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Abstract The genetic variants introduced into the ancestors of modern humans from inter-
breeding with Neanderthals have been suggested to contribute an unexpected extent to complex 
human traits. However, testing this hypothesis has been challenging due to the idiosyncratic 
population genetic properties of introgressed variants. We developed rigorous methods to assess 
the contribution of introgressed Neanderthal variants to heritable trait variation and applied 
these methods to analyze 235,592 introgressed Neanderthal variants and 96 distinct phenotypes 
measured in about 300,000 unrelated white British individuals in the UK Biobank. Introgressed 
Neanderthal variants make a significant contribution to trait variation (explaining 0.12% of trait 
variation on average). However, the contribution of introgressed variants tends to be significantly 
depleted relative to modern human variants matched for allele frequency and linkage disequilib-
rium (about 59% depletion on average), consistent with purifying selection on introgressed variants. 
Different from previous studies (McArthur et al., 2021), we find no evidence for elevated heritability 
across the phenotypes examined. We identified 348 independent significant associations of intro-
gressed Neanderthal variants with 64 phenotypes. Previous work (Skov et al., 2020) has suggested 
that a majority of such associations are likely driven by statistical association with nearby modern 
human variants that are the true causal variants. Applying a customized fine-mapping led us to 
identify 112 regions across 47 phenotypes containing 4303 unique genetic variants where intro-
gressed variants are highly likely to have a phenotypic effect. Examination of these variants reveals 
their substantial impact on genes that are important for the immune system, development, and 
metabolism.
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Editor's evaluation
Humans whose genetic ancestors lived outside Africa have a small proportion of the genome that 
traces back to interbreeding events with Neanderthals. To quantify the contribution of this ancestry 
to present-day phenotypic variation, the authors develop a convincing set of approaches that takes 
into account various complicating factors and apply it to a subset of the UK Biobank individuals. The 
work is an important contribution to human evolution and evolutionary biology more generally.

Introduction
Genomic analyses have revealed that present-day non-African human populations inherit 1–4% of 
their genetic ancestry from introgression with Neanderthals (Green et al., 2010; Prüfer et al., 2014). 
This introgression event introduced uniquely Neanderthal variants into the ancestral out-of-Africa 
human gene pool, which may have helped this bottleneck population survive the new environments 
they encountered (Mendez et al., 2012; Abi-Rached et al., 2011; Sankararaman et al., 2014; Vernot 
and Akey, 2014; Racimo et al., 2015; Gittelman et al., 2016). On the other hand, many Neander-
thal variants appear to have been deleterious in the modern human genetic background leading to a 
reduction in Neanderthal ancestry in conserved genomic regions (Sankararaman et al., 2014; Vernot 
and Akey, 2014; Harris and Nielsen, 2016; Juric et al., 2016; Petr et al., 2019). Systematically 
studying these variants can provide insights into the biological differences between Neanderthals and 
modern humans and the evolution of human phenotypes in the 50,000 y since introgression.

In principle, studying Neanderthal-derived variants in large cohorts of individuals measured for 
diverse phenotypes can help understand the biological impact of Neanderthal introgression. Previ-
ously, (Dannemann and Kelso, 2017) showed that some Neanderthal introgressed variants are 
significantly associated with traits such as skin tone, hair color, and height based on genome-wide 
association studies (GWAS) in British samples. However, using data from Iceland, Skov et al., 2020 
found that most of the significantly associated Neanderthal introgressed single-nucleotide polymor-
phisms (SNPs) are in the proximity of strongly associated non-archaic variants. They suggested that 
these associations at Neanderthal introgressed SNPs were driven by the associations at linked non-
archaic variants, indicating a limited contribution to modern human phenotypes from Neanderthal 
introgression. In contrast to these attempts to associate individual introgressed variants with a trait, 
studies have attempted to measure the aggregate contribution of introgressed Neanderthal SNPs 
to trait variation (Simonti et al., 2016; McArthur et al., 2021). A recent study by McArthur et al., 
2021 estimated the proportion of heritable variation that can be attributed to introgressed variants 
though their approach is restricted to common variants (minor allele frequency >5%) that represent a 
minority of introgressed variants. Despite these attempts, assessing the contribution of introgressed 
Neanderthal variants towards specific phenotypes remains challenging. The first challenge is that vari-
ants introgressed from Neanderthals are rare on average (due to the low proportion of Neanderthal 
ancestry in present-day genomes). The second challenge arises from the unique evolutionary history 
of introgressed Neanderthal variants, resulting in distinct population genetic properties at these vari-
ants, which can, in turn, confound attempts to characterize their effects. As a result, attempts to char-
acterize the systematic impact of introgressed variants on complex phenotypes need to be rigorously 
assessed.

To enable analyses of genome-wide introgressed Neanderthal variants in large sample sizes, we 
selected and added SNPs that tag introgressed Neanderthal variants to the UK Biobank Axiom Array 
that was used to genotype the great majority of the approximately 500,000 individuals in the UK 
Biobank (UKBB) (Bycroft et al., 2018). We used a previously compiled map of Neanderthal haplo-
types in the 1000 Genomes European populations (Sankararaman et  al., 2014) to identify intro-
gressed SNPs that tag these haplotypes. After removing SNPs that are well-tagged by those previously 
present on the UKBB array, we used a greedy algorithm to select 6027 SNPs that tag the remaining set 
of introgressed SNPs at ‍r2 > 0.8‍, which were then added to the UKBB genotyping array to better tag 
Neanderthal ancestry. These SNPs allow variants of Neanderthal ancestry to be confidently imputed 
and allow us to identify a list of 235,592 variants that are likely to be Neanderthal-derived (termed 
Neanderthal Informative Mutations [NIMs]) out of a total of 7,774,235 QC-ed SNPs in UKBB (see 
‘Methods’; Appendix 1).

https://doi.org/10.7554/eLife.80757
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The goals of our study are threefold: (1) to estimate the contribution of NIMs to phenotypic varia-
tion in modern humans, (2) to test the null hypothesis that an NIM has the same contribution to pheno-
typic variation as a non-introgressed modern human SNP, and (3) to pinpoint regions of the genome 
at which NIMs are highly likely to modulate phenotypic variation. We develop rigorous methodology 
for each of these goals that we validate in simulations. We then applied these methods to 96 distinct 
phenotypes measured in about 300,000 unrelated white British individuals in UKBB.

Results
The contribution of Neanderthal introgressed variants to trait 
heritability
To understand the contribution of Neanderthal introgressed variants to trait variation, we aim to 
estimate the proportion of phenotypic variance attributed to NIMs (NIM heritability) and to test the 
null hypothesis that per-NIM heritability is the same as the heritability of a non-introgressed modern 
human (MH) SNP. We first annotated each of the 7,774,235 QC-ed SNPs in UKBB as either an NIM 
or an MH SNP (see ‘Methods’). NIMs include SNPs created by mutations that likely originated in 
the Neanderthal lineage after the human-Neanderthal split. SNPs that are not defined as NIMs are 
annotated as MH SNPs that likely originated in the modern human lineage or the human-Neanderthal 
common ancestor.

To estimate NIM heritability, we used a recently proposed method (RHE-mc) that can partition 
the heritability of a phenotype measured in large samples across various genomic annotations 

Figure 1. Benchmarking approaches for estimating the heritability components of Neanderthal introgression. We group simulations by relationships 
between minor allele frequency (MAF) and local linkage disequilibrium at an SNP on effect size (MAF-LD coupling): BASELINE, COMMON, RARE, HIGH, 
LOW. In each group, we perform 12 simulations with varying polygenicity and heritability (see ‘Methods’). Additionally, we combine results from all 
simulations together as ALL. We plot the distributions of two Z-scores (y-axis), one on each row: (a) Z-score (‍̂h2NIM ‍ = ‍h

2
NIM ‍) tests whether the estimated 

and true Neanderthal Informative Mutations (NIM) heritability are equal, and (b) Z-score (‍∆̂h2 = 0‍) tests whether the estimated per-NIM heritability is the 
same as the per-SNP heritability of modern human (MH) SNPs (see ‘Methods’). In each panel, we present results from a variance components analysis 
method (RHE-mc) using four different input annotations: ancestry only where ancestry is either NIM or MH, ancestry + MAF, ancestry + LD, ancestry + 
MAF + LD. A calibrated method is expected to have Z-scores distributed around zero and within ±2 (shaded region). Among all tested approaches, only 
RHE-mc with ancestry + MAF + LD annotations is calibrated across simulations.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. RHE-mc results in simulated data.

Figure supplement 1. Benchmarking different methods for estimating the total SNP heritability.

Figure supplement 2. Estimating the heritability components of Neanderthal introgression under a genetic architecture in which rare variants are 
enriched for phenotypic effects.

https://doi.org/10.7554/eLife.80757
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(Pazokitoroudi et al., 2020). We applied RHE-mc with genomic annotations that correspond to the 
ancestry of each SNP (NIM vs. MH) to estimate NIM heritability (‍h

2
NIM‍). We also attempted to estimate 

whether per-NIM heritability is the same as the per-SNP heritability of MH SNPs (‍∆h2‍). A positive 
(negative) value of ‍∆h2‍ indicates that, on average, an NIM makes a larger (smaller) contribution to 
phenotypic variation relative to a MH SNP.

