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Abstract Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the 
pathogenesis of alopecia areata (AA), because we found them to be significantly increased around 
lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first 
co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured 
human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted 
premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important 
for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking 
or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous acti-
vated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/
beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence 
that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, 
suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the 
conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune 
disease.

Editor's evaluation
This manuscript provides fundamental data that implicate ILC1-like cells in alopeia areata. The data 
are solid in the use of cultured human hair follicles co-cultured with ILC-1-like cells and demonstra-
tion that alopecia phenotypes emerge. The authors also provide compelling evidence that injection 
of ILC1-like cells induces alopecia in a mouse model grafted with human hair follicle-containing skin. 
This work will be of interest to immunologists, skin biologists, and scientists interested in autoim-
mune disorders.

Introduction
Alopecia areata (AA) is both the most common inflammatory hair loss disorder and one of the most 
common human autoimmune diseases and exerts a major negative impact on quality of life (Gilhar 
et  al., 2012; Gilhar et  al., 2019a; Korta et  al., 2018; Pratt et  al., 2017). Despite major recent 
advances in AA therapy, a causal therapy does not yet exist, and disease relapse after therapy discon-
tinuation is the rule, not the exception in long-standing AA (Meah et al., 2020; Gilhar et al., 2019a). 
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Thus, the currently available, purely symptomatic AA therapy, including JAK inhibitors (Gilhar et al., 
2019b), remains unsatisfactory. Since the exact pathobiology of AA and its clinical variants remains 
to be fully characterized, the – likely diverse – disease-initiating factors that ultimately result in the 
characteristic AA hair loss pattern shared by all AA variants, require more comprehensive dissection 
for optimal, personalized therapeutic targeting (Bertolini et al., 2020; Paus et al., 2018).

Specifically, there is increasing awareness that a classical, autoantigen- and CD8 +T cell-dependent 
autoimmune variant of AA (AAA) and a possibly autoantigen-independent non-autoimmune variant 
(NAIAA) may have to be distinguished from each other (Gilhar et al., 2019a; Bertolini et al., 2020; 
Paus et al., 2018; Paus, 2020). This is in line with the long-standing, but often under-appreciated 
clinical recognition that AA shows a wide spectrum of phenotypes and sub-forms (Gilhar et al., 2012; 
Ikeda, 1965; Meah et al., 2021; King et al., 2022).

One reason why the currently available AA therapy is not entirely satisfactory may be related to 
as yet insufficient therapeutic targeting of innate immunocytes in the immunopathogenesis of human 
AA, namely in NAIAA, even though these are now recognized as major players in AA pathobiology 
(Ghraieb et al., 2018; Ito et al., 2008; Li et al., 2016; Uchida et al., 2020; Uchida et al., 2021).

Previously, we had demonstrated that AA lesions are associated with a massive increase in the 
number of perifollicular NKG2D+NK  cells (Gilhar et  al., 2013a), which recognize the activating 
NKG2D ligand MICA, a ‘danger’ signal that is greatly overexpressed by the epithelium of lesional AA 
HFs (Ito et al., 2008; Li et al., 2016; Connell and Jabbari, 2022). Subsequent work has confirmed 
the key role of NKG2D and its activating ligands in human and murine AA (Xing et al., 2014; Petuk-
hova et al., 2010). In fact, AA lesions can be induced experimentally in healthy human scalp skin 
in vivo by the transfer of interleukin 2 (IL-2)-activated NKG2D+ cells (Gilhar et al., 2013a), most of 
which had NK cell characteristics, with only a small minority of CD8 +T cells being present, that is the 
best-recognized pathogenic lymphocyte population in AA (Gilhar et al., 2012; Gilhar et al., 2013a; 
Pratt et al., 2017; Bertolini et al., 2020; de Jong et al., 2018). Moreover, pro-inflammatory mast 
cells (Bertolini et al., 2014) and (likely autoantigen-non-specific) γδ T-cells are also increased around/
in lesional human AA HFs (Uchida et al., 2020). Finally, these ‘intermediate immunity’ protagonists 
suffice to induce the hallmarks of AA ex vivo (Uchida et al., 2021).

Taken together, this questions whether pathogenic, autoreactive CD8 +T cells are the only drivers 
of disease, and that all cases of AA, represent a genuine, autoantigen-dependent autoimmune disease 
(Bertolini et al., 2020; Paus et al., 2018) in the strictly defined sense of this term (Rose and Bona, 
1993).

In our ongoing exploration of the role of innate/transitional immunity in the pathobiology of AA 
(Paus, 2020; Uchida et al., 2020; Uchida et al., 2021; Gilhar et al., 2019a; Bertolini et al., 2014), 
we, therefore, have asked in the current study whether innate lymphoid cells type 1 (ILC1 cells) (Zhou 
et al., 2020; Nabekura and Shibuya, 2021a; Colonna, 2018) can initiate human AA lesions.

We were interested in these immunocytes since human ILC1 cells secrete large amounts of interfer-
on-γ (IFN-γ) (Ebbo et al., 2017), the crucial AA pathogenesis-promoting cytokine (Gilhar et al., 2012; 
Gilhar et al., 2019a; Paus et al., 2018), and this notably independent of classical autoantigen-specific 
CD8 +T cell activities. These ‘unconventional’ T-cells are placed in strategic tissue locations (Collins 
et al., 2017; Jiao et al., 2016; Kim et al., 2021) and represent an important link between innate and 
adaptive immunity (Vivier et al., 2018). While ILC1s play an essential role in human inflammatory 
bowel disease (IBD) (Ebbo et al., 2017; Luo et al., 2022; Clottu et al., 2021), their role in the patho-
physiology of autoimmune hepatitis and rheumatoid arthritis requires further investigation (Ebbo 
et al., 2017; Fang et al., 2020; Yang et al., 2015), and their role in human autoimmune diseases 
overall remains insufficiently understood. We hypothesized that AA might offer a good model disease 
for interrogating this role.

ILC1 cells are classified as a component of type 1 immunity (Shannon et al., 2021), express NKG2D, 
recognize conserved phosphoantigens (Nabekura and Shibuya, 2021a), and contribute to immu-
nity against tumor cells, for example through NKG2D activation (Dadi et al., 2016). The activating 
receptor NKG2D and its ligands (MICA, ULBP3) play an important role in innate (NK, ILC1), ‘transla-
tional’ (γδ T-cells) and CD8 T-cell-mediated immune responses to tumors and in several autoimmune 
diseases (Frazao et al., 2019; Babic and Romagnani, 2018).

Given that ILC1 cells produce TH1-type cytokines (such as IFN-γ) and share several phenotypic 
markers with NK cells, namely NKG2D (Spits et al., 2016), it is challenging to distinguish NKs and 

https://doi.org/10.7554/eLife.80768
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Figure 1. Immunofluorescence microscopy analyses of ILC1lc and CD8+/NKG2D+ cells in alopecia areata 
(AA) scalp skin. (A) ILC1lc (EOMES+, CD49a+, and NKG2D+) around HF in normal scalp skin, intrafollicular and 
perifollicular ILC1lc infiltrates in lesional and in non-lesional AA scalp patient. (B) EOMES+, c-KIT-,CD49a+, 
and (C) NKp44+, CD103+, T-bet- ILC1lc. For each panel, yellow staining indicates double staining A-EOMES+, 
NKG2D+; B- EOMES+, CD49a+; C- NKp44+,CD103+ (D) Quantitative immunohistomorphometry (qIHM) shows an 
increased number of ILC1lc in AA patients as compared to normal volunteers and increased number of the cells in 
lesional versus non-lesional areas of the patients. There is a significant increased perifollicular than intrafollicular 
ILC1lc in the lesional and non lesional areas. (E) CD8+/NKG2D+ cells around HF in AA scalp patient and absence 
of these cells in normal scalp skin of normal scalp skin. (F) There is an increased number of CD8+/NKG2D+ cells in 
HFs of AA patients compared to normal scalp skin and a significant lower number of ILC1lc versus CD8+/NKG2D+ 
cells in AA scalp skin. N=6 biopsies /AA patients and six biopsies /healthy donors from six independent donors, 
three areas were evaluated per section, and three sections per biopsy. Following Shapiro-Wilk test, Student’s t-test: 
*p<0.05, **p<0.01 or Mann Whitney U test: #p<0.05. Scale bars, 50 µm. CTS- connective tissue sheath, DP - dermal 
papilla, HM - hair matrix, White arrow- c-KIT stained melanocyte.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Quantitative data for immunofluorescence microscopy analyses of ILC1lc and CD8+/NKG2D+ cells 
in AA scalp skin.

Figure supplement 1. Single channels immunofluorescence microscopy analyses of various markers in AA scalp 
skin and in AA-induced xenotransplants.

https://doi.org/10.7554/eLife.80768
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ILC1 cells (Tulic et al., 2019; Zhang et al., 2018; Seillet et al., 2021; Conlon et al., 2021). In fact, 
how to reliably discriminate between NK cells and ILC1s and unraveling the shared and distinct func-
tions of these cell populations remains an important open quest (Seillet et al., 2021; Lopes et al., 
2023; Cheng et al., 2023; Taggenbrock and van Gisbergen, 2023). For example, Eomeshi T-betlo 
liver-resident NK cells have been described in humans and mice (Park et al., 2019; Harmon et al., 
2016), while ILC1s from human tonsil and blood was also found to be Eomes+ (Cella et al., 2019). 
Therefore, the distinction between NK cells and ILC1s remains provisional – which is exactly why we 
have cautiously labeled the latter as ‘ILC1lc.’. The transcriptional and functional identity of ILC1 cells 
in humans is still a matter of debate, given that in contrast to other ILC subsets ILC1 cells seem to 
lack robust markers that enable their unequivocal identification and isolation (Bennstein et al., 2020).

