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Promoter sequence and architecture 
determine expression variability and 
confer robustness to genetic variants
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Jette Bornholdt‡, Sarah Rennie, Robin Andersson*

Department of Biology, University of Copenhagen, Copenhagen, Denmark

Abstract Genetic and environmental exposures cause variability in gene expression. Although 
most genes are affected in a population, their effect sizes vary greatly, indicating the existence of 
regulatory mechanisms that could amplify or attenuate expression variability. Here, we investigate 
the relationship between the sequence and transcription start site architectures of promoters and 
their expression variability across human individuals. We find that expression variability can be 
largely explained by a promoter’s DNA sequence and its binding sites for specific transcription 
factors. We show that promoter expression variability reflects the biological process of a gene, 
demonstrating a selective trade- off between stability for metabolic genes and plasticity for respon-
sive genes and those involved in signaling. Promoters with a rigid transcription start site architecture 
are more prone to have variable expression and to be associated with genetic variants with large 
effect sizes, while a flexible usage of transcription start sites within a promoter attenuates expression 
variability and limits genotypic effects. Our work provides insights into the variable nature of respon-
sive genes and reveals a novel mechanism for supplying transcriptional and mutational robustness to 
essential genes through multiple transcription start site regions within a promoter.

Editor's evaluation
This paper presents valuable findings about how human genetic variation impacts gene expression. 
Using a compelling analysis of new experimental data based on cell lines from 108 individuals, the 
authors uncover features that distinguish promoters with highly variable expression across individ-
uals from those exhibiting low variability. This work and the associated resource will be of broad 
interest for further investigations of the interplay between genetic variation and gene expression 
control.

Introduction
Transcriptional regulation is the main process controlling how genome- encoded information is trans-
lated into phenotypes. Hence, understanding how transcriptional regulation influences gene expres-
sion variability is of fundamental importance to understand how organisms are capable of generating 
proper phenotypes in the face of stochastic, environmental, and genetic variation. Through differ-
entiation, cells acquire highly specialized functions, but need to still maintain their general abilities 
to accurately regulate both essential pathways as well as responses to changes in the environment. 
To achieve robustness, regulatory processes must be capable of attenuating expression variability 
of essential genes (Bartha et  al., 2018), while still allowing, or possibly amplifying (Eldar and 
Elowitz, 2010; Urban and Johnston, 2018), variability in expression for genes that are required for 
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differentiation or responses to environmental changes and external cues. How cells can achieve such 
precision and robustness remains elusive.

Genetic variation affects the expression level (Montgomery et al., 2010; Pickrell et al., 2010; 
Stranger et al., 2007) of the majority of human genes (Battle et al., 2017; Lappalainen et al., 2013; 
Storey et al., 2007). However, genes are associated with highly different effect sizes, with ubiqui-
tously expressed or essential genes frequently being less affected (Battle et al., 2017). This indicates 
that genes associated with different regulatory programs are connected with different mechanisms or 
effects of mutational robustness (Payne and Wagner, 2015). Multiple transcription factor (TF) binding 
sites may act to buffer the effects of mutations in promoters (Spivakov et al., 2012), and promoters 
can have highly flexible transcription start site (TSS) architectures (Akalin et al., 2009; Carninci et al., 
2006; Lehner, 2008). This demonstrates that the sequence and architecture of a promoter may influ-
ence its variability in expression across individuals.

Previous studies aimed at identifying processes involved in the regulation of gene expression vari-
ability have indeed revealed regulatory features mostly associated with the promoters of genes, such 
as CpG islands and TATA- boxes (Morgan and Marioni, 2018; Ravarani et al., 2016; Sigalova et al., 
2020), the chromatin state around gene TSSs (Faure et al., 2017), and the propensity of RNA poly-
merase II to pause downstream of the TSS (Boettiger and Levine, 2009). These studies have relied on 
model organisms or focused on transcriptional noise across single cells. As of yet, regulatory features 
have not been thoroughly studied from the perspective of variability in promoter activity or across 
human individuals. Furthermore, it is unclear if regulation of variability mainly acts to attenuate vari-
ability to achieve stable expression for certain genes or if independent regulatory processes act in 
parallel to amplify variability for other genes.

Here, we provide a comprehensive characterization of the sequences, TSS architectures, and regu-
latory processes determining variability of promoter activity across human lymphoblastoid cell lines 
(LCLs). We find that variability in promoter activity is to a large degree reflected by the promoter 
sequence, notwithstanding possible genotypic differences. Furthermore, the presence of binding 
sites for specific TFs, including those of the ETS family, are highly predictive of low promoter vari-
ability independently of their impact on promoter expression levels. In addition, we demonstrate that 
differences in the variability of promoters reflect their involvement in distinct biological processes, 
indicating a selective trade- off between stability and plasticity of promoters. Finally, we show that 
flexibility in TSS usage is associated with attenuated promoter variability. Our results reveal a novel 
mechanism that confers mutational robustness to gene promoters via switches between proximal core 
promoters. This study provides fundamental insights into transcriptional regulation, indicating shared 
mechanisms that can buffer stochastic, environmental, and genetic variation and how these affect the 
responsiveness and cell- type restricted activity of genes.

Results
TSS profiling reveals variability in promoter activity across individuals
To characterize human variability in promoter activities, we profiled TSSs using CAGE (Cap Analysis of 
Gene Expression Takahashi et al., 2012; Figure 1A) across 108 Epstein- Barr virus (EBV)- transformed 
LCLs (Auton et al., 2015) of African origin, 89 from Yoruba in Ibadan, Nigeria (YRI) and 19 from Luhya 
in Webuye, Kenya (LWK) (Supplementary file 1). The samples had a balanced sex ratio, 56 females 
and 52 males, and no observable population stratification in the expression data (Figure 1—figure 
supplement 1). With CAGE, TSSs can be mapped with single base pair resolution and the relative 
number of sequencing reads supporting each TSS gives simultaneously an accurate estimate of the 
abundance of its associated RNA (Kawaji et al., 2014). The CAGE data across the LCL panel there-
fore give us a unique opportunity to both estimate variability in promoter activity and characterize the 
regulatory features influencing such variability.

We identified 29,001 active promoters of 15,994 annotated genes (Frankish et al., 2019) through 
positional clustering of proximal CAGE- inferred TSSs on the same strand (Figure 1A; Carninci et al., 
2006) detected in at least 10% of individuals (Supplementary file 2). This individual- agnostic strategy 
ensured a focus on promoters that are active across multiple individuals while also allowing for the 
measurement of variability in promoter activity across the panel. For example, the CAGE data revealed 
that the promoters of gene RPL26L1, encoding a putative component of the large 60 S subunit of the 
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Figure 1. CAGE profiling of TSSs reveals diverse promoter variability across individuals. (A) Illustration of the experimental design and approach for 
measuring promoter activity and variability. Capped 5’ ends of RNAs from LCLs derived from 108 individuals were sequenced with CAGE, followed by 
individual- agnostic positional clustering of proximal CAGE- inferred TSSs (first 5’ end bp of CAGE reads). The expression level of the resulting CAGE- 
inferred promoters proximal to annotated gene TSSs were quantified in each individual and used to measure promoter variability. (B) Example of 
promoter activity (TPM normalized count of CAGE reads) across individuals for a low variable promoter (gene RPL26L1) and a highly variable promoter 
(gene SIX3) with similar average expression across the panel. (C–D) Genome tracks for two promoters showing average TPM- normalized CAGE data 
(expression of CAGE- inferred TSSs) across individuals (top track) and TPM- normalized CAGE data for three individuals (bottom tracks) for a low variable 
promoter (panel C, gene RPL26L1) and a highly variable promoter (panel D, gene SIX3). (E–F) The CV2 (squared coefficient of variation) and mean 
expression relationship of 29,001 CAGE- inferred promoters across 108 individuals before (E) and after (F) adjustment of the mean expression- dispersion 

Figure 1 continued on next page
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ribosome, and transcription factor gene SIX3 have highly different variance yet similar mean expres-
sion across individuals (Figure 1B–D).

We used the squared coefficient of variation (CV2) as a measure of promoter expression dispersion, 
revealing how the normalized expression across individuals deviates from the mean for each identified 
promoter. We observed that the promoter CV2 decreases by increasing mean expression (Figure 1E; 
Eling et al., 2018; Kolodziejczyk et al., 2015; Sigalova et al., 2020). To account for this bias, we 
subtracted the expected dispersion for each promoter according to its expression level (Kolodzie-
jczyk et al., 2015; Newman et al., 2006). Importantly, rank differences in promoter dispersion were 
maintained for each expression level after adjustment, as seen for promoters of genes RPL26L1 and 
SIX3 (Figure 1E and F). This strategy thus allowed us to investigate how promoter architecture and 
sequence determine variability in promoter activity across the panel separately from its impact on 
expression level (Figure 1F).

Promoter expression variability is reflected by the promoter sequence
To investigate if local sequence features at promoters reflect their variability in activity, we applied 
machine learning (convolutional neural network (CNN); Figure 2—figure supplement 1A; see Mate-
rials and methods) to discern low variable promoters (N=5,054) from highly variable promoters 
(N=5,683) based on their local DNA sequence alone. We considered the genomic reference sequence 
to model the intrinsic component of variability encoded within the promoter sequence independently 
of local genetic variants within the panel. The resulting model was capable of distinguishing between 
these promoter classes with high accuracy (area under receiving operating curve (AUC)=0.84 for the 
out of sample test set; Figure 2—figure supplement 1B), equally well for highl and low variable 
promoters (per- class test set F1 scores of 0.76 and 0.77, respectively).

