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Abstract Ongoing climate change has caused rapidly increasing temperatures and an unprec-
edented decline in seawater pH, known as ocean acidification. Increasing temperatures are redis-
tributing species toward higher and cooler latitudes that are most affected by ocean acidification. 
While the persistence of intertidal species in cold environments is related to their capacity to 
resist sub-zero air temperatures, studies have never considered the interacting impacts of ocean 
acidification and freeze stress on species survival and distribution. Here, a full-factorial experiment 
was used to study whether ocean acidification increases mortality in subtidal Mytilus trossulus 
and subtidal M. galloprovincialis, and intertidal M. trossulus following sub-zero air temperature 
exposure. We examined physiological processes behind variation in freeze tolerance using 1H 
NMR metabolomics, analyses of fatty acids, and amino acid composition. We show that low pH 
conditions (pH = 7.5) significantly decrease freeze tolerance in both intertidal and subtidal popula-
tions of Mytilus spp. Under current day pH conditions (pH = 7.9), intertidal M. trossulus was more 
freeze tolerant than subtidal M. trossulus and subtidal M. galloprovincialis. Conversely, under low 
pH conditions, subtidal M. trossulus was more freeze tolerant than the other mussel categories. 
Differences in the concentration of various metabolites (cryoprotectants) or in the composition 
of amino acids and fatty acids could not explain the decrease in survival. These results suggest 
that ocean acidification can offset the poleward range expansions facilitated by warming and that 
reduced freeze tolerance could result in a range contraction if temperatures become lethal at the 
equatorward edge.

Editor's evaluation
Thyrring et al. provide convincing experimental results on the role of ocean acidification on the 
survival of two bivalve species. This novel work is fundamental in setting a more mechanistic under-
standing of the impacts of climate change on ocean species' poleward re-distribution across the 
globe. The major strength of this work is their usage of state-of-the-art techniques (such as metab-
olomics, fatty acid and amino acid analysis) to link physiological level processes to global climate 
change.
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Introduction
The rapid rise in atmospheric CO2 concentration since the industrial revolution has increased global 
air and water temperatures and caused ocean pH to decline (a process termed ocean acidification) 
at rates unprecedented in geologic history (Hönisch et al., 2012). These environmental changes are 
causing species range shifts and cascading ecological effects across the globe, resulting in regime 
shifts and alteration of food web structure (Kortsch et al., 2012; Thyrring et al., 2021; Wernberg 
et al., 2016). For example, the fish assemblage around the Svalbard archipelago, located in the Arctic 
Ocean (78°N), is borealizing as Arctic species have retracted northward to cooler areas while boreal 
species have become dominant (Fossheim et al., 2015). Co-occurring ocean acidification is, further-
more, predicted to have severe consequences for marine organisms and communities, and a large 
body of research has shown a wide range of negative effects. Decreased pH weakens shell production 
(MacLeod and Poulin, 2015) and increases dissolution in calcifying organisms, which are therefore 
generally more vulnerable to ocean acidification compared to other organisms (Kroeker et al., 2010). 
Ocean acidification has also been found to increase heart rates in some invertebrate species (Lim and 
Harley, 2018) and alter benthic community structure (Brown et al., 2018). Elevated temperatures and 
ocean acidification have furthermore been observed to interact in various ways, causing heterogenic 
physiological responses across species, depending on taxon and life stage (Harvey et  al., 2013). 
Indeed, these two stressors may disproportionally alter species interactions and biodiversity in marine 
ecosystems (Franzova et al., 2019; Nagelkerken and Munday, 2016).

While the vast majority of ocean acidification and climate change research has focused on lower 
latitude systems, studies have rarely considered the impacts on species at their poleward range edge. 
The poleward edge of subtidal ectotherms (ectotherms that are constantly submerged in water) is 
determined by low water temperatures (Sunday et al., 2012), however, the distribution of intertidal 
species is also controlled by their capacity to tolerate freezing as they are exposed to sub-zero air 
temperatures during emersion at high latitudes (Kennedy et al., 2020; Reid and Harley, 2021; Thyr-
ring et al., 2019; Wang et al., 2020). On rocky shores, a mosaic of stressors determines biological 
patterns (Thyrring and Peck, 2021). For instance, canopy-forming macroalgae shelter the understory 
communities from extreme sub-zero air temperatures (Sejr et al., 2021), and where cold enough, an 
ice foot forms on the rocky surface, creating a warmer protective microhabitat increasing survivor-
ship of intertidal organisms residing below (Scrosati and Eckersley, 2007; Thyrring et al., 2017a). 
However, as temperatures increase at the northern range edge where ice forms, organisms face sub-
zero air temperatures when emerged at low tides as the ice foot melts or before it forms, offsetting 
the otherwise facilitative effect of ocean warming on range expansions.

Freezing can result in osmotic stress, dehydration, and structural damage to the cell membrane 
(Meryman, 1971; Storey and Storey, 1988). While the underlying physiological processes remain 
poorly understood in intertidal species (Kennedy et al., 2020), generally, freeze tolerance mecha-
nisms include accumulation of cryoprotectants (such as amino acids, polyols, or sugars) to protect 
proteins and membranes (Denlinger and Lee, Jr, 2010), and prevent intracellular osmotic stress as 
water is lost to the extracellular space (Storey and Storey, 1996; Toxopeus and Sinclair, 2018). For 
instance, the amino acid proline increases freeze tolerance in plants and insects (Patton et al., 2007; 
Storey and Storey, 1996), and the earthworm Dendrobaena octaedra survive freezing during winter 
by accumulating glucose (Holmstrup, 2003). In intertidal bivalves, a mixture of metabolites (i.e. low 
molecular weight compounds), such as trimethylamine n-oxide (TMAO), betaine, strombine, and the 
amino acid taurine, likely acts as cryoprotectants that increase freeze tolerance (Kennedy et al., 2020; 
Loomis et al., 1988). While underexplored, it also appears that many intertidal species may have an 
array of ice binding proteins that help manage ice growth and propagation (Box et al., 2022).