To assess the accuracy of this approach, we performed simulations where NIMs are neither enriched 
nor depleted in heritability (true ‍∆h2 = 0‍). Following previous studies of the genetic architecture of 
complex traits (Evans et al., 2018; Evans et al., 2018), we simulated phenotypes (across 291,273 
unrelated white British individuals and 7,774,235 SNPs) with different architectures where we varied 
heritability, polygenicity, and how the effect size at a SNP is coupled to its population genetic prop-
erties (the minor allele frequency [MAF] at the SNP and the linkage disequilibrium or LD around an 
SNP). We explored different forms of MAF-LD coupling where BASELINE assumes that SNPs with 
phenotypic effects are chosen randomly, RARE (COMMON) assumes that rare (common) variants are 
enriched for phenotypic effects, and HIGH (LOW) assumes that SNPs with high (low) levels of LD (as 
measured by the LD score; Finucane et al., 2015) are enriched for phenotypic effects (see ‘Methods’). 
Estimates of ‍h

2
NIM‍ and ‍∆h2‍ tend to be miscalibrated (Figure 1ab). The miscalibration is particularly 

severe when testing ‍∆h2‍ so that a test of the null hypothesis has a false-positive rate of 0.55 across all 
simulations (at a p-value threshold of 0.05).

To understand these observations, we compared the MAFs and LD scores at NIMs to MH SNPs. 
We observe that NIMs tend to have lower MAF (Figure 2a) and higher LD scores compared to MH 
SNPs (Figure 2b) (the average MAF of NIMs and MH SNPs are 3.9% and 9.9%, respectively, while 
their average LD scores are 170.6 and 64.9). Among the QC-ed SNPs, 76.9% of NIMs have MAF >1%, 
and 27.7% have MAF >5%, in contrast to 61.6% and 41.6% of MH SNPs. Distinct from MH SNPs, 
the MAF and LD score of NIMs tend not to increase with each other (Figure 2cd). We replicated this 
observation using NIMs that had been identified by an alternate approach (McArthur et al., 2021; 
Appendix 5).

To account for the differences in the MAF and LD scores across NIMs and MH SNPs, we applied 
RHE-mc with annotations corresponding to the MAF and the LD score at each SNP (in addition to the 
ancestry annotation that classifies SNPs as NIM vs. MH) to estimate NIM heritability (‍h

2
NIM‍) and to test 

whether per-NIM heritability is the same as the per-SNP heritability of MH SNPs, that is, ‍∆h2 = 0‍ (see 
‘Methods,’ ‘Appendix 4’). Our simulations show that RHE-mc with SNPs assigned to annotations that 
account for both MAF and LD (in addition to the ancestry annotation that classifies SNPs as NIM vs. 
MH) is accurate both in the estimates of ‍h

2
NIM‍ (Figure 1a) and in testing the null hypothesis that ‍∆h2 = 0‍ 

(the false positive rate of a test of  ‍∆h2 = 0‍ is 0.017 at a p-value threshold of 0.05; Figure 1b). On the 
other hand, not accounting for either MAF or LD leads to poor calibration (Figure 1; we observe qual-
itatively similar results when estimating genome-wide SNP heritability; Figure 1—figure supplement 
1). To further assess the robustness of our results to the genetic architecture, we also performed simu-
lations under a model that assumes an even greater enrichment of SNP effects among rare variants 
wherein SNPs with MAF <1% constitute 90% of the causal variants (ULTRA RARE). RHE-mc with MAF 
and LD annotations remains accurate in its estimates of ‍h

2
NIM‍ and in testing the null hypothesis that 

‍∆h2 = 0‍ (Figure 1—figure supplement 2).
We then applied RHE-mc with ancestry + MAF + LD annotations to analyze a total of 96 UKBB 

phenotypes that span 14 broad categories. In all our analyses, we include the top 5 PCs estimated 
from NIMs (NIM PCs) as covariates in addition to the top 20 genetic PCs estimated from common 
SNPs, sex, and age (see ‘Methods’). The inclusion of NIM PCs is intended to account for stratification 
at NIMs that may not be adequately corrected by including genotypic PCs estimated from common 
SNPs (we also report concordant results from our analyses when excluding NIM PCs; ‘Appendix 3’ and 
Figure 4—figure supplement 1).

We first examined NIM heritability to find six phenotypes with significant NIM heritability (Z-score 

‍

( �h2NIM = 0
)

> 3
‍
): body fat percentage, trunk fat percentage, whole body fat mass, overall health 

rating, gamma glutamyltransferase (a measure of liver function), and forced vital capacity (FVC) 
(Figure 3a and c). Meta-analyzing within nine categories that contain at least four phenotypes, we find 

that ‍meta − ĥ2NIM‍ is significantly larger than zero for anthropometry, blood biochemistry, bone densi-
tometry, kidney, liver, and lung but not for blood pressure, eye, lipid metabolism (p<0.05 accounting 
for the number of hypotheses tested). Meta-analyzing across all phenotypes with low correlation, we 

https://doi.org/10.7554/eLife.80757
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obtain overall NIM heritability estimates (‍meta − ĥ2NIM‍) = 0.12% (one-sided p=6.6×10–31). The esti-
mates of NIM heritability are modest as would be expected from traits that are highly polygenic and 
given that NIMs account for a small percentage of all SNPs in the genome (see ‘Methods).

We next tested whether the average heritability at an NIM is larger or smaller compared to a MH 
SNP (‍∆̂h2 = 0‍). We find 17 phenotypes with significant evidence of depleted NIM heritability that 
include standing height, body mass index, and HDL cholesterol (Z-score < –3; Figure 3b and d). Five 
phenotypic categories show significant NIM heritability depletion (anthropometry, blood biochem-
istry, blood pressure, lipid metabolism, lung) in meta-analysis. Meta-analyzing across phenotypes, we 
find a significant depletion in NIM heritability (‍meta − ∆̂h2‍ = –1.7 × 10–3, p=2.1×10–36). On average, we 
find that heritability at NIMs is reduced by about 57% relative to an MH variant with matched MAF and 
LD characteristics. In contrast to the evidence for depletion in NIM heritability, we find no evidence 
for traits with elevated NIM heritability across the phenotypes analyzed. We repeated these analyses 
using NIMs that had been identified using a different approach (Browning et al., 2018) and obtained 
concordant results (‘Appendix 5’). Our observations are consistent with NIMs having been primarily 
under purifying selection for thousands of generations (Harris and Nielsen, 2016; Petr et al., 2019). 
Nevertheless, as evidenced by their overall heritability, NIMs still make a significant contribution to 
phenotypic variation in present-day humans.

We also investigated the impact of controlling for MAF and LD on our findings in UKBB. Analyses 
that do not control for MAF and LD tend to broadly correlate with our results that control for both 

(Pearson’s r = 0.96, 0.68, and 0.65 and p<10–12 among ‍̂h2‍ , ‍̂h2NIM‍ , and ‍∆̂h2‍). However, these analyses 
underestimate both heritability (Figure 4a) and NIM heritability (Figure 4b), resulting in apparent NIM 
heritability depletion (Z-score < –3) in 83 of the 96 phenotypes (Figure 4c). While yielding qualita-
tively similar conclusions about the depletion in heritability at NIMs relative to MH SNPs, prior knowl-
edge that per SNP heritability of complex traits can be MAF and LD dependent (Evans et al., 2018) 
coupled with our extensive simulations lead us to conclude that controlling for MAF and LD leads to 
more accurate results.

An interesting hypothesis is whether the depletion in heritability that we observe here reflects selec-
tion specifically against Neanderthal alleles or whether these could represent selection against func-
tional changes in general since prior work has shown that Neanderthal alleles tend to be distributed 
further away from regions of the genome under selective constraint (Sankararaman et al., 2014; Juric 
et al., 2016). To answer this question, we can compare the average heritability at NIMs to modern 
human SNPs matched for B-value, a measure of background selection (McVicker et al., 2009). We 
attempted to estimate the difference in average heritability between NIMs and MH SNPs (‍∆h2‍) while 
matching on quartiles of B-value bins, in addition to MAF and LD bins. A challenge with this approach 
is the large number of annotations leads to annotations with few SNPs so that ‍h

2
NIM‍ estimates are 

substantially less precise (estimated with standard errors that are about 10 times larger on average 

Figure 2. Distributions of minor allele frequency (MAF) and LD-score in Neanderthal Informative Mutations (NIMs) and modern human (MH) SNPs. 
Empirical cumulative distribution functions of (a) MAF and (b) LD scores of NIMs (in solid green line) and MH SNPs (in pink dashed line) estimated in the 
UK Biobank (UKBB). (c) Boxplots of MAFs of NIMs (on the left filled in green) and MH SNPs (on the right side filled in pink) while controlling for LD score 
(UKBB). (d) Boxplots of LD score (UKBB) of NIMs and MH SNPs while controlling for MAF. NIMs and MH SNPs are divided by the 20, 40, 60, 80, 100 (c) 
LD score (UKBB) percentile or MAF percentile (d) based on all QC-ed SNPs (7,774,235 imputed SNPs with MAF >0.001). The lower and upper edges of a 
box represent the first and third quartile (qu1 and qu3), respectively; the horizontal red line inside the box indicates median (md); the whiskers extend to 
the most extreme values inside inner fences, md ± 1.5 (qu3–qu1).

https://doi.org/10.7554/eLife.80757
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than in the setting where we do not match on B-values). Consequently, we do not find a significant 
difference in the per-SNP heritability at NIMs compared to MH SNPs. Instead, we estimated (‍∆h2‍) 
matching on B-values and MAF having confirmed that the ‍h

2
NIM‍ estimates are estimated with precision 

comparable to the setting where we do not match on B-values. In this setting, we continue to observe 
a significant depletion in NIM heritability across phenotypes (55 phenotypes with Z-score < –3) with 
no evidence for traits with elevated (Figure 3—figure supplement 1).

