+}$; $Sf3b1^{K700E/+}$, $Kras^{G12D/+}$; $Trp53^{R172H/+}$ and $Kras^{G12D/+}$; $Trp53^{R172H/+}$; $Sf3b1^{K700E/+}$) were established from 8-week-old animals using the same protocol, except that recombination was achieved by delivering Cre-
GFP by lentiviral transduction, followed by FACS sorting for GFP positive cells. Tumor-derived KPC and KPC-Sf3b1^{K700E}/+ organoid lines were established from solid tumors of KPC or KPC-Sf3b1^{K700E}/+ mice. Tumor tissue was digested for 2–3 hours in 4 mg/ml collagenase IV at 37°C, pelleted and seeded in drops of matrigel. The presence of the K700E mutation was validated with Sanger-sequencing on RNA level for each organoid line. Each organoid line was isolated from an individual mouse. Tumor-derived KPC and KPC-Sf3b1^{K700E}/+ organoid lines were additionally plated in regular cell culture dishes and grown as monolayer cell culture. Organoids were cultured in organoid medium (OM) composed of AdDMEM/F12 (Gibco) supplemented with GlutaMAX (Gibco), HEPES (Gibco), Penicillin-Streptomycin (Invitrogen), B27 (Gibco), 1.25 mM N-Acetyl-L-cysteine (Sigma), 10 nM Gastrin I (Sigma) and the growth factors: 100 ng/ml FGF10 (Peprotech), 50 ng/ml EGF (Peprotech), 100 ng/ml Noggin, 100 ng/ml RSPO-1 (Peprotech), and 10 mM Nicotinamide (Sigma). For the first week after duct isolation the culture medium was supplemented with 100 μg/ml Primocin (InvivoGen).

Immunohistochemistry

Murine tissue specimens were dissected and fixed in 10% neutral buffered formalin for 48 - 72 hours. Thereafter, formalin was replaced with 70% ethanol before paraffin-embedding and sectioning at a thickness of 4 μm. Hematoxylin and eosin stainings were performed according to the manufacturer’s instructions. Anti-Cleaved Caspase 3 (Asp175) antibody (Cell Signaling Technology), anti-Amylase (100-4147) antibody (ThermoFisher), anti-Cytokeratin 19 (ab15463) antibody (ThermoFisher), anti-E-Cadherin (Clone 36) antibody (BD Biosciences), anti-FN-1 antibody (Chemicon), anti-MUC5AC (45M1) antibody (Novus Biologicals) and anti-TNC (Clone 578) antibody was used according to the manufacturer’s recommendations. TNC and amylase staining was quantified by calculating the average of Raw Int Density of 3-5 randomly chosen microscopy fields per specimen using ImageJ. CK19 and MUC5AC staining was quantified by counting stained cells of 3-5 randomly chosen microscopy fields per specimen. ADM structures were quantified by counting ADM structures of 5 microscopy fields per specimen of tissue not yet (or only minorly) progressed to PanINs. Luminal necrotic cells were defined as shed cells residing within the lumen of PanIN-lesions.

Organoid growth assay
Growth of organoids was assessed with CellTiter-Glo 3D (Promega). For absolute quantification of ATP levels, standard curves with defined concentrations of ATP were used for every measurement according to the manufacturer’s instructions. As approximation of proliferation rate, the ratio of ATP concentrations at the indicated time points was calculated.

Crystal violet assay

To measure proliferation of cell lines, 5000 cells were seeded per 96 wells. At the indicated time points, cells were stained with 0.5% (w/v) crystal violet (Sigma-Aldrich) dissolved in an aqueous solution with 20% Methanol (v/v). After washing, plates were allowed to air-dry and the crystal violet was dissolved in 10% acetic acid. Optical density was measured at 595 nM in an Infinite 200 plate reader (Tecan).

Organoid viability assay

For short-term treatment, organoids were seeded as fragments in 10 μl of Matrigel and allowed to form spheres for 24 hours in regular organoid medium. Organoids were thereafter exposed to the indicated concentration of TGF-β1 (Thermo Fisher). To assess viability of the organoids, intact organoids were counted and compared to untreated organoids after 48h of TGF-β1-exposure. This method of quantification was validated by correlating counts of intact organoids with ATP levels as described above (data not shown). For long-term treatment, organoids were seeded as fragments in 40 μl of Matrigel. After allowing to form spheres for 24 hours, the indicated concentration of TGF-β1 was added. After 4 days of TGF-β1-treatment, matrigel-drops were imaged and the number of intact organoids was counted. Then, organoids were reseeded as fragments in normal organoid medium and TGF-β1 was added after 24 hours. Every 4th passage, organoids were split in a 1:1 ratio in the 1ng/ml TGF-β1 condition.

Commercial cell lines were seeded and TGF-β1 was added at the indicated concentrations 12 hours after plating.

Organoid invasion assay

Organoids were seeded at equal density in 40 μl of matrigel in 24-well plates. 24 hours after seeding, organoid growth medium was supplemented with 10 ng/ml TGF-β1 (Thermo Fisher). 96 hours after seeding, matrigel domes were detached by rinsing and the migrated organoids (i.e. cells attached to the cell culture dish) were stained by crystal violet. The fraction of attached organoids was calculated by dividing the number of attached organoids
by the number of attached organoids plus the number of non-attached organoids (i.e. organoids residing in the matrigel dome).