Freeze tolerance in some ectotherms is also associated with the composition of the cell membrane 
phospholipid fatty acids, which are sensitive to temperature variation (Hazel, 1995). Functional 
membranes must exist in a fluid liquid-crystalline phase maintained by the composition of the phos-
pholipids. Low temperatures decrease membrane fluidity, and the membrane becomes partly dysfunc-
tional, losing selective properties and leaking cell contents (Hazel, 1995). Ectotherms can counteract 
this effect by lipid remodeling and adjustments of cholesterol levels. This mechanism, termed homeo-
viscous adaptation, has been shown in a wide range of marine and terrestrial animals (Storey and 
Storey, 1988), and intertidal bivalves can remodel phospholipids in response to temperature changes 
(Pernet et al., 2007; Thyrring et al., 2017c; Williams and Somero, 1996).

https://doi.org/10.7554/eLife.81080
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Despite this progress on the mechanisms of cold and freeze tolerance in intertidal species, it is 
completely unknown whether ocean acidification interacts with cryoprotectant production or lipid 
remodeling. High-latitude cold water is able to absorb significantly more CO2 than lower-latitude 
warmer water, and therefore seawater pH is decreasing most rapidly at these latitudes (Fassbender 
et al., 2017). Ocean acidification decreases pH in the physiological fluids of osmoconformers with a 
low capacity to regulate internal pH levels (e.g. bivalves), which could lead to disruption of cellular 
processes, and shifts in osmotic balance (Wittmann and Pörtner, 2013; Zhao et al., 2020). Thus, 
ocean acidification may decrease freeze tolerance and increase animal vulnerability to sub-zero air 
temperature exposure, yet the interaction between ocean acidification and freeze tolerance interac-
tions remains to be explored.

Bivalves of the genus Mytilus are distributed in intertidal habitats in both the Northern and 
Southern Hemisphere (Hilbish et al., 2000; Mathiesen et al., 2017; Thyrring et al., 2017b). Mytilus 
sp. are commercially and ecologically important ecosystem engineers that create habitats for a diverse 
associated fauna and are widely used as model organisms for studying impacts of various stressors 
(Barrett et al., 2022; Telesca et al., 2019; Thyrring et al., 2015). Mytilus spp. can survive tissue 
freezing and are expanding at higher latitudes in response to global warming (Thyrring et al., 2017a); 
however, the performance of Mytilus sp. at their poleward edge remains poorly understood. The 
focus of this study is two Mytilus spp. found in British Columbia, Canada; the invasive Mediterranean 
mussel Mytilus galloprovincialis and the native bay mussel Mytilus trossulus, allowing a comparison 
of responses among native and invasive species. By investigating the effects of ocean acidification on 
freeze tolerance in these species, we test the hypothesis that ocean acidification will generally increase 
mortality in intertidal species living near their poleward range edge due to an increased susceptibility 
to sub-zero air temperatures during emersion. Mussels from both the intertidal and subtidal realm 
were investigated to detect whether previous exposure to air has any effects on freeze tolerance. 
Specifically, we predict that (1) intertidal animals are more freeze tolerant than subtidal conspecifics, 
(2) native M. trossulus is more freeze tolerant than M. galloprovincialis, and (3) ocean acidification will 
increase freeze mortality in both species. Finally, we hypothesize that variation in freeze tolerance 
will correlate with (1) a destabilized cell membrane caused by variation in the unsaturation state of 
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Figure 1. Proportion of survival in intertidal Mytilus trossulus, subtidal M. trossulus, and subtidal M. galloprovincialis after 10 days of acclimation to pH 
conditions (pH = 7.9or pH = 7.5). Groups of mussels were exposed to seven sub-zero air temperatures. Lines indicate fitted logistic regression models; 
solid black lines represent control conditions (pH = 7.9); and dashed blue lines represent acidified conditions (pH = 7.5). Dots represent actual survival, 
and shaded areas indicate 95% confidence intervals of the fitted model.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mussels placed in wells drilled into a cooled aluminum block to assay freezing survival.
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membrane phospholipids, and (2) variation in the composition and concentration of selected molec-
ular cryoprotectants.

Results
Survival
Following acclimation to two pH conditions (pH = 7.9 or pH = 7.5), mussels were exposed to seven 
sub-zero air temperatures (−5,–6, −7,–8, −9, –12, –15°C), and the supercooling point (SCP: indication 
of internal ice formation) was determined. Internal ice formation was observed in all mussels. There 
was no significant effect of pH condition (ANOVA; p>0.05) or mussel categories (subtidal M. trossulus 
and M. galloprovincialis, and intertidal M. trossulus; ANOVA; p>0.05) on the SCP.

We investigated the effect of pH and sub-zero air temperature on survival using generalized linear 
models (GLMs). There was no significant interaction between the effect of pH and air temperature on 
any mussel category, and the interaction term was excluded in the final models. Lower sub-zero air 
temperature significantly decreased the survival of mussels in all three categories exposed to both 
control and low pH conditions (Figure 1; Supplementary file 1). Under control conditions (pH = 7.9), 
the lower lethal temperature at which 50% of the population perished (LLT50) was significantly lower in 
intertidal M. trossulus (–10.56°C ± 0.80 CI) compared to subtidal M. trossulus (–9.12°C ± 0.48 CI) and 
subtidal M. galloprovincialis (–7.62°C ± 0.49 CI), which was the least freeze-tolerant species (Figure 1). 
Following exposure to low pH (pH = 7.5), survival significantly decreased after sub-zero air exposure 
in all three mussel categories (Figure 1; Supplementary file 1). Accordingly, the LLT50 of intertidal 
M. trossulus was –7.53°C ± 0.26 CI, while the LLT50 was –8.04°C ± 0.32 CI and –6.69°C ± 0.17 CI for 
subtidal M. trossulus and subtidal M. galloprovincialis, respectively. Thus, subtidal M. trossulus was 
the most freeze-tolerant category under low pH conditions, although it was not statistically different 
from intertidal M. trossulus. It should be noted that only one M. galloprovincialis (6.66%) survived 
exposure to –8°C.

