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Cortical activity during naturalistic music 
listening reflects short-range predictions 
based on long-term experience
Pius Kern, Micha Heilbron, Floris P de Lange, Eelke Spaak*

Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 
Nijmegen, Netherlands

Abstract Expectations shape our experience of music. However, the internal model upon which 
listeners form melodic expectations is still debated. Do expectations stem from Gestalt-like prin-
ciples or statistical learning? If the latter, does long-term experience play an important role, or are 
short-term regularities sufficient? And finally, what length of context informs contextual expecta-
tions? To answer these questions, we presented human listeners with diverse naturalistic compo-
sitions from Western classical music, while recording neural activity using MEG. We quantified 
note-level melodic surprise and uncertainty using various computational models of music, including 
a state-of-the-art transformer neural network. A time-resolved regression analysis revealed that 
neural activity over fronto-temporal sensors tracked melodic surprise particularly around 200ms and 
300–500ms after note onset. This neural surprise response was dissociated from sensory-acoustic 
and adaptation effects. Neural surprise was best predicted by computational models that incorpo-
rated long-term statistical learning—rather than by simple, Gestalt-like principles. Yet, intriguingly, 
the surprise reflected primarily short-range musical contexts of less than ten notes. We present a 
full replication of our novel MEG results in an openly available EEG dataset. Together, these results 
elucidate the internal model that shapes melodic predictions during naturalistic music listening.

Editor's evaluation
This study models the predictions a listener makes in music in two ways: how different model algo-
rithms compare in their performance at predicting the upcoming notes in a melody, and how well 
they predict listeners' brain responses to these notes. The study will be important as it implements 
and compares three contemporary models of music prediction. In a set of convincing analyses, the 
authors find that musical melodies are best predicted by models taking into account long-term 
experience of musical melodies, whereas brain responses are best predicted by applying these 
models to only a few most recent notes.

Introduction
The second movement of Haydn’s symphony No. 94 begins with a string section creating the expec-
tation of a gentle and soft piece, which is suddenly interrupted by a tutti fortissimo chord. This star-
tling motif earned the composition the nickname ‘Surprise symphony’. All music, in fact, plays with 
listeners’ expectations to evoke musical enjoyment and emotions, albeit often in more subtle ways 
(Huron, 2006; Juslin and Västfjäll, 2008; Meyer, 1957; Salimpoor et al., 2015). A central element 
of music which induces musical expectations is melody, the linear sequence of notes alternating in 
pitch. Within a musical piece and style, such as Western classical music, certain melodic patterns 
appear more frequently than others, establishing a musical syntax (Krumhansl, 2015; Patel, 2003; 
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Rohrmeier et al., 2011). Human listeners have been proposed to continuously form predictions on 
how the melody will continue based on these regularities (Koelsch et al., 2019; Meyer, 1957; Till-
mann et al., 2014; Vuust et al., 2022).

In support of prediction-based processing of music, it has been shown that listeners are sensitive 
to melodic surprise. Behaviorally, higher surprise notes are rated as more unexpected (Krumhansl 
and Kessler, 1982; Marmel et al., 2008; Marmel et al., 2010; Pearce et al., 2010; Schmuckler, 
1989) and impair performance, for example in dissonance detection tasks (Pearce et  al., 2010; 
Sears et al., 2019). Listeners continue melodic primes with low-surprise notes in musical cloze tasks 
(Carlsen, 1981; Morgan et  al., 2019; Schmuckler, 1989). Neural activity tracks melodic surprise 
(Di Liberto et al., 2020) and high-surprise notes elicit electrophysiological signatures indicative of 
surprise processing, in particular the mismatch negativity (Brattico et al., 2006; Mencke et al., 2021; 
Näätänen et al., 2007; Quiroga-Martinez et al., 2020) and P3 component (Quiroga-Martinez et al., 
2020) (for a review see Koelsch et al., 2019), but also the P2 component (Omigie et al., 2013), a 
late negative activity around 400ms (Miranda and Ullman, 2007; Pearce et al., 2010), and oscillatory 
activity (Omigie et al., 2019; Pearce et al., 2010). Despite this extensive body of neural and behav-
ioral evidence on the effects of melodic expectations in music perception, the form and content of 
the internal model generating these expectations remain unclear. Furthermore, the evidence stems 
primarily from studying the processing of relatively artificial stimuli, and how these findings extend to 
a more naturalistic setting is unknown.

We set out to answer three related open questions regarding the nature of melodic expecta-
tions, as reflected in neural activity. First, are expectations best explained by a small set of Gestalt-
like principles (Krumhansl, 2015; Narmour, 1990; Narmour, 1992; Temperley, 2008; Temperley, 
2014), or are they better captured by statistical learning (Pearce, 2005; Pearce and Wiggins, 
2012; Rohrmeier and Koelsch, 2012)? According to Gestalt-like models, expectations stem from 
relatively simple rules also found in music theory, for example that intervals between subsequent 
notes tend to be small. From a statistical learning perspective, in contrast, listeners acquire internal 
predictive models, capturing potentially similar or different principles, through exposure to music. 
Overall, statistical learning models have proven slightly better fits for musical data (Temperley, 
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Figure 1. Overview of the research paradigm. Listeners undergoing EEG (data from Di Liberto et al., 2020) or MEG measurement (novel data acquired 
for the current study) were presented with naturalistic music synthesized from MIDI files. To model melodic expectations, we calculated note-level 
surprise and uncertainty estimates via three computational models reflecting different internal models of expectations. We estimated the regression 
evoked response or temporal response function (TRF) for different features using time-resolved linear regression on the M|EEG data, while controlling 
for low-level acoustic factors.
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2014) and for human listeners’ expectations assessed behaviorally (Morgan et al., 2019; Pearce 
and Wiggins, 2006; Temperley, 2014), but the two types of models have rarely been directly 
compared. Second, if statistical learning drives melodic expectations, does this rely on long-term 
exposure to music, or might it better reflect the local statistical structure of a given musical piece? 
Finally, independent of whether melodic expectations are informed by short or long-term expe-
rience, we ask how much temporal context is taken into account by melodic expectations; that is 
whether these are based on a short- or a longer-range context. On the one hand, the brain might 
use as much temporal context as possible in order to predict optimally. On the other hand, the 
range of echoic memory is limited and temporal integration windows are relatively short, especially 
in sensory areas (Hasson et al., 2008; Honey et al., 2012; Himberger et al., 2018). Therefore, 
melodic expectations could be based on shorter-range context than would be statistically optimal. 
To address this question, we derived model-based probabilistic estimates of expectations using 
the Music Transformer (Huang et al., 2018). This is a state-of-the-art neural network model that 
can take long-range (and variable) context into account much more effectively than the n-gram 
models previously used to model melodic expectations, since transformer models process blocks 
of (musical) context as a whole, instead of focusing on (note) sequences of variable, yet limited, 
length.

In the current project, we approached this set of questions as follows (Figure 1). First, we oper-
ationalized different sources of melodic expectations by simulating different predictive architec-
tures: the Probabilistic Model of Melody Perception (Temperley, 2008; Temperley, 2014), which is 
a Gestalt-like model; the Information Dynamics of Music (IDyOM) model, an n-gram based statistical 
learning model (Pearce, 2005; Pearce and Wiggins, 2012); and the aforementioned Music Trans-
former. We compared the different computational models’ predictive performance on music data to 
establish them as different hypotheses about the sources of melodic expectations. We then analyzed 
a newly acquired MEG dataset obtained while participants (n=35) were listening to diverse, natu-
ralistic, musical stimuli using time-resolved regression analysis. This allowed us to disentangle the 
contributions of different sources of expectations, as well as different lengths of contextual informa-
tion, to the neural signature of surprise processing that is so central to our experience of music. To 
preview our results: we found that melodic surprise strongly modulates the evoked response, and 
that this effect goes beyond basic acoustic features and simple repetition effects, confirming that 
also in naturalistic music listening, brain responses are shaped by melodic expectations. Critically, we 
found that neural melodic surprise is best captured by long-term statistical learning; yet, intriguingly, 
depends primarily on short-range musical context. In particular, we observed a striking dissociation 
at a context window of about ten notes: models taking longer-range context into account become 
better at predicting music, but worse at predicting neural activity. Superior temporal cortical sources 
most strongly contributed to the surprise signature, primarily around 200ms and 300–500ms after 
note onset. Finally, we present a full replication of our findings in an independent openly available 
EEG dataset (Di Liberto et al., 2020).

Results
Music analysis
We quantified the note-level surprise and uncertainty using different computational models of music, 
which were hypothesized to capture different sources of melodic expectation (see Materials and 
methods for details). The Probabilistic Model of Melody Perception (Temperley) (Temperley, 2008; 
Temperley, 2014) rests on a few principles derived from musicology and thus represents Gestalt-like 
perception (Morgan et al., 2019). The Information Dynamics of Music (IDyOM) model (Pearce and 
Wiggins, 2012) captures expectations from statistical learning, either based on short-term regularities 
in the current musical piece (IDyOM stm), long-term exposure to music (IDyOM ltm), or a combination 
of the former two (IDyOM both). The Music Transformer (MT) (Huang et al., 2018) is a state-of-the-art 
neural network model, which also reflects long-term statistical learning but is more sensitive to longer-
range structure. In a first step, we aimed to establish the different models as distinct hypotheses about 
the sources of melodic expectations. We examined how well the models predicted music data and to 
what extent their predictions improved when the amount of available context increased.

https://doi.org/10.7554/eLife.80935
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IDyOM stm and Music Transformer show superior melodic prediction
First, we tested how well the different computational models predicted the musical stimuli presented 
in the MEG study (Figure 2). Specifically, we quantified the accuracy with which the models predicted 
upcoming notes, given a certain number of previous notes as context information. While all models 
performed well above chance level accuracy (1/128=0.8%), the IDyOM stm (median accuracy across 
compositions: 57.9%), IDyOM both (53.5%), and Music Transformer (54.8%) models performed consid-
erably better than the Temperley (19.3%) and IDyOM ltm (27.3%) models, in terms of median accuracy 
across compositions (Figure 2A left). This pattern was confirmed in terms of the models’ note-level 
surprise, which is a continuous measure of predictive performance. Here lower values indicate a better 
ability to predict the next note given the context (median surprise across compositions: Temperley 
= 2.18, IDyOM stm = 1.12, IDyOM ltm = 2.23, IDyOM both = 1.46, MT = 1.15, Figure 2A middle). 
The median surprise is closely related to the cross-entropy loss, which can be defined as the mean 
surprise across all notes (Temperley = 2.7, IDyOM stm = 2, ltm = 2.47, both = 1.86, Music Transformer 
= 1.81). Furthermore, the uncertainty, defined as the entropy of the probability distribution at each 
time point, characterizes each model’s confidence (inverse) in its predictions (maximum uncertainty = 
4.85 given a uniform probability distribution). The Music Transformer model formed predictions more 
confidently than the other models, whereas the Temperley model displayed the highest uncertainty 
(median uncertainty across compositions: Temperley = 2.65, IDyOM stm = 2.23, ltm = 2.49, both 
= 2.28, MT = 1.69, Figure 2A right). Within the IDyOM class, the stm model consistently showed 
lower uncertainty compared to the ltm model, presumably reflecting a greater consistency of melodic 
patterns within versus across compositions. As a result, the both model was driven by the stm model, 
since it combines the ltm and stm components weighted by their uncertainty (mean stm weight = 
0.72, mean ltm weight = 0.18).

Music Transformer utilizes long-range musical structure
Next, we examined to what extent the different models utilize long-range structure in musical compo-
sitions or rely on short-range regularities by systematically varying the context length k (above we 
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Figure 2. Model performance on the musical stimuli used in the MEG study. (A) Comparison of music model performance in predicting upcoming note 
pitch, as composition-level accuracy (left; higher is better), median surprise across notes (middle; lower is better), and median uncertainty across notes 
(right). Context length for each model is the best performing one across the range shown in (B). Vertical bars: single compositions, circle: median, thick 
line: quartiles, thin line: quartiles ±1.5 × interquartile range. (B) Accuracy of note pitch predictions (median across 19 compositions) as a function of 
context length and model class (same color code as (A)). Dots represent maximum for each model class. (C) Correlations between the surprise estimates 
from the best models. (For similar results for the musical stimuli used in the EEG study, see Appendix 1—figure 2).
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considered each model at its optimal context length, defined by the maximum accuracy). The Music 
Transformer model proved to be the only model for which the predictive accuracy increased consider-
ably as the context length increased, from about 9.17% (k=1) up to 54.82% (k=350) (Figure 2B). The 
IDyOM models’ performance, in contrast, plateaued early at context lengths between three and five 
notes (optimal k: stm: 25, ltm: 4, both: 3), reflecting the well-known sparsity issue of n-gram models 
(Jurafsky and Martin, 2000). Although the Temperley model benefited from additional musical 
context slightly, the increment was small and the accuracy was lower compared to the other models 
across all context lengths (5.58% at k=1 to 19.25% at k=25).

Computational models capture distinct sources of musical expectation
To further evaluate the differences between models, we tested how strongly their surprise estimates 
were correlated across all notes in the stimulus set (Figure 2C). Since the IDyOM stm model domi-
nated the both model, the two were correlated most strongly (r=.87). The lowest correlations occurred 
between the IDyOM stm on the one hand and the IDyOM ltm (r=0.24) and Temperley model (r=0.22) 
on the other hand. Given that all estimates quantified surprise, positive correlations of medium to 
large size were expected. More importantly, the models appeared to pick up substantial unique vari-
ance, in line with the differences in predictive performance explored above.