Cleaved-caspase 3/7 assay

Organoids were seeded 10 μl of Matrigel and allowed to form spheres for 24 hours in regular organoid medium. Organoids were thereafter exposed to 10 ng/ml TGF-β1 (Thermo Fisher) overnight. Cleavage of Caspase 3 and 7 was quantified by using Caspase-Glo 3/7 Assay System (Promega) according to the manufacturer’s instructions.

Wound healing assay

8x10^5 human PANC-1 cells, overexpressing SF3B1-WT or SF3B1^K700E^, were seeded in 6-well plates. 10 ng/ml TGF-β1 (and TAKi [5 μM] or DMSO [1:1000] in the respective experiments) was added overnight prior scratch formation with a 10 μl pipette tip. After scratch formation, fresh medium including TGF-β1 (and TAKi or DMSO) was added. 0 hours, 4 hours and 7 hours after scratch formation, images were taken and the width of the scratch was analysed, performing 4 measures at standardized positions for each image using ImageJ / Fiji (NIH). To calculate the effect of TGF-β on gap closure in Figure 2J, distance of migration (gap width 0 hour after scratch formation – gap width 4 hour after scratch formation) of cells cultured with TGF-β was divided by distance of migration of cells cultured with control medium.

Chemical inhibitors

The following chemical inhibitors targeting different effectors of the TGF-β-pathway were used: TGFbR-inhibitor A83-01 [50 nM] (Tocris Bioscience), p38-inhibitors SB202190 [10 μM] (Sigma-Aldrich) and SB203580 [10 μM] (Selleckchem), JNK-inhibitor SP600125 [25 μM] (Sigma-Aldrich), SMAD3-inhibitor SIS3 [10 μM] (Sigma-Aldrich) and MAP3K7-inhibitor Takinib [5 μM] (Sigma-Aldrich). The inhibitors were added to the organoid medium directly after seeding.

shRNA-mediated Map3k7 knockdown

shRNA targeting murine Map3k7 was purchased from Sigma-Aldrich (TRCN0000022563). A pLKO.1-puro Non-Target shRNA was used as control. Lentivirus was produced by PEI-based transfection of HEK293T cells. Briefly, HEK293T cells were seeded at 70% confluency in 6-well plates, and the following plasmids were transfected: PAX2 plasmid (1100 ng), VSV-G plasmid (400 ng), cargo plasmid (1500 ng). Medium was changed 12
hours after transfection and the virus-containing supernatant collected after 36 hours. Organoids were dissociated into single cells by Tryp-LE treatment for 5 minutes at 37°C and consecutive mechanical disruption. After centrifugation, 10% Lentivirus-containing supernatant in organoid medium (v/v) was added to the cell suspension. After a 4–6h incubation at 37°C, cells were seeded in matrigel as described above. Organoids were selected in 2ng/ml Puromycin after the first passage for at least 5 days.

Overexpression of Map3k7

Murine Map3k7 (full-length isoform) was amplified from cDNA of murine WT duct organoids and cloned into a Lenti-backbone (addgene #73582). Production of lentivirus and transduction of organoids was performed as described above. Organoids stably overexpressing GFP (addgene #17488) were used as experimental control.

Overexpression of SF3B1-K700E

Codon-optimized human SF3B1-WT and SF3B1-K700E was derived from the plasmids pCDNA3.1-FLAG-SF3B1-WT (addgene #82576) and pCDNA3.1-FLAG-hSF3B1-K700E (addgene #82577) and cloned into a Lenti-backbone. The lentiviruses were produced as described above and used to transduce various cell lines. Puromycin-selection was used to select for transduced cells for at least two passages.

RNA sequencing

Cell sorting and RNA extraction

Murine tumors were excised and digested for 2–3 hours in collagenase (4mg/ml) at 37°C. After addition of fetal calf serum (FCS) to stop the digestion, cells were strained trough a 100 μm and a 70 μm cell strainer. Then, cells were washed twice in PBS + 2% FCS + 2 mM EDTA and incubated with mouse FcBlock (BD Biosciences), Epcam-APC (CD326 Monoclonal Antibody (G8.8), APC, eBioscience™, Thermo Fisher) and CD45-BV785 (Clone 30-F11, Biologened) antibodies for 30 minutes at 4°C. After washing, Epcam-positive-CD45-negative cells were sorted into lysis buffer with a BD FACSariaII Cell Sorter (BD Biosciences). Finally, RNA was extracted using NucleoSpin RNA XS kit (Macherey Nagel) according to the manufacturer’s instructions.