Metabolomics and fatty acids
Metabolite, amino acid, and fatty acid analyses were performed on mussels collected after 10 days of 
pH exposure. We compared the composition of metabolites using principal component analysis (PCA) 
plots, which showed that the three mussel categories clustered together, suggesting no differentia-
tion in their metabolite profiles under control and acidified conditions (Figure 2). The predominate 
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Figure 2. Principal component analysis (PCA) plot based on all identified metabolites in intertidal Mytilus trossulus, subtidal M. trossulus, and subtidal 
M. galloprovincialis after 10 days of acclimation to pH conditions (pH = 7.9or pH = 7.5). Each point represents an individual, and the ellipses extend to 
the 95% confidence interval of the mussel category.
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osmolytes were alanine, aspartate, betaine, glycine, malonate, taurine, trimethylamine, and trime-
thylamine n-oxide (TMAO) (see Supplementary file 2 for a full list of all metabolites obtained from 
the 1H NMR analysis), but we detected no significant changes in their concentration among the two 
pH treatments or mussel categories (Figure 3). Likewise, there were no significant differences in the 
concentration of any amino acids among mussel categories or pH treatment (Table 1).

Thirteen fatty acids contributed ∼90% of the variation in membrane composition between the 
control and low pH treatment (Table 2). While the fatty acid profiles in intertidal M. trossulus were 
unaffected by low pH exposure (Table 2, Figure 4), the low pH treatment caused an increase in the 
amount of monounsaturated fatty acids (MUFA) in subtidal M. galloprovincialis and M. trossulus, and 
a decrease in polyunsaturated fatty acids (PUFA), in subtidal M. trossulus (Figure 4). This resulted 
in a significant decrease in the degree of unsaturation (i.e. lower number of double bonds in the 
membrane) (GLM; p<0.05; Table 2; Figure 4). Accordingly, the unsaturation index (UI; the index for 
the number of double bonds per 100 molecules of fatty acids) was significantly higher in intertidal than 
subtidal M. trossulus after pH exposure (Tukey’s HSD, p=0.0002).

Seawater chemistry
Mean pH measurements from the hand-held pH meter (measured on the total hydrogen ion scale; 
pHT) showed relatively good agreement with our target acidified treatment (7.5 pHT ± 0.03–0.06 SD), 
although there was a greater degree of variability in the control treatments (7.9 pHT ± 0.12–0.19 SD) 
due to fluctuating ambient partial pressure of carbon dioxide (pCO2) (Supplementary file 3; Figure 5). 
There was also some disagreement between our measured pHT and pH calculated using dissolved 
inorganic carbon (DIC) and pCO2 data (Supplementary file 4). The discrepancies in our control treat-
ments were the result of the highly variable ambient pCO2 and the corresponding adjustments we 
frequently made to our gas delivery system. On average, these fluctuations did not cause significant 
deviations from our target pH values, as shown by our hand-held pHT data (Supplementary file 3) 
but were more pronounced in the data taken from discrete, single time point water samples. In all 
but one instance, the difference between directly measured and calculated pH for a single time point, 
that is, the direct pHT measurement made at the time the discrete water sample was taken, was within 
the standard deviation of mean pH measurements taken over the 2-wk period. The regulation of 
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Figure 3. The concentration of common gill tissue osmolytes in intertidal Mytilus trossulus, subtidal M. trossulus, and subtidal M. galloprovincialis after 
10 days of acclimation to pH conditions (pH = 7.9 or pH = 7.5). The horizontal line in each boxplot is the median, the boxes define the hinges (25–75% 
quartile), and the whisker is 1.5 times the hinges (n = 5). Colored dots represent data outside this range.
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ocean acidification simulation systems with potentiometric pH meters has been shown to be reliable 
(MacLeod et al., 2015), and therefore it is likely that the discrepancy between discrete and hand-held 
pHT data was not indicative of substantial deviations in seawater chemistry target values.

The addition of CO2 free air to the controls also resulted in lower-than-expected pCO2 values 
in both start and end point data from those treatments (Supplementary files 4 and 5). We also 
observed some anomalous values for end point total alkalinity and DIC in our control treatment that 
were attributed to shell calcification and insufficient water replacement rates (Supplementary files 4 
and 5). These values were not indicative of the seawater chemistry parameters over the entire exper-
imental period, as described above, but are included for completeness.

Seawater chemistry variability
In contrast to open oceans where pH is stable (Hofmann et al., 2011), daily and seasonal fluctua-
tions can exceed 0.7 pH units in coastal ecosystems (Baumann et al., 2015; Menéndez et al., 2001; 
Wootton et al., 2012; Wootton et al., 2008), where dense blue mussel beds have been found in 
areas with a seawater saturation level of aragonite calcium carbonate (Ωarag) below 0.5 (Duarte et al., 
2020). Ωarag control calcification kinetics and Ωarag <1 means conditions are corrosive for aragonite-
based shells, like blue mussels. Along the intertidal rocky shoreline of the Northwest Pacific, where 
mussels for this study were collected, pH values naturally decline below 7.6, particularly during the 
winter (Ianson et al., 2016; Jarníková et al., 2022; Simpson et al., 2022). Thus, while pH conditions 
in our aquariums fluctuated (control 7.84 ± 0.19–7.92 ± 0.12 ∣ acidified 7.49 ± 0.05–7.55 ± 0.03), the 
variability was within the range of in situ fluctuation rates. Our control conditions therefore repre-
sent actual in situ conditions, and the final average difference in pH between the control (7.88) and 

Table 1. Mean (± SD) amino acid composition (% total amino acid content) of gill tissue in intertidal 
Mytilus trossulus, subtidal M. trossulus, and subtidal M. galloprovincialis after 10 days of acclimation 
to pH conditions (pH = 7.9 or pH = 7.5, n = 5).