Taken together, these results established that the computational models of music capture different 
sources of melodic expectation. Only the Music Transformer model was able to exploit long-range 
structure in music to facilitate predictions of note pitch. Yet, short-range regularities in the current 
musical piece alone enabled accurate melodic predictions already: the IDyOM stm model performed 
remarkably well, even compared to the much more sophisticated Music Transformer. We confirmed 
these results on the musical stimuli from the EEG study (Appendix 1—figure 2).

M|EEG analysis
We used a time-resolved linear regression approach (see Materials and methods for details) to 
analyse listeners’ M|EEG data. By comparing different regression models, we asked (1) whether there 
is evidence for the neural processing of melodic surprise and uncertainty during naturalistic music 
listening and (2) which sources of melodic expectations, represented by the different computational 
models, best capture that. We quantified the performance of each regression model in explaining the 
MEG data by computing the correlation r between predicted and observed neural data. Importantly, 
we estimated r using fivefold cross-validation, thereby ruling out any trivial increase in predictive 
performance due to increases in number of regressors (i.e. free parameters).

The simplest model, the Onset model, contained a single regressor coding note onsets in binary 
fashion. Unsurprisingly, this model significantly explained variance in the recorded MEG data (mean r 
across participants = 0.12, SD = 0.03; one-sample t-test versus zero, t34=25.42, p=1.06e-23, d=4.36, 
Figure 3A top left), confirming that our regression approach worked properly. The Baseline model 
included the note onset regressor, and additionally a set of regressors to account for sensory-acoustic 
features, such as loudness, sound type, pitch class (low/high), as well as note repetitions to account for 
sensory adaptation (Auksztulewicz and Friston, 2016; Todorovic and de Lange, 2012). The Base-
line model explained additional variance beyond the Onset model (ΔrBaseline-Onset=0.013, SD = 0.006; 
paired-sample t-test, t34=12.07, p=7.58e-14, d=2.07, Figure 3A bottom left), showing that differences 
in acoustic features and repetition further modulated neural activity elicited by notes.

Long-term statistical learning best explains listeners’ melodic surprise
We next investigated to which degree the surprise estimates from the different computational models 
of music could explain unique variance in the neural data, over and above that already explained by the 
Baseline model. All models performed significantly better than the Baseline model, providing evidence 
for tracking of neural surprise during naturalistic music listening (Temperley: ΔrSurprise-Baseline=0.002, SD = 
0.001, paired-sample t-test, t34=8.76 p=2.42e-09, d=1.5; IDyOM stm: ΔrSurprise-Baseline=0.001, SD = 0.001, 
t34=5.66  p=9.39e-06, d=0.97; IDyOM ltm: ΔrSurprise-Baseline=0.003, SD = 0.002, t34=12.74  p=2.51e-13, 
d=2.19; IDyOM both: ΔrSurprise-Baseline=0.002, SD = 0.001, t34=8.77, p=2.42e-09, d=1.5; and Music Trans-
former: ΔrSurprise-Baseline=0.004, SD = 0.002, t34=10.82, p=1.79e-11, d=1.86, corrected for multiple compar-
isons using the Bonferroni-Holm method) (Figure 3A right). Importantly, the Music Transformer and 
IDyOM ltm model significantly outperformed the other models (paired-sample t-test, MT-Temperley: 

https://doi.org/10.7554/eLife.80935
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t34=7.56, p=5.33e-08, d=1.30; MT-IDyOM stm: t34=9.51, p=4.12e-10, d=1.63, MT-IDyOM both: 
t34=8.87, p=2.07e-09, d=1.52), with no statistically significant difference between the two (paired-
sample t-test, t34=1.634, p=0.225), whereas the IDyOM stm model performed worst. This contrasts 
with the music analysis, where the IDyOM stm model performed considerably better than the IDyOM 
ltm model. These observations suggest that listeners’ melodic surprise is better explained by musical 
enculturation (i.e., exposure to large amounts of music across the lifetime), modeled as statistical 
learning on a large corpus of music (IDyOM ltm and MT), rather than by statistical regularities within 
the current musical piece alone (IDyOM stm) or Gestalt-like rules (Temperley).

Short-range musical context shapes listeners’ melodic surprise
We again systematically varied the context length k to probe which context length captures listeners’ 
melodic surprise best (above we again considered each model at its optimal context length, defined 
by the maximum ΔrSurprise-Baseline averaged across participants). The Temperley and IDyOM models’ 
incremental predictive contribution were marginally influenced by context length, with early peaks 
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Figure 3. Model performance on MEG data from 35 listeners. (A) Cross-validated r for the Onset only model (top 
left). Difference in cross-validated r between the Baseline model including acoustic regressors and the Onset 
model (bottom left). Difference in cross-validated r between models including surprise estimates from different 
model classes (color-coded) and the Baseline model (right). Vertical bars: participants; box plot as in Figure 2. 
(B) Comparison between the best surprise models from each model class as a function of context length. Lines: 
mean across participants, shaded area: 95% CI. (C) Predictive performance of the Music Transformer (MT) on the 
MEG data (left y-axis, dark, mean across participants) and the music data from the MEG study (right y-axis, light, 
median across compositions).
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for the IDyOM stm (k=1) and ltm (k=2) and later peaks for the both (k=75) and Temperley models 
(k=10) (Figure 3B). The roughly constant level of performance was expected based on the music 
analysis, since these models mainly relied on short-range context and their estimates of surprise were 
almost constant. In contrast, we reported above that the Music Transformer model extracts long-
range structure in music, with music-predictive performance increasing up to context lengths of 350 
notes. Strikingly, however, surprise estimates from the MT predicted MEG data best at a context 
length of nine notes and decreased for larger context lengths, even below the level of shorter ones 
(<10) (Figure 3C).

Together, these findings suggest that long-term experience of listeners (IDyOM ltm and MT) better 
captures neural correlates of melodic surprise than short-term statistical regularities (IDyOM stm). Yet, 
melodic expectations based on statistical learning might not necessarily rest on long-range temporal 
structure but rather shorter time scales between 5 and 10 notes. These results were replicated on the 
EEG data (Figure 4).

Spatiotemporal neural characteristics of melodic surprise
To elucidate the spatiotemporal neural characteristics of naturalistic music listening, we further exam-
ined the temporal response functions (TRFs; or ‘regression evoked responses’) from the best model 
(MEG: MT at k=8, Figure 5; EEG: MT at k=7, Figure 6). Each TRF combines the time-lagged coeffi-
cients for one regressor. The resulting time course describes how the feature of interest modulates 
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Figure 4. Model performance on EEG data from 20 listeners. All panels as in Figure 3, but applied to the EEG 
data and its musical stimuli.
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neural activity over time. Here, we focused on note onset, the repetition of notes, and melodic 
surprise. The TRFs were roughly constant around zero in the baseline period (−0.2–0 s before note 
onset) and showed a clear modulation time-locked to note onset (Figures 5 and 6). This confirmed 
that the deconvolution of different features and the temporal alignment in the time-resolved regres-
sion worked well. Note that the MEG data were transformed to combined planar gradients to yield 
interpretable topographies (Bastiaansen and Knösche, 2000), and therefore did not contain informa-
tion about the polarity. While we reflect on the sign of modulations in the TRFs below, these judge-
ments were based on inspection of the axial gradiometer MEG results (not shown) and confirmed on 
the EEG data (Figure 6).

The TRF for the note onset regressor reflects the average neural response evoked by a note. The 
effect was temporally extended from note onset up to 0.8 s (MEG) and 1 s (EEG) and clustered around 
bilateral fronto-temporal MEG sensors (MEG: cluster-based permutation test p=0.035, Figure 5A; 
EEG: p=5e-04, Figure 6A). The time course resembled a P1-N1-P2 complex, typically found in ERP 
studies on auditory processing (Picton, 2013; Pratt, 2011), with a first positive peak at about 75ms 
(P1) and a second positive peak at about 200ms (P2). This was followed by a more sustained negative 
deflection between 300 and 600ms. We inspected the note repetition regressors to account for the 
repetition suppression effect, as a potential confound of melodic expectations (Todorovic et al., 2011; 
Todorovic and de Lange, 2012). We observed a negative deflection at temporal sensors peaking at 
about 200ms, reflecting lower neural activity for repeated versus non-repeated notes (MEG: p=5e-04, 
Figure 5B; EEG: p=0.008, Figure 6B). This extends the well-known auditory repetition suppression 
effect (Grill-Spector et al., 2006; Todorovic and de Lange, 2012) to the setting of naturalistic music 
listening. Finally, the TRF of the surprise regressor indicates how the level of model-based surprise 
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Figure 5. Temporal response functions (TRFs, left column) and spatial topographies at four time periods (right column) for the best model on the MEG 
data. (A): Note onset regressor. (B): Note repetition regressor. (C): Surprise regressor from the Music Transformer with a context length of eight notes. 
TRF plots: Grey horizontal bars: time points at which at least one channel in the ROI was significant. Lines: mean across participants and channels. 
Shaded area: 95% CI across participants.
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modulates neural activity over and above simple repetition. A fronto-temporal cluster of MEG sensors 
exhibited a positive peak at about 200ms and a sustained negative deflection between 300 and 600ms 
(MEG: p=5e-04, Figure 5C; EEG: p=0.004, Figure 6C). The increased activity for more surprising 
notes is consistent with expectation suppression effects (Todorovic and de Lange, 2012). We ruled 
out that the late negativity effect was an artifact arising from a negative correlation between surprise 
estimates of subsequent notes, since these temporal autocorrelations were consistently found to be 
positive. The surprise estimates from the Temperley and IDyOM models yielded similar, although 
slightly weaker, spatiotemporal patterns in the MEG and EEG data (Appendix 1—figures 3 and 4), 
indicating that they all captured melodic surprise given the cross-model correlations.

Melodic processing is associated with superior temporal and Heschl’s 
gyri
To further shed light on the spatial profile of melody and surprise processing, we estimated the 
dominant neural sources corresponding to the peak TRF deflection (180–240ms post note onset) 
using equivalent current dipole (ECD) modeling of the MEG data (with one, two, or three dipoles 
per hemisphere, selected by comparing adjusted r2). These simple models provided a good fit to the 
sensor-level TRF maps, indicated by the substantial amount of variance explained (mean adjusted 
r2 across participants = 0.98 / 0.98/0.97 for Onset / Repetition / Surprise regressors, SD = 0.013 / 
0.011/0.020). We show the density of fit dipole locations in Figure 7. The TRF peak deflection for 
the Onset regressor was best explained by sources in bilateral Heschl’s gyri (Figure 7, top). The peak 
deflections for the Repetition and Surprise regressors were best explained by slightly more lateral 
sources encompassing both bilateral Heschl’s gyri as well as bilateral superior temporal gyri (see 
Figure 7 for exact MNI coordinates of density peaks).
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Figure 6. All panels as in Figure 5, but applied to the EEG data and its musical stimuli.
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No evidence for neural tracking of melodic uncertainty
Besides surprise, melodic expectations can be characterized by their note-level uncertainty. Estimates 
of surprise and uncertainty were positively correlated across different computational models (e.g. MT 
with a context of eight notes: r=0.21) (Figure 8A). Surprisingly, the addition of uncertainty and its 
interaction with surprise did not further improve but rather reduce models’ cross-validated predictive 

Note onset -32, -26, 2 mm
Heschl L

Note repetition -40, -24, 8 mm
Heschl L, Temporal Sup L

Surprise MT
-38, -28, 8 mm

Heschl L, Temporal Sup L

0 1.0 × 10-  

Density of estimated dipole locations

Figure 7. Source-level results for the MEG TRF data. Volumetric density of estimated dipole locations across 
participants in the time window of interest identified in Figure 5 (180–240ms), projected on the average Montreal 
Neurological Institute (MNI) template brain. MNI coordinates are given for the density maxima with anatomical 
labels from the Automated Anatomical Labeling atlas.
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performance on listeners’ MEG data compared to surprise alone (MT Surprise: ΔrSurpise-Baseline=0.004, 
SD = 0.002;+Uncertainty: ΔrUncertainty-Baseline=0.003, SD = 0.002, paired-sample t-test compared to 
Surprise, t34=–9.57, p=1.42e-10, d=–1.64;+Interaction S×U: ΔrSxU-Baseline=0.002, SD = 0.002, t34=–13.81, 
p=1.66e-14, d=–2.37) (Figure 8B). This result holds true for other computational models of music and 
for the EEG data. Therefore, we do not further examine the TRFs here.

Discussion
In the present study, we investigated the nature of melodic expectations during naturalistic music 
listening. We used a range of computational models to calculate melodic surprise and uncertainty 
under different internal models. Through time-resolved regression on human listeners’ M|EEG activity, 
we gauged which model could most accurately predict neural indices of melodic surprise. In general, 
melodic surprise enhanced neural responses, particularly around 200ms and between 300 and 500ms 
after note onset. This was dissociated from sensory-acoustic and repetition suppression effects, 
supporting expectation-based models of music perception. In a comparison between computational 
models of musical expectation, melodic surprise estimates that were generated by an internal model 
that used long-term statistical learning best captured neural surprise responses, highlighting exten-
sive experience with music as a key source of melodic expectations. Strikingly, this effect appeared 
to be driven by short-range musical context of up to 10 notes instead of longer range structure. This 
provides an important window into the nature and content of melodic expectations during naturalistic 
music listening.