To assess which sequence features the CNN had learned to distinguish the classes, we calcu-
lated importance scores using DeepLift (Shrikumar et  al., 2019) for each nucleotide in the input 
sequences for predicting low and high promoter variability. This approach relies on backpropagation 
of the contributions of all neurons in the CNN to the input features, nucleotides, and can therefore be 
used to identify properties or short stretches of DNA indicative of amplifying or attenuating expres-
sion variability. We applied motif discovery on clustered stretches, so called metaclusters, of the input 
sequences with high importance scores (Shrikumar, 2020) and matched the identified metaclusters 
to known TF binding motifs (Fornes et al., 2020). This strategy revealed TFs indicative of either high 
or low promoter variability (Figure 2A–C). Noteworthy, we observed motifs for the ETS superfamily of 
TFs, including ELK1, ETV6, and ELK3, associated with low variable promoters, and motifs for PTF1A, 
ASCL2, and FOS- JUN heterodimer (AP- 1) among highly variable promoters. These results demon-
strate that the promoter sequence and its putative TF binding sites are predictive of the expression 
variability of a promoter.

Sequence features of promoters are highly predictive of promoter 
variability
To systematically test how predictive TF binding sites are of the variability of active promoters, we 
made use of binding sites predicted from motif scanning for 746 TFs (Fornes et al., 2020). TF binding 
site profiles and low/high CpG content (Figure 2—figure supplement 2A) were collected for each 
identified promoter and the resulting feature data were used to train a machine learning (random 
forest) classifier features associated with either high or low variability (low variable N=5054, highly 
variable N=5683). Feature selection (Kursa and Rudnicki, 2010) identified 124 of the 746 TFs as 
well as CpG ratio to be important for classification, and a classifier based on these selected features 
demonstrated high predictive performance (AUC = 0.79; per- class F1 score of 0.73 and 0.68 for low 

relationship. The CV2 and mean expression are log10 transformed, orange lines show loess regression lines fitting the dispersion to the mean expression 
level, and example gene promoters from B- D are highlighted in colors.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. PCA plot of promoter expression (CAGE) across the LCL panel.

Figure 1 continued
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Figure 2. Promoter sequence features are highly predictive of promoter variability. (A) Sequence logo of a metacluster (top) identified for low variable 
promoter sequences that matches known TF motifs (bottom) for ETS factors ELK1, ETV6, and ELK3. (B–C) Sequence logos of two metaclusters (top) 
identified for highly variable promoter sequences that match known TF motifs (bottom) for PTF1A and ASCL2 (B) and FOSL2- JUND and FOS- JUN 
heterodimers (C). (D) Average contribution (SHAP values) of CpG content and each of the 124 TFs identified as important for predicting promoter 
variability. Features are ordered by their average contribution to the prediction of highly variable promoters and selected TFs are highlighted. For a full 
version of the plot see Figure 2—figure supplement 3A. (E) The frequency of predicted TF binding sites (presence/absence) in highly variable (green) 
and low variable (blue) promoters. TFs are ordered as in D. For a full version of the plot see Figure 2—figure supplement 3B and C. (F–G) Promoters 
split into groups based on the presence/absence of high CpG content (F), and predicted binding sites of ELK3 (G). For both features displayed in panels 
F and G, the left subpanels display the relationship between log10- transformed mean expression levels and adjusted log10- transformed CV2 with loess 
regression lines shown separately for each promoter group. The right subpanels display box- and- whisker plots of the differences in adjusted log10- 
transformed CV2 between the two promoter groups (central band: median; boundaries: first and third quartiles; whiskers:+/-1.5 IQR). p- values were 
determined using the Wilcoxon rank- sum test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Neural network model and performance.

Figure supplement 2. Random forest features and performance.

Figure 2 continued on next page
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and highly variable promoters, respectively; Figure 2—figure supplement 2B), reinforcing the strong 
link observed between DNA sequence and promoter variability (Figure 2—figure supplement 1B).

Reverse engineering of the random forest classifier (SHAP, Shapley additive explanations) (Lund-
berg and Lee, 2017) allowed us to calculate the marginal contribution of each of the 125 selected 
features to the prediction of variability class for each promoter and whether the feature on average is 
indicative of amplifying or attenuating variability of expression when present in the promoter sequence 
(Figure 2D; Figure 2—figure supplement 3A). We identified the presence of high observed/expected 
CpG ratio and TATA- binding protein (TBP) binding sites (TATA- boxes) to be the strongest predictive 
features of low and high promoter variability, respectively. Although the remaining TFs contribute 
only marginally on their own to the predictions compared to TATA- box and high CpG content status 
(Figure 2D; Figure 2—figure supplement 3A), a baseline model (decision tree) based on CpG ratio 
and TBP binding site presence alone yielded worse performance than the full model (AUC = 0.71 vs 
0.79 for the baseline model and the full model, respectively; Figure 2—figure supplement 2B). This 
demonstrates that the TF binding grammar contributes to a promoter’s expression variability.

TFs associated with highly variable promoters are mostly related to tissue- specific or develop-
mental regulation (e.g., FOXP2, HOXA10) while TFs predictive of low promoter variability are gener-
ally associated with ubiquitous activity across cell types and a diverse range of basic cellular processes 
(e.g. ELK1, ELF4, ETV3). In addition, TFs predictive of high variability (e.g. ZIC2, ZNF449, HOXA10) 
tend to have binding sites in relatively few highly variable promoters while TFs predictive of low 
promoter variability (e.g. ELK1, ELK3) show a propensity for having binding sites present in a large 
number of promoters (Figure 2E; Figure 2—figure supplement 3B and C). This suggests that variably 
expressed promoters have diverse TF binding profiles and that the regulatory grammar for promoter 
stability is less complex.

Although the adjusted dispersion of promoters was separated from their expression level 
(Figure  1E), we observed that the presence of binding sites for some TFs that are predictive of 
promoter variability are also associated with promoter expression level (Figure 2—figure supple-
ment 4). Importantly, despite this association, the effect of identified features on promoter variability 
is still evident across a range of promoter expression levels (Figure 2F and G). This is particularly 
apparent for CpG islands, which seem to have an attenuating effect on promoter variability regardless 
of expression level (Figure 2F).

Many of the TFs identified as being predictive of low variability (e.g. ELK1, ELK3, ELF4, ETV2, ETV3) 
belong to the ETS family of TFs (Figure 2D; Figure 2—figure supplement 3A), a large group of TFs 
that are conserved across Metazoa and characterized by their shared ETS domain that binds 5′-GGA(A/
T)–3′ DNA sequences (Sharrocks, 2001). ETS factors are important regulators of promoter activities in 
lymphoid cells (Hepkema et al., 2020), but are generally involved in a wide range of crucial cellular 
processes such as growth, proliferation, apoptosis, and cellular homeostasis (Kar and Gutierrez- 
Hartmann, 2013; Oikawa and Yamada, 2003; Suico et al., 2017). Furthermore, different ETS factors 
can bind in a redundant manner to the same promoters of housekeeping genes (Hollenhorst et al., 
2011; Hollenhorst et al., 2007). However, the shared DNA- binding domain of ETS factors makes it 
hard to discern individual factors based on their binding motifs alone (Figure 2A). Although in general 
linked with higher promoter activity (Curina et al., 2017), ETS binding site presence is associated with 
lower variability across all expression levels (Figure 2G). In addition, the degree of promoter variability 
decreases by an increasing number of non- overlapping ETS binding sites (Figure 2—figure supple-
ment 5A), regardless of promoter expression level (Figure 2—figure supplement 5B), suggesting 
that multiple ETS binding sites can either facilitate cooperativity between ETS factors or provide 
robustness to stabilize promoter variability across individuals.

Taken together, our results indicate that promoter sequence can influence both low and high 
promoter variability across human individuals independently from its impact on expression level. Our 
results further indicate that variable promoters exhibit highly diverse binding grammars for TFs that 

Figure supplement 3. Full panel of features found to be predictive of promoter variability.

Figure supplement 4. Association between TF binding sites and promoter expression level.

Figure supplement 5. Association between the number of ETS binding sites and promoter variability.

Figure 2 continued
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are associated with relatively few promoters, while a more uniform regulatory grammar is indicated for 
stable promoters, being highly associated with higher CpG content and ETS binding sites.

Variability in promoter activity reflects plasticity and robustness for 
distinct biological functions
The high performance of predicting promoter variability from local DNA sequence and the distinct 
TF binding profiles of low and highly variable promoters imply that attenuation and amplification of 
variability are driven by distinct regulatory mechanisms. This argues that favoring robustness (low vari-
ability) over plasticity (high variability) should reflect the biological processes where this provides regu-
latory advantages. Supporting this hypothesis, we observed that low variable promoters were highly 
enriched with basic cellular housekeeping processes, in particular metabolic processes (Figure 3A). In 
contrast, highly variable promoters were enriched with more dynamic biological functions, including 
signaling, response to stimulus, and developmental processes.

Interestingly, the same features found to be predictive of low and high promoter variability 
across individuals, including CpG- content and TATA- boxes (TBP binding sites), are also associated 
with low and high transcriptional noise across individual cells (Faure et al., 2017; Morgan and 
Marioni, 2018). The presence of a TATA- box is also associated with high gene expression vari-
ability in flies (Sigalova et al., 2020). This suggests that some of the same underlying regulatory 
mechanisms that dictate low or high transcriptional noise across single cells are maintained and 
conserved between humans and flies at an individual level and manifested to control low and 
high expression variability across a population, respectively, as well as housekeeping or restricted 
activity across cell types.

In agreement, genes of highly variable promoters tend to have higher transcriptional noise 
than those of low variable ones across GM12878 single cells (Cohen’s d=0.411, p<2.2 × 10–16, 
two sample t- test; Figure  3—figure supplement 1A; Supplementary file 3). Furthermore, we 
observed an inverse correlation between variability in promoter activity and the number of cell 
types (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014) and tissues (Battle 
et al., 2017) the corresponding gene is expressed in (Spearman’s rank correlation ρ = −0.21 and 
−0.15 for cell types and tissues, respectively, p< 2.2 × 10–16; Figure 3B; Figure 3—figure supple-
ment 1B), demonstrating that highly variable promoters are more cell- type and tissue specific in 
their expression.