Intertidal – M. trossulus Subtidal – M. trossulus Subtidal – M. galloprovincialis

Amino acid Acidified Control Acidified Control Acidified Control

Asx 11.18 ± 0.44 11.39 ± 0.25 11.07 ± 0.30 11.34 ± 0.86 11.07 ± 0.30 11.01 ± 0.33

Ala 5.50 ± 0.22 5.74 ± 0.35 5.54 ± 0.21 5.47 ± 0.33 5.54 ± 0.21 5.56 ± 0.13

Arg 7.92 ± 0.85 7.11 ± 0.10 7.07 ± 0.07 7.08 ± 0.11 7.07 ± 0.07 7.22 ± 0.19

Glx 14.08 ± 0.99 14.97 ± 0.16 15.07 ± 0.12 14.81 ± 0.46 15.07 ± 0.12 14.97 ± 0.17

Gly 9.37 ± 0.91 9.15 ± 0.62 9.15 ± 0.61 9.39 ± 1.43 9.15 ± 0.61 9.31 ± 0.7

His 2.03 ± 0.04 2.15 ± 0.12 2.04 ± 0.07 2.09 ± 0.10 2.04 ± 0.07 2.05 ± 0.05

Ile 4.16 ± 0.18 4.14 ± 0.09 4.03 ± 0.16 4.10 ± 0.26 4.03 ± 0.16 3.97 ± 0.19

L-Dopa 0.14 ± 0.01 0.17 ± 0.02 0.09 ± 0.01 0.14 ± 0.03 0.09 ± 0.01 0.11 ± 0.01

Leu 6.49 ± 0.18 6.53 ± 0.09 6.30 ± 0.25 6.42 ± 0.34 6.30 ± 0.25 6.3 ± 0.3

Lys 7.65 ± 1.60 7.06 ± 0.33 6.51 ± 0.37 6.69 ± 1.16 6.51 ± 0.37 6.47 ± 0.36

Met 2.55 ± 0.12 2.60 ± 0.08 2.76 ± 0.05 2.64 ± 0.10 2.76 ± 0.05 2.68 ± 0.08

Phe 4.26 ± 0.19 4.36 ± 0.12 4.16 ± 0.15 4.31 ± 0.44 4.16 ± 0.15 4.08 ± 0.18

Pro 5.25 ± 0.48 5.26 ± 0.27 5.92 ± 0.31 5.59 ± 0.61 5.92 ± 0.31 6.03 ± 0.24

Ser 5.06 ± 0.21 4.85 ± 0.15 4.81 ± 0.10 4.87 ± 0.14 4.81 ± 0.10 4.77 ± 0.1

Thr 4.36 ± 0.16 4.38 ± 0.04 4.72 ± 0.07 4.50 ± 0.13 4.72 ± 0.07 4.75 ± 0.05

Tyr 5.12 ± 0.47 5.25 ± 0.28 5.62 ± 0.10 5.55 ± 0.44 5.62 ± 0.10 5.63 ± 0.15

Val 5.03 ± 0.24 5.06 ± 0.11 5.22 ± 0.10 5.13 ± 0.11 5.22 ± 0.10 5.21 ± 0.08

Asx = aspartic acid/asparginine. Ala = alanine. Arg = arginine. Glx = glutamic acid/glutamine. Gly = glycine. His = 
histidine. Ile = isoleucine. L-Dopa. Levodopa; Leu = leucine. Lys = lysine. Met = methionine. Phe = phenylalanine. 
Pro = proline. Ser = serine. Thr = threonine. Tyr = tyrosine. Val = valine.

https://doi.org/10.7554/eLife.81080
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Table 2. Mean (± SD) fatty acid composition (% fatty acid content) of the 13 fatty acids contributing 
∼90% of the differences in fatty acid composition after 10 days of acclimation to pH conditions (pH 
= 7.9 or pH = 7.5).
UI = unsaturation index. Bold numbers indicate significant differences among the control and low pH 
treatment within a mussel category (ANOVA, p<0.05, n = 5).

Intertidal – M. trossulus Subtidal – M. trossulus Subtidal – M. galloprovincialis

Fatty acid Acidified Control Acidified Control Acidified Control

16:0 9.53 ± 0.89 8.72 ± 1.21 16.56 ± 6.62 10.21 ± 1.21 12.95 ± 5.17 8.83 ± 1.44

18:0 2.57 ± 0.34 2.53 ± 0.17 4.30 ± 1.98 2.28 ± 0.38 3.38 ± 1.26 2.53 ± 0.67

16:1ω7 1.01 ± 0.1 1.2 ± 0.22 1.58 ± 0.33 0.97 ± 0.19 1.71 ± 0.33 1.07 ± 0.27

17:1ω7 1.71 ± 0.63 4.07 ± 4.16 1.94 ± 1.14 1.43 ± 1.1 2.26 ± 1.63 2.04 ± 2.15

18:1ω7 1.48 ± 0.12 1.37 ± 0.37 1.91 ± 0.52 1.21 ± 0.2 2.08 ± 0.58 1.5 ± 0.34

20:1ω9 4.31 ± 0.3 4.12 ± 0.46 6.21 ± 1.13 4.86 ± 0.61 5.43 ± 1.32 4.37 ± 0.48

18:2ω6 0.91 ± 0.1 0.94 ± 0.35 1.46 ± 0.67 1.31 ± 0.25 0.79 ± 0.36 0.64 ± 0.14

18:3ω3 1.12 ± 0.07 1.21 ± 0.5 1.04 ± 0.57 1.52 ± 0.19 0.31 ± 0.1 0.36 ± 0.09

20:2ω6 9.41 ± 0.76 8.82 ± 1.05 11.96 ± 1.21 9.87 ± 0.58 9.78 ± 1.79 8.67 ± 1.41

20:4ω6 9.70 ± 1.1 9.81 ± 0.9 3.76 ± 2.61 6.07 ± 0.76 6.95 ± 2.43 9.7 ± 1.37

20:5ω3 9.78 ± 1.15 10.74 ± 1.97 4.87 ± 3.59 12.19 ± 1.05 7.0 ± 2.98 10.21 ± 1.68

22:2-NMI 11.54 ± 0.84 10.86 ± 1.5 12.72 ± 0.95 9.55 ± 0.66 13.53 ± 1.5 12.19 ± .1.14

22:6ω3 14.13 ± 0.99 13.73 ± 0.69 6.36 ± 4.86 16.22 ± 0.48 9.7 ± 4.61 15.88 ± 2.06