Library preparation

The quantity and quality of the isolated RNA was determined with a Qubit® (1.0) Fluorometer (Life Technologies, California, USA) and a Tapestation (Agilent, Waldbronn,
Germany). The SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian (Clontech Laboratories, Inc., A Takara Bio Company, California, USA) was used in the succeeding steps. Briefly, total RNA samples (0.25–10 ng) were reverse-transcribed using random priming into double-stranded cDNA in the presence of a template switch oligo (TSO). When the reverse transcriptase reaches the 5’ end of the RNA fragment, the enzyme’s terminal transferase activity adds non-templated nucleotides to the 3’ end of the cDNA. The TSO pairs with the added non-templated nucleotide, enabling the reverse transcriptase to continue replicating to the end of the oligonucleotide. This results in a cDNA fragment that contains sequences derived from the random priming oligo and the TSO. PCR amplification using primers binding to these sequences can now be performed. The PCR adds full-length Illumina adapters, including the index for multiplexing. Ribosomal cDNA is cleaved by ZapR in the presence of the mammalian-specific R-Probes. Remaining fragments are enriched with a second round of PCR amplification using primers designed to match Illumina adapters. The quality and quantity of the enriched libraries were validated using Qubit® (1.0) Fluorometer and the Tapestation (Agilent, Waldbronn, Germany). The product is a smear with an average fragment size of approximately 360 bp. The libraries were normalized to 10nM in Tris-Cl 10 mM, pH8.5 with 0.1% Tween 20.

Cluster Generation and Sequencing
The TruSeq SR Cluster Kit HS4000 or TruSeq PE Cluster Kit HS4000 (Illumina, Inc, California, USA) was used for cluster generation using 8 pM of pooled normalized libraries on the cBOT. Sequencing was performed on the Illumina HiSeq 4000 paired end at 2 X 126 bp or single end 126 bp using the TruSeq SBS Kit v4-HS (Illumina, Inc, California, USA).

RNAseq data analysis
Adapters have been trimmed with trimmomatic (v0.35). Pairs for which both reads passed the trimming have been mapped to the murine genome using STAR (v2.7.0a) and indexed BAM files obtained with samtools (v1.9). Reads were counted with featureCounts from subread package (v1.5.0). The read counts have been processed in a statistical analysis using edgeR (v3.24.3), obtaining a list of genes ranked for differential expression by p-value and Benjamini-Hochberg adjusted p-value as the estimate of the false discovery rate. All data is summarized in Supplementary File 1.

Gene set enrichment analysis
Gene set enrichment analysis (v.4.1.0, Broad Institute, MIT) was used to determine enriched gene sets in KPC or KPC-Sf3b1K700E/+ tumor cells. Standard parameters of the software were used to perform the analysis. Molecular Signatures Database v7.4, Hallmark Gene Sets (H) was used to query enriched gene sets. The input gene expression matrix contained read-count information (count per million) of 21,633 genes.

Alternative splicing analysis

We ran a 2-pass alignment of the fastq files using STAR v2.7 (Dobin et al., 2013) using the GRCm38.p6 genome as reference. The gene annotation used was GENCODE v.m25. For gene expression quantification we used a custom script, available at github: https://github.com/ratschlab/tools-omicstools/tree/master/gromics/counting; commit hash d074114f1d0a9f518c9ed039f68de0c8fd583ff.

SplAdder v.2.2 (Kahles et al., 2016) was run to build splicing graphs and determine splice events. Differential splicing events were determined by calculating a log(psi+x) transformation of the percent spliced in (calculated as ratio of reads supporting the splice event over the number of reads supporting the alternate event). Splice events that did not show any variability over the samples were removed and missing values were mean imputed. After standardization a two-sided t-test was used to calculate p-values of splice events differences between KPC and KPC-Sf3b1K700E mice. All data is summarized in Supplementary File 2.

Motif analysis

Consensus 3’ ss motif in proximity of the canonical and the cryptic 3’ ss in sorted KPC-Sf3b1K700E/+ tumor cells was assessed by query 30-40 bases spanning the respective 3’ss of the 7 main splice events for a motif using weblogo-sequence creator (https://weblogo.berkeley.edu/logo.cgi).

RT-PCR and quantitative RT-PCR (qPCR)

RNA-extraction was performed with QIAGEN RNeasy Mini Kit, and cDNA was generated with GoScript Reverse Transcriptase kit (Promega) according to the manufacturers’ instructions. RT-PCR was performed with GoTaq G2 Green Master Mix (Promega) and gene specific primers. Amplicons were fractionated on 2% TBE gel (Life Technologies) supplemented with 0.01% GelRed (Biotium). For qPCR, 2 μL of 1:10-diluted cDNA was added to 8 μl of 5x HOT FIREPol Evagreen qPCR Supermix (SolisBiodyne). Raw gel
images can be found in Source Data 1. RT-qPCR was performed with a LightCycler480 II (Roche). Relative gene expression was determined with the comparative CT method. Genes with a median CT value of more than 33 cycles and a difference of less than 3.3 cycles to the template control (H2O) were defined as not detectable. Sequences of all primers used in this study are listed in Supplementary File 3.

NGS-based isoform quantification of Map3k7

Primers generating an amplicon including the exon 4 and exon 5 junction of Map3k7 cDNA were used. Briefly, a gene-specific amplicon was generated in a 20 µL reaction for 35 cycles with GoTaq G2 Green Master Mix (Promega). The PCR product was purified using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). Thereafter, the isolated product was amplified for 8 cycles using primers with sequencing adapters. After column-based isolation of the amplicon and quantification of DNA-yield using a Qubit 3.0 fluorometer and the dsDNA HS assay kit 392 (Thermo Fisher), paired-end sequencing was performed on an Illumina Miseq. The sequencing data was subsequently analyzed with CRISPResso2 (Clement et al., 2019).