However, although integrin α1 (CD49a) is upregulated on activated NK cells (Albini et al., 2021; 
Zheng et al., 2016), CD49a and integrin α2 (CD49b) are used as two mutually exclusive markers for 
distinguishing between NK and ILC1 cells, with NK cells being defined as CD49b+CD49a- and ILC1 
as CD49b-CD49a+ (Gao et al., 2017; Vienne et al., 2021; Flommersfeld et al., 2021; Krzywinska 
et al., 2022) In the current study, we have accepted and employed this consensus. Also, in contrast 
to ILC1 and ILC1lc, classical NK cells demonstrate high T-bet and Eomes expression (T-bethi /Eomeshi) 

Figure 2. Circulating ILC1lc expanded and characterized by FACS analysis. (A) PBMCs activated by IL-18, IL-33 
and IL-12 were sorted by FACS Aria and characterized by FACS analysis. ILC1lc markers were identified by the 
expression of CD127+, CD161+, c-KIT-, and CRTH2-, high levels of integrin α1 (CD49a) expression, combined 
with the absence of integrin α2 (CD49b) and transcription factors Eomeshi and T-betlo (B) unstimulated PBMCs 
(C) isotype controls. N=10 blood donors, 1.5 × 106 cells/blood donor, analysis was performed in triplicates from 
each of the blood donors. Following Shapiro-Wilk test, Student’s t-test, p<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Quantitative data for circulating ILC1lc expanded and characterized by FACS analysis.

Figure supplement 1. Circulating ILC1lc expanded and characterized by FACS analysis.

Figure supplement 2. Scheme demonstrating the isolation of ILC1lc, ILC2s, and ILC3s cells from PBMCs of 
healthy human volunteers.

https://doi.org/10.7554/eLife.80768
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(Verma et al., 2020). Therefore, for the purpose of this study, we define ILC1lc as CD49a+CD49b- 
(Verma et al., 2020) and as lin-/CD127+/CD117-/CRTH2-phenotype, which are typical to classical 
ILC1 cells (Bennstein et al., 2020; Krabbendam et al., 2021), and also as T-betlo/ Eomeshi (Bennstein 
et al., 2020) (in contrast to classical T-bethi /Eomeslo ILC1 cells Verma et al., 2020).

Specifically, we have asked whether (a) their number is increased in lesional AA skin, (b) they can 
damage human HFs ex vivo in a manner that mimics the AA phenotype, and finally (c) whether ILC1lc 
alone suffice to induce AA in previously healthy human scalp skin in vivo. To address these questions, 
we first analyzed the abundance, distribution, and phenotype of ILC1lc in human AA skin lesions 
compared to healthy human control skin. We then co-cultured autologous ILC1lc with freshly organ-
cultured scalp HFs from the same patient, that is under conditions where the epithelium of these 
HFs transiently undergo an acute stress response and overexpresses MICA (Uchida et al., 2021), to 
check whether these innate lymphocytes exert any HFs cytotoxicity and/or impact on the physiolog-
ical immune privilege (IP) of HFs (Bertolini et al., 2020; Paus et al., 2005; Ito et al., 2004; Peters 
et al., 2007; Bertolini et al., 2016). Finally, we injected autologous ILC1lc intradermally into healthy 
human scalp skin xenotransplants from the same human volunteers on SCID/beige mice to probe 
whether this suffices to induce classical AA hair loss lesions in vivo.

Taken together, our data show that ILC1lc is increased in AA lesions and suffice to induce an AA 
phenotype in healthy human HFs ex vivo and in vivo. This provides the first functional evidence of a 
key role of ILC1lc innate lymphocytes in a model human autoimmune disease (Colonna, 2018; Seillet 
et al., 2021; Conlon et al., 2021; Flommersfeld et al., 2021; Daussy et al., 2014; Park et al., 2019) 
- but also questions whether AA always a classical autoimmune disease is and underscore the role of 
innate immune cells in AA pathobiology.

Results
Peri- and intrafollicular infiltrates of ILC1lc are seen in both lesional and 
non-lesional AA skin
First, we investigated whether healthy and AA-affected human skin differs in their content and/or 
distribution of ILC1lc, using a comprehensive set of triple-immunofluorescence (IF) staining best 
suited to identify these immunocytes (Seillet et al., 2021; Bennstein et al., 2020; Gao et al., 2017). 
This revealed the presence of only extremely few ILC1lc in healthy control skin with all three staining 
settings employed (Eomes+, CD49a+, NKG2D+ [Figure 1A and Figure 1—figure supplement 1A], 
Eomes+, c-KIT-, CD49a+ [Figure 1B and Figure 1—figure supplement 1A], or NKp44+, CD103+, 
T-bet- cells [Figure 1C and D and Figure 1—figure supplement 1A; Kim, 2015; Fuchs et al., 2013; 
Salimi and Ogg, 2014]). These cells appeared to be preferentially scattered along the papillary 
dermis of healthy scalp skin biopsies and around the HFs (Figure 1C). This is reminiscent of the few 
Vδ1+T cells detectable in healthy human skin that also have a preferential perifollicular location and 
may ‘police’ the skin for molecular indications of tissue stress, namely of HFs (Uchida et al., 2020; 
Uchida et al., 2021).

Instead, intra and peri-follicular infiltrates of ILC1lc were frequently present in lesional AA HFs 
(Figure 1A, B, C and D and Figure 1—figure supplement 1A), typically in conjunction with a domi-
nant infiltrate of CD8+/NKG2D+ cells around the hair bulb (p<0.05) (Figure 1E and F). Importantly, 
the number of ILC1lc was already significantly increased in/around non-lesional AA HFs compared to 
healthy scalp skin (p<0.01) (Figure 1A, B, C and D and Figure 1—figure supplement 1A). This may 
indicate that ILC1lc may actually have arrived around the HFs before the CD8 cells and may have 
contributed to attracting the CD8 cells into the perifollicular space.

This strongly suggested that ILC1lc are not mere bystanders attracted only secondarily to the HFs 
by CD8 T-cells, similar to, but more pronounced than we have recently observed regarding perifollic-
ular Vδ1+T cells in non-lesional AA skin (Uchida et al., 2020). This invited the hypothesis that ILC1lc 
is actively involved in transforming healthy human scalp HFs into lesional AA HFs.

T-betlo/Eomeshi ILC1lc can be expanded from human peripheral blood 
mononuclear cells (PBMCs) in vitro
To functionally probe this hypothesis, we isolated, purified, and characterized human peripheral blood-
derived ILC1lc as the most suitable cell source for the planned HF-immunocyte co-culture studies. The 

https://doi.org/10.7554/eLife.80768
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scarcity of ILC1lc in healthy human skin, compared to their relative abundance in peripheral blood 
(Colonna, 2018; Artis and Spits, 2015) necessitated to isolate autologous ILC1lc from the latter 
source rather than from skin (Teunissen et al., 2014). To facilitate ILC1lc isolation, PBMCs of healthy 
volunteers were first cultured with high-dose IL-2 (100 U/mL) in the presence of IL-18 (1 µg/1 ml), 
IL-33 (1.5 µg/5 ml), and IL-12 (1.5 µg/5 ml), since these cytokines induce ILC1lc expansion (Salimi and 
Ogg, 2014; Silver et al., 2016; Orimo et al., 2020; Ohne et al., 2016). When ILC1lc were sorted 
by FACS Aria and characterized by FACS analysis on day seven of culture, low T-bet, and high Eomes 
expression were observed (Figure 2A), in contrast to classical T-bethi and Eomeslo ILC1 cells (Jiao 
et al., 2016; Vivier et al., 2018; Zhang et al., 2018). In addition, the ILC1lc expressed and shared the 
following markers with classical ILC1 cells: LIN- CD3/CD1a/D14/CD19/CD34/CD123/CD11c /BDCH2/
FcεR1α/TCRαβ/TCRγδ/CD56, CD127+, CD161+, c-KIT-, and CRTH2- (Zook and Kee, 2016; Bernink 
et al., 2017; Simoni and Newell, 2017; Figure 2A).

This immune phenotype suggests that the immune cells used in our study are best classified as 
ILC1lc (Nabekura and Shibuya, 2021a), and documents that all experiments reported below were 

Figure 3. Cytotoxic effects of CD8+/NKG2D+and ILC1lc on normal human scalp HF ex vivo. These cell 
populations were placed separately into wells with (+Hair) dissected HFs and without (-Hair). Cytotoxic effects of 
these cell populations on normal human scalp HF ex vivo were studied by measuring the spontaneous release of 
lactate dehydrogenase (LDH) from the microdissected HFs. Increased cytotoxicity of ILC1lc co-cultured with HFs 
compared to CD8+/NKG2D+, as well as to ILC2s and ILC3s, and PBMCs/PHA cells. N=20–24 HFs/group derived 
from three independent donors analyzed in three independent HF organ culture experiments. Following Shapiro-
Wilk test and Dunn’s test §p<0.05, §§p<0.01, §§§p<0.001.

The online version of this article includes the following source data for figure 3:

Source data 1. Quantitative data for cytotoxic effects of CD8+/NKG2D+ and ILC1lc on normal human scalp HF ex 
vivo.

https://doi.org/10.7554/eLife.80768
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indeed performed with autologous ILC1lc rather than with NK cell subpopulations. Indeed, the FACS 
analysis (Figure  2—figure supplement 1A,B and C) revealed that ILC1lc demonstrates the ILC1 
phenotype (CD200R, CD127, CXCR6) (Lopes et  al., 2023; Curio and Belz, 2022) but not of the 
classical NK cell lineage (IRF8, Perforin, NKp80, CD16) (Sagebiel et al., 2019; Brownlie et al., 2021; 
Krämer et al., 2023), thus further serving as an evidence that EOMES +ILCs represent distinct ILC1 
lineage-defining markers. In contrast to NK cells, ILC1lc also expressed the expected high levels of 
integrin α1 (CD49a), combined with the absence of integrin α2 (CD49b) (Jiao et al., 2016; Figure 2A). 
All these characteristic markers of ILClc were absent in the control unstimulated PBMCs (Figure 2B 
and C).