The restricted expression (Figure 3—figure supplement 1B), biological processes (Figure 3A), and 
promoter TF grammar (Figure 2D and E) of genes associated with highly variable promoters led us 
to hypothesize that these are more prone to respond to external stimuli. Tumor necrosis factor (TNFα) 
induces an acute and time- limited gene response to NFkB signaling (Nelson et al., 2004; Turner 
et al., 2010), with negligible impact on chromatin topology (Jin et al., 2013), and is therefore suitable 
to study gene responsiveness. We profiled GM12878 TSSs and promoter activities with CAGE before 
and after 6 hr treatment with TNFα (Supplementary file 4). This revealed enrichment of up- regu-
lated promoters among highly variable promoters (odds ratio (OR)=1.529, p=4.563 × 10–8, Fisher’s 
exact test) as posited, while low variable promoters were mostly unaffected or down- regulated (OR = 
0.459, p<2.2 × 10–16, Fisher’s exact test; Figure 3C). In addition, low variable promoters had a weaker 
response (Figure 3D).

Furthermore, we observed drug- target genes and genes with GWAS hits to be regulated by highly 
variable promoters but essential genes to be regulated by low variable promoters (Figure 3E). In 
contrast, when we compared promoter expression between these same groups of genes we observed 
no association with drug- targets or GWAS- associated genes. Although essential genes are associated 
with higher promoter expression, this association is comparably weaker than that with promoter vari-
ability (Figure 3—figure supplement 1C).

Taken together, our results demonstrate the importance of low promoter variability for cell viability 
and survival in different conditions and reveal the responsiveness of highly variable promoters. They 
further indicate that the variability observed in promoter activity across individuals is strongly associ-
ated with the regulation of its associated gene, the expression breadth across cell types, and to some 
extent also the transcriptional noise across single cells, which reflects a selective trade- off between 
high stability and high responsiveness and specificity.

https://doi.org/10.7554/eLife.80943
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Figure 3. Levels of promoter variability are reflective of distinct biological processes and a selective trade- off between robustness and plasticity. (A) 
GO term enrichment, for biological processes, of genes split by associated promoter variability quartiles (Q1, Q2, Q3). Top 10 GO terms of all groups 
are displayed and ranked based on p- values of the >Q3 variability group. (B) Median promoter variability (line) and interquartile range (shading), as a 
function of the number of FANTOM cell facets (grouping of FANTOM CAGE libraries associated with the same Cell Ontology term) that the associated 
gene is expressed in (mean facet expression >5 TPM). (C) The number of differentially expressed promoters, split by variability quartiles, after 6 h TNFα 
treatment. Promoters are separated into down- regulated (blue) and up- regulated (red). p- values were calculated using Fisher’s exact test. (D) Absolute 
log2 fold change of differentially expressed promoters, split by variability quartiles, after 6 h of TNFα treatment. (E) Distribution of promoter variability 
associated with drug- targets (purple), essential (orange), or GWAS hits (green) genes, compared to all promoters (black). Left: density plot of promoter 
variability per gene category. Right: Box- and- whisker plots of promoter variability split by each category of genes. p- values were determined using the 
Wilcoxon rank- sum test. For all box- and- whisker plots, central band: median; boundaries: first and third quartiles; whiskers:+/-1.5 IQR.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Levels of promoter variability are reflective of distinct biological processes.

https://doi.org/10.7554/eLife.80943
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Promoters with low variability have flexible transcription initiation 
architectures
Promoters are associated with different levels of spread of their TSS locations, which has led to their 
classification into broad or narrow (sharp) promoters according to their positional width (Akalin et al., 
2009; Carninci et al., 2006; Lehner, 2008). Although the shape and distinct biological mechanisms 
of these promoter classes, for example, housekeeping activities of broad promoters, are conserved 
across species (Carninci et al., 2006; Hoskins et al., 2011), the necessity for positional dispersion of 
TSSs and its association with promoter variability are poorly understood.

Analysis of promoter widths revealed only a weak relationship with promoter variability. We 
observed an enrichment of highly variable promoters within narrow promoters having an interquar-
tile range (IQR) of their CAGE- inferred TSSs within a width of 1–5 bp (p<2.2 × 10–16, OR = 2.04, 
Fisher’s exact test). Low variable promoters, on the other hand, were enriched among those of size 
10–25 bp (p<2.2 × 10–16, OR = 1.44, Fisher’s exact test), but beyond this width the association is lost 
(Figure 4—figure supplement 1A). To simultaneously capture the spread of TSSs and their relative 
frequencies compared to total RNA expression within a promoter, we considered a width- normalized 
Shannon entropy as a measure of TSS positional dispersion (Hoskins et al., 2011). This measure will 
discern promoters whose relative TSS expression is concentrated to a small subset of their widths (low 
entropy) from those with a more even spread (high entropy). We observed that low variable promoters 
are associated with a higher entropy than promoters with high variability (Figure 4A). Consistently, 
low variable promoters tend to have more TSSs substantially contributing to their overall expres-
sion across individuals (Figure 4—figure supplement 1B). We reasoned that a weaker association 
between low promoter variability and broad width than with high entropy may be due to low variable 
promoters being composed of multiple clusters of TSSs (multi- modal peaks) from independent core 
promoters. Indeed, decomposition of multi- modal peaks within the CAGE TSS signals of promoters 
(Supplementary file 5) demonstrated that higher entropy reflects an increased number of decom-
posed promoters, as indicated by their number of local maxima of CAGE signals (Figure 4B).

The decomposed promoters of gene UFSP2 (Figure 4C and E) clearly illustrate that the activity of 
sub- clusters of TSSs within promoters and their contributions to the overall activity of the encompassing 
promoter can vary to a great extent between individuals. In contrast, the decomposed promoters of 
gene RIT1 (Figure 4D and F) contribute equally to the overall activity of the encompassing promoter 
across individuals. To assess in general how individual decomposed promoters influence the overall 
promoter variability, we calculated the expression- adjusted dispersion (adjusted log10- transformed 
CV2) of local- maxima decomposed promoters. Interestingly, many of the decomposed promoters 
showed a vastly different variability across individuals compared to the promoters they originate from 
(Figure 4—figure supplement 1C). This disagreement indicates that decomposed promoters within 
the same promoter reflect core promoters that may either operate and be regulated independently 
of each other or differ in their ability to compete for the transcriptional machinery, both of which may 
contribute to the overall robustness or plasticity of the promoter and, in turn, the gene. As highly 
multimodal peaks are mainly found to be associated with low variable promoters, we hypothesized 
that this flexibility in core promoter usage may act as a compensatory mechanism to stabilize their 
expression.

If the effects of significant changes in expression across the panel are masked by compensatory 
changes in decomposed promoter usage within the same promoter, this would be revealed by low or 
even negative expression correlation between decomposed promoters (e.g., decomposed promoters 
1 and 2 of UFSP2, Figure 4C and E). Indeed, we observed a strong association between promoter 
variability and the minimal expression correlation between decomposed promoter pairs within a 
promoter (Figure 4G). Low variable multi- modal promoters are associated with weakly or even nega-
tively correlated pairs of decomposed promoters. In contrast, highly variable multi- modal promoters 
are associated with moderately or highly correlated pairs of decomposed promoters. The weak 
expression correlation between decomposed promoters of low variable promoters demonstrates that 
decomposed promoters may operate independently of each other, while negatively correlated pairs 
indicate a competition for the transcriptional machinery or a compensatory shift between decom-
posed promoters. The association between decomposed promoter correlation and overall promoter 
stability was maintained when all decomposed promoter pairs were considered (Figure 4—figure 
supplement 1D), and could not be explained by CpG island status (Figure 4—figure supplement 

https://doi.org/10.7554/eLife.80943
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Figure 4. Low variable promoters exhibit flexibility in transcription initiation architecture. (A) Promoter shape entropy for promoters split by variability 
quartiles, displayed as densities (left) and in a box- and- whisker plot (right). (B) Illustration of the local maxima decomposition approach (left; see 
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Figure 4 continued on next page
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1E). However, decomposed promoter expression correlation was associated with promoter width 
(Figure 4—figure supplement 1F), demonstrating that complex low variable promoters with multiple 
decomposed promoters require larger promoter width, while broad promoter width does not neces-
sarily lead to lower promoter variability.

The spread and dominant position of TSSs in broad promoters are tightly linked to immediate 
downstream (+1) nucleosome positioning, and changes in +1 nucleosome positioning can alter the 
preferred TSS (Dreos et  al., 2016; FANTOM Consortium and the RIKEN PMI and CLST (DGT) 
et al., 2014; Haberle et al., 2014). Hence, the variability and multi- modal TSS patterns of promoters 
could be related to their nucleosomal architectures. Indeed, comparison of  +1 nucleosome posi-
tioning relative to the dominant TSS position of promoters across the panel revealed that low vari-
able promoters tend to have stronger +1 nucleosome positioning (Figure 4—figure supplement 2A 
and B). However, when analyzing specifically multi- modal low variable promoters (containing at least 
two decomposed promoters), a strong +1 nucleosome was only observed for promoters with highly 
correlated decomposed promoters (Figure 4—figure supplement 2C and D). Furthermore, highly 
variable multi- modal promoters and those containing low correlated pairs of decomposed promoters 
exhibited more fuzzy +1 nucleosome positioning across cells (Figure 4—figure supplement 2E and 
F). Our results thus demonstrate that low variable promoters with flexible TSS usage, that is, having 
weakly or negatively correlated decomposed promoters, are characterized by less restrictive and 
more fuzzy +1 nucleosome positioning.

Taken together, our results demonstrate that flexible usage of core promoters within promoters 
with permissive nucleosomal architectures provide stability to the overall expression of a large subset 
of gene promoters with low variability.

Alternative TSSs of low variability promoters indicate a novel 
mechanism of mutational robustness
While genetic variants associated with gene expression levels (expression quantitative trait loci, 
eQTLs) frequently occur within gene promoters, they are rarely found associated with housekeeping 
or ubiquitously expressed genes, and when they are, they have limited effect sizes (Battle et  al., 
2017). One explanation for this observation is that mutations that would significantly alter the expres-
sion of such genes would be detrimental to cell viability. In addition, the rare and limited effects of 
eQTLs on housekeeping genes might be due to mechanisms promoting mutational robustness. Our 
results (Figure 4) indicate that a flexible TSS architecture within a promoter may provide such a mech-
anism and thereby mask the effects genetic variants may have on individual decomposed promoters.