Western blotting

Cells were lysed in RIPA buffer, supplemented with Protease Inhibitor (Cell Signaling Technologies) and PhosStop (Sigma-Aldrich) and centrifuged for 10 min at 21’000 g. The protein concentration of the supernatant was determined using Pierce BCA assay (ThermoFisher) and a standard curve of albumin. Then, samples were heated for 5’ at 95°C in Lämmli buffer and protein lysates were resolved on polyacrylamide Mini-PROTEAN TGX gels (BioRad) and transferred onto nitrocellulose membrane by wet-transfer. The following antibodies were used for immunoblotting: Recombinant anti-GADPH (EPR16891, Abcam) and rabbit monoclonal anti-MAP3K7 (anti-TAK1, D94D7, Cell Signaling Technology) IRDye-conjugated secondary antibodies (donkey anti-goat: LI-COR cat. no. 926-32214; anti-rabbit: LI-COR cat. no. 926-68073) were used for signal detection by an Odyssey Imager (LI-COR) imaging system. Raw gel images can be found in Source Data 1.

Data and material availability

The RNA sequencing raw data of sorted murine cancer cells was deposited in the NCBI Gene Expression Omnibus (GEO) under accession number GSE203339. Splice analysis of human cancers was performed on a previously published dataset, accessible at
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018 (Kahles et al., 2018). Material created in this study (i.e. primary cell lines, plasmids) are provided upon request and shall be directed at the corresponding author of this study (Prof. G. Schwank).
REFERENCES

Figure 1. Sf3b1\(^{K700E}\) increases aggressiveness of murine PDAC

(A) Schematic overview of the Sf3b1\(^{K700E/+}\) knock-in model. Arrows indicate direction of the translatable code of the gene. An A to G conversion at base position 2098, induced by Cre-recombination, results in a lysine to glutamic acid mutation at amino acid position 700 of the protein.

(B) Survival of WT and Sf3b1\(^{K700E/+}\) mice followed over 300 days (n=8).

(C) Pancreas weight of WT and Sf3b1\(^{K700E/+}\) mice at 300 days of age (3 males and 3 females for each genotype). Two-tailed unpaired t-test was used to compute the indicated p-value.

(D) Representative photographs of WT, KPC and KPC-Sf3b1\(^{K700E/+}\) pancreata of mice 9 weeks old mice.

(E) Survival of KPC and KPC-Sf3b1\(^{K700E/+}\) mice. P-value was determined by Log-rank (Mantel-Cox) testing.

(F) Pancreatic weight of KPC and KPC-Sf3b1\(^{K700E/+}\) mice at 9 weeks of age. Two-tailed unpaired t-test was used to compute the indicated p-value.

(G) Representative micrograph images of H&E, MUC5AC, β-amylase and CK19 staining of KPC and KPC-Sf3b1\(^{K700E/+}\) pancreata of 5-week-old mice. Scale bar is scale bar is 50 μM (H&E) or 100 μM (IF).

(H) Quantification of β-amylase (H), MUC5AC (I) and CK19 (J) staining shown in (G). Per specimen, the average value of 5 random microscopy fields is displayed, a two-tailed unpaired t-test was used to compute the indicated p-value.

(K) Survival of Kras\(^{G12D/+}\) and Kras\(^{G12D/+; Sf3b1K700E/+}\) mice. P-value was determined by Log-rank (Mantel-Cox) testing.