Figure 4. Hair follicles (HFs) dystrophy, melanin clumping, and apoptosis in normal human scalp HF ex vivo 
co-cultured with ILC1lc and CD8+/NKG2D+ cells. (A–C) H&E staining revealed undifferentiated and prominent 
matrix cells, condensed dermal papilla, and the appearance of apoptotic cells, N=15–19 HFs/group from three 
independent donors. (D–G) Masson-Fontana histochemistry revealed melanin clumping and ectopic location 
of melanin granules only in HFs co-cultured with CD8+/NKG2D+and ILC1lc, but not in HFs cultured with 
PBMCs/PHA. N=7–11, HFs/group from three independent donors. Following Shapiro-Wilk test,Student’s t-test: 
*p<0.05, **p<0.01, ***p<0.001. (H–K) HFs co-cultured with ILC1lc or CD8+/NKG2D+ cells showed a significantly 
decreased proliferation (pink, arrowhead) and increased apoptosis (green, wide arrows). N=6 HFs/group from 
two independent donors, three areas were evaluated per section. Following Shapiro-Wilk test, Student’s t-test: 
*p<0.05, **p<0.01, ***p<0.001 in the anagen hair bulb compared to HFs cultured with PBMCs/PHA. Scale bars, 
50 µm. DP - dermal papilla, HM - hair matrix.

The online version of this article includes the following source data for figure 4:

Source data 1. Quantitative data for HFs dystrophy, melanin clumping and apoptosis in normal human scalp HF 
ex vivo co-cultured with ILC1lc and CD8+/NKG2D+ cells.

https://doi.org/10.7554/eLife.80768
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Figure 5. Characteristic immunopathology features of alopecia areata (AA) hair follicles (HFs). (A) MICA, (B) HLA-
A,B,C, (C) β2 MG, (D) HLA-DR, and (E) CD1d, expression by HFs epithelium, which had been co-cultured with 
either ILC1lc or CD8+/NKG2D+ cells but not in the control HFs, which had been co-cultured with either ILC3s, 
PBMCs/PHA, ILC1lc /NKG2D neutralization or in the untreated HFs. (F) quantitation. (G) The immune inhibitory HF 
immune privilege guardians, α-MSH and (H) TGF-β1 almost disappeared in HFs/ ILC1lc and HFs/NKG2D but were 
prominently present in ILC1lc /NKG2D neutralization and control HFs, N=9–12 HFs/group from three independent 
donors, three areas were evaluated per section. Following Shapiro-Wilk test,Student’s t-test, *p<0.05. Scale bar, 
100 µm. ORS - outer root sheet.

The online version of this article includes the following source data for figure 5:

Source data 1. Quantitative data for characteristic immunopathology features of AA HFs.

https://doi.org/10.7554/eLife.80768
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This immune phenotype suggests that the immune cells used in our study are best classified as 
ILC1lc (Nabekura and Shibuya, 2021a), and documents that all experiments reported below were 
indeed performed with autologous ILC1lc rather than with NK cell subpopulations. Note that we had 
previously shown that NKG2D+/CD56 +NK cells suffice to induce AA lesions in human skin in vivo 
(Gilhar et al., 2013a; Laufer Britva et al., 2020) while iNKT cells are AA-protective in the humanized 
AA mouse model (Ghraieb et al., 2018). Subsequently, these ILC1lc were either used for HF co-cul-
ture assays or injected into healthy human scalp skin xenotransplants on SCID/beige mice (Gilhar 
et al., 2013a; Ito et al., 2005b). As controls, we also isolated ILC2 and ILC3 cells, which failed to 
induce AA phenotype in a sharp contrast to the ILC1lc (see Materials and methods).

In order to exclude the possibility that contamination from ILC3s during sorting the ILC1lc and 
thus contributing to the observed results, we generated a new set of FACS data on sorted ILC1lc. 
Given that ILC1 cells are RORγt negative while ILC3 cells are RORγt positive (Peng et al., 2022; Fian-
cette et al., 2021), the data clearly demonstrate that the contamination hypothesis is highly unlikely 
(Figure 2—figure supplement 1D).

ILC1lc induces HF cytotoxicity ex vivo
Next, we functionally probed the interaction of ILC1lc with HFs that were investigated here as a model 
human (mini-) organ in which the interactions of a healthy human tissue system with defined, autolo-
gous immunocyte populations can be interrogated ex vivo in the absence of any confounding systemic 
immune or neural inputs (Uchida et al., 2021). For this, microdissected, organ-cultured human scalp 

Figure 6. Transition of anagen to catagen hair follicles (HFs) following culture with ILC1lc or CD8+/NKG2D+ cells 
in human scalp HF ex vivo. (A) These immune cells significantly accelerated the transformation of anagen HFs into 
catagen HFs ex vivo compared to ILC2, ILC3, PBMCs/PHA, and neutralizing anti- IFN-γ, anti-NKG2D antibodies. 
N=28–34 HFs/group taken from six independent donors, Student’s t-test: *p<0.05, **p<0.01, ***p<0.001. (B) ELISA 
analysis revealed increased IFN-γproduction by ILC1lc /HFs compared to production by CD8+/NKG2D+ cells, 
ILC2s, ILC3s, and PBMCs/PHA. N=6 healthy donors, 6 × 106 cells from each donor. Following Shapiro-Wilk test, 
Student’s t-test: *p<0.05, **p<0.01, ***p<0.001. (C) FACS analysis revealed a significant increased intracellular IFN-
γexpression in ILC1lc co-cultured with HFs compared to the effector CD8+/NKG2D+and to ILC2s and ILC3s, N=6 
blood donors, 1.5 × 106 cells/blood donor. Student’s t-test, p<0.05.

The online version of this article includes the following source data for figure 6:

Source data 1. Quantitative data for transition of anagen to catagen HFs following culture with ILC1lc or CD8+/
NKG2D+ cells in human scalp HF ex vivo.

https://doi.org/10.7554/eLife.80768
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Figure 7. Development of alopecia areata (AA) in the humanized mouse model treated with ILC1lc. (A) Significant 
hair loss is observed following the injection of ILC1lc and enriched CD8/NKG2D cells, while in the PBMCs/PHA 
treated group, hair number remains almost constant. N=7–9 xenotransplants/group from three independent 
donors, Following Shapiro-Wilk test, Mann-Whitney U test: #p<0.05, ##p<0.01. (B) HF dystrophy and perifollicular 
lymphocytic infiltrates around anagen hair follicles (HFs) (H&E staining) combined with strong expression of 
(C) HLA-A,B,C, β2 MG, HLA-DR, and downregulation of α-MSH and TGF-β1 in the ILC1lc and in (D) enriched 
CD8/NKG2D cells versus xenotransplants treated with (E) PBMCs/PHA (IHC staining) (F) quantitative data. 
N=5–9 xenotransplats/group from three independent donors. 4–5 defined reference areas were evaluated per 
section, and three sections per xenotransplants. Following Shapiro-Wilk test, Student’s t-test: *p<0.05, **p<0.01, 
***p<0.001. Scale bar, 50 µm. DP - dermal papilla, HM - hair matrix.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Quantitative data for development of AA in the humanized mouse model treated with ILC1lc.

Figure supplement 1. Anti-CD3 antibodies prevent the development of alopecia areata (AA) in scalp skin 
xenotransplants treated with enriched CD8/NKG2D but not with ILC1lc.

Figure supplement 1—source data 1. Quantitative data for anti-CD3 antibodies prevent the development of AA 
in scalp skin xenotransplants treated with enriched CD8/NKG2D but not with ILC1lc.

Figure 7 continued on next page

https://doi.org/10.7554/eLife.80768
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HFs (Langan et al., 2015) were co-cultured for six days with autologous, peripheral blood-derived, 
purified, IL-12/IL-18/IL-33-prestimulated ILC1lc, or with autologous human CD8  +NKG2D+ cells 
(=positive control), ILC2, ILC3 cells, or PBMCs non-specifically activated with PHA (PBMCs/PHA) 
(=negative controls).

Importantly, only scalp HFs in the anagen VI stage of the hair cycle were used (identified as 
described) (Kloepper et al., 2010) that had been freshly placed into HF organ culture for 24 hr, since 
these HFs are maximally ‘stressed,’ in contrast to non-cultured HFs, that is immediately after isolation, 
or that had already undergone several days of adjusting to the harsh conditions of serum-free organ 
culture (Uchida et al., 2021; Langan et al., 2015). These ‘stressed’ day 1 HFs temporarily up-regulate 
MHC class Ia and ß2-microglobulin while the expression of IP guardians, that is αMSH and TGFβ2 
remain unchanged (Uchida et al., 2021), indicating a transiently weakened, but partially maintained 
HF immune privilege (Bertolini et al., 2020; Ito et al., 2004). The expression of molecules associated 
with tissue stress, that is the intrafollicular produced neurohormone, CRH (Ito et al., 2005a), and the 
NKG2D ligand MICA/B is also higher in day 1 organ-cultured HFs compared to freshly microdissected 
HFs or after day 3 of organ culture. Day 1 HFs also show signs of mild HF dystrophy (as evidenced 
by increased lactate dehydrogenase [LDH] release into the medium), and express chemokines recog-
nized for their relevance in AA pathobiology, that is CXCL10 and CXCL12 (Uchida et al., 2021; Ito 
et al., 2020). Thus, day 1 HFs are ideally suited for interrogating human immunocyte interactions with 
a transiently ‘stressed,’ but otherwise healthy human (mini-) organ that overexpresses the NKG2D-
activating ‘danger’ signal, MICA/B, under physiologically relevant ex vivo conditions (Uchida et al., 
2021; Langan et al., 2015).