Figure 3. Neanderthal Informative Mutation (NIM) heritability in UK Biobank (UKBB) phenotypes. (a) Estimates 
of NIM heritability (‍̂h2NIM ‍) and (c) the Z-score of ‍̂h2NIM ‍ (testing the hypothesis that NIM heritability is positive) for 
each UKBB phenotype. Analogously, (b) estimates of ‍∆̂h2‍ and Z-score (d) of ‍∆̂h2‍ (testing the hypothesis that per-
NIM heritability is equal to per-SNP heritability at modern human [MH] SNPs after controlling for MAF and LD). 
Phenotypic categories are shown in alphabetical order and listed on the top of panel (a) in the same color and 
alphabetical order (from top to bottom, and left to right) as they are in the figure. The estimate for each phenotype 
is shown as one colored dot, on the x-axis based on its phenotypic category, and on the y-axes based on its Z-
score (‍̂h2NIM = 0‍) and Z-score (‍∆̂h2 = 0‍), for panels (c) and (d) respectively. For each phenotypic category with at 
least four phenotypes, their Z-scores from random effect meta-analysis are plotted with the flat colored lines (see 
‘Methods’). The color shades cover Z-scores around zero and within ±2. g.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. UKBB phenotype annotation.

Source data 2. RHE-mc results with Ancestry+MAF+LD annotations and NIM PCs included in covariates applied 
to 96 UKBB phenotypes.

Figure supplement 1. Neanderthal Informative Mutation (NIM) heritability in UK Biobank (UKBB) phenotypes after 
accounting for background selection.

https://doi.org/10.7554/eLife.80757
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Taken together, our analyses suggest that depletion in heritability likely reflects selection against 
Neanderthal alleles rather than selection against variation in functionally constrained regions of the 
genome in general.

Identifying genomic regions at which introgressed variants influence 
phenotypes
Having documented an overall contribution of NIMs to phenotypic variation, we focus on identifying 
individual introgressed variants that modulate variation in complex traits. We first tested individual 
NIMs for association with each of 96 phenotypes (controlling for age, sex), 20 genetic PCs (estimated 
from common SNPs), and 5 NIM PCs (that account for potential stratification that is unique to NIMs). 
We obtained a total of 13,075 significant NIM-phenotype associations in 64 phenotypes with 8018 
unique NIMs (p<10–10 that accounts for the number of SNPs and phenotypes tested) from which we 
obtain 348 significant NIM-phenotype associations with 294 unique NIMs after clumping associated 
NIMs by LD (see ‘Methods).

A limitation of the association testing approach is the possibility that an NIM might appear to 
be associated with a phenotype simply due to being in LD with a non-introgressed variant (Skov 
et al., 2020). We formally assessed this approach in simulations of phenotypes with diverse genetic 
architectures described previously where the identities of causal SNPs are known. An NIM that was 
found to be associated with a phenotype (p<10–10) was declared a true positive if the 200 kb region 
surrounding the associated NIM contains any NIM with a non-zero effect on the phenotype and a false 
positive otherwise. Averaging across all genetic architectures, the false discovery proportion (FDP; the 
fraction of false positives among the significant NIMs) of the association testing approach is around 
30% (Figure 5b). Hence, finding NIMs that are significantly associated with a phenotype does not 
confidently localize regions at which introgressed variants affect phenotypes.

To improve our ability to identify NIMs that truly modulate phenotype, we designed a customized 
pipeline that combines association testing with a fine-mapping approach that integrates over the 
uncertainty in the identities of causal SNPs to identify sets of NIMs that plausibly explain the asso-
ciation signals at a region (Figure 5a). Our pipeline starts with a subset of significantly associated 
NIMs that are relatively independent (p<10–10) followed by the application of a statistical fine-mapping 
method (SuSiE) within the 200 kb window around each NIM signal (Wang et al., 2020) and additional 
post-processing to obtain a set of NIMs that have an increased probability of being causal for a trait. 

Figure 4. Comparing heritability analyses with and without controlling for minor allele frequency (MAF) and LD in UK Biobank (UKBB) phenotypes. 
Each phenotype is shown with one dot colored by the phenotypic category it belongs to, on the y-axis based on its point estimate and standard error 
(estimated by RHE-mc with Ancestry annotation) and on the x-axis based on its point estimate and standard error (estimated by RHE-mc with ancestry + 
MAF + LD annotation). Estimates shown are (a) total heritability ‍̂h2‍ , (b) Neanderthal Informative Mutation (NIM) heritability ‍̂h2NIM ‍ , and (c) the difference 
between per-NIM heritability and matched modern human (MH) SNPs heritability ‍∆̂h2‍ . Not controlling for MAF and LD leads to underestimation of NIM 
heritability, which leads to false positives when testing whether heritability at an NIM is elevated or depleted relative to an MH SNP.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. RHE-mc results with Ancestry only annotation and NIM PCs included in covariates applied to 96 UKBB phenotypes.

Figure supplement 1. Comparing heritability estimates from RHE-mc without controlling for Neanderthal Informative Mutation (NIM) principal 
components (PCs) with Ancestry + MAF + LD annotation and RHE-mc with Ancestry annotation in UK Biobank (UKBB) phenotypes.

https://doi.org/10.7554/eLife.80757
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We term the NIMs within this set credible NIMs while the shortest region that contains all credible 
NIMs in a credible set is termed the credible NIM region (see ‘Methods; Figure 5a).

We employed the same simulations as previously described to evaluate our fine-mapping 
approach. The fine mapping approach yields a reduction in the FDP relative to association mapping 
(FDP of 15.6% on average; Figure 5b) while attributing the causal effect to a few dozen NIMs within 
the credible NIM set (mean: 79, median: 54 NIMs across all simulations). Applying our pipeline 
to the set of 96 UKBB phenotypes, we identified a total of 112 credible NIM regions containing 
4303 unique credible NIMs across 47 phenotypes (Figure 6a). The median length of credible NIM 
regions, 65.7 kb (95% CI: [4.41 kb, 469.3 kb]) is close to the expected length of Neanderthal intro-
gressed segments (Skov et al., 2020) suggesting that the resolution of our approach is that of an 

Figure 5. Fine mapping of Neanderthal Informative Mutations (NIMs) in simulations and the UK Biobank (UKBB). 
(a) Fine mapping pipeline to identify NIMs that aims to identify genomic regions at which NIMs are likely to 
modulate phenotypic variation (credible NIM regions). (b) Comparison of approaches for identifying credible NIM 
regions. For each simulation, false discovery proportion (FDP) is computed for association testing compared to our 
pipeline (combining association testing and fine-mapping). The distributions of the FDP are shown across genetic 
architectures (summarized across groupings of coupling of effect size, minor allele frequency [MAF] and LD) and 
summarized across architectures (ALL). Our approach to identifying credible NIMs decreases FDP in all studied 
architectures (the LOW LD setting has a median and quartiles of zero across replicates). (c) The distribution of the 
length of credible NIM regions across 96 UKBB phenotypes. (d) Distribution of the ratio between the number of 
credible NIMs and number of tested NIMs (in the example of panel (a), the number of tested NIMs is the union of 
NIMs in input to the fine-mapping software (SuSiE) 1 and 2) showing that our approach is effective in prioritizing 
NIMs that affect phenotype. (e) The distribution of the number of credible NIM regions among phenotypes. The 
number of credible NIM regions is positively correlated with (f) heritability (g) NIM heritability.

The online version of this article includes the following source data for figure 5:

Source data 1. Fine mapping FDP in simulated data.

https://doi.org/10.7554/eLife.80757
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introgressed LD block (Figure 5c). While fine mapping generally attributes the causal signal to a 
subset of the tested NIMs (mean: 55.8, median: 37 NIMs across phenotypes), the degree of this 
reduction varies across regions likely reflecting differences in the LD among NIMs (Figure 5d). We 
do not detect any credible NIM in 49 out of 96 phenotypes potentially due to the limited power of 
our procedure that aims to control the FDR (Figure 5e). The sensitivity of our method is affected by 
both total heritability (Figure 5f, Pearson’s r = 0.49, p=3.3×10–7) and NIM heritability (Figure 5g, 
Pearson’s r = 0.36, p=3.3×10–4). A linear model that uses both total heritability and NIM heritability 
to predict the number of credible sets yields r2 = 0.29, p=1.3×10–5 and 0.015, respectively, while 
linear models with only total heritability or only NIM heritability result in statistically lower r2 (0.24 
and 0.13, respectively).

Figure 6. Analysis of credible Neanderthal Informative Mutations (NIMs). (a) Distribution of credible NIMs across the genome. (b) High and moderate 
impact credible NIMs annotated by SnpEff software (Cingolani et al., 2012). A total of 26 credible NIMs have high (marked in bold) or moderate 
impact effects on nearby genes (chromosome number and hg19 coordinates). The effects of the SNP and the gene name are displayed. This plot 
shows significant associations of these NIMs with specific phenotypes (color denotes the phenotype category). (c) Plot of 300 kb region surrounding 
rs60542959 (marked in black diamond; hg19 coordinates), a credible NIM for standing height that results in loss of the start codon in COQ10A. The plot 
displays other significantly associated NIMs in the region along with their LD (r2) to rs60542969 in 1000 Genomes Europeans (Boughton et al., 2021).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. 112 credible NIM sets and credible NIMs.

Source data 2. SnpEff annotation of all unique credible NIMs.

Figure supplement 1. Credible Neanderthal Informative Mutation (NIM) in the FCGR2A gene associated with gamma-glutamyl transferase levels.

Figure supplement 2. Credible Neanderthal Informative Mutation (NIM) in the AKR1C4 gene is associated with bilirubin levels.