To test if flexibility in core promoter usage within a promoter may cause mutational robustness, 
we first performed local eQTL analysis on promoters (within 25 kb). We tested both the association 
between the genotypes of common genetic variants (MAF ≥10%) and the expression of promoters 
(promoter eQTL, prQTLs; Figure 5A, top) as well as those of decomposed promoters (decomposed 
promoter eQTL, dprQTL). 2,457 promoters were associated with at least one prQTLs (5% FDR; Supple-
mentary file 6). While prQTLs were observed across all levels of promoter variability, they were more 
commonly associated with highly variable promoters (Figure 5B). Fewer prQTL single nucleotide poly-
morphisms (SNPs) and, in general, common variants were found proximal to low variable promoters, 
indicating a negative selection for these. As expected, the effect size for the most significant prQTL 
variant (lead SNP) for each promoter was positively associated with the expression variability of the 

the genome tracks, the original promoter and resulting decomposed promoters (shaded in genome tracks) are shown. (E–F) Relationship between 
TPM- normalized CAGE expression of decomposed promoter 1 (x- axis) and 2 (y- axis) across all 108 LCLs for example genes UFSP2 (E) and RIT1 (F). The 
expression values for individuals included in panels B and C are highlighted. (G) Densities of the lowest Pearson correlation between all pairs of 
decomposed promoters originating from the same promoter across all CAGE- inferred promoters with at least two decomposed promoters. For all box- 
and- whisker plots, central band: median; boundaries: first and third quartiles; whiskers:+/-1.5 IQR.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Low variable promoters tend to be composed of multiple clusters of TSSs rather than broader TSS signatures.

Figure supplement 2. Low variable promoters with highly correlated decomposed promoters tend to have a fixed +1 nucleosome position across 
individuals.

Figure 4 continued
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Figure 5. Plasticity in TSS usage is linked with increased mutational robustness. (A) Illustration of the strategy for testing the effects of genetic variants 
on promoter expression (prQTLs, TPM- normalized CAGE counts), decomposed promoter expression (dprQTLs, TPM- normalized CAGE counts), and 
decomposed promoter contribution to the encompassing promoter expression (frQTLs, ratios of TPM- normalized CAGE counts between decomposed 
and encompassing promoters). For both approaches only SNPs within 25 kb of the promoter CAGE signal summit were tested. (B) Number of prQTLs 
detected (FDR < 0.05), split by promoter variability quartiles. (C) Number of encompassing promoters with at least one frQTL detected for a contained 
decomposed promoter (FDR < 0.05), split by encompassing promoter variability quartiles. (D–E) Examples of two promoters associated with frQTLs for 

Figure 5 continued on next page
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promoter (Spearman’s rank correlation ρ = 0.16, p< 2.2 × 10–16, Figure 5—figure supplement 1A). 
This indicates that, in addition to having fewer proximal genetic variants, low variable promoters are 
less likely to have prQTLs with large regulatory effects. However, QTLs of decomposed promoter 
expression (dprQTLs) exhibited similar prevalence (Figure 5—figure supplement 1C) and maximum 
effect sizes (Figure 5—figure supplement 1D) across promoter variability classes. This suggests that 
a flexible TSS architecture can limit the impact of genetic variants on promoter expression.

To further investigate the observed disagreement between the variability of promoters and their 
decomposed promoters, we tested the association between the genotypes of common genetic variants 
and the contribution of decomposed promoters to the overall expression of their encompassing (non- 
decomposed) promoters (fraction eQTL, frQTL; Figure 5A, bottom). We identified 1,230 promoters 
to be associated with at least one frQTL (5% FDR; Supplementary file 7). Unlike the prQTLs and 
dprQTLs, the frQTLs were more commonly associated with decomposed promoters from low variable 
promoters (Figure 5C). Conceptually, the frQTLs can affect decomposed promoter usage and overall 
promoter expression levels to different degrees, as exemplified by the promoters of genes RGS14 
and GGNBP2 (Figure 5D and E). Gene RGS14 has three decomposed promoters localized within its 
promoter (Figure 5D), for which SNP rs56235845 (chr5:177371039 T/G) was strongly associated with 
the contribution to the overall promoter activity for only decomposed promoters 1 and 2 (frQTL beta 
= 0.210, –0.181, –0.062; FDR = 2.42 × 10–5, 2.54×10–8, 2.64×10–2, for decomposed promoters 1, 2, 
and 3, respectively). Despite the limited association of the variant with decomposed promoter 3, it 
still had a noticeable association with the overall promoter activity (prQTL beta = −2.47, FDR = 3.57 × 
10–5; Figure 5D, bottom right). In contrast, SNP rs9906189 (chr17:36549567 G/A) was strongly asso-
ciated with the contribution to the overall promoter activity for both decomposed promoters of gene 
GGNBP2 (frQTL beta = 0.222,–0.222; FDR = 2.05 × 10–26, 2.05×10–25, for decomposed promoters 1 
and 2, respectively), but in opposite directions (Figure 5E). Interestingly, this switch in decomposed 
promoter usage translates into a limited effect on the overall promoter activity (prQTL beta = −0.063, 
FDR = 0.989; Figure 5E, bottom right).

Both examples, a partial shift (Figure 5D) and a switch (Figure 5E) in decomposed promoter usage, 
are indicative of plasticity in TSS usage, which can secure tolerable levels of steady- state mRNA. 
Although frQTLs were associated with promoters across the wide spectrum of promoter variabilities 
(Figure 5C), they showed a large difference in their relative effect on the overall promoter activity 
(maximal relative change in expression between reference and variant alleles; Figure  5F). frQTLs 
associated with highly variable promoters tend to have a larger relative effect on the overall promoter 
activity compared to frQTLs associated with low variable promoters. This association is further main-
tained at the gene level (adjusted RNA- seq Lappalainen et al., 2013 CV2; Figure 5—figure supple-
ment 1B; Supplementary file 8), demonstrating that individual differences in decomposed promoter 
usage contribute to low promoter variability and, in turn, low gene variability. In total, we found 286 
promoters (out of 1230) of 284 genes to be associated with stabilizing frQTLs, for which the same SNP 
was associated with at least two decomposed promoters (5% FDR) with relative effects in opposite 
directions (Supplementary file 9). Our results thus indicate that TSS usage flexibility confers muta-
tional robustness that stabilizes the variability of promoters and their associated genes.

Taken together, integrating prQTLs, dprQTLs, and frQTLs provides novel insights into how common 
genetic variants can influence TSS usage in humans and its potential impact on gene expression. We 

a highly variable promoter with limited buffering of promoter expression (panel D, gene RGS14) and for a low variable promoter with strong buffering of 
promoter expression (panel E, gene GGNBP2). Upper panels display genome tracks showing average TPM- normalized CAGE data across homozygous 
individuals for the reference allele (top track), heterozygous individuals (middle track), and homozygous individuals for the variant (alternative) allele 
(bottom track). The bottom left subpanels display box- and- whisker plots of the differences in TPM- normalized CAGE data between genotypes for 
each decomposed promoter. The bottom right subpanels display box- and- whisker plots of the differences in TPM- normalized CAGE data between 
the three genotypes for the original encompassing promoter. For all box- and- whisker plots, central band: median; boundaries: first and third quartiles; 
whiskers:+/-1.5 IQR. (F) Density plot of the maximal relative change in expression between reference and variant alleles (relative effect size) for the most 
significant frQTL of each broad promoter with FDR ≥ 5%, split by variability quartiles.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Low variable promoters with highly correlated decomposed promoters tend to have a fixed +1 nucleosome position across 
individuals.

Figure 5 continued
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demonstrate that low variable promoters characterized by multiple decomposed promoters (multi- 
modal TSS usage) are less affected by the presence of genetic variants compared to highly vari-
able promoters. In addition, we find that part of this tolerance can be explained by a, previously 
unreported, mechanism of mutational robustness through plasticity in TSS usage. The prevalence of 
expression- independent decomposed promoters within low variable promoters, as suggested by low 
pairwise correlation, indicates an extensive regulatory role of TSS plasticity in attenuating expression 
variability of essential genes.

Discussion
In this study, we provide an extensive characterization of promoter- associated features influencing 
variability in promoter activity across human individuals and demonstrate their importance for deter-
mining stability, responsiveness, and specificity. Overall, we show that the local DNA sequence, puta-
tive TF binding sites, and transcription initiation architecture of promoters are highly predictive of 
promoter variability.

Although the classifier based on TF binding site sequence and CpG island status was able to predict 
promoter variability well (AUC = 0.79 on the test set), it did not perform as well as the CNN model 
(AUC = 0.84 on the test set), which was trained on DNA sequence alone. This indicates that additional 
information influencing variability may be encoded within the promoter sequence. For instance, the 
density and variations of Initiator elements within promoters could influence TSS flexibility (Carninci 
et al., 2006; Frith et al., 2007; Haberle et al., 2014; Nepal et al., 2020). In addition, di- or tri- 
nucleotide sequence patterns and stretches of high AT- richness, which influence local nucleosome 
positioning (Dreos et al., 2016; Haberle et al., 2014; Segal et al., 2006), impose different require-
ments for chromatin remodeling activities (Lorch et al., 2014) at gene promoters of low and high vari-
ability, which in turn may affect their variability and responsiveness. The promoter sequence may also 
encode a promoter’s intrinsic enhancer responsiveness (Arnold et al., 2017), which may influence its 
expression variability. Although current data cannot distinguish between direct or secondary effects, 
an increased variability mediated via enhancers is supported by a higher dependency on enhancer- 
promoter interactions for cell- type- specific genes compared to housekeeping genes (Furlong and 
Levine, 2018; Schoenfelder and Fraser, 2019). However, compatibility differences between human 
promoter classes and enhancers only result in subtle effects in vitro (Bergman et al., 2022), suggesting 
that measurable promoter variability is likely a result of both intrinsic promoter variability and additive 
or synergistic contributions from enhancers. Directly modeling the influence and context- dependency 
of enhancers on promoter variability would therefore be important to further characterize regulatory 
features that may amplify gene expression variability.