First, we studied the cytotoxic effects of ILC1lc on healthy human scalp HF ex vivo by measuring 
the HF release of LDH into the culture medium. This not only showed significantly higher LDH release 
induced by ILC1lc than by co-culture with all three negative control cell populations (ILC2s, ILC3s, or 
PBMCs/PHA) but also even higher HF cytotoxicity levels than those induced by CD8+/NKG2D+ cells 
(p<0.01), namely after three days of co-culture (Figure 3). These HF cytotoxicity results were fully 
corroborated by characteristic morphological signs of HF dystrophy following co-culture with ILC1lc; 
while CD8+/NKG2D+ cells induced similar dystrophy phenomena, these were not seen after co-cul-
ture with PBMC/PHA (Figure 4A, B and C). The induction of significant HF dystrophy by ILC1lc ex vivo 
was further documented by the presence of pathological melanin clumping and ectopically located 
intrafollicular melanin granules (Bodó et al., 2007; Hendrix et al., 2005; Figure 4D, E, F and G) and 
by decreased proliferation and increased apoptosis of hair matrix keratinocytes (Figure 4H, I, J and 
K). Both were also seen in the CD8+/NKG2D+group (positive control), but not in HFs co-cultured with 
PBMCs/PHA (negative control) (p<0.001, p<0.01, respectively). Thus, autologous ILC1lc alone suffice 
to induce substantial HF cytotoxicity ex vivo if co-cultured with transiently ‘stressed,’ but otherwise 
healthy human scalp HFs.

ILC1lc induces HF immune privilege collapse ex vivo via NKG2D 
stimulation
Given that AA cannot occur without the prior collapse of HF immune privilege [HF-IP] (Gilhar et al., 
2012; Bertolini et al., 2020), we also investigated the impact of ILC1lc on key HF-IP markers. Indeed, 
the co-culture of HFs with ILC1lc triggered IP collapse, as evidenced by ectopic and overexpressed 
HLA-A,B,C, ß2-microglobulin (ß2 MG), and HLA-DR, along with overexpression of the ‘danger’/tissue 
distress signals, MICA and CD1d, which interact with and stimulate NKG2D (Uchida et al., 2021; Fan 

Figure supplement 2. Dermal infiltrates of the various treated xenotransplants.

Figure supplement 2—source data 1. Quantitative data for dermal infiltrates of the various treated 
xenotransplants.

Figure supplement 3. Development of alopecia areata (AA) in normal human scalp skin xenotransplants treated 
with (A) ILC1lc.

Figure supplement 3—source data 1. Quantitative data for development of AA in normal human scalp skin 
xenotransplants treated with ILC1lc, enriched CD8/NKG2D and PBMCs/PHA.

Figure 7 continued

https://doi.org/10.7554/eLife.80768
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et al., 2022) as compared to HFs interacting with PBMC/PHA or with ILC3 cells (Figure 5A, B, C, D, 
E and F).

Notably, quantitative immunohistomorphoemtry (qIHM) also showed that protein expression of the 
immunoinhibitory HF-IP guardians, TGF-β1 and α-MSH (Gilhar et al., 2012; Bertolini et al., 2020; 
Paus et al., 2018; Ito et al., 2004), almost disappeared in the epithelium of HFs co-cultured with 
autologous ILC1lc or CD8+/NKG2D+ cells (=positive control) (Figure 5G, H and I), while these critical 

Figure 8. Immunofluorescence microscopy analysis of ILC1lc and enriched CD8/NKG2D cells in AA-induced 
xenotransplant. (A) EOMES+, CD49a+, and NKG2D+ around hair follicle (HF) in normal scalp skin, intrafollicular 
and perifollicular ILC1lc infiltrates in AA-induced xenotransplants (B) EOMES+,c-KIT-,CD49a+, and (C) NKp44+, 
CD103+, T-bet- ILC1lc. Absence of these cells in normal scalp xenotransplant. For each panel, yellow staining 
indicates double staining A-EOMES+, NKG2D+; B- EOMES+,CD49a+; C- NKp44+, CD103+. (D) Quantitation. 
(E) CD8+/NKG2D+ cells around HF in AA-induced xenotransplant versus absence of the cells in normal 
xenotransplant. (F) The quantitative data demonstrate the significant increased CD8+/NKG2D+ cells in HFs of 
alopecia areata (AA) humanized mice compared to normal scalp xenotransplants. N=6 xenotransplants/ group 
from three independent donors, three areas were evaluated per section. Following Shapiro-Wilk test, Student’s t-
test: *p<0.05, **p<0.01, ***p<0.001. Mann Whitney U test: #p<0.05, ##p<0.01.Scale bar, 50 µm. DP - dermal papilla, 
HM - hair matrix, White arrow- c-KIT stained melanocyte.

The online version of this article includes the following source data for figure 8:

Source data 1. Quantitative data for immunofluorescence microscopy analysis of ILC1lc and enriched CD8/
NKG2D cells in AA-induced xenotransplant.

https://doi.org/10.7554/eLife.80768
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HF-IP guardians were still prominently expressed in negative control HFs (Figure 5G, H and I). Impor-
tantly, adding anti-NKG2D blocking antibodies prevented HFs IP collapse and preserved the IP in the 
ILC1lc /NKG2D treated group (Figure 5G, H and I).

This demonstrates that autologous ILC1lc induces human HF-IP collapse ex vivo – incidentally, the 
first time that the induction of IP collapse by ILC1lc has been documented in an intact human tissue/
organ.

ILC1lc are activated by ‘stressed’ HFs and induce premature catagen 
development via IFN-γ secretion
Next, we examined how autologous ILC1lc impacted on human HF cycling, given that premature 
induction of apoptosis-driven HF regression (catagen) is one of the hallmarks of AA (Gilhar et al., 
2012; Bertolini et al., 2020; Messenger et al., 1986). This showed that ILC1lc significantly acceler-
ated the transformation of anagen into catagen HFs ex vivo (Paus et al., 2005) compared to all three 
negative controls (ILC2, ILC3, or PBMCs/PHA) – thus eliciting the third hallmark of the AA phenotype 
besides HF-IP collapse and dystrophy ex vivo (Gilhar et al., 2012; Bertolini et al., 2020; Messenger 
et al., 1986; Figure 6A), just as we had previously shown for Vδ1+ γδT cells (Uchida et al., 2021). 
As expected (Gilhar et al., 2012; Pratt et al., 2017; Bertolini et al., 2020; de Jong et al., 2018; 
Xing et al., 2014), premature catagen induction was also seen with CD8+/NKG2D+ cells (=positive 
control), but not with any of the negative control cell populations (Figure 6A).

ILC1lc prominently secrete IFN-γ (Seillet et al., 2021), that is the cytokine that we had shown to 
induce HF damage (dystrophy), premature catagen, and HF-IP collapse most potently (Ito et  al., 
2004; Ito et  al., 2005a). Therefore, we next investigated IFN-γrelease in these co-culture experi-
ments. ELISA analysis revealed that ILC1lc produced and secreted higher amounts of IFN-γ into the 
medium than all other cells co-cultured with ‘stressed’ HFs, including CD8+/NKG2D+ cells (p<0.05) 
(Figure  6B). This suggests that ILC1lc possesses even stronger HF cytotoxicity-, IP collapse- and 
dystrophy-inducing properties than CD8 +T cells, the classical effector cells of AAA (Gilhar et al., 
2012; Pratt et al., 2017; Bertolini et al., 2020).

FACS analysis showed ILC1lc activation when these were co-cultured with ‘stressed,’ autologous 
HFs (600 cells/HF), as evidenced by significantly increased intracellular IFN-γ expression by ILC1lc 
(Bernink et al., 2017) (93 ± 11%) compared to the positive control (CD8+/NKG2D+, 75 ± 9%, p<0.05) 
(Figure 6C) and the negative controls ILC2s, 11 ± 1%, p<0.05; ILC3s, 28 ± 5%, p<0.05; PBMCs/PHA, 
2 ± 1.3%, p<0.001 (Figure 6C).

When neutralizing anti- IFN-γ antibodies were administered into the medium of the organ culture, 
premature catagen development of HFs co-cultured with ILC1lc was significantly reduced (Figure 6A), 
strongly suggesting that premature catagen induction by ILC1lc depends on their IFN-γsecretion 
(Seillet et al., 2021). Importantly, reduced catagen induction was also seen after adding NKG2D-
blocking antibodies to the medium (Figure 6A). This suggests that ILC1lc activation and IFN-γse-
cretion are induced by NKG2D-stimulating danger signals overexpressed by stressed HF epithelium, 
such as MICA. These findings further support the recognized central role of both IFN-γand NKG2D 
in the initial stages of AA pathobiology (Gilhar et al., 2012; Paus et al., 2018; Ito et al., 2008; de 
Jong et al., 2018).

ILC1lc suffice to induce AA lesions in healthy human scalp skin in vivo
Taken together, these clinically relevant ex vivo experiments documented that ILC1lc can indeed 
induce the hallmarks of AA in healthy human scalp HFs ex vivo: HF-IP collapse, HF dystrophy, and 
premature catagen development (Gilhar et al., 2012; Paus et al., 2018). Therefore, we finally probed 
the hypothesis that ILC1lc may also suffice to induce human AA-like hair loss lesions in vivo using our 
established humanized AA mouse model (Gilhar et al., 2013a; Ghraieb et al., 2018; Gilhar et al., 
2016). We had previously demonstrated that a macroscopic and histological phenocopy of human AA 
lesions can be rapidly induced experimentally in healthy human scalp skin xenotransplants on SCID/
beige mice in vivo by the intradermal injection of enriched CD8/NKG2D are defined as PBMCs that 
have been cultured for 14 days in high-dose IL-2 (100 U/ml) according to our previously published 
characterization (Ghraieb et al., 2018; Gilhar et al., 2013a; Gilhar et al., 2013b; Gilhar et al., 2016; 
Bertolini et al., 2014). These cells are derived from healthy donors, that is in the absence of a specific 
genetic or autoimmune constellation.

https://doi.org/10.7554/eLife.80768
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For this, 10 SCID/beige mice were each xenotransplanted with three full-thickness human scalp 
skin grafts (3 mm) obtained from parietal skin regions of four healthy donors without a prior history of 
AA (males aged 37±6). Eighty-nine days after transplantation, that is when hair regrowth had occurred 
in all xenotransplants, the mice were randomly divided into three groups, and each mouse from each 
group received one intradermal injection of either autologous IL-12/IL-18/IL-33-preactivated ILC1lc 
(test), PBMCs co-cultured with a nonspecific mitogen (PHA; negative control), or enriched CD8/NKG2D 
cells (positive control). When measured 45 days later, significant AA-like hair loss was observed macro-
scopically in the xenotransplants injected with ILC1lc compared to the negative control, at about the 
same level as positive control xenotransplants (Figure 7A).