Expectations are widely considered a hallmark of music listening (Huron, 2006; Koelsch et al., 
2019; Krumhansl, 2015; Meyer, 1957; Tillmann et al., 2014; Vuust et al., 2022), which resonates 
with the predictive coding framework of perception and cognition (Clark, 2013; de Lange et al., 
2018; Friston, 2010). Here, we tested the role of melodic expectations during naturalistic music 
listening, for which neural evidence has been scarce. We quantified note-level surprise and uncer-
tainty as markers of melodic expectations and examined their effect on neural music processing using 
time-resolved regression. Importantly, our analyses focused on disentangling different sources of 
melodic expectations, as well as elucidating the length of temporal context that the brain is taking 
into account when predicting which note will follow. This represents a critical innovation over earlier 
related work (Di Liberto et al., 2020), from which conclusions were necessarily limited to establishing 
that the brain predicts something during music listening, whereas we begin to unravel what it is that 
is being predicted. Furthermore, our use of diverse naturalistic musical stimuli and MEG allows for 
a broader generalization of our conclusions than was previously possible. Of course, the stimuli do 
not fully reflect the richness of real-world music yet, as for example the MIDI velocity (i.e. loudness) 
was held constant and only monophonic compositions were presented. Monophony was a technical 
limitation given the application of the Temperley and IDyOM model. The reported performance of the 
MusicTransformer, which supports fully polyphonic music, opens new avenues for future work studying 
the neural basis of music processing in settings even closer to fully naturalistic.
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Figure 8. Results for melodic uncertainty. (A) Relationship between and distribution of surprise and uncertainty 
estimates from the Music Transformer (context length of eight notes). (B) Cross-validated predictive performance 
for the Baseline +surprise model (top), and for models with added uncertainty regressor (middle) and the 
interaction between surprise and uncertainty (SxU, bottom). Adding uncertainty and/or the interaction between 
surprise and uncertainty (SxU) did not improve but worsen the predictive performance on the MEG data.
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A key signature of predictive auditory processing is the neural response to unexpected events, also 
called the prediction error response (Clark, 2013; Friston, 2010; Heilbron and Chait, 2018). The 
degree to which notes violate melodic expectations can be quantified as the melodic surprise. Across 
different computational models of music, we found that melodic surprise explained M|EEG data from 
human listeners beyond sensory-acoustic factors and beyond simple repetition effects. We thereby 
generalize previous behavioral and neural evidence for listeners’ sensitivity to unexpected notes to 
a naturalistic setting (for reviews see Koelsch et al., 2019; Rohrmeier and Koelsch, 2012; Tillmann 
et al., 2014; Zatorre and Salimpoor, 2013).

While the role of expectations in music processing is well established, there is an ongoing debate 
about the nature of these musical expectations (Bigand et al., 2014; Collins et al., 2014; Rohrmeier 
and Koelsch, 2012). It has been claimed that these stem from a small set of general, Gestalt-like, 
principles (Krumhansl, 2015; Temperley, 2008; Temperley, 2014). Alternatively, they may reflect the 
outcome of a statistical learning process (Pearce, 2005; Pearce and Wiggins, 2012; Rohrmeier and 
Koelsch, 2012), which, in turn, could reflect either short- or long-range regularities. For the first time, 
we present neural evidence that weighs in on these questions. We simulated note-level expectations 
from different predictive architectures of music, which reflected distinct sources of melodic expec-
tations: Gestalt-like principles (Temperley model), short-term statistical learning during the present 
composition (IDyOM stm) or statistical learning through long-term exposure to music (IDyOM ltm, 
Music Transformer).

As a first core result, we found that long-term statistical learning (Music Transformer and IDyOM 
ltm) captured neural surprise processing better than short-term regularities or Gestalt principles. Our 
results thus stress the role of long-term exposure to music as a central source of neural melodic expec-
tations. The human auditory system exhibits a remarkable sensitivity to detect and learn statistical 
regularities in sound (Saffran et al., 1999; Skerritt-Davis and Elhilali, 2018). This capacity has been 
corroborated in statistical learning paradigms using behavioral (Barascud et al., 2016; Bianco et al., 
2020), eye-tracking (Milne et al., 2021; Zhao et al., 2019), and neuroimaging techniques (Barascud 
et al., 2016; Moldwin et al., 2017; Pesnot Lerousseau and Schön, 2021). Furthermore, humans 
have extraordinary implicit memory for auditory patterns (Agres et al., 2018; Bianco et al., 2020). 
It has therefore been proposed that listeners learn the statistical regularities embedded in music 
through mere exposure (Pearce, 2018; Rohrmeier et al., 2011; Rohrmeier and Rebuschat, 2012).

Short-term regularities and Gestalt principles also significantly predicted neural variance and might 
constitute concurrent, though weaker, sources of melodic expectations (Rohrmeier and Koelsch, 
2012). Gestalt principles, specifically, have been shown to adequately model listeners’ melodic 
expectations in behavioral studies (Cuddy and Lunney, 1995; Morgan et  al., 2019; Pearce and 
Wiggins, 2006; Temperley, 2014). One shortcoming of Gestalt-like models, however, is that they 
leave unresolved how Gestalt rules emerge, assuming either innate principles (Narmour, 1990) or 
being agnostic to this question (Temperley, 2008). We propose that the well-established statistical 
learning framework can account for Gestalt-like principles. If the latter, for example pitch proximity, 
indeed fit a certain musical style, they have to be reflected in the statistical regularities. Music theoret-
ical research has indeed shown that statistical learning based on bigrams can recover music theoretical 
Gestalt principles (Rodriguez Zivic et  al., 2013), even across different (musical) cultures (Savage 
et al., 2015). This further backs up the role of statistical learning for musical expectations.

As a second core result, strikingly, we found that neural activity was best explained by those surprise 
estimates taking into account only relatively short-range musical context. Even though extracting 
the patterns upon which expectations are based requires long-term exposure (previous paragraph), 
the relevant context length of these patterns for predicting upcoming notes turned out to be short, 
around 7–8 notes. In contrast, for modeling music itself (i.e. independently of neural activity), the 
music transformer performed monotonically better with increasing context length, up to hundreds of 
notes. This pattern of results is very unlike similar studies in language processing, where models that 
perform best at next word prediction and can take the most context into account (i.e. transformers) 
also perform best at predicting behavioral and brain responses, and predictions demonstrably take 
long-term context into account (Goodkind and Bicknell, 2018; Heilbron et al., 2021; Schmitt et al., 
2021; Schrimpf et  al., 2021; Wilcox et  al., 2020). A cautious hypothesis is that musical motifs, 
groups of about 2–10 notes, are highly generalizable within a musical style compared to longer range 
structure (Krumhansl, 2015). Motifs might thus drive statistical learning and melodic predictions, 
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while other temporal scales contribute concurrently (Maheu et al., 2019). However, several alterna-
tive explanations are possible, between which we cannot adjudicate, based on our data. First, the 
length of ten notes roughly corresponds to the limit of auditory short-term memory at about 2–4 s 
(Thaut, 2014), which might constrain predictive sequence processing. Second, our analysis is only 
sensitive to time-locked note-level responses and those signals measured by M|EEG, whereas long-
range musical structure might have different effects on neural processing (Krumhansl, 2015; Rohr-
meier and Koelsch, 2012), in particular slower effects that are less precisely linked to note onsets. 
A third and final caveat is that the modeling of long-range structure by the music transformer model 
might be different from how human listeners process temporally extended or hierarchical structure.

Our approach of using temporal response function (TRF, or ‘regression evoked response’, rERP) 
analysis allowed us to investigate the spatiotemporal characteristics of continuously unfolding neural 
surprise processing. Melodic surprise modulated neural activity evoked by notes over fronto-temporal 
sensors with a positive peak at about 200ms, corresponding to a modulation of the P2 component 
(Picton, 2013; Pratt, 2011). Source modeling suggests superior temporal and Heschl’s gyri as likely 
sources of this neural response (although we note that MEG’s spatial resolution is limited and the 
exact localization of surprise responses within auditory cortex requires further research). Surprising 
notes elicited stronger neural responses, in line with previous reports by Di Liberto et  al., 2020. 
This finding is furthermore consistent with the more general effect of expectation suppression, the 
phenomenon that expected stimuli evoke weaker neural responses (Auksztulewicz and Friston, 
2016; Garrido et al., 2009; Todorovic and de Lange, 2012; Wacongne et al., 2011) through gain 
modulation (Quiroga-Martinez et al., 2021). In line with predictive coding, the brain might hence 
be predicting upcoming notes in order to explain away predicted sensory input, thereby leading to 
enhanced responses to surprising (i.e., not yet fully explainable) input.

Additionally, we found a sustained late negativity correlating with melodic surprise, which some 
studies have labeled a musical N400 or N500 (Calma-Roddin and Drury, 2020; Koelsch et al., 2000; 
Miranda and Ullman, 2007; Painter and Koelsch, 2011; Pearce et al., 2010). Similar to its linguistic 
counterpart (Kutas and Federmeier, 2011), the N400 has been interpreted as an index of predic-
tive music processing. The literature has furthermore frequently emphasised the mismatch negativity 
(MMN) (Näätänen et al., 2007) and P3 component in predictive music processing (Koelsch et al., 
2019), neither of which we observe for melodic surprise here. However, the MMN is typically found for 
deviants occurring in a stream of standard tones, such as in oddball paradigms, while the P3 is usually 
observed in the context of an explicit behavioral task (Koelsch et al., 2019). In our study, listeners 
were listening passively to maximize the naturalistic setting, which could account for the absence of 
these components. Importantly, our results go beyond previous research by analysing the influence of 
melodic surprise in a continuous fashion, instead of focusing on deviants.

As a final novel contribution, we demonstrate the usefulness of a state-of-the-art deep learning 
model, the Music Transformer (MT) (Huang et  al., 2018), for the study of music cognition. The 
network predicted music and neural data at least on par with the IDyOM model, an n-gram model 
which is currently a highly popular model of musical expectations (Pearce and Wiggins, 2012). We 
are likely severely underestimating the relative predictive power of the MT, since we constrained our 
stimuli to monophonic music in the present study. Monophonic music is the only type of music the 
other models (IDyOM, Temperley) are able to process, so this restriction was a technical necessity. The 
MT, in contrast, supports fully polyphonic music. This opens up new avenues for future work to study 
neural music processing in even more naturalistic settings.

To conclude, by using computational models to capture different hypotheses about the nature and 
source of melodic expectations and linking these to neural data recorded during naturalistic listening, 
we found that these expectations have their origin in long-term exposure to the statistical structure 
of music. Yet, strikingly, as listeners continuously exploit this long-term knowledge during listening, 
they do so primarily on the basis of short-range context. Our findings thereby elucidate the individual 
voices making up the ‘surprise symphony’ of music perception.
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Materials and methods
Data and code availability
The (anonymized, de-identified) MEG and music data are available from the Donders Repository 
(https://data.donders.ru.nl/) under CC-BY-4.0 license. The persistent identifier for the data is https://​
doi.org/10.34973/5qxw-nn97. The experiment and analysis code is also available from the Donders 
Repository.

Participants
We recruited 35 healthy participants (19 female; 32 right-handed; age: 18–30 years, mean = 23.8, SD 
= 3.05) via the research participation system at Radboud University. The sample size was chosen to 
achieve a power of ≥80% for detecting a medium effect size (d=0.5) with a two-sided paired t-test 
at an α level of 0.05. All participants reported normal hearing. The study was approved under the 
general ethical approval for the Donders Centre for Cognitive Neuroimaging (Imaging Human Cogni-
tion, CMO2014/288) by the local ethics committee (CMO Arnhem-Nijmegen, Radboud University 
Medical Centre). Participants provided written informed consent before the experiment and received 
monetary compensation.

Procedure
Participants listened to music, while their neural activity was recorded using magnetoencephalog-
raphy (MEG) (Figure 1). Participants started each musical stimulus with a button press and could take 
short breaks in between stimuli. Participants were instructed to fixate a dot displayed at the centre of 
a screen (~85 cm viewing distance) in order to reduce head and eye movements. Besides that, partic-
ipants were only asked to listen attentively to the music and remain still. These minimal instructions 
were intended to maximize the naturalistic character of the study. Initially, three test runs (~10 s each) 
were completed, in which three short audio snippets from different compositions (not used in the 
main experiment) were presented. This was intended to make listeners familiar with the procedure 
and the different sounds, as well as to adjust the volume to a comfortable level.

Musical stimuli
We selected 19 compositions (duration: total = 43 min, median across stimuli = 134 s, median abso-
lute deviation (MAD, Leys et al., 2013) = 39 s; note events: total = 9824, median = 448, MAD = 204) 
from Western classical music (see Appendix 1—table 1). We chose this genre, since (a) participants 
recruited from the Nijmegen area were assumed to be somewhat familiar with it, (b) it entails relatively 
complex melodies and long-term structure allowing us to sample a broad range of surprise and uncer-
tainty estimates, (c) many digital music files and corpora in MIDI format are publicly available, and (d) 
these included monophonic pieces. Monophonic refers to one note being played at a time, that is only 
containing a melody, compared to polyphonic music, which further includes chords and/or parallel 
voices. The constraint to monophonic compositions was necessary to enable the application of the 
Temperley and IDyOM model, which cannot parse polyphonic music. Based on the available data-
bases, the selection aimed to cover various musical periods (1711–1951), composers, tempi (60–176 
bpm), and key signatures, roughly matching the statistics of the training corpus for the music models 
(see below). The median note duration was about 161ms (MAD across all notes = 35ms, min = 20ms, 
max = 4498ms), with a median inter-note onset interval of 200ms (MAD across all notes = 50ms, min 
= 22ms, max = 2550ms).