Despite a clear association with high promoter CpG content and housekeeping genes, low variable 
promoters were not strongly associated with a broader width, which we would expect from promoters 
in CpG islands and with housekeeping activity (Carninci et al., 2006). Rather, our results suggest that 
low variability requires a certain minimum promoter width that can encompass a transcription initia-
tion architecture competent of attenuating variability through flexible TSS usage. Switching between 
proximal clusters of TSSs (decomposed promoters) within a larger promoter is fundamentally different 
from that between alternative promoters (Garieri et  al., 2017; Valen et  al., 2008; Zhang et  al., 
2017), which will more likely lead to differences in transcript and protein isoforms. Rather, a flexible 
initiation architecture enables several points of entries for RNA polymerase II to initiate in the same 
promoter. This ensures proper gene expression across different cell types (FANTOM Consortium 
and the RIKEN PMI and CLST (DGT) et al., 2014; Kawaji et al., 2006) and developmental stages 
(Haberle et al., 2014). Interestingly, ETS factors, here associated with low variable promoters, can 
interact with transcriptional co- activators and chromatin modifying complexes (Curina et al., 2017; 
Göös et al., 2022). ETS factors may therefore play a role in TSS selection in promoters with multi- 
modal architectures (Lam et al., 2019). Here, we show that such flexibility is also associated with 
low variability across individuals for the same cell type. Our findings further indicate that plasticity in 
TSS usage within a promoter confers a, previously unreported, layer of mutational robustness that 
can buffer the effects of genetic variants, leading to limited or no impact on the overall promoter 
expression. Of note, the presence of weak or negatively correlated expression patterns between 
decomposed promoters for a large number of promoters suggests that such buffering events will be 
revealed for more genes with an increased sample size.

https://doi.org/10.7554/eLife.80943
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Flexibility in TSS usage may ensure transcriptional robustness of genes both in different environ-
ments and in the face of genetic variation. Since promoter shape is generally conserved across orthol-
ogous promoters (Carninci et al., 2006; Hoskins et al., 2011), it is plausible that robustness through 
flexible TSS usage is a conserved mechanism. In support, genetic variants may affect promoter shape 
for ubiquitously expressed genes in flies with limited effect on promoter expression (Schor et al., 
2017). Changes in promoter shape in flies thus likely recapitulates the plasticity in TSS usage across 
human LCLs, despite apparent differences in core promoter elements, promoter nucleotide content, 
and regulatory features between flies and humans.

Notably, many of the promoter features we, and others (Sigalova et al., 2020), have identified 
to be predictive of promoter variability, including the presence or absence of CpG islands and TATA 
boxes, have previously been linked with different levels of transcriptional noise as inferred from single- 
cell experiments (Faure et al., 2017; Morgan and Marioni, 2018). This suggests that variability in 
promoter activity across individuals partly reflects the stochasticity in gene expression across cells. 
Given that the underlying sources of variation are different, for example, genetic and environmental 
versus stochastic, this indicates that mechanisms that contribute to the buffering of stochastic noise 
at a single cell level can also contribute to the attenuation of genetic and environmental variation at 
an individual level.

We observed less restrictive  +1 nucleosome positioning across individuals at low variable 
promoters with flexible TSS usage. Notably, these promoters are also associated with a fuzzy  +1 
nucleosome positioning across cells within an individual. This indicates that positional shifts of nucleo-
somes in coordination with shifts in core promoter usage may be due to an inherent property of these 
promoters in addition to the influence by genetic variation. Our observations indicate that multiple 
configurations of accessible chromatin may exist for low variable promoters across single cells, which 
may cause stochastic TSS selection with no or only low impact on expression level. This is compatible 
with a high density of pyrimidine/purine (YR) dinucleotides within broad promoters (Carninci et al., 
2006; Frith et al., 2007), which provide a flexibility for transcription initiation sites in the absence 
of strong positional signals like the TATA box (Carninci et al., 2006; FANTOM Consortium and the 
RIKEN PMI and CLST (DGT) et al., 2014; Müller and Tora, 2014). Genetic variants biasing such TSS 
selection and the preference for any open chromatin configuration may therefore cause observable 
shifts in TSS usage between individuals, enabled by the flexible nucleosome and TSS architecture of 
the promoter.

It is important to note that the regulatory programs of EBV- immortalized LCLs, like other cultured 
cells, have been shown to be susceptible to genotype- independent sources of variation, such as 
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highly flexible TSS architecture
redundant core promoters
mutational robustness
essential and ubiquitous genes
low transcriptional noise

high expression variability
strict TSS architecture
single/few core promoters
versatile TF binding grammar
responsive and cell-type specific
high transcriptional noise

CpG island

TFscore promoter

TSS expression

ETSETS ETS

TFs

core promoter (TATA-containing)
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Figure 6. Unifying mechanisms influencing the variability in expression across individuals, the specificity in expression across cell types, and the 
stochasticity in expression across individual cells. Low variable promoters (left) are frequently associated with high CpG content (CpG islands), multiple 
binding sites of ETS factors, and a highly flexible transcription initiation architecture arising from multiple redundant core promoters (decomposed 
promoters) in a permissive nucleosome positioning environment. These stabilizing features along with a less complex TF binding grammar likely also act 
to buffer transcriptional noise across single cells and cause ubiquitous expression across cell types. The flexibility in redundant core promoter activities 
confers a novel layer of mutational robustness to genes. Highly variable promoters (right), on the other hand, are associated with a highly versatile 
TF regulatory grammar, TATA boxes, and low flexibility in TSS usage. These features likely cause, in addition to high expression variability between 
individuals, a responsiveness to external stimuli, cell- type restricted activity, high transcriptional noise across single cells, and less tolerance for genetic 
variants.
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primary cellular heterogeneity and EBV’s viral cellular reprogramming (Choy et  al., 2008; Ozgyin 
et al., 2019). While we cannot exclude that such sources may influence the measured variability of 
some genes, we speculate that non- genetic variation would rather dampen than elevate the associa-
tions and effect sizes we report here, in particular the decomposed promoter switches highlighted by 
our genotype association analysis.

Taken together, our results favor a model in which the regulation of transcriptional noise across 
single cells reflects specificity across cell types and dispersion across individuals with shared mecha-
nisms conferring stochastic, genetic and environmental robustness (Figure 6). There are several impli-
cations of this model. First, the link between low transcriptional noise and low individual variability of 
promoters and their associations with ubiquitous and essential genes indicates that regulatory mecha-
nisms that ensure broad expression across cell types may enforce low variability across individuals and 
single cells. Second, our results indicate that encoding responsiveness or developmentally restricted 
expression patterns of gene promoters may require high stochasticity in expression across single cells, 
which in turn may disallow ubiquitous expression across cell types. Thus, it is likely that increased 
variability is not just reflecting the absence of regulatory mechanisms that attenuate variability but 
the presence of those that amplify it. Finally, given that mutational robustness through flexible TSS 
usage is mostly associated with low variable genes, this implies that cell- type restricted, responsive 
and developmental genes may be more susceptible to trait- associated genetic variants, which finds 
support in the literature (Finucane et al., 2015; Roadmap Epigenomics Consortium et al., 2015; 
Timshel et al., 2020).

Materials and methods
LCL cell culturing
Epstein- Barr virus immortalized LCLs (Supplementary file 1) were obtained from the NIGMS 
Human Genetic Cell Repository at Coriell Institute for Medical Research. Cells were incubated at 
37°C at 5% carbon dioxide in the Roswell Park Memorial Institute (RPMI) Medium 1640 supple-
mented with 2mM L- glutamine and 20% of non- inactivated fetal bovine serum and antibiotics. Cell 
cultures were split every few days for maintenance. All 108 LCLs were grown unsynchronized for 
5–7 passages and harvested when they reached>20million cells. The Coriell Institute for Medical 
Research frequently screens cells for mycoplasma contamination and verifies cell line identity. All 
cell culturing was done within a year of purchase. To confirm that samples were free of mycoplasma 
contamination, CAGE reads were aligned to 4 mycoplasma reference genomes, including Myco-
plasma hominis, which showed no indication of contamination for any sample (Olarerin- George 
and Hogenesch, 2015).

CAGE library preparation, sequencing, and mapping
CAGE libraries were prepared in 10 batches in total as described elsewhere (Andersson et al., 2014b; 
Takahashi et al., 2012) from 1500 ng total RNA from each LCL. 23 libraries (Supplementary file 1) 
underwent a second round of size selection (Invitrogen E- Gel) to remove excessive primer dimers. 
The libraries were quality checked using an Agilent 2100 Bioanalyzer system with a RNA pico chips 
kit (Agilent) and quantified using DNA 1000 chips kit (Agilent). Pooled libraries (Supplementary file 
1) were sequenced with spiked- in PhiX on an Illumina HiSeq 2500 machine single- end for 50 cycles 
using v4 sequencing chemistry (Illumina Inc) and a custom sequencing primer (Takahashi et al., 2012). 
Libraries were split by barcode and reads were trimmed to remove linker sequences and filtered for a 
minimum sequence quality of Q30 in 50% of base pairs using the FASTX- Toolkit. rRNA reads matching 
subsequences of the human ribosomal DNA complete repeating unit (U13369.1) were removed using 
rRNAdust (version 1.06) (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014). 
Mapping to the human reference genome (hg38) was performed using BWA (version 0.7.15- r1140) 
allowing a maximum edit distance of 2. To reduce mapping bias, reads were re- mapped using the 
WASP pipeline (van de Geijn et al., 2015) and BWA, taking into account biallelic SNVs (Lowy- Gallego 
et al., 2019). Reads with a mapping quality of 20 were retained for further analyses. Sample- related 
information, including CAGE run batch ID and E- gel information, are provided in Supplementary file 
1.