To exclude that the above phenomena were not caused by residual human T-cells present in the 
transplants, an additional eight xenotransplanted mice were also injected intradermally once daily 
for 45 days with anti-CD3 antibodies (OKT3), in addition to injecting either ILC1lc or enriched CD8/
NKG2D cells as described above (four mice each). This showed that anti-CD3 failed to abrogate hair 
loss induction in the mice treated with ILC1lc alone, but suppressed hair loss in the group treated with 
enriched CD8/NKG2D cells, as expected (Figure 7—figure supplement 1A). These findings invali-
date the residual T-cell hypothesis.

ILC1lc induce the characteristic immunopathology of human AA lesions 
in vivo
Immunohistology revealed that ILC1lc, just like autologous enriched CD8/NKG2D cells, induced a 
phenocopy of AA immunopathology in previously healthy human scalp skin in vivo, in sharp contrast 
to the negative control PBMCs/PHA group: HFs dystrophy, miniaturization and perifollicular lympho-
cytic infiltrate around anagen HFs (Figure  7B) as well as induction of HF-IP collapse (significantly 
increased expression of HLA-A,B,C, β2 MG, and HLA-DR of the HF epithelium, along with downregu-
lation of the immune privilege guardians, α-MSH and TGF-β1) (Figure 7C and D). In contrast, negative 
control xenotransplants injected with PBMCs/PHA showed normal anagen HFs and a significantly 

Figure 9. Pathobiology scenario: How ILC1lc can induce alopecia areata (AA). (A) ILC1lc are rarely detected 
around the bulb of healthy human scalp hair follicles (HFs), which exhibit relative immune privilege and low or 
absent expression of MICA and MHC class I, and CD1d. (B) Various tissue stressors (in the current study: hair follicle 
microdissection and organ culture), can transiently weaken the hair follicle’s physiological immune privilege by 
upregulating the expression of MHC class I, MICA (a key activating NKG2D ligand), and of CD1d, along with the 
secretion of chemoattractants such as CXCL12. (C) This recruits and activates ILC1lc, which migrates towards the 
‘stressed’ hair follicle and secretes IFN-γ, thus ultimately inducing HF-IP collapse. (D) Either alone or in conjunction 
with other recognized AA-inducing immune cells (i.e. CD8 +T cells which recognize hair follicle autoantigens 
now exposed by ectopically expressed MHC class I; NK cells, and γδTCs), ILC1lc can then induce the full AA 
phenotype, characterized by HF-IP collapse, premature hair follicle regression (catagen), and hair follicle dystrophy.

https://doi.org/10.7554/eLife.80768
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lower expression of HLA-A,B,C, β2 MG, and HLA-DR, paired with the expected normal expression 
levels α-MSH and TGF-β1 protein (Figure 7E) as assessed by qIHM (Figure 7F).

In addition, histology and quantitative immunohistomorphometry confirmed the preventive effect 
of anti-CD3 antibodies in inducing an AA-like phenotype in xenotransplants treated with enriched 
CD8/NKG2D cells, but not in those treated with ILC1lc (Figure 7—figure supplement 1B,C,D,E,F 
and G and Figure 7—figure supplement 2).

In line with the key role of IFN-γ in the development of AA (Gilhar et al., 2012; Gilhar et al., 
2019a), IFN-γ+ cells were found to be increased around the bulb of xenotransplants injected with 
ILC1lc, even in the presence of the anti-CD3 antibody (OKT3), or with enriched CD8/NKG2D cells, 
but not with PHA-treated PBMCs or enriched CD8/NKG2D cells in the presence of OKT3 (Figure 7—
figure supplement 1A,B,C,D,E,F and G and Figure 7—figure supplement 2A,B,C and D).

ILC1lc in the experimentally induced AA lesions
Given that both, enriched CD8/NKG2D cells, and ILC1lc produce high amounts of IFN-γ, we then 
investigated the subtype of these cells around the bulb of control and treated xenotransplants, along 
with the frequencies of CD4 +T cells. In enriched CD8/NKG2D cells injected xenotransplants, the 
number of CD8 + cells and CD4 +T cells was significantly increased as compared to ILC1lc (p<0.001, 
p<0.001) (Figure 7—figure supplement 3A,B,C and D) while dense infiltration of ILC1lc was found 
only in xenotransplants treated with the purified ILC1lc (Figure 7—figure supplement 3E and F).

Interestingly, qIHM also showed that the peri- and intrafollicular distribution and mean number of 
ILC1lc in human skin xenotransplants injected with enriched CD8/NKG2D cells imitated that of ILC1lc 
seen in spontaneously developed hair loss lesions of AA patients, further supporting the role of ILC1lc 
in human AA (Figure 1A, B, C and D, Figure 8A, B, C and D and Figure 1—figure supplement 1B). 
Yet, CD8+/NKG2D+lymphocytes significantly outnumbered ILC1lc in the experimentally induced AA 
lesions (p<0.01) (Figure 8E and F), just as they do in human AA patients (Figure 1E and F).

Discussion
The current study is the first to phenotypically and functionally explore the role of Eomes +ILC1 lc 
in human AA in vivo and ex vivo. Eomes +ILCs may represent the NK cell lineage and therefore the 
ILC1 phenotype in our study, more closely resembles a tissue-resident or activated NK cell rather than 
an ILC1, based on recent single-cell RNAseq studies in mice and human tissues (Lopes et al., 2023). 
However, Eomes expression by ILCs was observed differently depending on the tissue localization 
(McFarland et al., 2021). For example, a recent single-cell RNA-sequencing study reveals that ILC1lc 
both in blood and tonsil are Eomes positive (Mazzurana et al., 2021). Other study demonstrated that 
intraepithelial ILC1s from human tonsils were found to be heterogeneous, encompassing Eomes− 
and Eomes +subsets (Cella et al., 2019). It is indeed very important to obtain greater clarity on how 
ILC1lc and NKs differ from each other, namely in the context of human AA. Our new data demon-
strate that ILC1lc are positive for CD49a, CD200R, CD127, CXCR6 (Lopes et al., 2023) but negative 
for IRF8, Perforin, NKp80, CD16 (Sagebiel et al., 2019; Figure 2—figure supplement 1A,B and C), 
strongly support that ILC1lc and NK cells have distinct lineages. This claim remains limited by the set 
of biomarkers that is currently available (and can reasonably be expected to be applied) to ‘defini-
tively’ distinguish between ILC1 and NK lineages, namely in human skin, and that our data may even-
tually have to be re-evaluated in the context of research progress in this fast-moving field. It would be 
desirable to further complement these results in future studies with unbiased scRNAseq data, which 
can then be compared with published human ILC1 and NK cell gene signatures so as to gain deeper 
insights into the – still controversial and unclear - transcriptional similarities and differences between 
ILC1lc and NK cells and their lineage relationship to each other.

Here, we show that ILC1lc are increased in AA lesions provide the first functional evidence that 
expanded circulating autologous human ILC1lc suffice to induce all hallmarks of the AA hair loss 
phenotype (premature catagen, HF dystrophy, and HF-IP collapse) in previously healthy, organ-
cultured human scalp HFs ex vivo and in human scalp skin xenotransplants in vivo, where they also 
cause the characteristic clinical hair loss phenomenon. This also provides the first unequivocal func-
tional evidence of a key role of ILC1lc innate lymphocytes in a model human autoimmune disease, and 
thus identifies these lymphocytes as important novel targets in future AA therapy.

https://doi.org/10.7554/eLife.80768
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Mechanistically, we demonstrate that IFN-γsecretion and NKG2D signaling are both required for 
this AA-pattern HF damage to occur (Figure 9). That ILC1lc alone can induce all hallmarks of AA in a 
healthy human (mini-) organ ex vivo and in vivo, presumably in an autoantigen-independent manner, 
also demonstrates that these innate/transitional lymphocytes interact directly with human HFs, rather 
than affecting them only indirectly. We also show that resident T-cells in human scalp skin transplants 
are not responsible for the AA-inducing effects of ILC1lc in vivo (Figure 7—figure supplement 1 and 
Figure 7—figure supplement 2).

Our study demonstrates that CD8+ T cells, which have long been thought to represent the central 
players in AA pathobiology (Pratt et  al., 2017; Xing et  al., 2014; de Jong et  al., 2018; Gilhar 
et al., 1998; Wang et al., 2016; Paus et al., 1993), are not the only drivers of disease (Gilhar et al., 
2019a; Pratt et al., 2017; de Jong et al., 2018; Paus et al., 1993), and are no joined not only by 
NK cells (Ito et al., 2008; Gilhar et al., 2013a) and γδT cells (Uchida et al., 2020; Uchida et al., 
2021), but also by ILC1lc lymphocytes. The study further supports the concept that the characteristic 
hair loss pattern we diagnose as AA phenotype, does not always represent a classical, autoantigen- 
and autoreactive CD8+/NKGD2 +T-cell-dependent autoimmune disease (‘autoimmune AA’ [AAA]), 
but can also reflect non-autoimmune pathomechanisms that may perhaps best be defined as non-
autoimmune AA subtype (NAIAA) (Bertolini et al., 2020; Paus et al., 2018; Figure 9). In a state of 
prolonged HF-IP collapse and thus chronic exposure of HF-associated autoantigens to (pre-existent?) 
autoreactive CD8 +T cells, it is well conceivable that an AA-subtype that began as NAIAA can over 
time transform into the AAA-variant, thus explaining the chronic-intermittent course that is seen in so 
many autoimmune diseases.