We used the Musescore 3 software to synthesize and export the digital MIDI files as wav audio 
files (sampling rate = 44.1  kHz). This ensured accurate control over the note timing compared to 
live or studio recordings, facilitating time-locked analyses. The synthesisation via one of three virtual 
instruments from fluidsynth (piano, oboe, flute) ensured the natural character of the music. The MIDI 
velocity, corresponding to loudness (termed ‘velocity’ in MIDI terms because it refers to the velocity 
with which one could strike a piano key), was set to 100 for all notes, since most files were missing 
velocity information and the volume was thus held roughly constant across notes.

Stimulus presentation
The experiment was run on a Windows computer using Matlab 2018b (The MathWorks) and the 
Psychophysics Toolbox (Brainard, 1997). The music was presented binaurally via ear tubes (Doc’s 
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Promolds NonVent with #13 thick prebent 1.85 mm ID tubes, Audine Healthcare, in combination with 
Etymotic ER3A earphones) at a sampling rate of 44.1 kHz. The volume was adjusted to a comfortable 
level for each participant during the initial three test runs. To ensure equivalent acoustic input in both 
ears, the right audio channel from potentially stereo recordings was duplicated, resulting in mono 
audio presentation. After participants initiated a run by a button press, the wav file was first loaded 
into the sound card buffer to ensure accurate timing. Once the file was fully loaded, the visual fixation 
cross appeared at the centre of the screen and after 1.5–2.5 s (random uniform distribution) the music 
started. The order of compositions was randomized across participants.

MEG data acquisition
Neural activity was recorded on a 275-channel axial gradiometer MEG system (VSM/CTF Systems) in 
a magnetically shielded room, while the participant was seated. Eight malfunctioning channels were 
disabled during the recording or removed during preprocessing, leaving 267 MEG channels in the 
recorded data. We monitored the head position via three fiducial coils (left and right ear, nasion). 
When the head movement exceeded 5  mm, in between listening periods, the head position was 
shown to the participant, and they were instructed to reposition themselves (Stolk et al., 2013). All 
data were low-pass filtered online at 300 Hz and digitized at a sampling rate of 1200 Hz.

Further data acquisition
For source analysis, the head shape and the location of the three fiducial coils were measured using a 
Polhemus 3D tracking device. T1-weighted anatomical MRI scans were acquired on a 3T MRI system 
(Siemens) after the MEG session if these were not already available from the local database (MP-
RAGE sequence with a GRAPPA acceleration factor of 2, TR = 2.3 s, TE = 3.03ms, voxel size 1 mm 
isotropic, 192 transversal slices, 8 ° flip angle). Additionally, during the MEG session, eye position, 
pupil diameter and blinks were recorded using an Eyelink 1000 eye tracker (SR Research) and digitized 
at a sampling rate of 1200 Hz. After the experiment, participants completed a questionnaire including 
a validated measure of musicality, the Goldsmith Musical Sophistication Index (Müllensiefen et al., 
2014). The eye tracking and questionnaire data were not analysed here.

EEG dataset
In addition, we analysed an open data set from a recently published study (Di Liberto et al., 2020) 
including EEG recordings from 20 participants (10 musicians, 10 non-musicians) listening to music. The 
musical stimuli were 10 violin compositions by J. S. Bach synthesized using a piano sound (duration: 
total = 27 min, median = 161.5 s, MAD = 18.5 s; note events: total = 7839,, median = 631, MAD = 
276.5; see Appendix 1—table 1), that were each presented three times in pseudo-randomized order 
(total listening time = 80 min). The median note duration was 145ms (MAD across all notes = 32ms, 
min = 70ms, max = 2571ms), with a median inter-note onset interval of 150ms (MAD across all notes 
= 30ms, min = 74ms, max = 2571ms). EEG was acquired using a 64-electrode BioSemi Active Two 
system and digitized at a sampling rate of 512 Hz.

Music analysis
We used three types of computational models of music to investigate human listeners’ melodic expec-
tations: the Temperley model (Temperley, 2008; Temperley, 2014), the IDyOM model (Pearce and 
Wiggins, 2012), and the Music Transformer (Huang et al., 2018). Based on their differences in compu-
tational architecture, we used these models to operationalize different sources of melodic expecta-
tions. All models take as input MIDI data, specifically note pitch values X ranging discretely from 0 to 
127 (8.18–12543.85 Hz, middle C=60,~264 Hz). The models output a probability distribution for the 
next note pitch at time point t, Xt, given a musical context of k preceding consecutive note pitches:

	﻿‍
P(Xt

���xt−1
t−k ), where X ∈

{
0..127

}
, k > 0, t ≥ 0.

‍�

For the first note in each composition, we assumed a uniform distribution across pitches 
(‍P

(
X0 = x

)
= 1/128‍). Based on these probability distributions, we computed the surprise S of an 

observed note pitch xt given the musical context as
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Likewise, the uncertainty U associated with predicting the next note pitch was defined as the 
entropy of the probability distribution across all notes in the alphabet:

	﻿‍
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Training corpora
All models were trained on the Monophonic Corpus of Complete Compositions (MCCC) (https://osf.​
io/dg7ms/), which consists of 623 monophonic pieces (Note events: total = 500,000, median = 654, 
MAD = 309). The corpus spans multiple musical periods and composers and matches the statistics 
of the musical stimuli used in the MEG and EEG study regarding the distribution of note pitch and 
pitch interval (Appendix 1—figure 1) as well as the proportion of major key pieces (MCCC: ~81%, 
MusicMEG: ~74%, but MusicEEG: 20%). Furthermore, the Maestro corpus V3 (Hawthorne et al., 2019, 
https://magenta.tensorflow.org/datasets/maestro), which comprises 1276 polyphonic compositions 
collected from human piano performances (Duration: total = 200 h, note events: total = 7 million), was 
used for the initial training of the Music Transformer (see below).

Probabilistic Model of Melody Perception | Temperley
The Probabilistic Model of Melody Perception (Temperley, 2008; Temperley, 2014) is a Bayesian 
model based on three interpretable principles established in musicology. Therefore, it has been 
coined a Gestalt-model (Morgan et al., 2019). The three principles are modeled by probability distri-
butions (discretized for integer pitch values), whose free parameters were estimated, in line with 
previous literature, based on the MCCC:

1.	 Pitches xt cluster in a narrow range around a central pitch c (central pitch tendency):

	﻿‍ xt ∼ N (c, vr), where c ∼ N
(
c0, varc0

)
.‍ �

The parameters c0 and varc0: were set to the mean and variance of compositions’ mean pitch in 
the training corpus (c0=72, varc0 = 34.4). The variance of the central pitch profile vr was set to 
the variance of each melody’s first note around its mean (vr = 83.2).

2.	 Pitches tend to be close to the previous pitch xt−1, in other words pitch intervals tend to be small 
(pitch proximity):

	﻿‍ xt ∼ N
(
xt−1, vx

)
‍�

The variance of the pitch proximity profile vx was estimated as the variance of pitches around 
xt−1 considering only notes where xt−1=c (vx = 18.2).

3.	 Depending on the key, certain pitches occur more frequently given their scale degree (the posi-
tion of a pitch relative to the tonic of the key). This key profile is modeled as the probability of 
a scale degree conditioned on the key (12 major and 12 minor keys) spread out across several 
octaves, weighted by the probability of major and minor keys (pmaj = .81).

The final model multiplicatively combines these distributions to give the probability of the next 
note pitch given the context. The C code was provided by David Temperley in personal communi-
cation and adapted to output probabilities for all possible pitch values X. Specific choices in princi-
ples 1–3 above were made in accordance with earlier work (Morgan et al., 2019; Temperley, 2008; 
Temperley, 2014).

Information Dynamics of Music model | IDyOM
The Information Dynamics of Music (IDyOM) model is an unsupervised statistical learning model, 
specifically a variable order Markov model (Pearce, 2005; Pearce and Wiggins, 2012). Based on 
n-grams and the alphabet X, the probability of a note pitch x at time point t, xt, given a context 
sequence of length k, ‍x

t−1
t−k‍ , is defined as the relative n-gram frequency of the continuation compared 

to the context:

https://doi.org/10.7554/eLife.80935
https://osf.io/dg7ms/
https://osf.io/dg7ms/
https://magenta.tensorflow.org/datasets/maestro
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	﻿‍
P(xt

∣∣∣xt−1
t−k ) =

count(xt
t−k)

count(xt−1
t−k)

.
‍�

The probabilities are computed for every possible n-gram length up to a bound k and combined 
through interpolated smoothing. The context length was, therefore, manipulated via the n-gram order 
bound. The model can operate on multiple musical features, called viewpoints. Here, we use pitch (in 
IDyOM terminology cpitch) to predict pitch, in line with the other models.

The IDyOM model class entails three different subtypes: a short-term model (stm), a long-term 
model (ltm), and a combination of the former two (both). The IDyOM stm model rests solely on 
the recent context in the current composition. As such, it approximates online statistical learning of 
short-term regularities in the present piece. The IDyOM ltm model, on the other hand, is trained on a 
corpus, reflecting musical enculturation, that is (implicit) statistical learning through long-term expo-
sure to music. The IDyOM both model combines the stm and ltm model weighted by their entropy 
at each note.

Music Transformer
The Music Transformer (MT) (Huang et al., 2018) is a state-of-the-art neural network model that was 
developed to generate music with improved long-range coherence. To this end, it takes advantage of 
a Transformer architecture (Vaswani et al., 2017) and relative self-attention (Shaw et al., 2018), which 
better capture long-range structure in sequences than for example n-gram models. The MT is the only 
model used here that can process polyphonic music. This is possible due to a representation scheme 
that comprises four event types (note onset, note offset, velocity, and time-shift events) for encoding 
and decoding MIDI data. The note onset values are equivalent to pitch values and were used to derive 
probability distributions. Our custom scripts were based on an open adaptation for PyTorch (https://​
github.com/gwinndr/MusicTransformer-Pytorch; Gwinn et al., 2022).

The Music Transformer was initially trained on the polyphonic Maestro corpus for 300 epochs using 
the training parameters from the original paper (learning rate = 0.1, batch size = 2, number of layers = 
6, number of attention heads = 6, dropout rate = 0.1, Huang et al., 2018). The training progress was 
monitored based on the cross-entropy loss on the training data (80%) and test data (20%) (Figure 9A). 
The cross-entropy loss is defined as the average surprise across all notes. The model is, thus, trained to 
minimize the surprise for upcoming notes. The minimal loss we achieved (1.97) was comparable to the 
original paper (1.835). The divergence between the loss curve for training and test set indicated some 
overfitting starting from about epoch 50, however, without a noticeable decrease in test performance. 
Therefore, we selected the weights at epoch 150 to ensure stable weights without severe overfitting.

In order to adjust the model to monophonic music, we finetuned the pretrained Music Transformer 
on the MCCC for 100 epochs using the same training parameters (Figure 9B). Again, the training 
progress was evaluated based on the cross-entropy loss and the weights were selected based on the 
minimal loss. While the loss started at a considerably lower level on this monophonic dataset (0.78), it 
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Figure 9. Training (A) and fine-tuning (B) of the Music Transformer on the Maestro corpus and MCCC, respectively. Cross-entropy loss (average surprise 
across all notes) on the test (dark) and training (light) data as a function of training epoch.
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continued to decrease until epoch 21 (0.59), but quickly started to increase, indicating overfitting on 
the training data. Therefore, the weights from epoch 21 were selected for further analyses.

Music model comparison
We compared the models’ predictive performance on music data as a function of model class and 
context length. Thereby, we aimed to scrutinize the hypothesis that the models reflect different 
sources of melodic expectations. We used the musical stimuli from the MEG and EEG study as test 
sets and assessed the accuracy, median surprise and uncertainty across compositions.

M|EEG analysis
Preprocessing
The MEG data were preprocessed in Matlab 2018b using FieldTrip (Oostenveld et al., 2011). We 
loaded the raw data separately for each composition including about 3 s pre- and post-stimulus periods. 
Based on the reference sensors of the CTF MEG system, we denoised the recorded MEG data using 
third-order gradient correction, after which the per-channel mean across time was subtracted. We 
then segmented the continuous data in 1 s segments. Using the semi-automatic routines in FieldTrip, 
we marked noisy segments according to outlying variance, such as MEG SQUID jumps, eye blinks or 
eye movements (based on the unfiltered data) or muscle artifacts (based on the data filtered between 
110 and 130 Hz). After removal of noisy segments, the data were downsampled to 400 Hz. Indepen-
dent component analysis (ICA) was then performed on the combined data from all compositions for 
each participant to identify components that reflected artifacts from cardiac activity, residual eye 
movements or blinks. Finally, we reloaded the data without segmentation, removed bad ICA compo-
nents and downsampled the data to 60 Hz for subsequent analyses.

A similar preprocessing pipeline was used for the EEG data. Here, the data were re-referenced 
using the linked mastoids. Bad channels were identified via visual inspection and replaced through 
interpolation after removal of bad ICA components.

TRF analysis
We performed time-resolved linear regression on the M|EEG data to investigate the neural signa-
tures of melodic surprise and uncertainty (Figure  1), using the regression evoked response tech-
nique (‘rERP’, Smith and Kutas, 2015).This approach allowed us to deconvolve the responses to 
different features and subsequent notes and correct for their temporal overlap. The preprocessed 
M|EEG data were loaded and band-pass filtered between 0.5 and 8 Hz (bidirectional FIR filter). All 
features of interest were modeled as impulse regressors with one value per note, either binary (x = 
{0,1}) or continuous (‍x ∈ R‍). The M|EEG channel data and continuous regressors were z-scored. We 
constructed a time-expanded regression matrix M, which contained time-shifted versions of each 
regressor column-wise (tmin = –0.2 s, tmax = 1 s relative to note onsets, 73 columns per regressor given 
the sampling rate of 60 Hz). After removal of bad time points identified during M|EEG preprocessing, 
we estimated the regression weights ‍̂β‍ using ordinary least squares (OLS) regression:

	﻿‍
β̂ =

(
MTM

)−1
MTy.