https://doi.org/10.7554/eLife.80943
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CAGE tag clustering, filtering and quantification
CAGE- defined transcription start sites (CTSSs) were identified from 5’ ends of mapped CAGE reads 
for each strand separately. The expression of CTSSs for each LCL was quantified from the number 
of CAGE reads sharing 5’ ends using CAGEfightR (version 1.10) (Thodberg et al., 2019). To identify 
broad promoters that could potentially encompass multiple alternative core promoters (decomposed 
promoters), we performed lenient positional clustering of CTSSs (tag clustering) (Carninci et  al., 
2006), grouping CTSSs on the same strand within 60 bp of each other. To exclude rare promoters 
within the panel, tag clustering was performed on CTSSs with at least 1 CAGE read in at least 5 LCLs. 
The expression of each tag cluster (CAGE- inferred promoter) in each individual LCL was quantified by 
aggregating the expression of all CTSSs falling within the defined tag cluster region. To allow capture 
of flexible TSS usage within promoters across the panel, no support filtering was performed at CTSS 
level for expression quantification. Expression levels were converted to tags per million (TPM), by 
normalizing the expression count of each tag cluster in each library as a fraction of its number of 
mapped CAGE reads, scaled by 106. Tag clusters were filtered to be proximal to GENCODE- annotated 
TSSs (hg38, version 29, within 1000 bp upstream) and to have at least 10 read counts in more than 
10 LCLs. The resulting 29,001 gene- associated CAGE- inferred promoters were later decomposed 
by local maxima decomposition to split multi- modal tag clusters (https://github.com/anderssonlab/ 
CAGEfightR_extensions, version 0.1.1; Andersson, 2021). First, for each CAGE- inferred promoter, 
local maxima of within- promoter CTSSs with the highest pooled expression separated by at least 
20 bp were identified. Second, decomposition was performed for each local maxima separately in 
decreasing order of pooled expression level. For each local maxima, the fraction between the pooled 
expression of each CTSS to that of the local maxima was calculated. All CTSSs associated with at least 
10% of the local maxima signal that were not gapped by more than 10 bp with CTSS expression less 
than this value were retained in a new decomposed promoter. For smoothing purposes, neighboring 
non- zero CTSSs within 1  bp distance of CTSSs fulfilling the fraction criterion were also included. 
Subsequently, decomposed promoters were merged if positioned within 1 bp from each other.

Geuvadis YRI RNA-seq data analysis
Gene expression data quantified in the recount2 project (Collado- Torres et al., 2017) using Geuvadis 
YRI RNA- seq data (Lappalainen et al., 2013) was downloaded using the recount R package. Only 
genes with more than 1 transcript per million in at least 10% of YRI samples were considered for 
expression variability calculation.

GM12878 scRNA-seq data analysis
GM12878 10 X Genomics scRNA- seq data (Osorio et al., 2019) was downloaded from Gene Expres-
sion Omnibus (GSE126321) and processed using Seurat (version 4.0.3) (Hao et al., 2021). Cells with 
a proportion of mitochondrial reads lower than 10% and a sequencing depth deviating less than 
2.5 times the standard deviation from the average sequencing depth across cells were considered. 
The expression of genes with read counts observed in at least 10 cells were normalized using scran 
(version 1.18.7) (Lun et al., 2016) and retained for expression variability calculation.

Measuring expression variability across individuals
The raw dispersion of each CAGE tag cluster was calculated using the squared coefficient of varia-
tion (CV2) of TPM- normalized promoter (or decomposed promoter) expression across the LCL panel 
and subsequently log10- transformed. Adjustment of the mean expression- dispersion relationship was 
performed by subtracting the expected log10- transformed dispersion for each promoter according 
to its expression level, using a running median (width 50, step size 25) of raw dispersions (log10 CV2) 
ordered by mean expression level (TPM) across the panel, as described elsewhere (Kolodziejczyk 
et al., 2015; Newman et al., 2006). The same strategy was used to calculate the adjusted disper-
sion of gene expression from RNA- seq and scRNA- seq data. Promoters were grouped by variability 
according to the quartiles of expression- adjusted dispersions (≤Q1, (Q1, Q2], (Q2, Q3],>Q3).

Neural network model, training and hyperparameter tuning
A simple neural network architecture was designed to learn to predict low and high variability from 
DNA sequence. The neural network model uses as input one- hot- encoded DNA sequences (A = 
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[1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) from the human reference genome (hg38) to predict 
low and highly variable promoter activity as output. Although CAGE- inferred promoters varied in 
width, we made use of fixed- length 600bp sequences for each promoter centered on its pooled 
CAGE summit CTSS. 600bp was used to make sure that sequences influencing promoter variability 
contained within regions that could cover a central open chromatin site (150–300bp) as well as within 
flanking nucleosomal DNA (150–200bp) were captured, where also most of the expression output 
of a promoter originate (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014).

The model (Figure 2—figure supplement 1A) consists of one convolutional layer with 128 hidden 
units and a kernel size of 10, followed by global average pooling and two dense layers with 128 and 
2 nodes, respectively. Batch normalization and dropout (0.1) were applied after each layer. The ReLU 
activation function (Agarap, 2019) was used in all layers except the final layer, in which a sigmoid 
activation function was used to predict the variability class (low or high adjusted dispersion).

Promoter sequences from chromosomes 2 and 3 were used as the test set and those from the 
remaining chromosomes were used for training and hyperparameter tuning with a fivefold cross- 
validation. Hyperparameters were manually adjusted to yield the best performance on the validation 
set. The neural network model was implemented and trained in Keras (version 2.3.0, https://github. 
com/keras-team/kera Chollet, 2022) with TensorFlow backend (version 1.14) (Abadi et  al., 2016) 
using the Adam optimizer (Kingma and Ba, 2017) with a learning rate of 0.0001, batch size of 64, and 
early stopping with the patience of 15 epochs.

We initially used the first and third quartiles (Q1 and Q3) to distinguish low variable promoters 
(≤Q1) from highly variable promoters (>Q3), corresponding to an adjusted log10- transformed CV2 of 
–0.1490 and 0.1922, respectively. To reduce false positives, we slightly adjusted the thresholds for low 
and highly variable promoters to –0.20 and 0.25, respectively. The final training and test sets for the 
neural network model together consisted of 5054 low variable and 5683 highly variable promoters. To 
ensure consistency, the same thresholds were used for training and testing with Random Forest and 
decision tree classifiers (see below).

Motif discovery using DeepLIFT and TF–MoDISco
To interpret the neural network model we used DeepLIFT (Shrikumar et al., 2019), a feature attribu-
tion method, to compute importance scores for each nucleotide in the 600 bp input sequences for 
low and highly variable promoters. DeepLIFT relies on backpropagation of the contributions of all 
neurons in the neural network to the input features, nucleotides, and was used to estimate the impor-
tance of each position and nucleotide in the input sequences to predict high and low variability. The 
resulting importance scores were supplied to TF- MoDISco (Transcription Factor Motif Discovery from 
Importance Scores) (Shrikumar, 2020) to identify DNA stretches (seqlets) with high importance for the 
predictions. DeepLIFT and TF- MoDISco were run independently on the input sequences for low vari-
able and highly variable promoters. TF- MoDISco identified 18,035 seqlets for low variable promoters 
and 21,942 seqlets for highly variable promoters by using the importance scores from DeepLIFT over 
a width of 15 bp with a flank size of 5 bp and a FDR threshold of 0.05. The seqlets identified were 
merged in 41 and 47 metaclusters for low and highly variable promoters, respectively.

We used Tomtom (MEME package 5.1.1; Gupta et al., 2007) to match the resulting metaclusters 
to known TF motifs (in MEME format) from the JASPAR database (release 2020, hg38; Fornes et al., 
2020). We compared each non- redundant JASPAR vertebrate frequency matrix with the metaclusters 
using Tomtom based on the Sandelin and Wasserman distance (Sandelin and Wasserman, 2004). 
Matches were considered those with a minimum overlap between query and target of 5 nucleotides 
and a p- value <0.05.

Random forest, Boruta and SHAP analysis
To identify broad- scale trends of high CpG content, we calculated CpG observed/expected ratio in 
windows +/-500bp around the pooled summit CTSS of each promoter. Calculated CpG ratios revealed 
a bimodal distribution that informed on thresholding high CpG content promoters as those with CpG 
observed/expected ratio>0.5 (Figure 2—figure supplement 2A).

Predicted transcription factor binding sites for 746 TFs with scores of 500 or greater (P<10–5) (hg38) 
were obtained from JASPAR (release 2020, hg38) (Fornes et al., 2020) and for each TF, presence/
absence was obtained by overlapping predicted TF binding sites with promoters considered in the 
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modeling. Together, the CpG content status and the presence/absence of predicted TF binding sites 
were used as features for predicting high and low variability using Random Forest (Pedregosa et al., 
2011).

Similarly to the neural network model, promoters from chromosomes 2 and 3 were only used as 
the test set. The remaining promoters were used for training and hyperparameter tuning with five-
fold cross- validation. The Random Forest model was implemented and trained in Scikit- learn (version 
2.3.0) with 500 trees, a maximum depth of trees of 10, 50samples split per node, and 50samples to be 
at a leaf node. The remaining hyperparameters were kept with default values.

Instead of selecting features directly from the Random Forest model, the BorutaShap package 
(Keany, 2020) was used for feature selection. The main advantage of using the Boruta approach is 
that the features compete with their randomized version (or shadow feature) and not with themselves. 
Therefore, a feature is considered relevant only if its score is higher than the best randomized feature. 
In this way, from the 746 original TF features, only 125 features were kept. The features were selected 
using only promoters from the training set. Finally, the SHAP library (Lundberg and Lee, 2017) was 
used to explain the importance of the 125 selected features for the two promoter classes. SHAP 
calculates Shapley values, a game theoretic approach for optimal credit allocation during cooperation, 
which can be used to estimate the marginal contribution of each feature to a model’s predictions.