UI 234.73 ± 6.14 238.84 ± 8.75 150.94 ± 55.19 244.97 ± 4.59 187.59 ± 46.35 242.92 ± 8.78

16:0, palmitic acid; 18:0, stearic acid; 16:1ω7, palmitoleic acid; 17:1ω7, 10Z-heptadecenoic acid; 18:1ω7, vaccenic 
acid; 20:1ω9, gondoic acid; 18:2ω6, linolelaidic acid; 18:3ω3, γ-linolenic acid; 20:2ω6, docosadienoic acid; 
20:4ω6, arachidonic acid; 20:5ω3, eicosapentaenoic acid; 22:2-NMI, non-methylene-interrupted dienoic acid; 
22:6ω3, docosahexaenoic acid.
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Figure 4. The molar percentage of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) of gill tissue 
in intertidal Mytilus trossulus, subtidal M. trossulus, and subtidal M. galloprovincialis after 10 days of acclimation to pH conditions (pH = 7.9 or pH = 7.5). 
The horizontal line in each boxplot is the median, the boxes define the hinges (25–75% quartile), and the whisker is 1.5 times the hinges (n = 5). Colored 
dots represent data outside this range. Asterisks indicate a significant difference (ANOVA, p<0.05) between control and acidified conditions.
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acidified (7.52) represented our target values (7.9 pH and 7.5 pH). The natural variation in coastal 
pH also challenges the common belief that Ωarag should be >1 (non-corrosive conditions) to repre-
sent control conditions in ocean acidification experiments. Widespread undersaturation of surface 
water aragonite (Ωarag< 1) occurs in the waters in the Strait of Georgia during winter (Simpson et al., 
2022), and we argue that control conditions should reflect actual pH levels on the site of collections, 
regardless of the Ωarag level. While we acknowledge that our regulation of seawater chemistry could be 
improved, we believe that changes in mussel survival were caused by changes in average pH, rather 
than variation in pH or other parameters. Our rationale is supported by the fact that intertidal mussels 
exhibited the largest decrease in survival upon exposure to reduced pH plus freezing, and as they are 
typically exposed to much greater variability in seawater chemistry and temperature than subtidal 
mussel populations, it is highly unlikely that variability had the most pronounced and negative effect 
on this category.

Discussion
Climate change is redistributing species toward cooler environments but understanding how different 
drivers interact to shape species geographical ranges is essential for predicting patterns and rates of 
change. At higher latitudes, range-expanding species face a suite of novel abiotic conditions including 
low temperatures and a decreasing seawater pH (Fassbender et al., 2017). The goals of this study 
were to investigate the combined effect of low seawater pH and sub-zero air temperature stress on 
survival of two Mytilus spp. and compare the responses between a native and invasive congener. 
Intertidal individuals of the native bay mussel M. trossulus were significantly more freeze tolerant than 
subtidal M. trossulus individuals, which were in turn more freeze tolerant than the invasive Mediter-
ranean mussel M. galloprovincialis. Following exposure to acidified seawater, our data demonstrated 
a significant negative effect on freeze tolerance and survival across all species-habitat combinations. 
Interestingly, the intertidal population of M. trossulus was most impacted by acidification, while 
subtidal M. trossulus was the least affected, and was more freeze tolerant than the other categories 
exposed to acidified seawater. Cellular accumulation of metabolites and reconfiguration of membrane 
fatty acids were uncorrelated with the observed variation in survival among mussel categories under 
both control and acidified conditions, which could be related to short-term exposure.

Under present-day conditions (our control pH treatment), both the intertidal and subtidal M. tros-
sulus category were more freeze tolerant than the invasive M. galloprovincialis. This corresponds to 
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Figure 5. pH measurements from each incubator during the observation period. Incubators 1–3 were set to control conditions (pH = 7.9), while 
incubators 4–6 were set to acidified conditions (pH = 7.5).
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their geographical distribution with M. trossulus predominantly inhabiting shorelines at higher lati-
tudes where winter sub-zero air temperatures are common, while M. galloprovincialis dominate on 
warmer low-latitude shores (Hilbish et al., 2000). However, the physiological processes behind inter- 
and intraspecific variation in freeze tolerance remain poorly understood. In Mytilus sp., the accumu-
lation of intracellular low molecular weight osmolytes increases freeze tolerance (Kennedy et  al., 
2020; Williams, 1970), but the accumulation of these putative cryoprotectants can only partly explain 
survival after sub-zero temperature exposure. For example, although individuals of M. trossulus living 
in the upper intertidal zone are more freeze tolerant than individuals from the low zone, a recent study 
showed no differences in the concentration of metabolites among the shore levels (Kennedy et al., 
2020), and no differences in the concentration of putative cryoprotectants were observed among our 
three mussel categories, despite large variation in freeze tolerance. Likewise, after 10 days of expo-
sure to acidified water that significantly reduced freeze tolerance in all three mussel categories, with 
the survival of the intertidal population most affected, the low pH exposure had no effect on metabo-
lite concentration in any mussel category, offering no explanation for the observed decrease in freeze 
tolerance. The fact that the intertidal category was most affected by low pH supports our notion that 
decreased survival was caused by changes in average pH, and not pH variation (see section ‘Seawater 
chemistry variability’) because animals from more unstable environments (i.e. the intertidal) are gener-
ally more resilient to changing environmental conditions (Clark et al., 2018).

The composition of the membrane’s phospholipids is also proposed to determine freeze tolerance. 
Specifically, a positive relationship between survival and membrane unsaturation state has been shown 
in some species (Bindesbøl et al., 2005; Slotsbo et al., 2016). We hypothesized that freeze tolerance 
in Mytilus mussels would also be correlated to the unsaturation state. However, we observed no signif-
icant differences in the unsaturation index among mussel categories under control pH conditions. The 
unsaturation index in subtidal M. trossulus and M. galloprovincialis decreased in response to ocean 
acidification, yet they were the least affected in terms of freeze tolerance. Meanwhile, intertidal M. 
trossulus had the highest unsaturation index, but the lowest survival. Our results suggest that phos-
pholipid composition is of limited importance for freeze tolerance in Mytilus mussels, while membrane 
reconfiguration seems to be important for keeping membranes functional in cold water environments 
(Pernet et al., 2007; Thyrring et al., 2017c), thus membrane reconfiguration may be important for 
species to inhabit cold subtidal environments.