‍�

Collectively, the weights form a response function known as the regression evoked response or 
temporal response function (TRF; Crosse et  al., 2016; Ding and Simon, 2012). The TRF depicts 
how a feature modulates neural activity across time. Here, the units are arbitrary, since both binary 
and z-scored continuous regressors were included. Model estimation was performed using custom 
Python code built on the MNE rERP implementation (Gramfort et al., 2013; Smith and Kutas, 2015). 
Previous similar work has used ridge-regularized regression, rather than OLS (Di Liberto et al., 2020). 
We instead opted to use OLS, since the risk for overfitting was low given the sparse design matrices 
and low correlations between the time-shifted regressors. To make sure this did not unduly influence 
our results, we also implemented ridge-regularized regression with the optimal cost hyperparam-
eter alpha estimated via nested cross-validation. OLS (alpha = 0) was always among the best-fitting 
models and any increase in predictive performance for alpha >0 for some participants was negligible. 
Results for this control analysis are shown for the best fitting model for the MEG and EEG data in 

https://doi.org/10.7554/eLife.80935
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Appendix 1—figures 5 and 6, respectively. In the rest of the manuscript we thus report the results 
from the OLS regression.

Models and regressors
The Onset model contained a binary regressor, which coded for note onsets and was included in all 
other models too. The Baseline model added a set of regressors to control for acoustic properties of 
the music and other potential confounds. Binary regressors were added to code for (1) very high pitch 
notes (>90% quantile), (2) very low pitch notes (<10% quantile), since extreme pitch values go along 
with differences in perceived loudness, timbre, and other acoustic features; (3) the first note in each 
composition (i.e. composition onset); (4) repeated notes, to account for the repetition suppression 
effect and separate it from the surprise response. Since the MEG experiment used stimuli generated 
by different musical instruments, we additionally controlled for the type of sound, by including binary 
regressors for oboe and flute sounds. This was done since the different sounds have different acoustic 
properties, such as a lower attack time for piano sounds and longer sustain for oboe or flute sounds. 
For computing continuous acoustic regressors, we downsampled the audio signal to 22.05 kHz. We 
computed the mean for each variable of interest across the note duration to derive a single value 
for each note and create impulse regressors. The root-mean-square value (RMS) of the audio signal 
captures differences in (perceived) loudness. Flatness, defined as the ratio between the geometric and 
the arithmetic mean of the acoustic signal, controlled for differences in timbre. The variance of the 
broad-band envelope represented acoustic edges (McDermott and Simoncelli, 2011). The broad-
band envelope was derived by (a) filtering the downsampled audio signal through a gammatone filter 
bank (64 logarithmically spaced filter bands ranging between 50 and 8000 Hz), which simulates human 
auditory processing; (b) taking the absolute value of the Hilbert transform of the 64 band signals; (c) 
averaging across bands (Zuk et al., 2021). The baseline regressors were also included in all of the 
following models. The main models of interest added note-level surprise, uncertainty, and/or their 
interaction from the different computational models of music, varying the model class and context 
length.

Model comparison
We applied a fivefold cross-validation scheme (train: 80%, test: 20%, time window: 0–0.6 s) (Varoquaux 
et  al., 2017) to compare the regression models’ predictive performance on the M|EEG data. We 
computed the correlation between the predicted and recorded neural signal across time for each 
fold and channel on the hold out data. To increase the sensitivity of subsequent analyses, we selected 
the channels most responsive to musical notes for each participant according to the cross-validated 
performance for the Onset model (>2/3 quantile). The threshold was determined through visual 
inspection of the spatial topographies, but did not affect the main results. The overall model perfor-
mance was then determined as the median across folds and the mean across selected channels. Since 
the predictive performance was assessed on unseen hold out data, the approach controlled for over-
fitting the neural data and for differences in the number of regressors and free model parameters. For 
statistical inference, we computed one-sample or paired t-tests using multiple comparison correction 
(Bonferroni-Holm method).

Cluster-based statistics
For visualizations and cluster-based statistics, we transformed the regression coefficients from the 
axial MEG data to a planar representation using FieldTrip (Bastiaansen and Knösche, 2000). The 
regression coefficients estimated on the axial gradient data were linearly transformed to planar 
gradient data, for which the resulting synthetic horizontal and vertical planar gradient components 
were then non-linearly combined to a single magnitude per original MEG sensor. For the planar-
transformed coefficients, we selected the most responsive channels according to the coefficients of 
the note onset regressor in the Onset model (>5/6 quantile, time window: 0–0.6 s). The threshold was 
determined through visual inspection of the spatial topographies, but did not affect the main results. 
We then used cluster-based permutation tests (Maris and Oostenveld, 2007) to identify significant 
spatio-temporally clustered effects compared to the baseline time window (−0.2–0 s, 2000 permu-
tations). Using threshold free cluster enhancement (TFCE, Smith and Nichols, 2009), we further 
determined significant time points, where at least one selected channel showed a significant effect. 

https://doi.org/10.7554/eLife.80935
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Mass-univariate testing was done via one-sample t-tests on the baseline-corrected M|EEG data with 
‘hat’ variance adjustment (σ=1e−3) (Ridgway et al., 2012).

Source analysis
To localize the neural sources associated with the different regressors, we used equivalent current 
dipole modeling (ECD). Individuals’ anatomical MRI scans were realigned to CTF space based on the 
headshape data and the fiducial coil locations, using a semi-automatic procedure in Fieldtrip. The lead 
field was computed using a single-shell volume conduction model (Nolte, 2003). Based on individ-
uals’ time-averaged axial gradient TRF data in the main time window of interest (180–240ms), we used 
a non-linear fitting algorithm to estimate the dipole configuration that best explained the observed 
sensor maps (FieldTrip’s ft_dipolefitting). We compared three models with one to three dipoles per 
hemisphere. As the final solution per participant, we chose that with the largest adjusted-r2 score in 
explaining the observed sensor topography (thereby adjusting for the additional 12 free parameters 
caused by introducing an extra dipole; 2 hemispheres times x/y/z/dx/dy/dz). As starting point for 
the search, we roughly specified bilateral primary auditory cortex (MNI coordinates x/y/z [48, -28, 
10] mm (R), [-40,–28, 6] mm (L); Anderson et al., 2011; Kiviniemi et al., 2009), with a small random 
jitter (normally distributed with SD = 1 mm) to prevent exact overlap in starting positions of multiple 
dipoles. Note that the initial dipole location has a negligible effect on the final solution if the data are 
well explained by the final fit model. This was the case for our data, see Results. For visualization, we 
estimated the (volumetric) density of best-fit dipole locations across participants and projected this 
onto the average MNI brain template, separately for each regressor.

Acknowledgements
We thank David Temperley for providing the code for his model and Marcus Pearce for discussions on 
the IDyOM model. This work was supported by The Netherlands Organisation for Scientific Research 
(NWO Veni grant 016.Veni.198.065 awarded to ES) and the European Research Council (ERC Consol-
idator grant SURPRISE # 101000942 awarded to FPdL).

Additional information

Competing interests
Floris P de Lange: Senior editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Nederlandse Organisatie 
voor Wetenschappelijk 
Onderzoek

016.Veni.198.065 Eelke Spaak

European Research 
Council

101000942 Floris P de Lange

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Pius Kern, Conceptualization, Data curation, Formal analysis, Visualization, Methodology, Writing - 
original draft, Project administration, Writing – review and editing; Micha Heilbron, Conceptualization, 
Supervision, Investigation, Methodology, Project administration; Floris P de Lange, Conceptualiza-
tion, Supervision, Funding acquisition, Project administration, Writing – review and editing; Eelke 
Spaak, Conceptualization, Data curation, Software, Formal analysis, Supervision, Funding acquisition, 
Investigation, Visualization, Methodology, Project administration, Writing – review and editing

Author ORCIDs
Pius Kern ‍ ‍ http://orcid.org/0000-0003-4796-1864

https://doi.org/10.7554/eLife.80935
http://orcid.org/0000-0003-4796-1864


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kern et al. eLife 2022;11:e80935. DOI: https://doi.org/10.7554/eLife.80935 � 21 of 31

Floris P de Lange ‍ ‍ http://orcid.org/0000-0002-6730-1452
Eelke Spaak ‍ ‍ http://orcid.org/0000-0002-2018-3364

Ethics
Human subjects: The study was approved under the general ethical approval for the Donders 
Centre for Cognitive Neuroimaging (Imaging Human Cognition, CMO2014/288) by the local ethics 
committee (CMO Arnhem-Nijmegen, Radboud University Medical Centre). Participants provided 
written informed consent before the experiment and received monetary compensation.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.80935.sa1
Author response https://doi.org/10.7554/eLife.80935.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
All data have been deposited into the Donders Repository under CC-BY-4.0 license, under identifier 
https://doi.org/10.34973/5qxw-nn97.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Kern P, Heilbron M, 
de Lange FP, Spaak E

2022 Tracking predictions 
in naturalistic music 
listening using MEG and 
computational models of 
music

https://​doi.​org/​10.​
34973/​5qxw-​nn97

Donders Repository, 
10.34973/5qxw-nn97

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

DiLiberto et al 2020 Cortical encoding of 
melodic expectations in 
human temporal cortex

https://​doi.​org/​
10.​5061/​dryad.​
g1jwstqmh

Dryad Digital Repository, 
10.5061/dryad.g1jwstqmh

References
Agres K, Abdallah S, Pearce MT. 2018. Information-Theoretic properties of auditory sequences dynamically 

influence expectation and memory. Cognitive Science 42:43–76. DOI: https://doi.org/10.1111/cogs.12477, 
PMID: 28121017

Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D. 2011. Reproducibility of single-subject functional 
connectivity measurements. AJNR. American Journal of Neuroradiology 32:548–555. DOI: https://doi.org/10.​
3174/ajnr.A2330, PMID: 21273356

Auksztulewicz R, Friston K. 2016. Repetition suppression and its contextual determinants in predictive coding. 
Cortex; a Journal Devoted to the Study of the Nervous System and Behavior 80:125–140. DOI: https://doi.org/​
10.1016/j.cortex.2015.11.024, PMID: 26861557

Barascud N, Pearce MT, Griffiths TD, Friston KJ, Chait M. 2016. Brain responses in humans reveal ideal observer-
like sensitivity to complex acoustic patterns. PNAS 113:E616–E625. DOI: https://doi.org/10.1073/pnas.​
1508523113, PMID: 26787854

Bastiaansen MC, Knösche TR. 2000. Tangential derivative mapping of axial MEG applied to event-related 
desynchronization research. Clinical Neurophysiology 111:1300–1305. DOI: https://doi.org/10.1016/s1388-​
2457(00)00272-8, PMID: 10880806

Bianco R, Harrison PM, Hu M, Bolger C, Picken S, Pearce MT, Chait M. 2020. Long-Term implicit memory for 
sequential auditory patterns in humans. eLife 9:e56073. DOI: https://doi.org/10.7554/eLife.56073, PMID: 
32420868

Bigand E, Delbé C, Poulin-Charronnat B, Leman M, Tillmann B. 2014. Empirical evidence for musical SYNTAX 
processing? computer simulations reveal the contribution of auditory short-term memory. Frontiers in Systems 
Neuroscience 8:94. DOI: https://doi.org/10.3389/fnsys.2014.00094, PMID: 24936174

https://doi.org/10.7554/eLife.80935
http://orcid.org/0000-0002-6730-1452
http://orcid.org/0000-0002-2018-3364
https://doi.org/10.7554/eLife.80935.sa1
https://doi.org/10.7554/eLife.80935.sa2
https://doi.org/10.34973/5qxw-nn97
https://doi.org/10.34973/5qxw-nn97
https://doi.org/10.34973/5qxw-nn97
https://doi.org/10.5061/dryad.g1jwstqmh
https://doi.org/10.5061/dryad.g1jwstqmh
https://doi.org/10.5061/dryad.g1jwstqmh
https://doi.org/10.1111/cogs.12477
http://www.ncbi.nlm.nih.gov/pubmed/28121017
https://doi.org/10.3174/ajnr.A2330
https://doi.org/10.3174/ajnr.A2330
http://www.ncbi.nlm.nih.gov/pubmed/21273356
https://doi.org/10.1016/j.cortex.2015.11.024
https://doi.org/10.1016/j.cortex.2015.11.024
http://www.ncbi.nlm.nih.gov/pubmed/26861557
https://doi.org/10.1073/pnas.1508523113
https://doi.org/10.1073/pnas.1508523113
http://www.ncbi.nlm.nih.gov/pubmed/26787854
https://doi.org/10.1016/s1388-2457(00)00272-8
https://doi.org/10.1016/s1388-2457(00)00272-8
http://www.ncbi.nlm.nih.gov/pubmed/10880806
https://doi.org/10.7554/eLife.56073
http://www.ncbi.nlm.nih.gov/pubmed/32420868
https://doi.org/10.3389/fnsys.2014.00094
http://www.ncbi.nlm.nih.gov/pubmed/24936174


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kern et al. eLife 2022;11:e80935. DOI: https://doi.org/10.7554/eLife.80935 � 22 of 31