Figure supplement 3. Number of unique credible Neanderthal Informative Mutations (NIMs) that are expression quantitative trait loci (eQTLs).

https://doi.org/10.7554/eLife.80757
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Examination of the functional impact of credible NIMs
We annotated all 4303 unique credible NIMs using SnpEff (Cingolani et al., 2012) to identify a total 
of 26 NIMs with high (e.g., start codon loss, stop codon gain) or moderate impact (nonsynonymous 
variants) on genes (Figure 6b). We identified two credible NIMs, rs9427397 (1:161,476,204 C>T) and 
rs60542959 (12:56,660,905 G>T), that have a high impact on protein sequences. The 1:161,476,204 C>T 
mutation, an NIM that is associated with increased gamma glutamyltransferase and aspartate amino-
transferase (enzymes associated with liver function) and decreased total protein levels in blood, intro-
duces a premature stop codon in the FCGR2A gene (Figure  6—figure supplement 1). FCGR2A 
codes for a receptor in many immune cells, such as macrophages and neutrophils, and is involved in 
the process of phagocytosis and clearing of immune complexes. This NIM is in a region that contains 
SNPs shown in several GWAS linked to rheumatoid arthritis (Okada et al., 2014; Laufer et al., 2019). 
The other high-impact mutation, 12:56,660,905  G>T (rs60542959), results in the loss of the start 
codon in COQ10A, and this SNP is a credible NIM for both mean platelet volume and standing height 
(Figure  6c). COQ10 genes (A and B) are important in respiratory chain reactions. Deficiencies of 
CoQ10 (MIM 607426) have been associated with encephalomyopathy, infantile multisystemic disease; 
cerebellar ataxia, and pure myopathy (Quinzii et al., 2008). The start codon in COQ10A is conserved 
among mammals with its loss having a potentially significant effect on COQ10A expression in immune 
cells (Kubota and Suyama, 2020).

In addition, we detect 24 credible NIMs that function as missense mutations in 19 genes. Seven 
out of the 19 genes are known to have immune related functions (FCGR2A, PCDHG (A8, A9, B7, 
C4), STAT2, and IKZF3). The NIM in STAT2 (rs2066807, 12:56,740,682 C>G) was the first adaptive 
introgression locus to be identified (Mendez et al., 2012). The STAT2 introgressed variant segregates 
at 0.066 frequency in the UKBB white British and leads to an I594M amino acid change in the corre-
sponding protein. STAT2 gene and COQ10A are neighboring genes, thereby providing an example of 
an introgressed region that potentially impacts function at multiple genes (Figure 6c).

At least 7 of the 12 genes not known to be immune related have other important functions docu-
mented in the literature, such as DNA replication/damage (FANCA, CCDC8) (Moldovan and D’An-
drea, 2009; Jiang et al., 2016), transition in meiosis (FBXO34) (Zhao et al., 2021), detoxification/
metabolism (AKR1C4) (Lee et  al., 2009), and neurological/developmental (ZNF778, ANKRD11, 
TBC1D32) functions (Willemsen et al., 2010; Alves et al., 2019; Hietamäki et al., 2020). rs17134592 
(10:5260682 C>G) is a non-synonymous mutation in AKR1C4, a gene that is involved in the metab-
olism of ketone-containing steroids in the liver. The NIM is associated with increased serum bilirubin 
levels (p=3×10–11) (Figure  6—figure supplement 2a) while also being associated with increased 
levels of alkaline phosphatase, insulin-like growth factor 1 (IGF1) and decreased apolipoprotein A, 
sex hormone binding globulin (SHBG) and triglyceride levels. rs17134592 has been identified to be a 
splicing QTL that is active in the liver and testis in the GTeX data (Figure 6—figure supplement 2b). 
This NIM alters leucine to valine (L311V), which, in combination with the tightly linked non-synonymous 
variant rs3829125 (S145C) in the same gene, have been shown to confer a three- to fivefold reduction 
in catalytic activity of the corresponding enzyme (3-alpha hydroxysteroid dehydrogenase) in human 
liver (Kume et al., 1999). Interestingly, the single amino acid change S145C did not significantly alter 
enzyme activity, suggesting the importance of the amino acid residue at position 311 for the substrate 
binding of the enzyme.

To assess the role of noncoding NIMs that impact phenotype, we investigated the prevalence of 
expression quantitative trait loci (eQTLs) among credible NIMs. We used FUMA (Watanabe et al., 
2017) to annotate whether a credible NIM is an eQTL using eQTLs identified across the 54 tissues 
analyzed in GTEx v8. We find that 60.8% of the credible NIMs are eQTLs for at least one gene in at 
least one tissue while only 25.6% of all NIMs are eQTLs. Out of 112 credible NIM sets, 23 have at 
least one credible NIM that alters coding sequence (Figure 6b), 79 have at least one credible NIM 
that works as an eQTL in at least one tissue while 22 have at least one credible NIM that impacts both 
coding sequence and gene expression. Additionally, we listed the GTEx v8 tissues where credible 
NIMs are found to be eQTLs for genes expressed in those tissues (Figure 6—figure supplement 3). 
We find examples of credible NIMs for specific phenotypes that are eQTLs in relevant tissues: the 
credible set for measures of lung capacity (forced expiratory volume [FEV1] and forced vital capacity 
[FVC]) contains eQTLs for gene expressed in lung while credible sets for a measure of liver function 
(alanine aminotransferase levels in blood) contain eQTLs in liver.

https://doi.org/10.7554/eLife.80757
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Discussion
Our analysis demonstrates the complex influence of Neanderthal introgression on complex human 
phenotypes. The assessment of the overall contribution of introgressed Neanderthal alleles to pheno-
typic variation indicates a pattern where, taken as a group, these alleles tend to be depleted in their 
impact on phenotypic variation (with about a third of the studied phenotypes showing evidence of 
depletion). This pattern is consistent with these alleles having entered the modern human population 
roughly 50,000 y ago and being subject to purifying selection. Selection to purify deleterious intro-
gressed variants, coupled with stabilizing selection on human complex traits, could result in intro-
gressed heritability depletion such that the remaining introgressed variants in present-day humans 
tend to have smaller phenotypic effects compared to other modern human variants.

In contrast to the previous heritability analyses by McArthur et al., 2021, we did not find any NIM 
heritability enrichment in the 96 phenotypes. This discrepancy could be due to the different methods 
and NIMs used in the two studies. McArthur et al. estimate the heritability associated with common 
NIMs (NIMs with MAF >5%) using stratified LD score regression (S-LDSR) with LD scores computed 
from 1KG (see Appendix 2). Because more than 70% of NIMs have MAF <5%, this approach may not 
extrapolate to understand the heritability from all NIMs. An additional potential concern with analyses 
of NIMs is the possibility of confounding due to population structure among these introgressed vari-
ants. Typical approaches to account for population stratification based on the inclusion of principal 
components (PCs) may not be adequate as these PCs are computed from common SNPs on the UKBB 
genotyping array and may not account for stratification at the NIMs that tend to be rare on average 
(Mathieson and McVean, 2012). Since our analyses work directly on individual genotype data, we 
are better able to control for stratification specific to NIMs by including PCs estimated from NIMs in 
addition to PCs estimated from common SNPs (with the caveat that even this approach is not guar-
anteed to correct for some types of stratification that can impact NIMs). In spite of these differences 
in methods and NIMs analyzed, our observation of an overall pattern of depletion in the heritability 
of introgressed alleles is consistent with the findings of McArthur et al. The robustness of this pattern 
might provide insights into the nature of selection against introgressed alleles.

Beyond characterizing aggregate effects of NIMs, we also attempted to identify individual NIMs 
that modulate phenotypic variation. A challenge in identifying such variants comes from the fact 
that NIMs tend to have lower MAF and higher LD compared to MH SNPs. Lower MAF tends to limit 
the power to detect a genetic effect while higher LD makes it harder to identify the causal variant. 
These challenges led us to design a fine mapping strategy for prioritizing causal NIMs that enables 
the identification of sets of NIMs that can credibly exert influence on specific phenotypes. Using 
this approach, we identified credible NIMs in a number of functionally important genes, including a 
premature stop codon in the FCGR2A gene, and a start codon loss in COQ10A. In addition, variants 
in STAT2 are found to be highly pleiotropic. As many of the genes are relevant to immune, meta-
bolic, and developmental disorders, with functions relevant to the transition to new environments, the 
credible NIMs reported in our study offer a starting point for detailed investigation of the biological 
effects of introgressed variants. Greenbaum et al. hypothesized that introgression-based transmission 
of alleles related to the immune system could have helped human out-of-Africa expansion in the 
presence of new pathogens (Greenbaum et al., 2019). While our results do not directly support this 
hypothesis, they pinpoint introgressed alleles in immune-related genes that could have and continue 
to modulate human phenotypes consistent with findings from prior studies (Abi-Rached et al., 2011; 
Mendez et al., 2012; Quach et al., 2016; Nédélec et al., 2016; Enard and Petrov, 2018). Although 
we identified a number of likely causal NIMs in fine mapping, our strategy likely only picks up a small 
fraction of the functional NIMs, suggesting that additional NIMs that are causal for specific traits 
remain to be discovered.