While we were unable to explain the variation in freeze tolerance under present-day and acidi-
fied conditions, variation in freeze tolerance among populations and congeners may be explained 
by high molecular weight cryoprotectants, for example, ice binding proteins, not measured here. 
Indeed, the influence of antifreeze proteins on freeze tolerance in Mytilus ought to be explored 
further as their potential role seems to vary among populations (Box et al., 2022; Loomis, 1995). 
Furthermore, thermal tolerance variation may be explained at the gene level (Clark et al., 2021; 
Peck et al., 2015). A recent study highlighted that differences in the expression of heat shock 
genes and aquaporins plays a central role in determining freeze tolerance in northern barnacles 
species (Marshall et al., 2018), and heat shock proteins have been linked to sub-zero tempera-
ture survival in insects (Rinehart et al., 2007). Populations from variable environments (such as 
the intertidal zone or polar regions) are regularly exposed to unpredictable conditions, which can 
introduce a front loading of stress genes that enable individuals to better cope with unfavorable 
conditions (Drake et al., 2017; Marshall et al., 2021). Such front loading of genes is known from 
other marine species (Clark et al., 2008; Drake et al., 2017), and freeze-tolerant Mytilus popula-
tions may also have front-loaded genes (e.g. heat shock genes, aquaporins) that are constantly at a 
higher expression level, which transfer into resilience through faster production of stress mediating 
proteins (Barshis et al., 2013). Thus, because the intertidal population of M. trossulus is acclima-
tized to daily air exposure, compared to subtidal M. trossulus and M. galloprovincialis, constantly 
increased gene expression may provide an explanation for the difference observed in survival 
following sub-zero air exposure. Following low pH exposure, intertidal M. trossulus may be the 
most affected because intertidal species generally already live close to their physiological limits and 
have a limited capacity to adapt to new conditions. The large increase in mortality following low pH 
exposure could indicate that accommodating this additional environmental stressor exceeds their 
physiological ability to cope with external stressors. A molecular investigation could reveal the 
processes behind variation in freeze tolerance among populations and species, and investigations 

https://doi.org/10.7554/eLife.81080


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Thyrring et al. eLife 2023;12:e81080. DOI: https://doi.org/10.7554/eLife.81080 � 10 of 18

into the underlying genetic mechanisms accounting for our observations would be interesting for 
future research.

Overall, Mytilus sp. are excellent at adapting to local environments (Riginos and Cunningham, 
2005), making them highly stress tolerant and capable of enduring large ranges of salinities and 
temperatures (Barrett et al., 2022; Nielsen et al., 2021). While intertidal M. trossulus populations 
are found as far north as northern Greenland (Mathiesen et al., 2017), the northern distribution limit 
of the invasive M. galloprovincialis in the Northwest Pacific is set around Canada. At their range edge 
in the waters of British Columbia, Canada, subtidal populations face intense predation by seastars, 
excluding mussels from the subtidal and low intertidal (Harley, 2011). The low pH scenario tested 
here (pH = 7.5) revealed that acidification weakens freeze tolerance across Mytilus spp. Because 
winter low tides predominantly occurs at nighttime in the Northwest Pacific, occasionally exposing 
sessile intertidal organisms to air temperatures down to –10°C (Kennedy et al., 2020), significant 
annual freeze mortality events could occur in both species inhabiting the intertidal if pH continues to 
decline. Thus, an ongoing poleward expansion in the intertidal (where predation is less intense) could 
be hindered, offsetting the poleward expansion predicted because of warming waters. Consequently, 
if temperatures become too high for survival at a species equatorward edge, the combined effects 
of predation and limited freeze tolerance could result in a range contraction (rather than a latitudinal 
shift), substantially threatening the persistence of these species in some regions.

Materials and methods
Animal collection and holding conditions
Three categories of Mytilus mussels were collected on December 8–10, 2019, in the strait of Georgia, 
British Columbia, Canada; (1) subtidal M. galloprovincialis obtained from an aquaculture farm at 
Saltspring Island (48.731–123.429), (2) subtidal M. trossulus collected from floating docks at the 
Jericho Royal Vancouver Yacht Club (49.276–123.186) in the Burrard Inlet, and (3) intertidal M. tros-
sulus collected at low tide from Tower Beach (49.273–123.258) in the Burrard Inlet (collection permit 
number XMCFR 7 2019; Fisheries and Oceans Canada). Intertidal M. galloprovincialis was not consid-
ered as no intertidal populations are established in the region. All mussels were kept for a 72  hr 
adjustment period in aerated aquaria of similar environmental conditions as the individual collection 
sites measured on the days of collection (7°C, pH = 7.9, and salinity 20.5). No mussels died during the 
adjustment period.

Two pH conditions were selected to cover a realistic range of pH values currently observed or 
predicted for the Southern Strait of Georgia; a control (pH = 7.9) and a low pH treatment (pH = 7.5) 
(Ianson et al., 2016). Prior to sub-zero air temperature exposure, mussels were maintained in low or 
control pH conditions for 10 days using three incubators (Panasonic MIR 154, Panasonic, Japan) for 
low pH conditions and three for control conditions (no mussels died during the 10 days). Each incu-
bator was set to 7°C and contained three 5 L glass aquaria that held three envelopes of 0.5 cm gauge, 
rigid plastic mesh (25 × 24 cm) that separated the three categories of mussel but allowed unrestricted 
circulation of seawater (salinity 20–21).