(L) Percentage of mice at 43 weeks of the indicated genotypes showing PanINs (blue) or PanINs and PDAC formation (red). P-value indicates significance of the difference in PDAC formation, computed by Chi-square test.
Figure 2. *Sf3b1^{K700E}* induces downregulation of EMT. (A) Gene-set enrichment analysis (GSEA) enrichment plot of epithelial-mesenchymal transition (EMT), representing the most deregulated pathway of the GSEA-Hallmark pathways when comparing KPC (n=3) and KPC-Sf3b1^{K700E/+} (n=4) sorted tumor cells. (B) Top 15 of downregulated genes of the GSEA-EMT gene list in sorted KPC-Sf3b1^{K700E/+} cells (FDR < 0.05, logCPM > 1). (C) Tnc expression in KPC (n=7) and KPC-Sf3b1^{K700E/+} (n=7) tumors, assessed by RT-qPCR. Two-tailed unpaired t-test was used to compute the indicated p-value. (D) Representative Immunofluorescence staining of CK19 (red) and TNC (green) in murine PDAC samples, counterstained with DAPI (blue). Scale bar is 50 μm. (E) Quantification of TNC staining in KPC (n=6) and KPC-Sf3b1^{K700E/+} (n=6) tumors. The averaged area of TNC staining in 3 randomly chosen fields per tumor specimen was compared by a two-tailed unpaired t-test. (F) The expression of the EMT genes displayed in (B) was assessed by RT-qPCR in tumor cells (KPC, n=11 and KPC-Sf3b1^{K700E/+} n=11) after one passage of ex-vivo culture. For analysis, Ct-values of the indicated genes were normalized to Actb and a two-tailed unpaired t-test was used to compute the indicated p-values. (G) Representative micrographs of KPC (n=3) and KPC-Sf3b1^{K700E/+} (n=3) cancer organoid lines treated with TGF-β1 (10 ng/ml) for 48 hours. Matrigel was detached prior to staining with crystal violet, allowing quantification of cells migrated through the matrigel matrix and attached at the cell culture plate. Scale bar is 1 mm (panel above) or 100 μm (panel below). (H) Quantification of micrographs shown in (G). The fraction of attached organoids was calculated by dividing the number of attached organoids by the total number of organoids contained in the matrigel dome. The experiment was performed independently 3 times for every cell line, the average of all replicates is shown. Two-tailed unpaired t-test was used to compute the indicated p-value. (I) Representative micrographs of wound healing assay of PANC-1 WT and PANC-1 SF3B1^{K700E/+} cells pretreated with TGF-β1 (10 ng/ml) for 24 hours at the indicated time points after performing the scratch. MUC5AC, β-amylase and CK19 staining of KPC and KPC-Sf3b1^{K700E/+} pancreata of 5-week-old mice. Scale bar is scale bar is 50 μM. (J) Quantification of wound healing assay of PANC-1 WT and PANC-1 SF3B1^{K700E/+} cells, displaying the ratio of wound-closure of cells treated with TGF-β1 or without (Ctrl). The experiment was independently performed three times. A two-tailed unpaired t-test was used to compute the indicated p-values.
Figure 3. *Sf3b1^{K700E}* reduces TGF-β-induced apoptosis. (A) Representative microscopy images of E-Cadherin (green) and CC3 (red) in murine PDAC samples. Scale bar is 50 μm. (B) Quantification of CC3 positive cells in KPC (n=8) and KPC-Sf3b1^{K700E/+} (n=7) tumor samples. The average number of CC3 positive cells of 5 microscopic fields is plotted, two-tailed unpaired t-test was used to compute the indicated p-value. (C) Immunofluorescence staining of E-Cadherin (green) and Cleaved Caspase 3 (CC3, red) in WT and Sf3b1^{K700E/+} organoids exposed to TGF-β1 (10 ng/ml) for 12 hours. CC3 positive cells are highlighted by white dashed lines. Scale bar is 100 μm. (D) Quantification of Cleaved Caspase 3 and 7 (CC3/7) activity measured by Caspase-Glo assay of KPC (n=3) and KPC-Sf3b1^{K700E/+} (n=4) in-vitro activated cancer cell lines treated with TGF-β1 (10 ng/ml) for 24 hours. The experiment was repeated independently twice for every cell line, the average of the replicates is shown. Two-tailed unpaired t-test was used to compute the indicated p-value. (E) Quantification of viable organoids of the indicated genotype exposed to 10 ng/ml TGF-β1 for 48 hours, normalized to organoid numbers of untreated control samples. Each data point shows a different organoid line. For each organoid line, the experiment was independently performed three times, the average of replicates is plotted. Two-tailed unpaired t-test was used to compute the indicated p-values. (F) Representative microscopy images of WT and *Sf3b1^{K700E/+}* organoids exposed to 10 ng/ml TGF-β1 for 48 hours. (G) Quantification of CC3/7 in WT and *Sf3b1^{K700E/+}* organoids exposed to 10 ng/ml TGF-β1 for 48 hours. The experiment was repeated independently four times. Two-tailed unpaired t-test was used to compute the indicated p-values. (H) Quantification of viable organoids of the indicated genotype exposed to 10 ng/ml TGF-β1 for 48 hours, normalized to organoid numbers of untreated control samples. Each data point shows a different organoid line. For each organoid line, the experiment was independently performed three times, the average of replicates is plotted. Two-tailed unpaired t-test was used to compute the indicated p-values. (I) Organoid count of organoids cultured in medium containing 1 ng/ml TGF-β1 for up to 120 days. One organoid line per genotype was used, the experiment was repeated three times independently. (J) Viability of the human pancreatic duct cell line H6c7 overexpressing wildtype or mutated SF3B1 after 72 hours of exposure to 10 ng/ml TGF-β1 assessed by crystal violet staining. The optical density of TGF-β1 treated cells was normalized to untreated control cells. The experiment was independently performed three times, two-tailed unpaired t-test was used to compute the indicated p-value.
Figure 4. SF3B1-K700E induces aberrant splicing of MAP3K7 in human and mouse PDAC.