Our study has several limitations due to the current availability of data and statistical methods. 
First, all of our analyses focus on the white British individuals in the UKBB due to the large sample size 
that permits the interrogation of low-frequency NIMs and our choice of NIMs based on introgressed 
variants segregating in European populations. Whole-genome sequencing data in diverse populations 
can potentially elucidate the impact of Neanderthal introgression in other out-of-African populations 
that harbor substantial Neanderthal ancestry. Alternatively, designing arrays that have SNPs informa-
tive of archaic ancestry followed by genotype imputation could be a fruitful strategy to leverage large 
Biobanks to systematically explore the contribution of archaic introgression. Second, our findings of 

https://doi.org/10.7554/eLife.80757
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lower per-SNP heritability at NIMs relative to MH SNPs are consistent with two non-exclusive hypoth-
eses: that introgressed variants tend to have a lower proportion of causal SNPs or lower effect sizes 
compared to non-introgressed variants. While our approach, based on heritability estimation, cannot 
distinguish these hypotheses, recent approaches that enable estimation of polygenicity of complex 
traits hold promise in this regard (Zhang et al., 2018; Johnson et al., 2021; O’Connor, 2021). Third, 
while our approach to localize credible NIMs yields a list of NIMs that are highly likely to modulate 
variation in a trait, our method only identifies a subset of causal variants. The design of fine mapping 
methods to study introgressed variants while taking into account the ancestry (as well as better incor-
porating other measures such as posterior inclusion probabilities) is an important direction for future 
work. More broadly, the unique evolutionary history of introgressed variants motivate the develop-
ment of methods tailored to their population genetic properties. While our results suggest potential 
evolutionary models that explain our observations of depleted heritability at introgressed alleles, 
evolutionary models that can comprehensively explain our observations are lacking. A major chal-
lenge is the large space of potential models that need to be explored. Nevertheless, proposing and 
validating such models will be an important direction for future work.

Methods
Identification and design of SNPs that tag Neanderthal ancestry on the 
UK Biobank Axiom array
We chose a subset of SNPs to add to the UK Biobank Axiom array that would tag introgressed Nean-
derthal alleles segregating in present-day European populations.

We began with a list of 95,462 SNPs that are likely to be Neanderthal-derived from Sankararaman 
et al., 2014. These SNPs were identified to tag confidently inferred Neanderthal haplotypes in the 
European individuals identified in the 1000 Genomes Phase 1 data (Appendix 1).

We winnowed down this list to 43,026 SNPs after removing ones already tagged at ‍r2 > 0.8‍ by SNPs 
on the UKBiLEVE array. We then designed a greedy algorithm to capture the remaining untagged 
SNPs that could still be accommodated on the array (we determined the number of oligonucleotide 
features that would be needed to genotype each SNP as well as the total number of features available 
on the array through discussions with UK Biobank Axiom array design team).

Specifically, we computed LD between all pairs of Neanderthal-derived SNPs and then iteratively 
picked SNPs with the highest score to add to the array where the score was computed as

	﻿‍ ScoreSNP j =
∑n

i=1
[
δr2>0.80

(
i,j
)][

Derived frequencySNP i
]

Features required genotype SNP j ‍�

Here, ‍δr2>0.80
(
i, j
)
‍ is an indicator variable that is 1 if the squared correlation coefficient between SNPs 

‍i‍ and ‍j‍ is >0.80 and zero otherwise. Thus, SNP j is scored higher if it tags other untagged SNPs 
on the array. The other two terms upweight SNPs that tag other Neanderthal-derived SNPs with 
high derived allele frequency in Europeans and downweight SNPs by the number of oligonucleotide 
features required to genotype the SNP.

We iteratively chose SNPs until we obtained 6027 SNPs (requiring 16,674 features) that fully tagged 
the remaining set of Neanderthal-derived SNPs. These 6027 SNPs were then added to the UKBiobank 
Axiom array.

UK Biobank (UKBB) genotype QC
We restricted all our analyses to a set of high-quality imputed SNPs (with a hard call threshold of 
0.2 and an info score ≥0.8), which, among the 291,273 imputed genotypes of UKBB unrelated white 
British individuals, (1) have MAF higher than 0.001, (2) are under Hardy–Weinberg equilibrium (p>10–

7), and (3) are confidently imputed in more than 99% of the genomes. Additionally, we excluded SNPs 
in the MHC region, resulting in a total of 7,774,235 SNP which we refer to as QC-ed SNPs.

Identification of Neanderthal Informative Mutations
We intersected the 95,462 Neanderthal-derived SNPs identified in the 1000 Genomes European indi-
viduals with UKBB QC-ed SNPs, resulting in 70,374 variants that we term confident NIM. SNPs in high 
linkage disequilibrium (LD) with this set are likely introduced through Neanderthal introgression. We 

https://doi.org/10.7554/eLife.80757
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expanded this set by including all QC-ed SNPs, which (1) have an r2 of 0.99 or higher with any confi-
dent NIM, and (2) are located in the proximal neighborhood of any confident NIM (within 200 kb). We 
term this set of SNPs as expanded NIMs. On average, 80.58% of expanded NIMs match the corre-
sponding Altai Neanderthal allele, in contrast to 2.18% of the remaining SNPs, suggesting that these 
SNPs are also highly informative about Neanderthal ancestry. This treatment expands the number 
of NIMs in the UKBB QC-ed SNPs from 70,374 (confident NIMs) to 235,592 (expanded NIMs). We 
primarily use this more inclusive set of SNPs in our analyses, and refer to them as NIMs in the main 
results. SNPs that were not part of the expanded NIMs are termed MH SNPs.

Annotating QC-ed SNPs by MAF and LD
In addition to ancestry (Neanderthal vs. MH), we annotate each QC-ed SNP by its MAF and LD. We 
define five MAF-based annotations by dividing all QC-ed SNPs into five equal-sized bins by their 
MAFs. We similarly define five LD-based annotations by dividing all QC-ed SNPs into five equal-sized 
bins based on their LD-score computed from 291,273 imputed unrelated white British genotypes. 
In-sample LD-score is computed on QC-ed genotypes using GCTA (https://cnsgenomics.com/soft-
ware/gcta/#Overview) with flags “--ld-score --ld-wind 10000”.

After each QC-ed SNP is annotated with three properties – ancestry (NIMs vs. MH), MAF, and LD 
– we use them to construct three additional sets of annotations: ancestry + MAF, ancestry + LD, and 
ancestry + MAF + LD annotations, by intersecting MAF annotation with ancestry annotation, LD anno-
tation with ancestry annotation, and all three annotations, respectively. For example, for ancestry + 
MAF annotation, we intersect the previously defined MAF annotation with the ancestry annotation 
and divide SNPs into 10 non-overlapping bins – from low to high MAF with Neanderthal ancestry (five 
bins) and from low to high MAF with modern human ancestry (five bins). Similarly, when SNPs are 
annotated with LD + ancestry, we have five LD bins with Neanderthal ancestry corresponding to five 
LD groups with MH ancestry.

Because NIMs tend to have low MAF and high LD-score (Figure 2), the sizes of the annotation bins 
are highly uneven. To enable reliable downstream heritability analyses, we remove the annotation 
bins in their entirety if they include fewer than 30 SNPs. Such exceptions only occur when SNPs are 
annotated based on all three annotations, that is, ancestry + MAF + LD.

Whole-genome simulations
We simulated phenotypes based on QC-ed UKBB genotypes with the same sample size (291,273) and 
number of SNPs (7,774,235). In each simulation, either 10,000 variants (mimicking moderate poly-
genicity) or 100,000 (mimicking high polygenicity) are sampled from the QC-ed SNPs to have causal 
phenotypic effects while the rest of the variants have zero effect. Causal effects and phenotypes are 
simulated with GCTA assuming either a high SNP heritability of 0.5 or a moderate SNP heritability of 
0.2.

With the simulated causal NIM variants, true NIM heritability ‍h
2
NIM‍ can be computed as

	﻿‍ h2
NIM =

∑
i β2

NIM,i /Var(y)‍�

where phenotypes y are simulated based on a set of standardized genotype data with a simple addi-
tive genetic model

	﻿‍ yj =
∑

i wijβi + εj‍�

and

	﻿‍
wij =

(
xij − 2pi

)
/
√

2pi
(
1 − pi

)
‍�

with ‍xij‍ being the number of reference alleles for the ith causal variant of the jth individual and ‍pi‍ 
being the frequency of the ith causal variant, ‍βi‍ is the allelic effect of the ith causal variant that is 
drawn independently from a standard normal distribution and ‍εj‍ is the residual effect generated from 

a normal distribution with mean 0 and variance 
‍
Var

(∑
i wijβi

)
/
(

1/h2 − 1
)
‍
. We note that when the 

causal SNPs are selected at random, this is the GCTA model that has been used in genetic studies of 
complex traits (Yang et al., 2010).
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Following previous work (Evans et al., 2018), we chose causal variants according to five different 
MAF and LD-dependent genetic architecture: (1) BASELINE: baseline architecture, where SNPs are 
randomly selected to be causal variants; (2) COMMON: common SNPs are enriched for phenotypic 
effects so that SNPs with MAF >0.05 contribute 90% of causal variants while rare SNPs contribute 
10%; (3) RARE: rare variants are enriched for phenotypic effects such that SNPs with MAF ≤ 0.05 
contribute to 90% of causal variants while the rest contribute 10%; (4) LOW: low LD SNPs are enriched 
for phenotypic effects, realized as SNPs whose LD-score ≤ 10 contribute 90% of causal variants, and 
the rest contribute 10%; and (5) HIGH: high LD SNPs are enriched for phenotypic effects, such that 
SNPs with LD-score >10 contribute 90% causal variants while the rest contribute 10%. We simulated 
three replicates for each genetic architecture with two different values of SNP heritability (0.2 and 0.5) 
and two different levels of polygenicity (10,000 and 100,000 causal variants).

Estimating NIM heritability with RHE-mc
We are interested in estimating the proportion of phenotypic variance attributed to NIMs (true NIM 
heritability ‍h

2
NIM‍) and evaluating if the heritability at an NIM (per-NIM heritability) is larger or smaller 

than that of a background MH SNP. To this end, we used a variance components model that partitions 
phenotypic variance across genomic annotations that include ancestry (NIM vs MH) as one of the input 
annotations.