Brainard DH. 1997. The psychophysics toolbox. Spatial Vision 10:433–436. DOI: https://doi.org/10.1163/​
156856897X00357, PMID: 9176952

Brattico E, Tervaniemi M, Näätänen R, Peretz I. 2006. Musical scale properties are automatically processed in the 
human auditory cortex. Brain Research 1117:162–174. DOI: https://doi.org/10.1016/j.brainres.2006.08.023, 
PMID: 16963000

Calma-Roddin N, Drury JE. 2020. Music, language, and the N400: Erp interference patterns across cognitive 
domains. Scientific Reports 10:11222. DOI: https://doi.org/10.1038/s41598-020-66732-0, PMID: 32641708

Carlsen JC. 1981. Some factors which influence melodic expectancy. Psychomusicology 1:12–29. DOI: https://​
doi.org/10.1037/h0094276

Clark A. 2013. Whatever next? predictive brains, situated agents, and the future of cognitive science. The 
Behavioral and Brain Sciences 36:181–204. DOI: https://doi.org/10.1017/S0140525X12000477, PMID: 
23663408

Collins T, Tillmann B, Barrett FS, Delbé C, Janata P. 2014. A combined model of sensory and cognitive 
representations underlying tonal expectations in music: from audio signals to behavior. Psychological Review 
121:33–65. DOI: https://doi.org/10.1037/a0034695, PMID: 24490788

Crosse MJ, Di Liberto GM, Bednar A, Lalor EC. 2016. The multivariate temporal response function (mtrf) 
toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in Human Neuroscience 
10:604. DOI: https://doi.org/10.3389/fnhum.2016.00604

Cuddy LL, Lunney CA. 1995. Expectancies generated by melodic intervals: perceptual judgments of melodic 
continuity. Perception & Psychophysics 57:451–462. DOI: https://doi.org/10.3758/bf03213071, PMID: 7596743

de Lange FP, Heilbron M, Kok P. 2018. How do expectations shape perception? Trends in Cognitive Sciences 
22:764–779. DOI: https://doi.org/10.1016/j.tics.2018.06.002, PMID: 30122170

Di Liberto GM, Pelofi C, Bianco R, Patel P, Mehta AD, Herrero JL, de Cheveigné A, Shamma S, Mesgarani N. 
2020. Cortical encoding of melodic expectations in human temporal cortex. eLife 9:e51784. DOI: https://doi.​
org/10.7554/eLife.51784, PMID: 32122465

Ding N, Simon JZ. 2012. Emergence of neural encoding of auditory objects while listening to competing 
speakers. PNAS 109:11854–11859. DOI: https://doi.org/10.1073/pnas.1205381109, PMID: 22753470

Friston K. 2010. The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience 11:127–138. 
DOI: https://doi.org/10.1038/nrn2787, PMID: 20068583

Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Baldeweg T, Friston KJ. 2009. Repetition suppression and 
plasticity in the human brain. NeuroImage 48:269–279. DOI: https://doi.org/10.1016/j.neuroimage.2009.06.​
034, PMID: 19540921

Goodkind A, Bicknell K. 2018. Predictive power of word surprisal for reading times is a linear function of 
language model quality. Proceedings of the 8th Workshop on Cognitive Modeling and Computational 
Linguistics (CMCL 2018. 10–18. DOI: https://doi.org/10.18653/v1/W18-0102

Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, 
Hämäläinen M. 2013. Meg and EEG data analysis with MNE-python. Frontiers in Neuroscience 7:267. DOI: 
https://doi.org/10.3389/fnins.2013.00267, PMID: 24431986

Grill-Spector K, Henson R, Martin A. 2006. Repetition and the brain: neural models of stimulus-specific effects. 
Trends in Cognitive Sciences 10:14–23. DOI: https://doi.org/10.1016/j.tics.2005.11.006, PMID: 16321563

Gwinn D, Myrick B, Nélias C. 2022. Gwinndr/musictransformer-pytorch. 1.0. Github. https://github.com/gwinndr/​
MusicTransformer-Pytorch

Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N. 2008. A hierarchy of temporal receptive windows in human 
cortex. The Journal of Neuroscience 28:2539–2550. DOI: https://doi.org/10.1523/JNEUROSCI.5487-07.2008, 
PMID: 18322098

Hawthorne C, Stasyuk A, Roberts A, Simon I, Huang CZA, Dieleman S, Elsen E, Engel J, Eck D. 2019. Enabling 
Factorized Piano Music Modeling and Generation with the MAESTRO Dataset. arXiv. http://​arxiv.​org/​abs/​1810.​
12247

Heilbron M., Chait M. 2018. Great expectations: is there evidence for predictive coding in auditory cortex? 
Neuroscience 389:54–73. DOI: https://doi.org/10.1016/j.neuroscience.2017.07.061, PMID: 28782642

Heilbron M, Armeni K, Schoffelen JM, Hagoort P, de Lange FP. 2021. A Hierarchy of Linguistic Predictions during 
Natural Language Comprehension. bioRxiv. DOI: https://doi.org/10.1101/2020.12.03.410399

Himberger KD, Chien HY, Honey CJ. 2018. Principles of temporal processing across the cortical hierarchy. 
Neuroscience 389:161–174. DOI: https://doi.org/10.1016/j.neuroscience.2018.04.030, PMID: 29729293

Honey CJ, Thesen T, Donner TH, Silbert LJ, Carlson CE, Devinsky O, Doyle WK, Rubin N, Heeger DJ, Hasson U. 
2012. Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76:423–434. 
DOI: https://doi.org/10.1016/j.neuron.2012.08.011, PMID: 23083743

Huang CZA, Vaswani A, Uszkoreit J, Shazeer N, Simon I, Hawthorne C, Dai AM, Hoffman MD, Dinculescu M, 
Eck D. 2018. Music Transformer. arXiv. http://​arxiv.​org/​abs/​1809.​04281

Huron D. 2006. Sweet Anticipation: Music and the Psychology of Expectation. The MIT Press. DOI: https://doi.​
org/10.7551/mitpress/6575.001.0001

Jurafsky D, Martin JH. 2000. Speech and Language Processing: An Introduction to Natural Language 
Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR.

Juslin PN, Västfjäll D. 2008. Emotional responses to music: the need to consider underlying mechanisms. The 
Behavioral and Brain Sciences 31:559–575; . DOI: https://doi.org/10.1017/S0140525X08005293, PMID: 
18826699

https://doi.org/10.7554/eLife.80935
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1016/j.brainres.2006.08.023
http://www.ncbi.nlm.nih.gov/pubmed/16963000
https://doi.org/10.1038/s41598-020-66732-0
http://www.ncbi.nlm.nih.gov/pubmed/32641708
https://doi.org/10.1037/h0094276
https://doi.org/10.1037/h0094276
https://doi.org/10.1017/S0140525X12000477
http://www.ncbi.nlm.nih.gov/pubmed/23663408
https://doi.org/10.1037/a0034695
http://www.ncbi.nlm.nih.gov/pubmed/24490788
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.3758/bf03213071
http://www.ncbi.nlm.nih.gov/pubmed/7596743
https://doi.org/10.1016/j.tics.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/30122170
https://doi.org/10.7554/eLife.51784
https://doi.org/10.7554/eLife.51784
http://www.ncbi.nlm.nih.gov/pubmed/32122465
https://doi.org/10.1073/pnas.1205381109
http://www.ncbi.nlm.nih.gov/pubmed/22753470
https://doi.org/10.1038/nrn2787
http://www.ncbi.nlm.nih.gov/pubmed/20068583
https://doi.org/10.1016/j.neuroimage.2009.06.034
https://doi.org/10.1016/j.neuroimage.2009.06.034
http://www.ncbi.nlm.nih.gov/pubmed/19540921
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.3389/fnins.2013.00267
http://www.ncbi.nlm.nih.gov/pubmed/24431986
https://doi.org/10.1016/j.tics.2005.11.006
http://www.ncbi.nlm.nih.gov/pubmed/16321563
https://github.com/gwinndr/MusicTransformer-Pytorch
https://github.com/gwinndr/MusicTransformer-Pytorch
https://doi.org/10.1523/JNEUROSCI.5487-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18322098
https://doi.org/10.1016/j.neuroscience.2017.07.061
http://www.ncbi.nlm.nih.gov/pubmed/28782642
https://doi.org/10.1101/2020.12.03.410399
https://doi.org/10.1016/j.neuroscience.2018.04.030
http://www.ncbi.nlm.nih.gov/pubmed/29729293
https://doi.org/10.1016/j.neuron.2012.08.011
http://www.ncbi.nlm.nih.gov/pubmed/23083743
https://doi.org/10.7551/mitpress/6575.001.0001
https://doi.org/10.7551/mitpress/6575.001.0001
https://doi.org/10.1017/S0140525X08005293
http://www.ncbi.nlm.nih.gov/pubmed/18826699


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kern et al. eLife 2022;11:e80935. DOI: https://doi.org/10.7554/eLife.80935 � 23 of 31

Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang YF, 
Tervonen O. 2009. Functional segmentation of the brain cortex using high model order group pica. Human 
Brain Mapping 30:3865–3886. DOI: https://doi.org/10.1002/hbm.20813, PMID: 19507160

Koelsch S, Gunter T, Friederici AD, Schröger E. 2000. Brain indices of music processing: “ nonmusicians ” are 
musical. Journal of Cognitive Neuroscience 12:520–541. DOI: https://doi.org/10.1162/089892900562183, 
PMID: 10931776

Koelsch S, Vuust P, Friston K. 2019. Predictive processes and the peculiar case of music. Trends in Cognitive 
Sciences 23:63–77. DOI: https://doi.org/10.1016/j.tics.2018.10.006, PMID: 30471869

Krumhansl CL, Kessler EJ. 1982. Tracing the dynamic changes in perceived Tonal organization in a spatial 
representation of musical keys. Psychological Review 89:334–368. DOI: https://doi.org/10.1037/0033-295X.89.​
4.334, PMID: 7134332

Krumhansl CL. 2015. Statistics, structure, and style in music. Music Perception 33:20–31. DOI: https://doi.org/​
10.1525/mp.2015.33.1.20

Kutas M, Federmeier KD. 2011. Thirty years and counting: finding meaning in the N400 component of the 
event-related brain potential (Erp). Annual Review of Psychology 62:621–647. DOI: https://doi.org/10.1146/​
annurev.psych.093008.131123, PMID: 20809790

Leys C, Ley C, Klein O, Bernard P, Licata L. 2013. Detecting outliers: do not use standard deviation around the 
mean, use absolute deviation around the median. Journal of Experimental Social Psychology 49:764–766. DOI: 
https://doi.org/10.1016/j.jesp.2013.03.013

Maheu M, Dehaene S, Meyniel F. 2019. Brain signatures of a multiscale process of sequence learning in humans. 
eLife 8:e41541. DOI: https://doi.org/10.7554/eLife.41541, PMID: 30714904

Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience 
Methods 164:177–190. DOI: https://doi.org/10.1016/j.jneumeth.2007.03.024, PMID: 17517438

Marmel F, Tillmann B, Dowling WJ. 2008. Tonal expectations influence pitch perception. Perception & 
Psychophysics 70:841–852. DOI: https://doi.org/10.3758/pp.70.5.841, PMID: 18613632

Marmel F, Tillmann B, Delbé C. 2010. Priming in melody perception: tracking down the strength of cognitive 
expectations. Journal of Experimental Psychology. Human Perception and Performance 36:1016–1028. DOI: 
https://doi.org/10.1037/a0018735, PMID: 20695715

McDermott JH, Simoncelli EP. 2011. Sound texture perception via statistics of the auditory periphery: evidence 
from sound synthesis. Neuron 71:926–940. DOI: https://doi.org/10.1016/j.neuron.2011.06.032, PMID: 
21903084

Mencke I, Quiroga-Martinez DR, Omigie D, Michalareas G, Schwarzacher F, Haumann NT, Vuust P, Brattico E. 
2021. Prediction under uncertainty: dissociating sensory from cognitive expectations in highly uncertain musical 
contexts. Brain Research 1773:147664. DOI: https://doi.org/10.1016/j.brainres.2021.147664, PMID: 34560052

Meyer LB. 1957. Emotion and Meaning in Music. University of Chicago Press.
Milne AE, Zhao S, Tampakaki C, Bury G, Chait M. 2021. Sustained pupil responses are modulated by 

predictability of auditory sequences. The Journal of Neuroscience 41:6116–6127. DOI: https://doi.org/10.​
1523/JNEUROSCI.2879-20.2021, PMID: 34083259

Miranda RA, Ullman MT. 2007. Double dissociation between rules and memory in music: an event-related 
potential study. NeuroImage 38:331–345. DOI: https://doi.org/10.1016/j.neuroimage.2007.07.034, PMID: 
17855126

Moldwin T, Schwartz O, Sussman ES. 2017. Statistical learning of melodic patterns influences the brain’s 
response to wrong notes. Journal of Cognitive Neuroscience 29:2114–2122. DOI: https://doi.org/10.1162/​
jocn_a_01181, PMID: 28850296

Morgan E, Fogel A, Nair A, Patel AD. 2019. Statistical learning and gestalt-like principles predict melodic 
expectations. Cognition 189:23–34. DOI: https://doi.org/10.1016/j.cognition.2018.12.015, PMID: 30913527

Müllensiefen D, Gingras B, Musil J, Stewart L. 2014. The musicality of non-musicians: an index for assessing 
musical sophistication in the general population. PLOS ONE 9:e89642. DOI: https://doi.org/10.1371/journal.​
pone.0089642, PMID: 24586929

Näätänen R, Paavilainen P, Rinne T, Alho K. 2007. The mismatch negativity (MMN) in basic research of central 
auditory processing: a review. Clinical Neurophysiology 118:2544–2590. DOI: https://doi.org/10.1016/j.clinph.​
2007.04.026, PMID: 17931964

Narmour E. 1990. The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. 
University of Chicago Press.