(A) Summary of alternative splice events detected in KPC-Sf3b1K700E/+ sorted tumor cells (PSI > 0.1, p < 0.01). (B) Histogram displaying the distance of cryptic 3’splice-site (ss) from the adjacent canonical 3’ss in sorted KPC-Sf3b1K700E/+ tumor cells on a logarithmic scale. (C) Consensus 3’ ss motif in proximity of the canonical (top) and the cryptic (bottom) 3’ ss for 7 alternative 3’ splicing events identified in sorted KPC-Sf3b1K700E/+ tumor cells. (D) Venn-diagram depicting alternative 3’ splice events in the pan-cancer data-set (PSI>0.05 and p<1×10^{-10}) and sorted KPC-Sf3b1K700E/+ tumor cells (PSI>0.1, p<0.01). (E) Representative gel image (top) and NGS-results (bottom) of Map3k7 cDNA isolated from sorted KPC and KPC-Sf3b1K700E/+ tumor cells (n=3) (A). The amplicon includes the 3’ splice site of exon 4 and 5, the upper band of the gel image represents the non-canonical transcript variant. (F) Representative gel image of RT-PCR amplicon of Map3k7 cDNA isolated from WT and Sf3b1K700E/+ pancreata and from the indicated human cell lines.
Figure 5. Reduction in Map3k7 lowers sensitivity to TGF-β1. (A-C) RT-qPCR data showing Map3k7 expression in KPC (n=13) and KPC-Sf3b1K700E/+ (n=12) ex vivo tumor cultures (A), as well as WT (n=3) and Sf3b1K700E/+ (n=4) pancreata (B) and organoid lines (C). For analysis, Ct-values of Map3k7 were normalized to Actb and a two-tailed unpaired t-test was used to compute the indicated p-values. Data show mean and standard error of the mean in A and B. (D) Representative Western blot gel-image of MAP3K7 and GAPDH in WT and Sf3b1K700E/+ organoids. (E) RT-qPCR analysis of Map3k7 in cells transduced with a shMap3k7 compared to a control shRNA, a two-tailed unpaired t-test was used to compute the indicated p-values. (F) Quantification of viable WT and Sf3b1K700E/+ murine pancreatic duct organoids or WT transduced with control shRNA (shCtrl) or shRNA targeting Map3k7 (shMap3k7). The organoids were exposed to 10 ng/ml TGF-β1 for 24 hours prior to analysis. The experiment was independently performed three times. Two-tailed unpaired t-test was used to compute the indicated p-value. (G) Viability of wildtype (WT) organoids cultured in medium containing 10 ng/ml TGF-β1, supplemented with chemical inhibitors targeting the indicated effectors of TGF-β1-signalling. Two independent experiments are summarized. Further details are provided in the methods section. (H) RT-qPCR analysis of Map3k7 in cells transduced by lentivirus with an overexpression construct of Map3k7, compared to overexpression of GFP, a two-tailed unpaired t-test was used to compute the indicated p-values. (I) Quantification of viable murine pancreatic duct organoids with stable overexpression of Map3k7, exposed to 10 ng/ml TGF-β1 for 96 hours. Data represents one organoid line per condition, the experiment was independently performed three times. Two-tailed unpaired t-test was used to compute the indicated p-value. (J-K) Viability of human pancreatic duct H6c7 cells (J) or human pancreatic duct organoids (K) exposed to 10 ng/ml TGF-β1 with addition of the MAP3K7 inhibitor Takinib (TAKi, 5 μM) or DMSO. The viability was assessed after 48 hours of TGF-β1 treatment and normalized to cells grown in absence of TGF-β1. The experiment was independently performed four (J) or three (K) times. (L) Representative micrographs of wound healing assay of PANC-1 cells pre-treated with TGF-β1 (10 ng/ml) for 24 hours, with or without addition of 5 μM TAKi, at the indicated time points after performing the scratch. (M) Quantification of wound healing assay shown in (L). The experiment was independently performed three times. A two-tailed unpaired t-test was used to compute the indicated p-values.
Figure 1-figure supplement 1. (A) Incidence of mutations in splicing factors in PDAC patients derived from the ICGC database (PACA-AU, n=391 and PACA-CA, n=268). (B) Incidence of *SF3B1* missense mutations in PDAC patients derived from PACA-AU and PACA-CA. (C) Representative Sanger-sequencing results of the *Sf3b1*K700E/+ mutation (T>C) of cDNA isolated from pancreata at 43 weeks of age of *Ptf1a-Cre* (WT) or *Ptf1a-Cre; Sf3b1K700E/+* (*Sf3b1K700E/+*) mice. (D) Representative micrograph images of CK19 staining of WT and Sf3b1*K700E/+* pancreata of 43-week-old mice. Scale bar is scale bar is 100 μM. (E) Quantification of β-amylase staining. Per specimen, the average value of 5 random microscopy fields is displayed, a two-tailed unpaired t-test was used to compute the indicated p-value. (F) Representative micrograph images of CK19 staining of KPC and KPC-Sf3b1*K700E/+* pancreata of 9-week-old mice. Scale bar is scale bar is 100 μM. (G) Quantification of CK19 staining of KPC and KPC-Sf3b1*K700E/+* pancreata of 9-week-old mice. Per specimen, the average value of 5 random microscopy fields is displayed, a two-tailed unpaired t-test was used to compute the indicated p-value. (H) Representative micrograph images of Masson Goldner staining of KPC and KPC-Sf3b1*K700E/+* pancreata of 9-week-old mice. Scale bar is scale bar is 100 μM. (I) Quantification of collagen positive area (Masson Goldner staining) of KPC and KPC-Sf3b1*K700E/+* pancreata of 9-week-old mice. Per specimen, the average value of 5 random microscopy fields is displayed, a two-tailed unpaired t-test was used to compute the indicated p-value. (J) Representative micrograph images of H&E staining of KPC and KPC-Sf3b1*K700E/+* pancreata of 5-week-old mice. Scale bar is scale bar is 50 μM. (K) Quantification of ADM structures of KPC and KPC-Sf3b1*K700E/+* pancreata of 5-week-old mice. Per specimen, the average value of 5 microscopy fields of areas without or with minimal PanIN formation is displayed, a two-tailed unpaired t-test was used to compute the indicated p-value. (L) Affected area (including PanINs and PDAC) of WT, *Kras*G12D/+ and *Kras*G12D/+; *Sf3b1*K700E/+ pancreata at 43 weeks of age. Mann-Whitney test was used to compute the indicated p-value. (M-N) Photographs (M) and weight (N) of pancreata 2 weeks after orthotopic transplantation of KPC and KPC-Sf3b1*K700E/+* cells.