We use RHE-mc, a method that can partition genetic variance across large sample sizes, to esti-
mate NIM heritability (Pazokitoroudi et al., 2020). For each phenotype, we run RHE-mc, in turn, with 
four types of input annotations: ancestry alone, ancestry + MAF, ancestry + LD, and ancestry + MAF + 
LD as described above. The ancestry + MAF, ancestry + LD, and ancestry + MAF + LD annotations are 
intended to account for the differences in the MAF and LD properties of NIMs compared to MH SNPs.

To estimate NIM heritability, ‍̂h2NIM‍ , we combine the heritability of each bin corresponding to 
Neanderthal ancestry:

	﻿‍
�h2NIM =

∑
i
�h2NIM,i‍�

and the heritability estimates for any bins with modern human ancestry are used to compute the total 
heritability from MH. Thus, when we estimate NIM heritability from RHE-mc run with ancestry + MAF 
annotations, we add the heritability estimates from five bins of low to high MAF NIMs.

To compare the average heritability at an NIM to the heritability of a background MH SNP that is 
chosen to match the NIM in terms of MAF and LD profiles, we compute the following statistic:

	﻿‍ ∆̂h2 = ĥ2NIM − ĥ2MH ‍�

where  ‍̂h2MH ‍ = ‍
∑

i
MNIM,i
MMH,i

�h2MH,i‍ is the heritability of the background set matched for the MAF and LD 
profile of the set of NIMs. Here ‍MMH,i‍ denotes the number of MH SNPs in bin i (defined according to 
MAF and/or LD of the MH SNPs) while ‍MNIM,i‍ denotes the number of NIMs in the corresponding bin. 
A more detailed justification of this statistic is provided in Appendix 4.

The standard errors (s.e.) of these statistics are computed using 100 jackknife blocks using an 
extension of RHE-mc that takes into account the covariance among different annotations. This new 
version of the RHE-mc is now available at https://github.com/alipazokit/RHEmc-coeff, (copy archived 
at swh:1:rev:b53cfba3f8f8dd160082dda642075302f64d46a0; Pazoki, 2022).

NIM heritability and META-analysis using UKBB phenotypes
We applied RHE-mc to a total of 96 UKBB phenotypes. These phenotypes fall into 14 broader pheno-
typic categories: anthropometry, autoimmune disorders, blood biochemistry, blood pressure, bone 
densitometry, environmental factors, eye, general medical information, glucose metabolism, kidney, 
lipid metabolism, liver, lung, and skin and hair. For each phenotype, we use RHE-mc to estimate the 

NIM heritability ‍̂h2NIM‍ and the difference between per-NIM heritability and the per-SNP heritability of 
MH SNPs ‍∆̂h2‍ while controlling for age, sex, the first 20 genetic PCs estimated from common SNPs, 
and the first five PCs estimated from NIMs (NIM PCs). The five NIM PCs are computed using all NIMs 
in unrelated white British samples with ProPCA (Agrawal et al., 2020).

To improve power to detect patterns that are shared across groups of phenotypes, we combined 
analyses across groups of phenotypes and across all phenotypes analyzed. We performed random 
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effect meta-analysis on each phenotypic category containing at least four phenotypes. We assume 

that the phenotypes within each category i have their ‍̂h2NIM‍ drawn from the same distribution so that 

we can estimate the mean (‍meta − h2
NIM‍) and variance of distribution i, based on the sampled ‍̂h2NIM‍ 

and the s.e.(‍̂h2NIM‍). From there, we computed the meta analysis Z-score to test if the ‍meta − h2
NIM‍ is 

equal to zero. Similarly, we assume the phenotypes within each category i have their ‍∆h2‍ drawn from 
the same distribution, and compute the Z-score to test if the ‍meta −∆h2‍ is equal to zero. In addition to 
the meta-analysis within the phenotypic category, we also performed meta-analysis across all pheno-
types where we used a subset of 32 phenotypes that were chosen to have low correlation (Pearson’s 

‍r2 ≤ 0.25‍).

Identifying individual NIMs associated with phenotype
To identify individual NIMs associated with a phenotype, we fit a linear regression model using plink 
2.0 --glm and include covariates controlling for age, sex, and the first 20 genotypic PCs, and first 
five NIM PCs. We used a stringent p-value threshold of 10–10 to correct for the number of NIMs and 
phenotypes tested. For each phenotype, we clumped all significant NIMs that lie within 250 kb and 
with an LD threshold (‍r2‍) of 0.5 using a significance threshold for the index SNP of 10–10.

Identifying NIMs that modulate phenotype
To assess our ability to identify introgressed variants that truly modulate a phenotype, we first tested 
each NIM for association with the simulated phenotype. A challenge with such an approach is the 
possibility that an NIM can be found to be associated with a phenotype due to being in LD with a non-
introgressed variant. To exclude settings where the association signal at an NIM might be driven by LD 
with a non-introgressed variant, we applied a Bayesian statistical fine-mapping method (SuSiE, Wang 
et al., 2020) that analyzes both NIM and MH SNPs in the region surrounding an associated NIM to 
output a set of SNPs that can explain the association signal at the region. Furthermore, we processed 
these credible sets to obtain a set of credible NIMs.

We performed simulations to test the accuracy of such an approach in identifying truly causal NIMs. 
In particular, we first ran an association test with plink (https://www.cog-genomics.org/plink/) to iden-
tify significant NIMs (p-value <10–10). We then LD-pruned significant NIMs to get a subset of NIMs that 
are approximately uncorrelated with each other (using the plink flag “--indep-pairwise 100 kb 1 0.99”). 
For each LD-pruned significant NIM, we considered all the QC-ed SNPs in its 200 kb neighborhood as 
input to fine mapping. We ran SuSiE with ⍴ = 0.95 and L = 10, such that it returns credible sets that 
have at least 0.95 probability to contain one causal variant and outputs at most 10 credible sets for 
each tested region. If there are more than one credible set for a tested region, we merge them into 
one set. We then removed the credible sets which have 50% or more MH SNPs in their credible set. 
The remaining credible sets all have majority NIMs (i.e., positive results), and they are further merged 
together with other such regions it overlaps with, resulting in distinct regions with evidence of NIM 
causal effects. We termed the set of all resulting NIMs as the credible NIM set and all NIMs that lie 
in the credible set as credible NIMs. The region containing the credible NIM set is termed credible 
NIM region. If there is at least one true causal NIM within the set of credible NIMs, this credible NIM 
region is counted as a true positive (TP). If there is no causal NIM in the credible NIMs, this credible 
NIM region is counted as a false positive (FP).

We adopted the same approach when analyzing UKBB phenotypes while incorporating covariates. 
Because the SuSiE package does not directly incorporate covariates, we used regression residuals 
from linear regression between each UKBB phenotype and UKBB covariates (age, sex, 20 regular PCs, 
5 NIM PCs), as the input phenotype to SuSiE.

Annotating NIMs
We annotated all unique credible NIMs using SnpEff (Cingolani et  al., 2012) that uses Sequence 
Ontology (http://www.sequenceontology.org/) to assign standardized terminology for assessing 
sequence change and impact. We primarily focused on examining the high (e.g., start codon loss, stop 
codon gain) and moderate impact SNPs (nonsynonymous variants) that are coding variants that alter 
protein sequences. We used FUMA (Watanabe et al., 2017) to annotate the unique credible NIMs as 
eQTLs (https://fuma.ctglab.nl/). To analyze NIM heritability together with a measure of background 
selection, we annotated NIMs with the B-value (McVicker et al., 2009), a measure of background 
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selection (https://github.com/gmcvicker/bkgd, copy archived at swh:1:rev:5251f317b2261e06ad-
ba58fd454d41710079d3b5; McVicker, 2020).
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Appendix 1
Identification of SNPs that tag Neanderthal ancestry on the UK 
Biobank Axiom array
Starting with the confidently inferred Neanderthal haplotypes identified in Sankararaman et al., 
2014, we identified whether an SNP segregating in a target modern human population owes its 
origin to the Neanderthal gene flow event as follows:

1.	 We identified sets of haplotypes that are confidently labeled as Neanderthal, N by the condi-
tional random field (CRF) method proposed in Sankararaman et al., 2014 scanning for runs 
of consecutive SNPs with marginal probability of Neanderthal ancestry ≥0.90. We also identi-
fied sets of haplotypes that are confidently labeled as non-Neanderthal, MH by scanning for 
SNPs with marginal probability ≤0.1. We also required the Neanderthal haplotype to be at least 
0.02 cM long.

2.	 For each SNP called in the 1000 Genomes dataset, we required that none of the derived alleles 
at this SNP falls on one of the modern human haplotypes in the set MH and all of the haplotypes 
in N carry the derived allele. This procedure allows for some false negatives in the predictions 
of the CRF.

3.	 We ran this procedure on the combined calls from the European ancestry populations (CEU, 
GBR, FIN, IBS, and TSI) in the 1000 Genomes Project.

This procedure yielded a total of 95,462 SNPs that are likely to be Neanderthal-derived. We 
winnowed down this list to 43,026 SNPs after removing ones already tagged at ‍r2 > 0.8‍ by SNPs 
on the UKBiLEVE array. We then designed a greedy algorithm to capture the remaining untagged 
SNPs that could still be accommodated on the array (we determined the number of oligonucleotide 
features that would be needed to genotype each SNP as well as the total number of features 
available on the array through discussions with UK Biobank Axiom array design team).

Specifically, we computed LD between all pairs of Neanderthal-derived SNPs and then iteratively 
picked SNPs with the highest score to add to the array where the score was computed as

	﻿‍ ScoreSNP j =
∑n

i=1
[
δr2>0.80

(
i,j
)][

Derived frequencySNP i
]

Features required genotype SNP j ‍�

Here ‍δr2>0.80
(
i, j
)
‍ is an indicator variable that is 1 if the squared correlation coefficient between 

SNPs ‍i‍ and ‍j‍ is >0.80 and zero otherwise. Thus, SNP j is scored higher if it tags other untagged 
SNPs on the array. The other two terms upweight SNPs that tag other SNPs with high-derived allele 
frequency in Europeans and downweight SNPs by the number of oligonucleotide features required 
to genotype it.