The novel concept of ILC1-induced NAIAA mandates a differential, personalized management 
approach to future AA therapy, which tailors treatment to the specific pathobiology at hand in any 
given AA patient. This must now include the targeting of pathogenic, potently IFN-γ -secreting ILC1lc, 
at least when these are seen to be increased in lesional AA biopsies.

Although the number of ILC1lc in lesional AA skin was significantly lower than that of CD8 + cells 
(Figure 1) this does not rule out a crucial role of the cells in spontaneous AA development in patients. 
In fact, we demonstrate here that ILC1lc are even more potent IFN-γproducers than CD8 +T cells. 
Also, despite the relatively low numbers of ILC1lc, their selective tissue distribution makes them 
ideally localized to provide an early source of cytokines to initiate/trigger pro-inflammatory immune 
responses directed against distressed tissues (Vivier, 2021), as documented here in our co-culture 
assay with ‘stressed’ human scalp HFs ex vivo.

That IL-12 and IL-18 were among the cytokines used here to facilitate ILC1lc isolation from human 
PBMCs is also interesting in the context of our most recent observation that local IL-12 signaling, 
supported by IL-18, may be involved in the early stages of AA development by stimulating IFN-γ 
production from resident IL-12Rß2+immune cells, eventually leading to HF-IP collapse (Edelkamp, 
2021). In fact, treatment with IL-12 +IL-18 of healthy HFs selectively enriches IFN-γ -inducible genes 
and promotes the release of IFN-γ into the medium and thus HF-IP collapse. These responses were 
abrogated by the co-administration of a selective TYK2 inhibitor (Edelkamp, 2021), which confirms 
a key role of IL-12, whose receptor utilizes a TYK2 and Janus kinase 2 pair for downstream signal 
transduction (Ullrich et al., 2020; Krueger et al., 2022), These preliminary findings suggest that IL-12 
is a key effector cytokine in promoting pathogenic IFN-γ secretion and HF-IP collapse. Given that 
ILC1 are IFN-γ producing cells (Nabekura and Shibuya, 2021b; Resende et al., 2017; Quintino-de-
Carvalho et al., 2022), our data, therefore, encourage one to dissect, next, the exact role of IL-12/
IL-12R-mediated signaling in activating, attracting and/or expanding ILC1lc and in stimulating their 
IFN-γ secretion in the early stages of human AA pathogenesis.

An immunopathology-initiating role of ILC1lc is not unique to AA and has also been proposed in 
other inflammatory conditions (Kim et al., 2021), including vitiligo (Tulic et al., 2019), which shares 
some pathogenesis features with AA (Harris, 2013; Tomaszewska et al., 2020), inflammatory bowel 
disease (McDonald et al., 2018; Bernink et al., 2013; Tang et al., 2019), lupus erythematosus (Guo 
et al., 2019), and the aggravation of atherosclerosis (Wu et al., 2018). Yet, to the best of our knowl-
edge, the current study is the first to demonstrate that these innate immunocytes can indeed induce 
the full disease-mimicking immunopathology phenotype in a previously healthy human (mini-) organ. 
Also, abnormalities in the crosstalk between ILC1lc and gut microbiota have been observed in various 
diseases (Jiao et al., 2020). Therefore, it is interesting to ask whether the microbial dysbiosis that has 
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been reported in the scalp skin of AA patients (Pinto et al., 2020) may activate the very few, strate-
gically positioned perifollicular ILC1lc present in healthy human scalp skin through abnormal crosstalk 
with HF microbiota (Lousada et al., 2021). This hypothesis can now be explored using our ex vivo and 
humanized AA mouse model.

Collectively, our study introduces IFN-γ -secreting ILC1lc lymphocytes as important novel players 
in human AA pathobiology and identifies them as new therapeutic intervention targets. Their stra-
tegic location, their capability to recognize and respond to HF distress signals such as MICA and 
selected chemokines, the excessive production of IFN-γ by ILC1lc, and their direct, pathogenic effects 
on human HFs ex vivo documented here, all support that these cells play a hitherto unappreciated 
role in early AA pathogenesis. Moreover, our study demonstrates that autoreactive CD8 +T cells are 
not indispensable for AA induction and further supports that non-autoimmune AA variants (NAIAA) 
(Bertolini et al., 2020) exist and that innate/transitional immune cells play an important role in AA 
pathobiology.

Materials and methods
Patients, tissue, and blood samples
For the in situ analyses we used archival paraffin-embedded biopsy specimens of human AA scalp skin 
lesions from the Department of Pathology, Rambam Medical Center ( fourfemales, 12–35 years, mean 
age 20.5±9.5; sixmales, 6–38 years, mean age 18±12). Three of these AA patients showed active hair 
loss of the AA universalis phenotype while the other patients showed stable hair loss patches of the 
multifocal AA phenotype (Gilhar et al., 2012). One ten-year-old male patient had a positive family 
history of allergic rhinitis. AA was diagnosed both clinically and by histopathology, and none of the 
enrolled patients showed clinical evidence or had a personal history of other AA-associated autoim-
mune diseases (Gilhar et al., 2012; Meah et al., 2021).

Clinically healthy human skin scalp specimens were obtained from healthy volunteers undergoing 
cosmetic facelift surgery ( three females, 43–72 years, mean age 58±15; 5 males, 31–44 years, mean 
age 36±8).

The ex vivo experiments utilized scalp HFs from 20 healthy donors (13 males and seven females) 
without a history of AA (31–63 years, mean age 49±12).

The in vivo experiments in the humanized AA mouse model Ghraieb et al., 2018 used scalp skin 
pieces obtained from five healthy donors ( four males and one female, 34–45 years, mean age 38±5). 
For the ex vivo and in vivo experiments, frontotemporal human scalp skin specimens were obtained 
during elective cosmetic facelift procedures performed under general anesthesia, and 20 ml of autol-
ogous venous blood was drawn, both with informed written patient consent.

The study for both ex vivo and in vivo experiments was approved by the Institutional Ethics 
Committee of the Rambam Health Care Campus, Haifa, Israel (RMB-0182–14).

For the ex vivo experiments, frozen HFs sections were dehydrated for 40 min and incubated with 
acetone for 10  min at –20  °C for fixation. Slides were dehydrated for 20  min and transferred to 
double-distilled water following three times wash with 1xphosphate buffered saline (PBS) (pH = 7.4). 
Sections were blocked with suitable serum (horse/goat) for 30 min to prevent nonspecific binding and 
incubated at 4 °C with primary Ab overnight. Slides were incubated with an appropriate biotinylated 
secondary Ab (FITC-conjugated goat anti-mouse Ab, Rhodamine-conjugated goat anti-mouse IgG Ab 
or Alexa Fluor 488-conjugated goat anti-rabbit IgG Ab) for 30 min, following three times wash with 
PBS.

For the in vivo experiment, five-micrometer paraffin sections were used. Antigen retrieval was for 
20  min at 90 °C in a microwave. Specimens were blocked for 30  min to prevent nonspecific binding 
and incubated with the first antibody (Ab) overnight, followed by a wash and incubation with bioti-
nylated 2nd Ab (Jackson ImmunoResearch, West Grove, PA), and subsequent binding with horseradish 
peroxidase-conjugated streptavidin. Markers were revealed with AEC (red) (Aminoethyl Carbazole 
Substrate kit). Sections were then mounted and analyzed under a light microscope.

https://doi.org/10.7554/eLife.80768
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Histochemistry, immunohistology, and quantitative 
immunohistomorphometry (qIHM)
Five-micrometer paraffin sections of lesional AA biopsies and human scalp skin xenotransplants were 
processed for histochemistry or immunohistology. The following primary antibodies were used: anti-
CD8 (Cell Marque-108M-95), anti-CD4 (DAKO-M7310), anti-HLA-A,B,C (Abcam-70328), anti-HLA-DR 
(Abcam-20281), anti- IFN-γ (Abcam-25101), anti- α-MSH (LSBio-C25584), anti-beta2 microglobulin 
(Abcam-218230), and anti-TGF-β1 (Santa Cruz-52893) (Ghraieb et al., 2018; Laufer Britva et al., 
2020; Keren et al., 2018).

Since there is no single, highly specific surface marker for ILC1 cells, triple immunostaining was 
performed with three sets of antibodies that are routinely used for the identification of human ILC1lc 
(Talayero et al., 2016; Hawke et al., 2020a; Hawke et al., 2020b; Cruz-Zárate et al., 2018): (a) 
NKp44+ (Bioss-YEYS3W) (Talayero et al., 2016), CD103+ (eBioscience 1401038–82) (Hawke et al., 
2020b) and T-bet- (Santa Cruz-H3112) Cruz-Zárate et al., 2018; (b) c-KIT- (DAKO-MA512944) (Naga-
sawa et al., 2019), CD49a+ (R&D systems-AF5676) (Colonna, 2018) and EOMES+ (ThermoFisher-
14-4877-82); and (c) CD49a+ (R&D systems), EOMES+ (ThermoFisher-14-4877-82) and NKG2D+ 
(Novus-5c6) (de Jong et al., 2018). Skin-infiltrating CD8 +NKG2D+T cells were double-immunostained 
by NKG2D (Novus-5c6)/CD8 (Cell Marque-108M-95) (de Jong et al., 2018). For negative control, the 
primary antibody was replaced with non-specific IgG1 and IgG2 isotype control.

Hematoxylin and eosin (H&E) staining was performed on cryo- or paraffin sections as previously 
described (Keren et al., 2018). For the ex vivo experiments, HFs cryosections were dehydrated for 
40 min and fixed with acetone for 10 min at –20 °C (Ghraieb et al., 2018; Laufer Britva et al., 2020; 
Keren et al., 2015).

The following primary antibodies were used for immunohistochemistry (IHC) or immunofluores-
cence microscopy (IF) of key HF immune privilege markers (Bertolini et al., 2020; Paus et al., 2005) 
anti-HLA-A,B,C (Abcam-70328)/ anti-HLA-DR (Abcam-20281)/anti-MICA(Santa Cruz- 20931)/anti-
CD1d (Abcam-11076)/anti- α-MSH (LSBio-C25584)/anti-beta2 microglobulin (Abcam-218230) and 
anti-TGF-β1(Santa Cruz-52893).