Figure 2-figure supplement 1. (A) Integrated genome viewer (IGV) displaying RNA-seq reads of Trp53 of sorted KPC and KPC-Sf3b1^{K700E/+} cells. (B) Principal component analysis showing the variance in two dimensions in relation to the genotypes of the sorted tumor cells (Wildtype = KPC, K700E = KPC-Sf3b1^{K700E/+}). (C) Results of GSEA analysis, displaying most enriched (top) and depleted (bottom) GSEA-Hallmark pathways in KPC-Sf3b1^{K700E/+} animals. (D) RT-qPCR analysis of EMT genes of KPC (n=3) and KPC-Sf3b1^{K700E/+} (n=3) in-vitro activated cancer cell lines. The experiment was performed independently 4 times for every cell line, the average of all replicates is shown. Col3a1, Sfrp1, Igfbp4, Col1a2, Mmp2 and Lama1 were not detected and therefore excluded from analysis (see methods for details). Two-tailed unpaired t-test was used to compute the indicated p-values. (E, F) RT-qPCR analysis of EMT genes displayed in Fig 2B in 3 different KPC cell lines treated with TGF-β1 (10 ng/ml) (E) or TNF-α (100 ng/ml) (F) for 24 hours. The experiment was performed independently 3 times for every cell line. Col3a1, Sfrp1, Igfbp4, Col1a2, Mmp2 and Lama1 were not detected and therefore excluded from analysis (see methods for details). (G) RT-qPCR analysis of EMT genes of KPC (n=3) and KPC-Sf3b1^{K700E/+} (n=3) in-vitro activated cancer cell lines treated with TGF-β1 (10 ng/ml) for 24 hours. The experiment was performed independently 4 times for every cell line, the average of all replicates is shown.
Figure 3-figure supplement 1. (A) Representative microscopy images of CC3 (red) in KPC tumor samples. Scale bar is 50 μm. (B) Quantification of CC3 positive cells according to location (inside of PanIN lumen or outside of lumen) in 6 KPC tumor samples. (C) Representative microscopy images of FN1 (green) in murine PDAC. Scale bar is 50 μm. (D) Blinded quantification of luminal necrosis in KPC (n=5) and KPC-Sf3b1K700E/+ (n=6) tumor samples. The average number of necrotic cells per PanIN lesion is plotted, two-tailed unpaired t-test was used to compute the indicated p-value. (E) Proliferation of pancreatic ductal organoids derived from WT and Sf3b1K700E/+ mice without TGF-β1 supplementation. Two-tailed unpaired t-test was used to compute the indicated p-value. (F) Organoid count of organoids of the indicated genotypes exposed to 10 ng/ml TGF-β1 for 48h. Two-tailed unpaired t-test was used to compute the indicated p-value. (G) Organoid count of organoids cultured in medium containing 2 ng/ml TGF-β1 for the indicated period of time. One organoid line for each genotype was used, the experiment was independently performed twice. (H) Representative microscopy images of WT and Sf3b1K700E/+ organoids exposed to 1, 2 or 5 ng/ml TGF-β1 at the indicated number of passages. (I) Viability of indicated cell lines overexpressing wildtype or mutated SF3B1 after 72 hours of exposure to 10 ng/ml TGF-β1. The experiment was independently performed twice, two-tailed unpaired t-test was used to compute indicated p-values (J) Normalized growth of the pancreatic duct cell line H6c7 overexpressing SF3B1-WT or SF3B1-K700E after 4 days of culture in normal growth medium. The experiment was independently performed twice, two-tailed unpaired t-test was used to compute indicated p-value.
Figure 4-figure supplement 1. (A) Pan-cancer analysis of alternative splice-events identified in solid tumors carrying the SF3B1K700E mutation (PSI>0.05, FDR<1^-10). (B) Histogram displaying the distance of cryptic 3’ss from the adjacent canonical 3’ss on a logarithmic scale in solid tumors carrying the SF3B1K700E mutation. (C) NGS-results of Map3k7 cDNA isolated from WT and Sf3b1K700E/+ pancreas organoids (n=1). (D) RT-PCR amplicon of MAP3K7 cDNA isolated from four human PDAC cell lines overexpressing wildtype SF3B1 (OE WT) or K700E-mutated SF3B1 (OE K700E). The amplicon includes the 3’ splice site of exon 4 and 5, the upper band of the gel image represents the non-canonical transcripts. (E) RT-qPCR of Ppp2r5a expression in KPC (n=13) and KPC-Sf3b1K700E/+ (n=12) cancer-derived organoid lines. Two-tailed unpaired t-test was used to compute the indicated p-value. (F) RT-PCR amplicon of Ppp2r5a cDNA isolated from sorted KPC (n=3) and KPC-Sf3b1K700E/+ (n=4), as well as WT and Sf3b1K700E/+ pancreas organoids. The amplicon includes the 3’ splice site of exon 4 and 5, the upper arrowhead represents the predicted size of non-canonical transcripts.
Figure 5-figure supplement 1. (A) Western blot gel-image of MAP3K7 and GAPDH in a KPC cell line transduced with a control shRNA (shCtrl) or a shRNA targeting Map3k7 (shMap3k7). (B) RT-qPCR analysis of EMT genes displayed in Fig. 2F in a KPC cell line transduced with a control shRNA (shCtrl) or a shRNA targeting Map3k7 (shMap3k7) treated with TGF-β1 (10 ng/ml) for 24 hours. The experiment was performed independently 3 times. (C) Organoid count normalized to untreated organoids of respective genotypes at passage 0. Duct organoids of indicated genotypes / treated with shRNA were exposed to 1 ng/ml TGF-β1 for 25 days. Data represents one organoid line per condition, the experiment was independently performed three times. One-way ANOVA was used to compute the indicated p-values.
Supplementary Files