We iteratively chose SNPs until we obtained 6,027 SNPs (requiring 16,674 features) that fully 
tagged the remaining set of Neanderthal-derived SNPs. These 6027 SNPs were then added to the 
UK Biobank Axiom array.

https://doi.org/10.7554/eLife.80757
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Appendix 2
Estimating NIM heritability with partitioned LD-score regression
We considered two candidate methods for estimating the NIM heritability in large datasets and testing 
the related hypotheses to NIM heritability, S-LDSR (Finucane et al., 2015) and RHE-mc (see main text) 
(Pazokitoroudi et al., 2020). S-LDSR can speedily estimate partitioned heritability given GWAS statistics 
and LD scores without any individual-level data. S-LDSR can be used with either in-sample LD scores 
(i.e., computed from the same data as for GWAS) or out-of sample LD scores (i.e., computed from an 
external and often much smaller data set). Out-of-sample LD scores from 1000 Genomes (1KG) is often 
used in S-LDSR (McArthur et al., 2021; Koller et al., 2021) because (1) it is computationally much 
cheaper to compute than using the GWAS cohorts, and (2) individual-level data from GWAS cohorts are 
not always accessible; despite that, S-LDSR with in-sample LD scores is more accurate in theory.

Previous studies by Koller et al. and McArthur et al. used S-LDSR to estimate the heritability from 
archaic ancestries. They computed the stratified LD scores using the 1000 Genomes (1KG) EUR 
and EAS samples and performed LD score regression against the GWAS statistics from a different 
cohort. If the ancestry from 1KG samples does not match well with the GWAS cohort, it could lead 
to biased heritability estimates. Additionally, the LD score distribution and MAF distributions of 
NIMs are very different from the distributions of MH SNPs (Figure 1), which might also affect the 
heritability estimates if not taken into account. Finally, LD score regression is restricted to a subset of 
SNPs (typically with MAF >5%), which substantially reduces the number of NIMs analyzed. Here, we 
benchmarked S-LDSR on the simulated data with both out-of-sample LD scores from 1KG and the 
in-sample LD scores from all UKBB QC-ed data, stratified by ancestry (NIM vs. MH).

First, we used the aforementioned simulations to evaluate the partitioned LD score regression 
in estimating NIM heritability. We downloaded the 1KG EUR data (from https://storage.googleapis.​
com/broad-alkesgroup-public/LDSCORE/1000G_Phase3_plinkfiles.tgz) that is typically used for LD 
score regression. There are 9,997,231 SNPs in the data, and 5,789,471 of them are shared with the 
UKBB QC-ed SNPs. Out of the 235,592 expanded NIMs defined in UKBB QC-ed data, 210,962 
are present in 1KG EUR, and we refer to these SNPs as the 1KG NIMs. We defined the 9,786,269 
SNPs in 1KG EUR that are not expanded NIMs as 1KG MH SNPs. We then computed the stratified 
LD score using GCTA software with flags --ld-score --ld-wind 10000 for all the 1KG SNPs, 
all the 1KG NIMs, and all the 1KG MH SNPs. From here, we computed the stratified LD score with 

‍ldscSNP = ldscNIM + ldscMH ‍ , such that each SNP has two stratified LD scores, one due to its LD with 
NIMs and another due to its LD with MH SNPs. We then intersected the 1KG SNPs with UKBB QC-ed 
SNPs, and used the shared 5,789,471 SNPs to perform stratified LD score regression. The S-LDSR 
is then performed with all SNPs that overlap between 1KG and UKBB. For each simulation, we ran 
S-LDSR to estimate ‍h

2
NIM‍ , ‍h

2
MH ‍ , ‍∆h2‍ , and their standard errors from 200 jackknife blocks. We found 

that the results from using out-of-sample LD are biased even when heritability does not depend on 
MAF and LD (i.e., BASELINE) (Appendix 2—figure 1).

Appendix 2—figure 1. Benchmark stratified LDSC regression (S-LDSR) with in-sample and out-of-sample LD 
scores. We group the simulations by the MAF-LD coupling: BASELINE, COMMON, RARE, HIGH, LOW, and 
ALL, as labeled on the x-axis. We plot the distributions of three Z-scores (y-axis), one on each panel: (a) Z-score 
(‍∆̂h2 = 0‍) tests whether the estimated Neanderthal Informative Mutation (NIM) heritability is different from the 
Appendix 2—figure 1 continued on next page
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matched modern human (MH) heritability, (b) Z-score (‍ĥ2NIM ‍ = ‍h
2
NIM ‍) tests whether the estimated and expected 

NIM heritability are equal, and (c) Z-score (‍ĥ2 = h2‍) tests whether the estimated and simulated total heritability are 
equal. In each panel, S-LDSR with the out-of-sample LD score from 1000 Genomes (1KG) is shown in green and S-
LDSR with in-sample LD score from UKBB in pink. In S-LDSR, only ancestry annotation is used. The Z-scores within 
±2 are color shaded. S-LDSR (1KG) is not calibrated even for BASELINE architecture.

As a comparison, we computed the in-sample stratified LD score using the UKBB QC-ed data and 
applied S-LDSR with these in-sample LD scores. In contrast to the previous results, the results are well 
calibrated for BASELINE, suggesting that the previous biases observed with BASELINE are due to 
the disagreement between the out-of-sample LD score and the in-sample LD score (Appendix 2—
figure 1). Not surprisingly, the results for MAF and LD-dependent architectures are still biased as 
these factors are not taken into account. We caution that our simulations are based on UKBB QC-ed 
SNPs, where non QC-ed SNPs do not have an impact on the simulated phenotypes. This setting 
will favor S-LDSR based on UKBB QC-ed SNPs more than in actual settings, and disfavor S-LDSR 
1KG more than in actual settings. It is possible that in reality the biases with in-sample LD score 
will become larger, and the biases with out-of-sample LD score will become smaller. Nonetheless, 
because it is often expensive to compute in-sample LD scores, the accuracy will largely depend on 
how well the external panel resembles the GWAS cohort.

The out-of-sample LD score could be particularly biased for low MAF SNPs, hence S-LDSR 
recommends not using annotations with fewer than 5% of SNPs as best practice. This practice will 
necessarily exclude more than 70% of NIMs and about half of the MH SNPs, and the heritability 
estimates from high MAF SNPs may not extrapolate to low MAF SNPs. Therefore, S-LDSR, under the 
best practice, is not suitable for studying Neanderthal introgressed variants.

Appendix 2—figure 1 continued
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Appendix 3

The impact of inclusion of NIM PCs on NIM heritability estimates
We computed the first five NIM PCs using all NIMs in unrelated white British samples with ProPCA 
(Agrawal et al., 2020). Compared to the regular genetic PCs (estimated from common SNPs), NIM 
PCs are only weakly correlated with birth GPS locations (Appendix 3—figure 1), consistent with 
the fact that Neanderthal introgression occurred soon after the out-of-African migration before 
population expansion.

Appendix 3—figure 1. Population structure within white British samples. PC-1 from the whole genome genotypes 
(released by UK Biobank [UKBB]) is shown on the left, and Neanderthal Informative Mutation (NIM) PC-1 is shown 
on the right. We used a 20-by-20 grid along the latitude and longitude, dividing the map into 400 colonies. We 
then computed the average PC projection as well as the median longitude and latitude among the individuals 
belonging to each colony, if there are at least 10 individuals in a colony. Each color-filled circle with a 5 km radius 
represents one colony on the map. To maximize the visible differences, we sorted the colonies by their PC values 
and used the rank to determine the color of the colony. Compared to NIM PC-1, PC-1 shows a much stronger 
correlation with geographical location.

When NIM PCs were not being controlled for (with remaining regular covariates still used), we 

found three phenotypes with significant NIM heritability (Z-score (‍̂h2NIM = 0‍) > 3): overall health 
rating, waist-hip-ratio (WHR), and gamma glutamyltransferase (a measure of liver function). We also 
combined phenotypes into broader phenotypic categories and performed random effect meta-
analysis on the nine categories that contain at least four phenotypes (see ‘Methods’). We found that 

‍meta − ĥ2NIM‍ is significantly larger than zero (Z-score > 2.53 for one-tail p=0.05 level) for all but two 
categories (eye, lipid metabolism), meaning that NIMs heritability is generally nonzero (Appendix 3—
figure 2a and c). We then tested whether NIM heritability is larger or smaller compared to MH SNPs 
(‍∆̂h2 = 0‍). Fourteen phenotypes (standing height, sitting height, weight, body fat percentage, whole-
body fat-free mass, whole-body water mass, whole-body impedance, trunk fat-free mass, trunk 
predicted mass, basal metabolic rate, RBC count, apolipoprotein A, HDL cholesterol, triglycerides) 
remain significantly depleted (Z-score < –3), among which 10 are anthropometric phenotypes, and 
3 are related to lipid metabolism. This is in contrast to 17 phenotypes when NIM PCs are controlled 
for (body mass index, hip circumference, waist circumference, standing height, sitting height, 
weight, whole-body fat-free mass, whole-body water mass, whole-body impedance, trunk fat mass, 
trunk fat-free mass, trunk predicted mass, basal metabolic rate, RBC count, apolipoprotein A, HDL 
cholesterol, triglycerides).

https://doi.org/10.7554/eLife.80757
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Five phenotypic categories show significant NIM heritability depletion (anthropometry, blood 
biochemistry, blood pressure, lipid metabolism, lung), and four are not significantly different with 
meta analysis (Appendix 3—figure 2b and d). In contrast to the evidence for depletion in NIM 
heritability, we found no evidence for traits with elevated NIM heritability even when excluding NIM 
PCs (Appendix 3—figure 2d).