Seawater manipulation
The low pH treatment was established using two Smart-Trak mass flow controllers (Sierra Instruments, 
Inc, CA) to mix 100% CO2 (PraxAir Canada Inc, CB, Canada) and CO2-free air, which was then bubbled 
into the acidified seawater aquaria to achieve target values of 7.50 pH. CO2-free air was generated 
using a small compressor to pump ambient air through a 500 mL Nalgene canister that contained 
Soda Lime (Ormond Veterinary Supply Ltd., ON, Canada). A flow rate of 3.3 cm3/s of 100% CO2 gas 
and 4.11 L/min of CO2-free air was used to reach the target pH. Our system also removed moisture 
from ambient air to protect the mass flow controllers from water damage. This was achieved by 
running the ambient-air gas lines through a small refrigerator to reduce air temperature and cause 
water to precipitate into a water trap, and by installing a second 500 mL Nalgene containing desic-
cant (WA Hammond Drierite, OH) in series with the soda lime container. Control conditions (7.90 pH) 
were maintained by mixing ambient air and CO2-free air. The use of CO2-free air was necessary as 
ambient air was artificially high in CO2 due to poor ventilation in the lab. As with the low pH treat-
ment, ambient air was pumped through a Soda Lime-filled 500 mL Nalgene canister using a small 
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compressor before being connected to a three-way splitter and bubbled into seawater aquaria, while 
ambient air was bubbled into the control aquaria using a second set of tubes connected to low-power 
aquarium air pumps (Fusion 700 Air Pump). Air flow from the small aquarium pumps was fine-tuned 
by placing an adjustable clamp on the flexible tubing that connected pump and air stone to increase 
or decrease the flow of CO2-enriched ambient air to achieve 7.90 pH. Carbon dioxide in ambient ‘lab’ 
air was monitored constantly using a Qubit S151 CO2 gas analyzer (Qubit Systems, ON, Canada), 
which showed that CO2 fluctuated during the day between 400 ppm and 600 ppm CO2 reaching the 
maximum during the day while people were working in the lab. Consequently, the input of ambient 
air into control tanks was monitored and adjusted daily (mainly during the day) to maintain target 
pH values. Prior to adjusting seawater pH, we mixed filtered seawater (provided by the Vancouver 
Aquarium and transported by the City of Vancouver) with de-chlorinated distilled fresh water to create 
a 20–21 ppt solution that was the salinity recorded at the collection sites. Mussels were able to feed 
on phytoplankton naturally occurring in the water, and we replaced 50% of the seawater from each 
tank daily to prevent the buildup of feces and maintain uniform seawater chemistry parameters.

Carbonate chemistry
Seawater pH was measured daily in all aquaria using a hand-held pH meter (Supplementary file 3; 
Oakton pH 450 (± 0.01 pH), Oakton Instruments, IL) calibrated with two saltwater buffers, as described 
in MacLeod et  al., 2015 to provide pH measurements on the total hydrogen ion scale (pHT). To 
further characterize the seawater carbonate chemistry, seawater samples (300  mL) were collected 
from one randomly selected aquarium in each incubator at the start and end of the experiment. These 
samples were fixed with a saturated solution of mercuric chloride (RICCA Chemical Company, TX) and 
analyzed using the ‘burke-o-lator’ at the Hakai Institute (Quadra Island, BC, Canada); for details of this 
system, see Evans et al., 2019. This analysis generated values for DIC and pCO2, which were then 
used in combination with temperature and salinity data to calculate all relevant carbonate parameters 
(Supplementary file 5) using the MATLAB version of CO2SYS (van Heuven et al., 2011).

Sub-zero temperature exposure
After 10 days of acclimation to pH conditions (pH = 7.9 or pH = 7.5), groups of mussels were exposed 
to seven sub-zero air temperatures (−5, –6, −7,–8, −9,–12, and –15°C) for 2 hr by placing animals in 
individual plastic tubes inserted in wells drilled into a precooled aluminum block cooled by refriger-
ated circulation baths (Thermo Fisher Scientific Inc, MA; Figure 1—figure supplement 1). Fifteen 
mussels (mean shell length 37.69 mm ± 3.14 SD) from each mussel category (subtidal M. gallopro-
vincialis and M. trossulus, and intertidal M. trossulus) and pH condition (pH = 7.9 and pH = 7.5) were 
used at every temperature for a total of 720 mussels. Individual body temperatures were recorded at 
0.5 s intervals using Type-T thermocouples (Omega, QC, Canada) placed next to the shell inside the 
plastic tube and connected to TC-08 thermocouples interfaces (Pico Technology, UK) that interfaced 
to a computer running PICOLOG 6 beta software (Picotech, UK), which continuously monitored body 
temperatures. Continuous body temperature monitoring allowed us to determine any exothermic 
release of heat owing to ice formation. The lowest temperature prior to this event is termed the 
supercooling point (SCP), and the SCP indicates that internal ice formation occurred (Sinclair et al., 
2015). After 2 hr of sub-zero air exposure, all mussels were transferred back to their respective pre-
freezing pH condition aquaria for recovery where they were monitored daily for 5 days to record 
mortality. Mortality was checked daily with mussels considered dead if they did not close their shells 
when touched. Dead mussels were immediately removed from the aquaria and had their shell length 
measured to nearest mm.

Metabolite analysis
All metabolite and fatty acid analyses (next section) were performed on gill tissue because this tissue 
is essential for gas exchange, metabolism, and is directly exposed to internal ice formation (Kennedy 
et al., 2020; Pernet et al., 2007). Total amino acid analysis was performed on mussels collected after 
10 days of pH exposure (mean dry weight = 15.46 mg ± 0.61 SD, n = 5) at the SickKids Proteomics, 
Analytics, Robotics & Chemical Biology Centre (SPARC; https://lab.research.sickkids.ca/sparc-molec-
ular-analysis/services/amino-acid-analysis/), Hospital for Sick Children, Toronto, ON, Canada, using 
the Water Pico-Tag System (Water Corporation, WA). The final concentration of each amino acid was 
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calculated in µg·mg−1 and then expressed as relative concentration (% of total amino acids). It should 
be noted that this amino acid analysis did not allow discrimination between Asn/Asp and Gln/Glu.

One-dimensional, 600 MHz proton nuclear magnetic resonance spectroscopy (1H NMR) was used to 
measure profiles of other soluble molecules in the gill tissue (collected after 10 days of pH exposure). 
1H NMR is ideal for measuring low molecular weight, polar metabolites such as osmolytes and anaer-
obic byproducts. Sample preparation was based on Cappello et al., 2013. A 100 mg sample of gill 
tissue was excised (n = 5), dried with a Kimwipe to remove excess water and frozen at −80°C. Frozen 
tissue was homogenized in 400 µL cold methanol and 85 µL cold water-xylitol solution (5 mM xylitol as 
an internal control) using a bead homogenizer (Bullet Blender 50 Gold Model: BBX24, Next Advance) 
with approximately 200 µL of 3.2 mm round stainless steel beads, for 10 min at setting 8 in 1.5 mL 
microcentrifuge vials. After adding 400 µL chloroform and 200 µL water to the samples, they were 
vortexed for 60 s, left on ice for 10 min for phase separation, and centrifuged for 5 min at 2000 rpm. 
The upper methanol layer (600 μL) containing the polar metabolites was transferred into new vials, 
dried in a centrifugal vacuum concentrator (Eppendorf 5301), and then stored at −80°C. Immediately 
prior to 1H NMR analysis, the dried polar extracts were resuspended in 600 µL of 0.1 mol/L sodium 
phosphate buffer (pH 7.0, 50% deuterium oxide, Sigma-Aldrich) containing 1 mmol/L 2,2-dimethyl-2-
sila-pentane-5-sulfonate (DSS; Sigma-Aldrich) as internal reference. The mixture was vortexed for 60 s 
and transferred to a 5 mm NMR tube.