Narmour E. 1992. The Analysis and Cognition of Melodic Complexity: The Implication-Realization Model. 
University of Chicago Press.

Nolte G. 2003. The magnetic lead field theorem in the quasi-static approximation and its use for 
magnetoencephalography forward calculation in realistic volume conductors. Physics in Medicine and Biology 
48:3637–3652. DOI: https://doi.org/10.1088/0031-9155/48/22/002, PMID: 14680264

Omigie D, Pearce MT, Williamson VJ, Stewart L. 2013. Electrophysiological correlates of melodic processing in 
congenital amusia. Neuropsychologia 51:1749–1762. DOI: https://doi.org/10.1016/j.neuropsychologia.2013.​
05.010, PMID: 23707539

Omigie D, Pearce MT, Lehongre K, Hasboun D, Navarro V, Adam C, Samson S. 2019. Intracranial recordings and 
computational modeling of music reveal the time course of prediction error signaling in frontal and temporal 
cortices. Journal of Cognitive Neuroscience 31:855–873. DOI: https://doi.org/10.1162/jocn_a_01388, PMID: 
30883293

https://doi.org/10.7554/eLife.80935
https://doi.org/10.1002/hbm.20813
http://www.ncbi.nlm.nih.gov/pubmed/19507160
https://doi.org/10.1162/089892900562183
http://www.ncbi.nlm.nih.gov/pubmed/10931776
https://doi.org/10.1016/j.tics.2018.10.006
http://www.ncbi.nlm.nih.gov/pubmed/30471869
https://doi.org/10.1037/0033-295X.89.4.334
https://doi.org/10.1037/0033-295X.89.4.334
http://www.ncbi.nlm.nih.gov/pubmed/7134332
https://doi.org/10.1525/mp.2015.33.1.20
https://doi.org/10.1525/mp.2015.33.1.20
https://doi.org/10.1146/annurev.psych.093008.131123
https://doi.org/10.1146/annurev.psych.093008.131123
http://www.ncbi.nlm.nih.gov/pubmed/20809790
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.7554/eLife.41541
http://www.ncbi.nlm.nih.gov/pubmed/30714904
https://doi.org/10.1016/j.jneumeth.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517438
https://doi.org/10.3758/pp.70.5.841
http://www.ncbi.nlm.nih.gov/pubmed/18613632
https://doi.org/10.1037/a0018735
http://www.ncbi.nlm.nih.gov/pubmed/20695715
https://doi.org/10.1016/j.neuron.2011.06.032
http://www.ncbi.nlm.nih.gov/pubmed/21903084
https://doi.org/10.1016/j.brainres.2021.147664
http://www.ncbi.nlm.nih.gov/pubmed/34560052
https://doi.org/10.1523/JNEUROSCI.2879-20.2021
https://doi.org/10.1523/JNEUROSCI.2879-20.2021
http://www.ncbi.nlm.nih.gov/pubmed/34083259
https://doi.org/10.1016/j.neuroimage.2007.07.034
http://www.ncbi.nlm.nih.gov/pubmed/17855126
https://doi.org/10.1162/jocn_a_01181
https://doi.org/10.1162/jocn_a_01181
http://www.ncbi.nlm.nih.gov/pubmed/28850296
https://doi.org/10.1016/j.cognition.2018.12.015
http://www.ncbi.nlm.nih.gov/pubmed/30913527
https://doi.org/10.1371/journal.pone.0089642
https://doi.org/10.1371/journal.pone.0089642
http://www.ncbi.nlm.nih.gov/pubmed/24586929
https://doi.org/10.1016/j.clinph.2007.04.026
https://doi.org/10.1016/j.clinph.2007.04.026
http://www.ncbi.nlm.nih.gov/pubmed/17931964
https://doi.org/10.1088/0031-9155/48/22/002
http://www.ncbi.nlm.nih.gov/pubmed/14680264
https://doi.org/10.1016/j.neuropsychologia.2013.05.010
https://doi.org/10.1016/j.neuropsychologia.2013.05.010
http://www.ncbi.nlm.nih.gov/pubmed/23707539
https://doi.org/10.1162/jocn_a_01388
http://www.ncbi.nlm.nih.gov/pubmed/30883293


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kern et al. eLife 2022;11:e80935. DOI: https://doi.org/10.7554/eLife.80935 � 24 of 31

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: open source software for advanced analysis of 
MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience 2011:156869. 
DOI: https://doi.org/10.1155/2011/156869

Painter JG, Koelsch S. 2011. Can out-of-context musical sounds convey meaning? an ERP study on the 
processing of meaning in music. Psychophysiology 48:645–655. DOI: https://doi.org/10.1111/j.1469-8986.​
2010.01134.x, PMID: 20883505

Patel AD. 2003. Language, music, SYNTAX and the brain. Nature Neuroscience 6:674–681. DOI: https://doi.org/​
10.1038/nn1082, PMID: 12830158

Pearce MT. 2005. The Construction and Evaluation of Statistical Models of Melodic Structure in Music 
Perception and Composition. Doctoral City University London.

Pearce MT, Wiggins GA. 2006. Expectation in melody: the influence of context and learning. Music Perception 
23:377–405. DOI: https://doi.org/10.1525/mp.2006.23.5.377

Pearce MT, Ruiz MH, Kapasi S, Wiggins GA, Bhattacharya J. 2010. Unsupervised statistical learning underpins 
computational, behavioural, and neural manifestations of musical expectation. NeuroImage 50:302–313. DOI: 
https://doi.org/10.1016/j.neuroimage.2009.12.019, PMID: 20005297

Pearce MT, Wiggins GA. 2012. Auditory expectation: the information dynamics of music perception and 
cognition. Topics in Cognitive Science 4:625–652. DOI: https://doi.org/10.1111/j.1756-8765.2012.01214.x, 
PMID: 22847872

Pearce MT. 2018. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic 
enculturation. Annals of the New York Academy of Sciences 1423:378–395. DOI: https://doi.org/10.1111/nyas.​
13654, PMID: 29749625

Pesnot Lerousseau J, Schön D. 2021. Musical expertise is associated with improved neural statistical learning in 
the auditory domain. Cerebral Cortex 31:4877–4890. DOI: https://doi.org/10.1093/cercor/bhab128, PMID: 
34013316

Picton T. 2013. Hearing in time: evoked potential studies of temporal processing. Ear and Hearing 34:385–401. 
DOI: https://doi.org/10.1097/AUD.0b013e31827ada02, PMID: 24005840

Pratt H. 2011. Sensory ERP Components. The Oxford Handbook of Event-Related Potential Components. DOI: 
https://doi.org/10.1093/oxfordhb/9780195374148.013.0050

Quiroga-Martinez DR, Hansen NC, Højlund A, Pearce MT, Brattico E, Vuust P. 2020. Decomposing neural 
responses to melodic surprise in musicians and non-musicians: evidence for a hierarchy of predictions in the 
auditory system. NeuroImage 215:116816. DOI: https://doi.org/10.1016/j.neuroimage.2020.116816, PMID: 
32276064

Quiroga-Martinez DR, Hansen NC, Højlund A, Pearce MT, Brattico E, Holmes E, Friston K, Vuust P. 2021. 
Musicianship and melodic predictability enhance neural gain in auditory cortex during pitch deviance 
detection. Human Brain Mapping 42:5595–5608. DOI: https://doi.org/10.1002/hbm.25638, PMID: 
34459062

Ridgway GR, Litvak V, Flandin G, Friston KJ, Penny WD. 2012. The problem of low variance voxels in statistical 
parametric mapping; a new HAT avoids a “ haircut. ” NeuroImage 59:2131–2141. DOI: https://doi.org/10.​
1016/j.neuroimage.2011.10.027, PMID: 22037420

Rodriguez Zivic PH, Shifres F, Cecchi GA. 2013. Perceptual basis of evolving western musical styles. PNAS 
110:10034–10038. DOI: https://doi.org/10.1073/pnas.1222336110, PMID: 23716669

Rohrmeier MA, Rebuschat P, Cross I. 2011. Incidental and online learning of melodic structure. Consciousness 
and Cognition 20:214–222. DOI: https://doi.org/10.1016/j.concog.2010.07.004, PMID: 20832338

Rohrmeier MA, Koelsch S. 2012. Predictive information processing in music cognition. A critical review. 
International Journal of Psychophysiology 83:164–175. DOI: https://doi.org/10.1016/j.ijpsycho.2011.12.010, 
PMID: 22245599

Rohrmeier MA, Rebuschat P. 2012. Implicit learning and acquisition of music. Topics in Cognitive Science 
4:525–553. DOI: https://doi.org/10.1111/j.1756-8765.2012.01223.x, PMID: 23060126

Saffran JR, Johnson EK, Aslin RN, Newport EL. 1999. Statistical learning of tone sequences by human infants 
and adults. Cognition 70:27–52. DOI: https://doi.org/10.1016/s0010-0277(98)00075-4, PMID: 10193055

Salimpoor VN, Zald DH, Zatorre RJ, Dagher A, McIntosh AR. 2015. Predictions and the brain: how musical 
sounds become rewarding. Trends in Cognitive Sciences 19:86–91. DOI: https://doi.org/10.1016/j.tics.2014.12.​
001, PMID: 25534332

Savage PE, Brown S, Sakai E, Currie TE. 2015. Statistical universals reveal the structures and functions of human 
music. PNAS 112:8987–8992. DOI: https://doi.org/10.1073/pnas.1414495112, PMID: 26124105

Schmitt LM, Erb J, Tune S, Rysop AU, Hartwigsen G, Obleser J. 2021. Predicting speech from a cortical hierarchy 
of event-based time scales. Science Advances 7:eabi6070. DOI: https://doi.org/10.1126/sciadv.abi6070, PMID: 
34860554

Schmuckler MA. 1989. Expectation in music: investigation of melodic and harmonic processes. Music Perception 
7:109–149. DOI: https://doi.org/10.2307/40285454

Schrimpf M, Blank IA, Tuckute G, Kauf C, Hosseini EA, Kanwisher N, Tenenbaum JB, Fedorenko E. 2021. The 
neural architecture of language: integrative modeling converges on predictive processing. PNAS 
118:e2105646118. DOI: https://doi.org/10.1073/pnas.2105646118, PMID: 34737231

Sears DR, Pearce MT, Spitzer J, Caplin WE, McAdams S. 2019. Expectations for tonal cadences: sensory and 
cognitive priming effects. Quarterly Journal of Experimental Psychology 72:1422–1438. DOI: https://doi.org/​
10.1177/1747021818814472, PMID: 30404574

https://doi.org/10.7554/eLife.80935
https://doi.org/10.1155/2011/156869
https://doi.org/10.1111/j.1469-8986.2010.01134.x
https://doi.org/10.1111/j.1469-8986.2010.01134.x
http://www.ncbi.nlm.nih.gov/pubmed/20883505
https://doi.org/10.1038/nn1082
https://doi.org/10.1038/nn1082
http://www.ncbi.nlm.nih.gov/pubmed/12830158
https://doi.org/10.1525/mp.2006.23.5.377
https://doi.org/10.1016/j.neuroimage.2009.12.019
http://www.ncbi.nlm.nih.gov/pubmed/20005297
https://doi.org/10.1111/j.1756-8765.2012.01214.x
http://www.ncbi.nlm.nih.gov/pubmed/22847872
https://doi.org/10.1111/nyas.13654
https://doi.org/10.1111/nyas.13654
http://www.ncbi.nlm.nih.gov/pubmed/29749625
https://doi.org/10.1093/cercor/bhab128
http://www.ncbi.nlm.nih.gov/pubmed/34013316
https://doi.org/10.1097/AUD.0b013e31827ada02
http://www.ncbi.nlm.nih.gov/pubmed/24005840
https://doi.org/10.1093/oxfordhb/9780195374148.013.0050
https://doi.org/10.1016/j.neuroimage.2020.116816
http://www.ncbi.nlm.nih.gov/pubmed/32276064
https://doi.org/10.1002/hbm.25638
http://www.ncbi.nlm.nih.gov/pubmed/34459062
https://doi.org/10.1016/j.neuroimage.2011.10.027
https://doi.org/10.1016/j.neuroimage.2011.10.027
http://www.ncbi.nlm.nih.gov/pubmed/22037420
https://doi.org/10.1073/pnas.1222336110
http://www.ncbi.nlm.nih.gov/pubmed/23716669
https://doi.org/10.1016/j.concog.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20832338
https://doi.org/10.1016/j.ijpsycho.2011.12.010
http://www.ncbi.nlm.nih.gov/pubmed/22245599
https://doi.org/10.1111/j.1756-8765.2012.01223.x
http://www.ncbi.nlm.nih.gov/pubmed/23060126
https://doi.org/10.1016/s0010-0277(98)00075-4
http://www.ncbi.nlm.nih.gov/pubmed/10193055
https://doi.org/10.1016/j.tics.2014.12.001
https://doi.org/10.1016/j.tics.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25534332
https://doi.org/10.1073/pnas.1414495112
http://www.ncbi.nlm.nih.gov/pubmed/26124105
https://doi.org/10.1126/sciadv.abi6070
http://www.ncbi.nlm.nih.gov/pubmed/34860554
https://doi.org/10.2307/40285454
https://doi.org/10.1073/pnas.2105646118
http://www.ncbi.nlm.nih.gov/pubmed/34737231
https://doi.org/10.1177/1747021818814472
https://doi.org/10.1177/1747021818814472
http://www.ncbi.nlm.nih.gov/pubmed/30404574