The immunoreactivity patterns were assessed in standardized, well-defined reference areas by 
quantitative immunohistomorphoemtry (qIHM) by experienced, blinded observers, following our 
standard protocols for evaluating human HF immunology read-outs (Bertolini et al., 2014; Bertolini 
et al., 2016; Christoph et al., 2000; Harries et al., 2013; Hardman-Smart et al., 2020), counting 
at least three reference areas each on three non-consecutive sections, presented randomly to the 
blinded observer(s). Specifically, immunoreactive cells around and within the HFs were counted in an 
area of 0.66  mm2.

For HLA-A,B,C, HLA-DR, MICA, CD1d, α-MSH, beta2 microglobulin, and TGF-β1 image anal-
ysis was performed using Image J software. Protein expression was measured by calculating the 
percentage of staining coverage within the analyzed area.

Masson-Fontana staining (Abcam) was performed as described by us (Laufer Britva et al., 2020; 
Purba et al., 2016). Briefly, five-micrometer paraffin sections were deparaffinized and hydrated in 
distilled water. Slides were placed in mixed ammoniacal silver solution in a 58–60°C water bath and 
allowed adequate time for the temperature to equilibrate. Slides were then placed in the warmed 
ammoniacal silver solution for 30–60 min or until the tissue section became yellowish/brown in color. 
Counterstaining was performed with Nuclear Fast Red Solution for 5 min.

TUNEL analysis
Apoptotic cells were evaluated using a commercial TUNEL kit (Roche) with anti-digoxigenin fluores-
cein labeling and according to the manufacturer’s protocol. Ki-67 (Invitrogen) was visualized using 
Alexa Flour 594-conjugated goat anti-mouse (Jackson, 115-585-062). Sections were counterstained 
by DAPI (Thermo Fisher Scientific). Staining was visualized using a confocal Microscope - Zeiss LSM 
700. Quantification was performed as previously described (Peters et al., 2006).

Immunohistology
Slides were photographed using immunofluorescence confocal microscopy and compared systemati-
cally by qIHM in standardized, defined tissue compartments. Mouse skin served as a negative control. 
Three non-consecutive sections were analyzed per patient.

https://doi.org/10.7554/eLife.80768
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Isolation, characterization, and culture of circulating ILC1lc, ILC2, ILC3, 
and CD8+/NKG2D+ cells
ILC2 and ILC3 cells were used as negative controls, while CD8+/NKG2D+ cells were used as a positive 
control to evaluate the ILC1lc cytotoxic effects on HFs.

The cells were cultured and induced to expand, as we have previously described (Keren et al., 
2018). The isolation and characterization of ILC1lc, ILC2, and ILC3 cells by FACS cell sorting or MACS 
were performed as we previously described (Keren et  al., 2018; Mjösberg et  al., 2011; Mora-
Velandia et al., 2017; Creyns et al., 2020).

Autologous human PBMCs were isolated from heparinized whole blood from healthy donors 
by Lymphoprep density gradient centrifugation (Alere Technologies, Norway). Cells were frozen 
for further assays (70% FBS, 20% RPMI1640, and 10% DMSO) or cultured at a seeding density of 
3 × 106  cells/ml in 24 wells plate with medium (RPMI 1640, 10% human AB serum, 1% penicillin-
streptomycin antibiotics, 2 mML glutamine) in the presence of different cytokines for cells expansion.

The following components are required for the expansion of various immune cell populations:

ILC1lc (Silver et al., 2016): IL-18(1 µg/1 ml) (CYT-269(A), IL-33) (1.5 µg/5 ml) (BLG-581802), 
IL-12 (1.5 µg/5 ml) (BLG-573002).
ILC2 (Creyns et  al., 2020): IL-7 (10 ng/ ml) (BLG-581904), IL-25 (100 ng/ml) (C792-50), IL-2 
(50 ng/m) (Prospec-Cyt-209-b).
ILC3 (Keren et al., 2018): AHR (200 nM) (BML-GR2060100), IL-2 (100 U/mL).
CD8 +NKG2D+ (Gilhar et al., 2013a): IL-2 (100 U/ml).
PHA (Gilhar et al., 2013a): PHA (10 µg/ml) (Sigma-C1668).

On days three and five, half of the medium was either frozen for further analysis or discarded and 
replaced with fresh medium containing cytokines. After seven days, cells were sorted by FACS Aria 
(FACSAria III Cell Sorter, BD Biosciences, USA) and in the case of ILC3 further enriched by MACS for 
negative selection of CD3 + cells (see Figure 2—figure supplement 2).

Flow cytometry sorting for ILC1lc, ILC2, and CD8+/NKG2D+ cells
Cells were cultured for one week, collected, and washed with PBS containing 1% BSA and 2% PSN. 
Surface cells were stained with antibodies to the PE-conjugated lineage cocktail that includes anti-
bodies against CD1a (BLG-300105), CD3 (BLG-300–307), CD14 (BLG-367103), CD19 (BLG-302207), 
CD34 (BLG-343605), CD123 (BLG-306005), CD11c (BLG-301605), BDCA2 (BLG-354203), FcεR1α (BLG-
334609), TCRαβ (BLG-306707), TCRγδ (BLG-331209), CD56 (BLG- 362565) (Hawke et al., 2020b).

Following gating on lineage, cell population cells were sorted as follows:
ILC1lc – APC-conjugated-CD127+ (BLG-351315), PE/CY7-conjugated-CD161+ (BLG-339917), 

and FITC-conjugated-NKp44 + (SC-53597), Brilliant Violet 421TM anti-human CD117- (c-KIT) (BLG-
313215) and APC/CY7-conjugated-CRTH2- (BLG-350113). (Santa Cruz H3112) (Talayero et al., 2016; 
Hawke et al., 2020a).

ILC2 cells – APC-conjugated-CD127+ (BLG-351315), PE/CY7-conjugated-CD161+ (BLG-339917), 
Brilliant Violet 421TM anti-human CD117+ (c-KIT) (BLG-313215) and APC/CY7-conjugated-CRTH2+ 
(BLG-350113) (Cruz-Zárate et al., 2018; Nagasawa et al., 2019).

CD8+/NKG2D+ cells – CD8 (Cell Marque-108M-95)/NKG2D(Novus-5c6) (Ito et  al., 2008). The 
cells were sorted using a FACS Aria instrument with software (BD Biosciences). The sorted cells were 
collected in a tube with a medium enriched with 20% human serum. Afterward, the cells were centri-
fuged, suspended, counted, and co-cultured with HFs or used for ELISA assay.

Compensation was done using Comp-Beads (BDTM Biosciences) and data were analyzed using 
FlowJo software.

Magnetic isolation of ILC3 subsets
Separation was performed using anti-CD3 antibodies conjugated to ferromagnetic microbeads 
(Miltenyi Biotec, Bergisch Gladbach, Germany) and directed through a cell separation column 
containing a magnetic field (Miltenyi Biotec). For the purification of ILC3s, CD3−sorted cells were 
collected and stained with anti-NKp44-PE conjugated to ferromagnetic microbeads (Miltenyi Biotec) 
and directed through a cell separation column containing a magnetic field (Keren et al., 2018).

https://doi.org/10.7554/eLife.80768
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Finally, cells were co-cultured with autologous HFs ex vivo (see below) or used for different assays 
(Keren et al., 2018).

Co-culture of autologous ILC1lc with ‘stressed’ human scalp hair 
follicles ex vivo
Experimental induction of HF-IP collapse by IFN-γ is the standard ex vivo-assay system for interro-
gating key elements of AA-related human HF immunopathology (Ito et al., 2004; Bertolini et al., 
2016; Kinori et al., 2012). We have recently complemented this assay by co-culturing key immuno-
cytes in AA pathogenesis (CD8 +T cells, γδTCs) directly with organ-cultured human scalp HFs ex vivo 
(Uchida et al., 2021).

For this, healthy human anagen scalp HFs were collected and microdissected as described (Ito 
et al., 2004), and HFs were placed individually into a 96-well plate slot with 100 µl supplemented 
medium (William’s E plus 1% penicillin-streptomycin antibiotics, 1% L-glutamine (Invitrogen-Gibco)), 
0.01% hydrocortisone (Sigma-Aldrich) and 0.01% insulin (Sigma-Aldrich) (Langan et al., 2015).

As we have documented in detail elsewhere (Uchida et  al., 2021), on day 1 after initiation of 
organ culture, the HFs are markedly, but transiently stressed by the trauma of microdissection and the 
transfer to a harsh, hyperoxygenated ex vivo culture environment. This results in significantly increased 
LDH activity release and up-regulation of CXCL12 and CXCL10 expression as well as in a transient, 
partial weakening of the HFs physiological immune privilege. The latter was evidenced by increased 
protein expression of MHC class Ia, β2-microglobulin, and MICA/B but no change in the expression of 
IP guardians such as αMSH and TGFβ2. As reported before, all these ‘HF stress’ indicators normalize 
on day 3 of organ culture (Supplementary file 1) (Taken from: Uchida et al., 2021). Thus, due to their 
expression of NKG2D ligands (MICA/B) CXCL12 and CXCL10 secretion, and transiently weakened 
HF immune privilege, the stressed (day 1) HFs can attract and interact with immune cells expressing 
NKG2D receptors and are primed to elicit anti-HF immune responses ex vivo (Uchida et al., 2021).

Therefore, organ culture-stressed day 1 HFs (1HF/well) were co-cultured in supplemented William’s 
E medium from day 1 until day 6 with one of five different immune cell populations: (1) ILC1lc 
(100 µl/600 cells per well), either alone or in combination with anti- IFN-γ antibody (10 µg/ml, R&D 
Systems, MAB285) or NKG2D neutralizing antibody (5 µg/ml, R&D Systems, MAB139-100); ILC1lc 
demonstrated cytotoxic effect on HFs with 600 cells per well, while (2) CD8/NKG2D cells demon-
strated similar effect only with 100 µl/3500 cells per well. Therefore, 100 µl/3500 per well was used for 
the following control groups: (3) ILC2s cells; (4) ILC3s, or (5) PHA cultured PBMCs.