1H NMR spectra were acquired using Bruker Avance 600 with cryoprobe and Bruker Avance III 
600 spectrometers. TopSpin software version 2.1 (Bruker) was used to process spectra collected with 
the Bruker Avance 600 spectrometer with cryoprobe, and TopSpin version 3.5 (Bruker) was used with 
the Bruker Avance III 600 spectrometer. Experiments required 15 min of acquisition time and were 
performed at room temperature.

Peak identification of the NMR spectra was performed with Chenomx NMR Suite 9.0 (Chenomx, AB, 
Canada) that uses the Human Metabolome Database compound spectral reference library. First, line 
broadening of 2.5 Hz, automatic phase correction, and manual baseline correction were performed 
with Chenomx Processor (within the Chenomx NMR Suite software). Then, determination of metab-
olite concentrations was performed using Chenomx Profiler, which determines the concentrations of 
individual metabolites using the concentration of a known DSS signal. Metabolite concentrations are 
reported as mmol/100 mg gill wet mass.

Fatty acid analysis
Fatty acid analysis was also conducted on mussels collected after 10 days of pH exposure (mean wet 
weight = 0.38 g ± 0.1 SD, n = 5). Total lipids were extracted by grinding in a dichloromethane:meth-
anol (2:1, v/v) solution following a slightly modified Folch procedure (Parrish, 1999). Lipid extracts 
were separated into neutral and polar fractions by column chromatography on silica gel micro-columns 
(30 × 5 mm i.d., packed with Kieselgel 60, 70–230 mesh; Merck, Germany) using chloroform:methanol 
(98:2, v/v) to elute neutral lipids, followed by methanol to elute polar lipids (Marty et al., 1992). Fatty 
acid profiles were determined on fatty acid methyl esters (FAMEs) using sulfuric acid:methanol (2:98, 
v/v) and toluene. FAMEs of neutral and polar fractions were concentrated in hexane, and the neutral 
fraction was purified on an activated silica gel with 1 mL of hexane:ethyl acetate (1:1 v/v) to eliminate 
free sterols. FAMEs were analyzed in the full-scan mode (ionic range: 60–650 m/z) on a Polaris Q ion 
trap coupled multi-channel gas chromatograph ‘Trace GC ultra’ (Thermo Scientific, USA) equipped 
with an autosampler model Triplus, a PTV injector, and a mass detector model ITQ900 (Thermo Scien-
tific). The separation was performed with an Omegawax 250 (Supelco) capillary column with high-
purity helium as a carrier gas. Data were treated using Xcalibur v.2.1 software (Thermo Scientific). 
Methyl nondecanoate (19:0) was used as an internal standard. FAMEs were identified and quantified 
using known standards (Supelco 37 Component FAME Mix and menhaden oil; Supleco) and were 
further confirmed by mass spectrometry (Xcalibur v.2.1 software).

Statistical analysis
Survival
Statistical analysis was performed using the R software (R version 3.5.2). A logistic regression model 
was used to calculate LLT50 values (the lower lethal temperature where 50% of the population survived). 
A binomial GLM with a logit link function was used to determine the effects of air temperature and 
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pH treatment on survival within each mussel category, and the differences in LLT50 were estimated 
using 95% confidence intervals (CI) with non-overlapping CI indicating a significant difference (Deere 
et al., 2006). Differences in the SCP among mussel categories and pH treatment was analyzed using 
a two-way ANOVA. Final models were validated by plotting residuals versus fitted values, versus each 
covariate in the model (Zuur et al., 2016). Validation of ANOVAs and GLM models indicated no viola-
tion of model assumptions.

Metabolomics and fatty acids
Generalized linear models and ANOVAs were used to determine which metabolites and fatty acids 
differed significantly after low pH exposure. The fatty acids explaining most of the dissimilarity 
between mussel categories and pH treatments were identified using a SIMPER analysis (see the full 
list of fatty acids in Supplementary file 6). This analysis revealed that 13 fatty acids explained ∼90% of 
the Bray–Curtis dissimilarity amongst fatty acid profiles between the control and low pH environment 
(Table 2). We therefore focused all subsequent fatty acid analyses on these 13 fatty acids. PCA was 
used to interpret differences in the metabolomic composition among mussel categories. ANOVAs 
were used to evaluate differences in the concentrations of amino acids, and GLMs to evaluate the 
distribution of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty 
acids (PUFA), and the unsaturation index (UI), among the three mussel categories and pH treatment. 
Post hoc pair-wise tests were used to compare significant treatment effects (p<0.05). Detailed data 
exploration was carried out prior to any analysis (Zuur et al., 2010). Once valid models were identi-
fied, we re-examined the residuals to ensure all model assumptions were acceptable.
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from the 1H NMR analysis after 10 days of acclimation to pH conditions (pH = 7.9 or pH = 7.5) (n = 
5).
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directly in aquaria in each incubator.
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the start and end of the exposure period.
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of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids 
(PUFA) is presented.
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Thyrring J, Macleod 
CD, Marshall KE, 
Kennedy J, Tremblay 
R, Harley CDG

2023 Replication data for: 
"Ocean acidification 
increases susceptibility to 
sub-zero air temperatures 
in ecosystem engineers and 
limit poleward range shifts"

https://​doi.​org/​10.​
5281/​zenodo.​4454508

Zenodo, 10.5281/
zenodo.4454508
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