Decision tree baseline model
To evaluate the contribution of TF binding site presence for predicting promoter variability, we trained 
a baseline model based on CpG content status and TATA- box presence only. CpG content status (CpG 
observed/expected ratio>0.5) and the presence/absence of predicted TBP binding sites were used as 
features for predicting high and low variability using a decision tree classifier. The decision tree model 
was implemented and trained in Scikit- learn (version 2.3.0) using default parameters. Training and test 
data were defined as for the CNN and Random Forest models.

Tissue-, cell-type specificity and gene annotations
RNA- seq gene expression values across tissues were obtained from the GTEx consortium (Battle 
et  al., 2017). Promoters were considered expressed in tissues in which their corresponding gene 
had≥5RPKM average expression across donors.

CAGE gene expression values across cell types were obtained from the FANTOM5 project 
(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014). The average normal-
ized (tags per million, TPM) expression per gene was calculated across samples associated with the 
same cell type facet (grouping of CAGE libraries according to Cell Ontology annotation of samples), 
according to Andersson et al., 2014a, and a gene was considered expressed in a cell type facet if the 
average expression was≥5TPM.

Gene lists for FDA approved drug- targets (Wishart et  al., 2018), essential genes (Hart et  al., 
2017) and GWAS hits (MacArthur et al., 2017) were downloaded from the MacArthur Lab Repository 
(https://github.com/macarthur-lab/gene_lists; MacArthur, 2019).

GM12878 cell culturing, TNF-α stimulation and differential expression 
analysis
GM12878 cells were obtained from the NHGRI Sample Repository for Human Genetic Research at 
Coriell Institute for Medical Research. Unstimulated GM12878 cells and those stimulated with 25 ng/
ml TNF-α for 6 hr were harvested with four replicates for each condition. Cell culturing, CAGE library 
preparation and mapping were done as described above for the LCL panel. CAGE reads supporting 
each of the final filtered promoters identified in the LCL panel were counted for each replicate using 
CAGEfightR (version 1.10; Thodberg et al., 2019). Differential expression analysis of the aggregated 
CTSS counts was performed using standard library size adjustment and a generalized linear model 
with DESeq2 (version 1.30.1; Love et al., 2014). Promoters with FDR- adjusted p- value ≤0.05 were 
considered to be differentially expressed.

Correlation analysis of decomposed promoter expression
To test if decomposed promoters could act independently of each other, we calculated Pearson 
correlation coefficients of LCL expression between pairs of decomposed promoters originating from 
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the same promoter. We focused on promoters with at least 2 decomposed promoters significantly 
contributing to the overall expression of the promoter. Specifically, we considered decomposed 
promoters whose expression accounted for at least 5% of the overall promoter expression in at least 
half of all LCLs, resulting in 37,663 decomposed promoters of 14,889 promoters. To avoid potential 
bias introduced from a variable number of decomposed promoters per promoter, we considered the 
lowest correlation across decomposed promoter pairs within a promoter.

Nucleosome positioning analysis
Micrococcal nuclease- digested nucleosome sequencing (MNase- seq) data from 7 EBV- immortalized 
LCLs (GM18507, GM18508, GM18516, GM18522, GM19193, GM19238, GM19239) were obtained 
from GEO (GSE36979) (Gaffney et al., 2012).

The locations and fuzziness scores of nucleosomes were called with DANPOS2 (version 2.2.2) 
(Chen et al., 2013) using the dpos command on each LCL separately.+1 nucleosomes were defined 
as the closest downstream nucleosome of the dominant TSS position (derived from pooled CAGE 
data) of each CAGE- inferred promoter.

Positional cross correlations were calculated between CAGE TSSs and 5’ ends of MNase- seq reads 
on the same strand at dominant TSS positions of CAGE- inferred promoters ±500bp (maximum lag 
250) to identify their most likely separation. Cross- correlation analysis was performed on either pooled 
CAGE data (across all 108 LCLs) versus pooled MNase- seq data (across all 7 LCLs) or using only CAGE 
and MNase data from one LCL (GM18516). Finally, for both analyses, a weight for each promoter was 
calculated from the geometric mean of aggregated MNase and CAGE signals. This was used to calcu-
late a weighted average of the cross correlations across considered promoters.

Mapping QTLs
We tested both the association between the genotypes of common genetic variants (MAF ≥10%) and 
the expression of promoters (promoter eQTL, prQTLs) and decomposed promoters (decomposed 
promoter eQTL, dprQTLs), as well as their association with the contribution of to the overall expres-
sion of the encompassing (non- decomposed) promoter (fraction eQTL, frQTL). prQTLs, dprQTLs, and 
frQTLs were mapped using the MatrixEQTL R package (version 2.3) (Shabalin, 2012). We controlled 
for genetic population stratification and library preparation batches (Supplementary file 1) by 
including these as covariates. In addition, we included the first 5 principal components derived from 
normalized promoter expression values (TPM) as covariates for prQTLs.

For prQTL detection, all 29,001 promoters were tested using TPM- normalized expression values. 
For frQTLs, we calculated the fractional contribution of each decomposed promoter to the expression 
of its original promoter. To focus the dprQTL and frQTL analyses on relevant shifts in TSS usage, we 
considered only decomposed promoters whose expression accounted for at least 5% of the overall 
promoter expression in at least half of all LCLs and promoters with at least 2 such decomposed 
promoters, resulting in 37,663 decomposed promoters of 14,889 promoters.

For each promoter, we tested common (minor allele frequency ≥10%) biallelic SNVs (Lowy- Gallego 
et al., 2019) at a maximum distance of 25 kb from the CTSS with maximum pooled CAGE signal within 
each promoter for association with changes in promoter expression levels or decomposed promoter 
contribution. Resulting p- values were FDR- adjusted according to the total number of promoters or 
decomposed promoters tested genome- wide within the MatrixEQTL R package. prQTLs, dprQTLs, 
and frQTLs with FDR ≤5% were retained. A promoter was associated with a dprQTL or frQTL if at least 
one of its decomposed promoters was associated with a dprQTL or frQTL at FDR < 5%.
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Additional files
Supplementary files
•  Supplementary file 1. LCL sample and CAGE library information. [tab- delimited] Row names: Cell 
line IDs Columns:   

Sex: The sex of the individual that the cell line was derived from (Male/Female)
Population: Population origin of the individual the cell line was derived from (YRI/LWK)
E_Gel: Indicates whether samples underwent a second round of size selection (yes) or not (no)
CageRun_ID: The CAGE library batch the sample was prepared in, with comma separating IDs 
if sample was included in multiple runs
SeqPool_ID: The sequence pool IDs the sample was included in, with comma separating IDs if 
sample was included in multiple pools
SeqRun_ID: The sequence run IDs the sample was included in, with comma separating IDs if 
sample was included in multiple sequencing runs
Total_reads: Total reads sequenced
Mapped_reads: Total mapped reads

•  Supplementary file 2. CAGE- inferred promoters associated with GENCODE- annotated TSSs. [tab- 
delimited] Row names: genomic coordinates of promoters provided as chromosome:start- end;strand 
Columns:   

geneID: Ensembl ID of the associated gene
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median: median TPM- normalized tag cluster expression across the LCL panel
CV: coefficient of variation of TPM- normalized tag cluster expression across the LCL panel
mean: mean TPM- normalized tag cluster expression across the LCL panel
log10_CV2: log10- transformed squared coefficient of variation (CV2) of TPM- normalized tag 
cluster expression across the LCL panel
adjusted_log10_CV2: log10- transformed squared coefficient of variation (CV2) after adjustment 
of the mean expression- dispersion relationship.
adjusted_quartile: adjusted variability split by quartiles (<Q1: 0–25%, (Q1,Q2]: 25–50%, 
(Q2,Q3]: 50–75%,>Q3: 75–100%)

•  Supplementary file 3. Gene level expression characterization across GM12878 single cells. [tab- 
delimited] Row names: Ensembl IDs Columns:   

median: median scran- normalized read counts across GM12878 single cells
CV: coefficient of variation of scran- normalized read counts across GM12878 single cells
mean: mean scran- normalized read counts across GM12878 single cells
log10_CV2: log10- transformed squared coefficient of variation (CV2) of scran- normalized read 
counts across GM12878 single cells
adjusted_log10_CV2: log10- transformed squared coefficient of variation (CV2) after adjustment 
of the mean expression- dispersion relationship across GM12878 single cells

•  Supplementary file 4. Promoter differential expression results using DESeq2 in GM12878 after 
TNFα treatment. [tab- delimited] Row names: genomic coordinates of promoters provided as 
chromosome:start- end;strand Columns:   

baseMean: Average normalized count values
log2FoldChange: Effect size estimate [log2 Fold Change] for 6 h TNFα/untreated
lfgSE: Standard error estimate for log2 fold change for 6 h TNFα/untreated
stat: Wald test statistics [Z- statistic]
pvalue: Wald test p- value for 6 h TNFα/untreated
padj: Benjamin- Hochberg corrected p- value
geneID: Ensembl ID of the associated gene
adjusted_log10_CV2: log10- transformed squared coefficient of variation (CV2) after adjustment 
of the mean expression- dispersion relationship
adjusted_quartile: adjusted variability split by quartiles (<Q1: 0–25%, (Q1,Q2]: 25–50%, 
(Q2,Q3]: 50–75%,>Q3: 75–100%)

•  Supplementary file 5. Decomposed promoter expression characterization and its association 
with original promoter expression variability. [tab- delimited] Row names: genomic coordinates of 
decomposed tag clusters provided as chromosome:start- end;strand Columns:   

median: median TPM- normalized decomposed tag cluster expression across the LCL panel
CV: coefficient of variation of TPM- normalized decomposed tag cluster expression across the 
LCL panel
mean: mean TPM- normalized decomposed tag cluster expression across the LCL panel
log10_CV2: log10- transformed squared coefficient of variation (CV2) of TPM- normalized decom-
posed tag cluster expression across the LCL panel
adjusted_log10_CV2: log10- transformed squared coefficient of variation (CV2) after adjustment 
of the mean expression- dispersion relationship for decomposed tag cluster..
broad_name: genomic coordinates of the original encompassing promoter provided as 
chromosome:start- end;strand
broad_adjusted_log10_CV2: log10- transformed squared coefficient of variation (CV2) after 
adjustment of the mean expression- dispersion relationship for the original encompassing 
promoter.
broad_adjusted_quartile: adjusted variability of the original encompassing promoter split by 
quartiles (<Q1: 0–25%, (Q1,Q2]: 25–50%, (Q2,Q3]: 50–75%,>Q3: 75–100%)