Supplementary File 1. Differential gene expression analysis of sorted KPC and KPC-Sf3b1K700E tumor cells, displaying logFC, logCPM, P-Value, False discovery rate (FDR) and EntrezID.

Supplementary File 2. Splicing analysis of indicated alternative splice events in sorted KPC and KPC-Sf3b1K700E tumor cells, displaying Ensembl ID, gene name, event positions, percent spliced in (delta psi), standard deviation, p-value and FDR.

Supplementary File 3. Name and nucleotide sequence of all primers used in the study.

Source Data 1. Uncropped gel images of Western blot an RT-PCR experiments.
Figure 1

A. Sf3b1K700E knock in

+ Cre
Exon 16
Exon 16
91 uox3
91 uox3
A>G
→ LoxP
mutant LoxP

B. Survival (%)

Weeks

WT (n=8)
Sf3b1K700E+/+ (n=8)

C. Pancreas weight (mg)

WT Sf3b1K700E+/+

D. WT KPC KPC-Sf3b1K700E+/+

1 cm

E. Survival (%)

Days

p<0.0001

F. Pancreas weight (mg)

KPC Sf3b1K700E+/+

G. H&E MUC5AC b-amylase CK19 DAPI

KPC KPC-Sf3b1K700E+/+

H. β-Amylase positive area [%]

KPC Sf3b1K700E+/+

I. MUC5AC positive cells / field

p=0.01

J. CK19-positive cells / field

KrasG12D+/+ Sf3b1+/+
KrasG12D+/+ Sf3b1K700E+/+

p=0.03

K. Survival (%)

Weeks

p=0.049

L. Percentage of mice

PDAC PanIn only Healthy

p=0.005
Figure 2

A Enrichment plot: HALLMARK EMT

B Sorted Tumor Cells

C p=0.03

D

E p=0.04

F

G

H p=0.02

I

J p<0.01
Figure 3

Panel A: Immunofluorescence images showing CC3 (green) and E-Cad (red) expression in KPC and KPC-Sf3b1K700E organoids.

Panel B: Box plots comparing CC3+ cell numbers between KPC and KPC-Sf3b1K700E organoids.

Panel C: Images of organoids stained with DAPI (blue) and E-Cad (red).

Panel D: Bar graph showing relative CC3 activity in KPC and KPC-Sf3b1K700E organoids with 10 ng/ml TGF-β.

Panel E: Bar graph showing organoid counts (TGF-β / Control) in KPC and KPC-Sf3b1K700E organoids.

Panel F: Images of control and TGF-β treated organoids with E-Cad expression.

Panel G: Bar graph showing relative CC3 activity in WT and SF3B1K700E organoids with TGF-β.

Panel H: Bar graph showing the number of organoids in Ctrl and TGF-β treated WT and SF3b1K700E organoids.

Panel I: Graph depicting the number of organoids over time with 1 ng/ml TGF-β.

Panel J: Bar graph comparing cell number (TGF-β, Control) in WT and SF3B1K700E organoids.
Figure 4

A. Bar graph showing the distribution of Exon Skip, Alternative 3', and Alternative 5' events.

B. Histogram showing the number of cryptic 3'ss as a function of distance from the canonical 3'ss.

C. Diagram illustrating canonical and cryptic 3'ss.

D. Venn diagram depicting the number of splicing events in TCGA SF3B1K700E, KPC-Sf3b1K700E/+, and their alt. 3'.

E. Western blot analysis showing the expression of Map3k7 in KPC and KPC-Sf3b1K700E/+.

F. Western blot analysis of MAP3K7 expression in WT, Sf3b1K700E/+, and different cell lines.
A

shCtrl shMap3k7

MAP3K7

GAPDH

B

log2 FC (shMap3k7 / shCtrl)

Tnc Col6a3 Col1a1 Igfbp4 Col7a1 Itgb3 Crlf1 Inhba Fstl1

Organoid count
(normalized to untreated at d0)

WT Sf3b1 mutant shCtrl shMap3k7

C

1 ng/ml TGF-β

p=0.007 p<0.001

25 days

p=0.06 p<0.001