Appendix 3—figure 2. Neanderthal Informative Mutation (NIM) heritability in the 96 UK Biobank (UKBB) 
phenotypes without controlling for NIM principal components (PCs). This figure is plotted in the same way as 
Figure 3. Heritability estimates are largely similar, but fewer phenotypes are significant. Three phenotypes have 

significant positive NIM heritability (Z-score (‍ĥ2NIM = 0‍)>3): overall health rating, waist-hip-ratio, and gamma 
glutamyltransferase. Fourteen phenotypes (standing height, sitting height, weight, body fat percentage, whole-
body fat-free mass, whole-body water mass, trunk fat-free mass, trunk predicted mass, basal metabolic rate, RBC 
count, apolipoprotein A, HDL cholesterol, triglycerides) are significantly depleted for NIM heritability (Z-score < 
–3).

https://doi.org/10.7554/eLife.80757


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Wei, Robles et al. eLife 2023;12:e80757. DOI: https://doi.org/10.7554/eLife.80757 � 26 of 29

Appendix 4
Statistic to compare per-NIM heritability to per-SNP heritability at a set 
of background MH SNPs
In this note, we provide additional intuition behind our statistic to compare difference between the 
heritability at an NIM (per-NIM heritability) and the per-SNP heritability of a background set of MH SNPs:

	﻿‍ ∆̂h2 = ĥ2NIM − ĥ2MH ‍�

Let ‍σ
2
a,i = h2

a,i
Ma,i ‍ where ‍a ∈

{
NIM, MH

}
, i‍ denotes one of the annotations (MAF,LD), ‍h

2
a,i‍ denotes the 

heritability attributed to annotation ‍
(
a, i

)
‍ , and ‍Ma,i‍ denotes the number of SNPs in annotation ‍

(
a, i

)
‍ . 

Thus ‍σ
2
a,i‍ denotes the per-SNP heritability associated with annotation ‍

(
a, i

)
‍ .

The per-SNP heritability associated with NIMs is given by

	﻿‍ σ2
NIM =

∑
i
σ2

NIM,i MNIM,i
MNIM

=
∑

i
h2

NIM,i
MNIM

= 1
MNIM

∑
i h2

NIM,i‍�

where ‍MNIM‍ denotes the total number of NIMs.
To choose a background set of MH SNPs that match the NIMs in terms of their MAF and LD 

distribution, we would pick a given bin ‍i‍ with probability ‍
MNIM,i
MNIM ‍. The per-SNP heritability associated 

with this background set of MH SNPs is then given by

	﻿‍ σ2
MH =

∑
i
σ2

MH,i MNIM,i
MNIM

= 1
MNIM

∑
i h2

MH,i
MNIM,i
MMH,i ‍�

Thus, we are interested in testing the null hypothesis that the per-NIM heritability is equal to the 
per-SNP heritability of the background set of MH SNPs.

	﻿‍ σ2
NIM − σ2

MH = 0‍�

	﻿‍ ⇒ 1
MNIM

∑
i h2

NIM,i − 1
MNIM

∑
i h2

MH,i
MNIM,i
MMH,i

= 0‍�

	﻿‍ ⇒
∑

i h2
NIM,i −

∑
i

MNIM,i
MMH,i

h2
MH,i = 0‍�

Defining our parameter of interest ‍∆h2 =
∑

i h2
NIM,i −

∑
i

MNIM,i
MMH,i

h2
MH,i‍ , our null hypothesis is that ‍∆h2 =‍ 0.

We estimate the relative reduction in NIM heritability as

	﻿‍
δh2 = σ2

NIM−σ2
MH

σ2
MH ‍�

	﻿‍
=

∑
i h2

NIM,i−
∑

i
MNIM,i
MMH,i

h2
MH,i

∑
i

MNIM,i
MMH,i

h2
MH,i ‍�
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Appendix 5

Estimating NIM heritability with NIMs defined by Sprime
To assess the robustness of our results to the methodology used to identify NIMs, we performed 
additional analyses with NIMs annotated by Sprime. We used two sets of NIMs that had been 
identified by Sprime in the 1000 Genomes Project (1KG) and were analyzed by McArthur et al., 2021: 
the least stringent set of 900,902 putatively introgressed variants identified in 1KG subpopulations 
regardless of evidence of matching the Neanderthal allele and the most stringent set of 138,774 
putatively introgressed variants identified in the 1KG European subpopulations matching the Altai 
Neanderthal allele. We annotated the ancestry of the QC-ed SNPs in UKBB with the two sets of 
NIMs identified from Sprime and analyzed the heritability of the 96 UKB phenotypes at these NIMs 
(accounting for MAF and LD).

We observed that both sets of NIMs overlap with the set of NIMs that were identified using 
the CRF with 73,675 NIMs that are present in the most stringent set and 166,756 that are present 
in the least stringent set. We compared the MAF and LD scores at NIMs to MH SNPs at both 
sets of SNPs and found that they have similar MAF and LD distributions as the expanded NIMs 
(Appendix 5—figure 1 and Appendix 5—figure 2). We then tested whether NIM heritability at 
these NIMs is larger or smaller compared to MH SNPs (‍∆̂h2 = 0‍). Consistent with our findings based 
on NIMs identified using the CRF, we did not identify an enrichment in heritability across any of the 
traits (Appendix 5—figure 3 and Appendix 5—figure 4). Eighteen phenotypes were significantly 
depleted when analyzing the least stringent set while two were significantly depleted in the more 
stringent set which we hypothesize is due to the smaller number of SNPs in this set.

Appendix 5—figure 1. Distributions of minor allele frequency (MAF) and LD-score in Neanderthal Informative 
Mutations (NIMs) identified by Sprime in all 1KG populations and modern human (MH) SNPs. Empirical cumulative 
distribution functions of (a) MAF and (b) LD scores of NIMs identified by Sprime (in solid green line) and MH SNPs 
(in pink dashed line) estimated in the UK Biobank (UKBB). (c) Boxplots of MAFs of NIMs (on the left filled in green) 
and MH SNPs (on the right side filled in pink) while controlling for LD score (UKBB). (d) Boxplots of LD score (UKBB) 
of NIMs and MH SNPs while controlling for MAF. NIMs and MH SNPs are divided by the 20, 40, 60, 80, 100 (c) LD 
score (UKBB) percentile or MAF percentile (d) based on all QC-ed SNPs (7,774,235 imputed SNPs with MAF > 
0.001). The lower and upper edges of a box represent the first and third quartile (qu1 and qu3), respectively; the 
horizontal red line inside the box indicates median (md); the whiskers extend to the most extreme values inside 
inner fences, md ± 1.5 (qu3–qu1).

Appendix 5—figure 2. Distributions of minor allele frequency (MAF) and LD-score in Neanderthal Informative 
Mutations (NIMs) identified by Sprime in 1KG European populations and modern human (MH) SNPs. Empirical 
cumulative distribution functions of (a) MAF and (b) LD scores of NIMs identified by Sprime (in solid green line) 
and MH SNPs (in pink dashed line) estimated in the UK Biobank (UKBB). (c) Boxplots of MAFs of NIMs (on the left 
Appendix 5—figure 2 continued on next page

https://doi.org/10.7554/eLife.80757


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Wei, Robles et al. eLife 2023;12:e80757. DOI: https://doi.org/10.7554/eLife.80757 � 28 of 29

filled in green) and MH SNPs (on the right side filled in pink) while controlling for LD score (UKBB). (d) Boxplots 
of LD score (UKBB) of NIMs and MH SNPs while controlling for MAF. NIMs and MH SNPs are divided by the 20, 
40, 60, 80, 100 (c) LD score (UKBB) percentile or MAF percentile (d) based on all QC-ed SNPs (7,774,235 imputed 
SNPs with MAF > 0.001). The lower and upper edges of a box represent the first and third quartile (qu1 and qu3), 
respectively; the horizontal red line inside the box indicates median (md); the whiskers extend to the most extreme 
values inside inner fences, md ± 1.5 (qu3–qu1).

Appendix 5—figure 3. Neanderthal Informative Mutation (NIM) heritability in the 96 UK Biobank (UKBB) 
phenotypes for the least stringent set of NIMs identified using Sprime by McArthur et al., 2021. (a) Estimates of 

NIM heritability (‍ĥ2NIM ‍) and (c) the Z-score of ‍ĥ2NIM ‍ (testing the hypothesis that NIM heritability is positive) for 
each UKBB phenotype. Analogously, (b) estimates of ‍∆̂h2‍ and Z-score (d) of ‍∆̂h2‍ (testing the hypothesis that per-
NIM heritability is equal to per-SNP heritability at modern human [MH] SNPs after controlling for MAF and LD).

Appendix 5—figure 2 continued
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Appendix 5—figure 4. Neanderthal Informative Mutation (NIM) heritability in the 96 UK Biobank (UKBB) 
phenotypes for the most stringent set of NIMs identified using Sprime by McArthur et al., 2021 NIMs. (a) 

Estimates of NIM heritability (‍ĥ2NIM ‍) and (c) the Z-score of ‍ĥ2NIM ‍ (testing the hypothesis that NIM heritability 
is positive) for each UKBB phenotype. Analogously, (b) estimates of ‍∆̂h2‍ and Z-score (d) of ‍∆̂h2‍ (testing the 
hypothesis that per-NIM heritability is equal to per-SNP heritability at modern human [MH] SNPs after controlling 
for MAF and LD).

https://doi.org/10.7554/eLife.80757
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