•  Supplementary file 6. Lead prQTL hit for each promoter. [tab- delimited] Row names: row number 
Columns:   
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SNP: lead SNP (lowest FDR) genomic coordinates identified as prQTL for the corresponding 
promoter.
gene: genomic coordinates of promoter associated with given lead SNP provided as 
chromosome:start- end;strand
beta: Effect size estimate for the given SNP- promoter pair
t.stat: Test statistic (t- statistic) for the given SNP- promoter pair
p.value: p- value for given SNP- promoter pair
FDR: False discovery rate estimated using Benjamini–Hochberg procedure

•  Supplementary file 7. Lead frQTL hit for each promoter. [tab- delimited] Row names: row number 
Columns:   

broadID: genomic coordinates of original promoters overlapping decomposed promoters asso-
ciated with frQTL provided as chromosome:start- end;strand
decomposedID: genomic coordinates of the decomposed promoters with the strongest associ-
ation (FDR) with given lead SNP provided as chromosome:start- end;strand.
geneID: Ensembl ID of the associated gene
SNP: lead SNP (lowest FDR and FDR ≤ 5%) genomic coordinates identified as frQTL for the 
corresponding promoter.
beta: Effect size estimate for the given SNP- decomposed promoter pair
FDR: False discovery rate estimated using Benjamini–Hochberg procedure
relative_effect: relative change in original promoter expression between major and minor allele 
for given SNP. Calculated as (A- B)/A using mean TPM- normalized expression for A (homozy-
gous for major allele) and B (homozygous for minor allele).
adjusted_quartile: adjusted variability of original promoters split by quartiles (<Q1: 0–25%, 
(Q1,Q2]: 25–50%, (Q2,Q3]: 50–75%,>Q3: 75–100%)

•  Supplementary file 8. Gene level expression characterization across LCLs using RNA- seq 
(Geuvadis). [tab- delimited] Row names: Ensembl ID of the associated gene Columns:   

symbol: gene symbol (HGNC ID)
median: median TPM- normalized gene expression across the LCL panel
CV: coefficient of variation of TPM- normalized gene expression across the LCL panel
mean: mean TPM- normalized gene expression across the LCL panel
log10_CV2: log10- transformed squared coefficient of variation (CV2) of TPM- normalized gene 
expression across the LCL panel
adjusted_log10_CV2: log10- transformed squared coefficient of variation (CV2) after adjustment 
of the mean gene expression- dispersion relationship.

•  Supplementary file 9. Promoters associated with stabilizing frQTLs. [tab- delimited] Row names: 
row number Columns:   

broadID: genomic coordinates of original promoters overlapping decomposed promoters asso-
ciated with stabilizing frQTL provided as chromosome:start- end;strand
geneID: Ensembl ID of the associated gene
SNP: Lead SNPs identified as stabilizing frQTLs for given promoter

•  MDAR checklist 

Data availability
CAGE data were deposited into the Gene Expression Omnibus (GEO) database under accession 
number GSE188131 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188131). GM12878 
scRNA- seq data were retrieved from GEO (accession number GSE126321). Processed Geuvadis 
RNA- seq gene expression data were retrieved from recount2 (Collado- Torres et al., 2017) (acces-
sion number ERP001942). Processed GTEx RNA- seq gene expression data were retrieved from the 
GTEx portal (https://www.gtexportal.org/home/datasets, version- 8). MNase- seq data were retreived 
from GEO (accession number GSE36979). Predicted transcription factor binding sites for 746 TFs 
were obtained from Fornes et  al., 2020 (http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_ 
tracks/2020/hg38/). Code for data analysis performed in this study is publicly available on GitHub: 
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https://github.com/anderssonlab/Einarsson_et_al_2022/, (copy archived at swh:1:rev:de2e6b8a35c-
16687c8d55630e65c78489a629c99; Andersson, 2022).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Einarsson H 2021 Promoter sequence and 
architecture determine 
expression variability 
and confer robustness of 
genetic variation

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE188131

NCBI Gene Expression 
Omnibus, GSE188131

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Osorio D, Yu X, Yu P, 
Serpedin E, Cai JJ

2019 Single- cell RNA sequencing 
of lymphoblastoid cell lines 
of European and African 
ancestries

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE126321

NCBI Gene Expression 
Omnibus, GSE126321

GTEx Consortium 2017 GTEx Analysis V8 https:// storage. 
googleapis. com/ 
gtex_ analysis_ v8/ 
rna_ seq_ data/ GTEx_ 
Analysis_ 2017- 06- 05_ 
v8_ RNASeQCv1. 1. 9_ 
gene_ median_ tpm. 
gct. gz

dbGaP, phs000424.v8.p2

Gaffney DJ, Pai AA, 
Fondufe- Mittendorf 
YN, Lewellen N, 
Michelini K, Gilad Y, 
Pritchard JK

2012 Genome- wide maps of 
nucleosome occupancy in 
human lymphoblastoid cell 
lines

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE36979

NCBI Gene Expression 
Omnibus, GSE36979
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18505

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18507

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19238

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19239

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18879

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18501

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18876

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18877

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18878

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19206

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19043

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18487

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18486

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19209

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19153

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18881

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18517

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19144

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19210

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18508

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19099

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18489

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19223

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18853
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18916

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19147

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19257

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19131

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19119

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19201

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19204

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19092

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19130

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19137

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19102

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19159

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18871

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19200

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19171

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19207

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18516

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18499

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19143

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19093

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19172

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19098

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18520

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19152

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19116
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19138

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18504

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19036

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18870

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19310

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18511

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19222

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19038

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19046

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19314

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19313

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19044

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19020

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18873

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18907

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18909

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18868

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18910

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18908

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19095

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19107

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18867

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19108

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19121

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19117
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19175

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19184

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19213

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18519

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18502

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19113

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19028

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19041

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19307

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19031

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18874

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19118

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19190

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19149

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19248

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18934

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19114

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19146

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18923

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18924

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18933

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18917

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19214

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19185

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19027
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19225

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19198

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19035

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19197

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19235

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18858

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19026

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18865

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19025

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18915

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19030

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19037

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19024

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19019

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18864

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18523

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19017

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18522

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18488

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19247

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18510

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18856

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18912

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM18861

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19141
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM19160

cell line (Homo- 
sapiens) Lymphoblastoid cell line Coriell GM12878

sequence- based 
reagent MPG beads, 10 ml Pure biotech MSTR0510

sequence- based 
reagent AMPure, 60 ml Ramcon A63881

sequence- based 
reagent RNAClean, 40 ml Ramcon A63987

sequence- based 
reagent Phusion Th.Geyer, Finnzymes M0530L

sequence- based 
reagent PrimeScript TaKaRa 2680 A

sequence- based 
reagent RNAseONE Th.Geyer M4265

sequence- based 
reagent ddH2O VWR

commercial assay 
or kit

MinElute PCR 
purification kit (250 
columns) Qiagen #28006

sequence- based 
reagent LA Taq TaKaRa RR002A

sequence- based 
reagent DNA1000 kit Agilent 5067–1504

sequence- based 
reagent RNA pico kit Agilent 5067–1513

sequence- based 
reagent

Biotin (long arm) 
hydrazide, 50 mg VWR Vectsp- 1100

sequence- based 
reagent E- gel sizeselect Lifetech G6610- 02

commercial assay 
or kit PureLink Dnase set Lifetech #12185010

sequence- based 
reagent EcoP15I, 2500 U Th.Geyer, NEB N/R0646L

sequence- based 
reagent Sinefungin, 2 mg

Merck, Calbiochem- 
Novabiochem 
International #567051

sequence- based 
reagent

Antarctic phosphatase, 
5000 U Bionordika, NEB M0289L

sequence- based 
reagent Trehalose dihydrat Sigma Y0001172- 1EA

sequence- based 
reagent d- Sorbitol VWR 85529–250 G

sequence- based 
reagent NaIO4, 5 g Sigma 311448–5 G

sequence- based 
reagent E. coli tRNA, 500 U Sigma R1753- 500UN

ribonucleic acid, transfer from 
Escherichia coli Type XX, 
Strain W, lyophilized powder

sequence- based 
reagent RQ1 RNase- free DNase Promega M6101
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

sequence- based 
reagent Proteinase K Lifetech 25530–049

sequence- based 
reagent ATP, 10 mM Bionordika, NEB P0756S

sequence- based 
reagent Trizol LS, 100 ml Lifetech, Invitrogen 10296–010

sequence- based 
reagent

DNA ligation kit, Mighty 
Mix TaKaRa 00006023 TAKARA

sequence- based 
reagent T4 DNA ligase, 20000 U Th.Geyer, NEB N/M0202L

sequence- based 
reagent Exonuclease I, 3.000 U Th.Geyer N/M0293S

sequence- based 
reagent dNTPs, 10 mM, 1 ml Kælder

sequence- based 
reagent Sodium acetate Sigma S2889- 250G

sequence- based 
reagent Sodium citrate, 500 g Sigma, MP Biomedicals W302600- 1KG- K

sequence- based 
reagent

EDTA (4x100 ml, 0.5 M 
pH = 8.0) Lifetech 15575–020

sequence- based 
reagent PCR SYBR mix 2*5 mL Lifetech 4364344

other Penicillin- Streptomycin ThermoFisher Scientific 15140122 Cell culture supplement

other L- Glutamine ThermoFisher Scientific A2916801 Cell culture supplement

other RPMI 1640 ThermoFisher Scientific 11875083 Cell culture media

other Fetal bovine serum ThermoFisher Scientific A3840302 Cell culture supplement

peptide, recombinant 
protein TNFa R&DSystems P01375 25 ng/ml
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