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kern et al. eLife 2022;11:e80935. DOI: https://doi.org/10.7554/eLife.80935 � 25 of 31

Shaw P, Uszkoreit J, Vaswani A. 2018. Self-Attention with Relative Position Representations. Proceedings of the 
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human 
Language Technologies. . DOI: https://doi.org/10.18653/v1/N18-2074

Skerritt-Davis B, Elhilali M. 2018. Detecting change in stochastic sound sequences. PLOS Computational Biology 
14:e1006162. DOI: https://doi.org/10.1371/journal.pcbi.1006162, PMID: 29813049

Smith SM, Nichols TE. 2009. Threshold-free cluster enhancement: addressing problems of smoothing, threshold 
dependence and localisation in cluster inference. NeuroImage 44:83–98. DOI: https://doi.org/10.1016/j.​
neuroimage.2008.03.061, PMID: 18501637

Smith NJ, Kutas M. 2015. Regression-Based estimation of Erp waveforms: I. the rerp framework. 
Psychophysiology 52:157–168. DOI: https://doi.org/10.1111/psyp.12317, PMID: 25141770

Stolk A, Todorovic A, Schoffelen JM, Oostenveld R. 2013. Online and offline tools for head movement 
compensation in MEG. NeuroImage 68:39–48. DOI: https://doi.org/10.1016/j.neuroimage.2012.11.047, PMID: 
23246857

Temperley D. 2008. A probabilistic model of melody perception. Cognitive Science 32:418–444. DOI: https://​
doi.org/10.1080/03640210701864089, PMID: 21635341

Temperley D. 2014. Probabilistic models of melodic interval. Music Perception 32:85–99. DOI: https://doi.org/​
10.1525/mp.2014.32.1.85

Thaut MH. 2014. Musical echoic memory training (MEM). Thaut MH (Ed). Handbook of Neurologic Music 
Therapy. Oxford University Press. p. 311–313.

Tillmann B, Poulin-Charronnat B, Bigand E. 2014. The role of expectation in music: from the score to emotions 
and the brain. Wiley Interdisciplinary Reviews. Cognitive Science 5:105–113. DOI: https://doi.org/10.1002/wcs.​
1262, PMID: 26304299

Todorovic A, van Ede F, Maris E, de Lange FP. 2011. Prior expectation mediates neural adaptation to repeated 
sounds in the auditory cortex: an MEG study. The Journal of Neuroscience 31:9118–9123. DOI: https://doi.org/​
10.1523/JNEUROSCI.1425-11.2011, PMID: 21697363

Todorovic A, de Lange FP. 2012. Repetition suppression and expectation suppression are dissociable in time in 
early auditory evoked fields. The Journal of Neuroscience 32:13389–13395. DOI: https://doi.org/10.1523/​
JNEUROSCI.2227-12.2012, PMID: 23015429

Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. 2017. Assessing and tuning 
brain decoders: cross-validation, caveats, and guidelines. NeuroImage 145:166–179. DOI: https://doi.org/10.​
1016/j.neuroimage.2016.10.038, PMID: 27989847

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. Attention is all 
you need. Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (Eds). Advances in 
Neural Information Processing Systems. Curran Associates, Inc. p. 5998–6008.

Vuust P, Heggli OA, Friston KJ, Kringelbach ML. 2022. Music in the brain. Nature Reviews. Neuroscience 
23:287–305. DOI: https://doi.org/10.1038/s41583-022-00578-5, PMID: 35352057

Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S. 2011. Evidence for a hierarchy 
of predictions and prediction errors in human cortex. PNAS 108:20754–20759. DOI: https://doi.org/10.1073/​
pnas.1117807108, PMID: 22147913

Wilcox EG, Gauthier J, Hu J, Qian P, Levy R. 2020. On the Predictive Power of Neural Language Models for 
Human Real-Time Comprehension Behavior. arXiv. http://​arxiv.​org/​abs/​2006.​01912

Zatorre RJ, Salimpoor VN. 2013. From perception to pleasure: music and its neural substrates. PNAS 
110:10430–10437. DOI: https://doi.org/10.1073/pnas.1301228110, PMID: 23754373

Zhao S, Chait M, Dick F, Dayan P, Furukawa S, Liao HI. 2019. Pupil-linked phasic arousal evoked by violation but 
not emergence of regularity within rapid sound sequences. Nature Communications 10:4030. DOI: https://doi.​
org/10.1038/s41467-019-12048-1, PMID: 31492881

Zuk NJ, Murphy JW, Reilly RB, Lalor EC. 2021. Envelope reconstruction of speech and music highlights stronger 
tracking of speech at low frequencies. PLOS Computational Biology 17:e1009358. DOI: https://doi.org/10.​
1371/journal.pcbi.1009358

https://doi.org/10.7554/eLife.80935
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.1371/journal.pcbi.1006162
http://www.ncbi.nlm.nih.gov/pubmed/29813049
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1016/j.neuroimage.2008.03.061
http://www.ncbi.nlm.nih.gov/pubmed/18501637
https://doi.org/10.1111/psyp.12317
http://www.ncbi.nlm.nih.gov/pubmed/25141770
https://doi.org/10.1016/j.neuroimage.2012.11.047
http://www.ncbi.nlm.nih.gov/pubmed/23246857
https://doi.org/10.1080/03640210701864089
https://doi.org/10.1080/03640210701864089
http://www.ncbi.nlm.nih.gov/pubmed/21635341
https://doi.org/10.1525/mp.2014.32.1.85
https://doi.org/10.1525/mp.2014.32.1.85
https://doi.org/10.1002/wcs.1262
https://doi.org/10.1002/wcs.1262
http://www.ncbi.nlm.nih.gov/pubmed/26304299
https://doi.org/10.1523/JNEUROSCI.1425-11.2011
https://doi.org/10.1523/JNEUROSCI.1425-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21697363
https://doi.org/10.1523/JNEUROSCI.2227-12.2012
https://doi.org/10.1523/JNEUROSCI.2227-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23015429
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
http://www.ncbi.nlm.nih.gov/pubmed/27989847
https://doi.org/10.1038/s41583-022-00578-5
http://www.ncbi.nlm.nih.gov/pubmed/35352057
https://doi.org/10.1073/pnas.1117807108
https://doi.org/10.1073/pnas.1117807108
http://www.ncbi.nlm.nih.gov/pubmed/22147913
https://doi.org/10.1073/pnas.1301228110
http://www.ncbi.nlm.nih.gov/pubmed/23754373
https://doi.org/10.1038/s41467-019-12048-1
https://doi.org/10.1038/s41467-019-12048-1
http://www.ncbi.nlm.nih.gov/pubmed/31492881
https://doi.org/10.1371/journal.pcbi.1009358
https://doi.org/10.1371/journal.pcbi.1009358


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kern et al. eLife 2022;11:e80935. DOI: https://doi.org/10.7554/eLife.80935 � 26 of 31

Appendix 1

Appendix 1—table 1. Overview of the musical stimuli presented in the MEG (top) and EEG study 
(bottom).
MusicMEG

Composer Composition Year Key
Time 
signature

Tempo 
(bpm)

Duration 
(sec) Notes Sound

Benjamin Britten Metamorphoses Op. 49, II. Phaeton 1951 C maj 4/4 110 95 384 Oboe

Benjamin Britten Metamorphoses Op. 49, III. Niobe 1951 Db maj 4/4 60 101 171 Oboe

Benjamin Britten Metamorphoses Op. 49, IV. Bacchus 1951 F maj 4/4 100 114 448 Oboe

César Franck
Violin Sonata IV. Allegretto poco 
mosso 1886 A maj 4/4 150 175 458 Flute

Carl Philipp Emanuel Bach
Sonata for Solo Flute, 
Wq.132/H.564 III. 1763 A min 3/8 98 275 1358 Flute

Ernesto Köhler Flute Exercises Op. 33 a, V. Allegretto 1880 G maj 4/4 124 140 443 Flute

Ernesto Köhler Flute Exercises Op. 33b, VI. Presto 1880 D min 6/8 176 134 664 Piano

Georg Friedrich Händel
Flute Sonata Op. 1 No. 5, HWV 363b, 
IV. Bourrée 1711 G maj 4/4 132 84 244 Oboe

Georg Friedrich Händel
Flute Sonata Op. 1 No. 3, HWV 379, 
IV. Allegro 1711 E min 3/8 96 143 736 Piano

Joseph Haydn Little Serenade 1785 F maj 3/4 92 81 160 Oboe

Johann Sebastian Bach Flute Partita BWV 1013, II. Courante 1723 A min 3/4 64 176 669 Flute

Johann Sebastian Bach
Flute Partita BWV 1013, IV. Bourrée 
angloise 1723 A min 2/4 62 138 412 Oboe

Johann Sebastian Bach Violin Concerto BWV 1042, I. Allegro 1718 E maj 2/2 100 122 698 Piano

Johann Sebastian Bach
Violin Concerto BWV 1042, III. Allegro 
Assai 1718 E maj 3/8 92 80 413 Piano

Ludwig van Beethoven Sonatina (Anh. 5 No. 1) 1807 G maj 4/4 128 210 624 Flute

Muzio Clementi Sonatina Op. 36 No. 5, III. Rondo 1797 G maj 2/4 112 187 915 Piano

Modest Mussorgsky Pictures at an Exhibition - Promenade 1874 Bb maj 5/4 80 106 179 Oboe

Pyotr Ilyich Tchaikovsky
The Nutcracker Suite - Russian Dance 
Trepak 1892 G maj 2/4 120 78 396 Piano

Wolfgang Amadeus Mozart The Magic Flute K620, Papageno’s Aria 1791 F maj 2/4 72 150 452 Flute

2589 9824

MusicEEG

Composer Composition Year Key Time signature Tempo (bpm) Duration (sec) Notes Sound

Johann Sebastian Bach
Flute Partita BWV 1013, I. 
Allemande 1723 A min 4/4 100 158 1022 Piano

Johann Sebastian Bach Flute Partita BWV 1013, II. Corrente 1723 A min 3/4 100 154 891 Piano

Johann Sebastian Bach
Flute Partita BWV 1013, III. 
Sarabande 1723 A min 3/4 70 120 301 Piano

Johann Sebastian Bach Flute Partita BWV 1013, IV. Bourree 1723 A min 2/4 80 135 529 Piano

Johann Sebastian Bach
Violin Partita BWV 1004, I. 
Allemande 1723 D min 4/4 47 165 540 Piano

Johann Sebastian Bach Violin Sonata BWV 1001, IV. Presto 1720 G min 3/8 125 199 1604 Piano

Johann Sebastian Bach
Violin Partita BWV 1002, I. 
Allemande 1720 Bb min 4/4 50 173 620 Piano

Johann Sebastian Bach Violin Partita BWV 1004, IV. Gigue 1723 D min 12/8_ 120 182 1352 Piano

Johann Sebastian Bach Violin Partita BWV 1006, II. Loure 1720 E maj 6/4 80 134 338 Piano

Johann Sebastian Bach Violin Partita BWV 1006, III. Gavotte 1720 E maj 4/4 140 178 642 Piano

1598 7839

https://doi.org/10.7554/eLife.80935
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Appendix 1—figure 1. Comparison of the pitch (left) and pitch interval distributions (right) for the music data from 
the MEG study (top), EEG study (middle), and MCCC corpus (bottom).
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Appendix 1—figure 2. Model performance on the musical stimuli used in the EEG study. (A) Comparison of 
music model performance in predicting upcoming note pitch, as composition-level accuracy (left; higher is better), 
median surprise across notes (middle; lower is better), and median uncertainty across notes (right). Context length 
for each model is the best performing one across the range shown in (B). Vertical bars: single compositions, circle: 
median, thick line: quartiles, thin line: quartiles ±1.5 × interquartile range. (B) Accuracy of note pitch predictions 
(median across 10 compositions) as a function of context length and model class (same color code as (A)). Dots 
represent maximum for each model class. (C) Correlations between the surprise estimates from the best models.
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Appendix 1—figure 3. Comparison of the MEG TRFs and spatial topographies for the surprise estimates from the 
best models of each model class.
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Appendix 1—figure 4. Comparison of the EEG TRFs and spatial topographies for the surprise estimates from the 
best models of each model class.
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Appendix 1—figure 5. Comparison of the predictive performance on the MEG data using ridge-regularized 
regression, with the optimal cost hyperparameter alpha estimated using nested cross-validation. Results are shown 
for the best-performing model (MT, context length of 8 notes). Each line represents one participant. Lower panel: 
raw predictive performance (r). Upper panel: predictive performance expressed as percentage of a participant’s 
maximum.

https://doi.org/10.7554/eLife.80935


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kern et al. eLife 2022;11:e80935. DOI: https://doi.org/10.7554/eLife.80935 � 31 of 31

Appendix 1—figure 6. Comparison of the predictive performance on the EEG data using ridge-regularized 
regression, with the optimal cost hyperparameter alpha estimated using nested cross-validation. Results are shown 
for the best-performing model (MT, context length of 7 notes). Each line represents one participant. Lower panel: 
raw predictive performance (r). Upper panel: predictive performance expressed as percentage of a participant’s 
maximum.

https://doi.org/10.7554/eLife.80935
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