The medium was not replaced in order to avoid losing any immunocytes. Basic HF biology read-out 
parameters were assessed by evaluating the Ki-67/TUNEL ratio, values of LDH release, HF pigmenta-
tion, and hair shaft production in situ, all of which indicated that the HFs did not suffer major damage 
after 6 days of organ culture. At the end of the experimentation, the HFs were photo-documented 
and cryopreserved in optimal cutting temperature (OCT) blocks. Cytokine release into the culture 
medium by ELISA was analyzed as previously described (Zook and Kee, 2016).

Flow cytometry analysis for characterization of ILC1lc
PBMCs were isolated from healthy blood via centrifugation on ficol/Hypaque and cultured for seven 
days in a medium composed of RPMI 1640, 10% human AB serum, 1% L-glutamine, and 1% PSN. The 
medium was changed as needed.

Seven days later, 6 hr prior to FACS staining, cells were then collected (1–1.5 × 106 cells/tube), 
centrifuged at 1200 RPM for 5 min, and washed twice in staining buffer (1 ml of 1% Bovine Serum 
Albumin [BSA] in 1 x sterile PBS). First antibodies (as described above, flow cytometry sorting) were 
used at a concentration of 2.5 μl per 1 × 106 cells.

Cells were incubated for 25 min at room temperature in the dark. All tubes were washed once 
with 1 ml staining buffer, then Fixation/Permeabilization solution (250 μl) was added and cells were 
incubated for 20 min at 4 °C. Cell permeability was performed using 1 × BD Perm/Wash buffer, intra-
cellular antibody mixtures (50 μl/Brilliant Violet 605TM anti-T-bet BLG 644817), Eomes-conjugated-
PerCP-eFluor 710 (Dan11mag), IRF8 (sc-365042), Perforin (BLG-308119), and INF-γ-conjugated- PE/
VIO-770 (Miltenyi Biotec 130-109-313), CD49a-APC-Vio770 (Miltenyi Biotec 130-101-324),FITC anti-
human CD49b (BLG 359305), APC anti-human NKp80 (BLG 346707), BV421 anti-human CXCR6 (BLG 
356013) and APC/Fire 810 anti-human CD16 (BLG 302073) and BV421 anti-human RORγt were added 
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and incubated for 30 min at room temperature in the dark, cells were then washed twice with 1xBD 
Perm/Wash buffer (BD Cytofix/CytopermTM Fixation/Permeabilization Kit).

All cell samples were detected by FACS Calibur Flow Cytometer (Benton Dickinson) using Cell 
Quest software, and the acquired data were further analyzed using FlowJo 5.7.2 (Tree Star).

Cytokine analyses in culture medium by ELISA
Production of IFN-γ by ILC1lc from healthy volunteers was analyzed using ELISA. ILC2, ILC3, and 
PBMCs/PHA were analyzed as negative controls. CD8+/NKG2D+ cells were analyzed as a positive 
control.

The concentration of IFN-γ was determined in the supernatant of 6 × 106 cells from each donor (six 
healthy donors) using the Human IFN-γ ELISA deluxe set (BioLegend) according to the manufacturer’s 
protocol.

Analysis of HF cytotoxicity, catagen induction, and immune privilege 
collapse
As an indication of HF cytotoxicity, LDH release into the supernatants was quantified by colorimetric 
assay using the Cytotoxicity Detection kit Plus (Roche), which measures the conversion of tetrazolium 
salt in formazan, a water-soluble dye with a broad absorption maximum at approximately 500 nm 
(Uchida et al., 2021; Lu et al., 2007; Poeggeler et al., 2010). Medium with/without HFs was cultured 
with PBMCs/PHA, CD8+/NKG2D+, ILC1lc, ILC2, or ILC3 cells for three days. Formazan absorbance 
was measured for each condition that correlates with cell cytotoxicity. Anagen and catagen HFs 
were visualized and differentiated under Nikon Diaphot inverted binocular and thereafter qualitative 
morphological and quantitative morphometric assessments were analyzed as previously described 
(Kloepper et al., 2010). IHC staining was performed to test all hallmarks of AA in order to probe 
whether co-culture with ILC1lc induced abnormal HLA-DR, HLA-ABC, CD1d, ß2-microglobulin, and 
MICA protein expression in the proximal HF epithelium and/or downregulated the key guardians of 
HF immune privilege, TGF-β1, and α-MSH (Bertolini et al., 2020; Ito et al., 2004), using the qIHM 
method described above.

In order to check whether ILC1lc affects HFs via IFN-γoverproduction or via activation of the 
NKG2D-NKG2DL axis following excessive MICA expression by stressed HFs, neutralizing anti- IFN-γ 
(10 µg/ml, R&D Systems, MAB285) or function-blocking NKG2D (5 µg/ml, R&D Systems, MAB139-
100) antibodies, were added to the HFs co-cultured with ILC1lc (defined as CD49a+CD49b- Verma 
et  al., 2020), lin-/CD127+/CD117-/CRTH2-, and T-betlo/ Eomeshi (Bennstein et  al., 2020; Krab-
bendam et al., 2021).

Humanized AA mouse model
For the humanized AA mouse model (Gilhar et al., 2013a; Ghraieb et al., 2018; Gilhar et al., 2016), 
full-thickness biopsies were taken from healthy donors undergoing plastic surgery on the scalp. Biop-
sies from each donor were dissected horizontally to generate pieces with a diameter of 3  mm. Three 
3  mm pieces were grafted orthotopically into the subcutaneous layer of each SCID/beige mice as 
previously described (Gilhar et al., 2013a; Ghraieb et al., 2018; Gilhar et al., 2013b). Seven days 
after surgery, mice were treated with Minoxi-5 (hair regrowth treatment for men containing 5% Minox-
idil active ingredient) by spreading it on the grafts twice a day until we received optimal expedited 
hair growth (period of two months). The topical minoxidil application is not required for hair regrowth 
induction after the initial post-transplantion hair shaft shedding, but only accelerates it. This applica-
tion is discontinued before the ILC1lc injection (Gilhar et al., 2013a). Since the immune cell infiltrate 
in AA attacks only hair follicles in anagen (Gilhar et al., 2012), it is critical that the majority of xeno-
transplant HFs are in anagen at the time the immune cells are injected. Topical minoxidil pretreat-
ment increases the likelihood that this is the case (Price et al., 1999; Suchonwanit et al., 2019). 
Moreover, we have recently demonstrated that 5% minoxidil does indeed significantly stimulate hair 
regrowth in human androgenetic alopecia scalp skin transplanted onto SCID/beige mice (Gilhar et al., 
2022). It also deserves mentioning that topical minoxidil reduces the degranulation of – hair growth-
modulatory! (Paus et al., 1994) - perifollicular mast cells in the skin of mice, namely under conditions 
of perceived stress (Arck et al., 2003), while excessive degranulation of perifollicular mast cells is 
an important feature of lesional human AA skin (Bertolini et al., 2014). Therefore, this pretreatment 
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likely also helps to reestablish perifollicular mast cell homeostasis after the stress of xenotransplan-
tation. In the current study, 18 female SCID/beige mice (C.B-17/IcrHsd-scid-bg) (Harlan Laboratories 
Ltd., Jerusalem, Israel) were used at 2–3 months of age and were housed in the pathogen-free animal 
facility of the Rappaport Faculty of Medicine, Technion – Israel Institute of Technology. Animal care 
and research protocols were in accordance with institutional guidelines and were approved by the 
Institutional Committee on Animal Use (17-08-115-IL).

Culture of Peripheral blood mononuclear cells
PBMCs were isolated from healthy donors without any history of AA or other autoimmune diseases 
by centrifugation on Ficoll/Hypaque (Pharmacia, Amersham Pharmacia Biotech, Uppsala, Sweden) 
(Ghraieb et al., 2018). The PBMCs were then cultured for 14 days with 100 U IL-2 per ml (Pepro Tech 
Inc, Rocky Hill, NJ) in a medium composed of RPMI 1640, 10% human AB serum (Sigma, St. Louis, MO), 
1% glutamine, 1% antibiotics (media components; Biological Industries, Kibbutz Beit Haemeck, Israel). 
Medium was changed as needed. The cultured cells defined as enriched CD8/NKG2D according to 
our previous publication (Ghraieb et al., 2018), were injected intradermally into human explants on 
beige-SCID mice.

Study design
Two sets of experiments were performed: In the first set, the mice were divided randomly into three 
groups on day 89 after scalp skin transplantation and treated as described in Supplementary file 2.

The second set of experiments was performed to eliminate the confounding influence of resident 
human T-cells present in the human scalp skin xenotransplants. To this end, anti-CD3/OKT3 antibodies 
(Supplementary file 2) were injected into xenotransplants treated with either autologous ILC1lc or 
autologous enriched CD8+/NKG2D+ cells. For both sets of experiments, the mice were sacrificed and 
skin biopsies were taken for analysis on day 45 after immunocyte injection.

Statistical analysis
Data are presented as the mean ± standard error of mean (SEM) or fold change of mean ± SEM; p 
values of <0.05 were regarded as significant.

Gaussian distribution of the data was analyzed using Shapiro-Wilk test. Significant differences 
were analyzed using either unpaired Student′s t-test (comparison between one set of data), or One 
Way ANOVA (comparison between multiple sets of data) for parametric data, or Mann–Whitney test 
(comparison between one set of data and sham or vehicle) for nonparametric data or Kruskal–Wallis 
test, and Dunn’s test (comparison between multiple sets of data). The n (e.g. number of donors, tissue 
sections, or microscopic fields) used for each individual data reported here is listed in corresponding 
figure legend.
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