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Opioid suppression of an excitatory 
pontomedullary respiratory circuit by 
convergent mechanisms
Jordan T Bateman, Erica S Levitt*†
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Therapeutics Center, University of Florida, Gainesville, United States

Abstract Opioids depress breathing by inhibition of interconnected respiratory nuclei in the 
pons and medulla. Mu opioid receptor (MOR) agonists directly hyperpolarize a population of 
neurons in the dorsolateral pons, particularly the Kölliker-Fuse (KF) nucleus, that are key mediators 
of opioid-induced respiratory depression. However, the projection target and synaptic connections 
of MOR-expressing KF neurons are unknown. Here, we used retrograde labeling and brain slice 
electrophysiology to determine that MOR-expressing KF neurons project to respiratory nuclei in the 
ventrolateral medulla, including the preBötzinger complex (preBötC) and rostral ventral respiratory 
group (rVRG). These medullary-projecting, MOR-expressing dorsolateral pontine neurons express 
FoxP2 and are distinct from calcitonin gene-related peptide-expressing lateral parabrachial neurons. 
Furthermore, dorsolateral pontine neurons release glutamate onto excitatory preBötC and rVRG 
neurons via monosynaptic projections, which is inhibited by presynaptic opioid receptors. Surpris-
ingly, the majority of excitatory preBötC and rVRG neurons receiving MOR-sensitive glutamatergic 
synaptic input from the dorsolateral pons are themselves hyperpolarized by opioids, suggesting a 
selective opioid-sensitive circuit from the KF to the ventrolateral medulla. Opioids inhibit this excit-
atory pontomedullary respiratory circuit by three distinct mechanisms—somatodendritic MORs on 
dorsolateral pontine and ventrolateral medullary neurons and presynaptic MORs on dorsolateral 
pontine neuron terminals in the ventrolateral medulla—all of which could contribute to opioid-
induced respiratory depression.

Editor's evaluation
Opioid-induced respiratory depression is one of the side effects of opioid drugs. Although opioid 
overdose deaths are highly prevalent, our knowledge of the neural circuits underlying respiratory 
depression in the brainstem is far from complete. The present study used a variety of sophisticated 
experimental techniques to convincingly reveal the identity of brainstem components that are part 
of the neural circuits involved in the mediation of opioid respiratory effects, together with defining 
potential synaptic underlying mechanisms. They focused on two regions of the brainstem, namely 
the Kolliker-Fuse and the preBötzinger Complex, and proposed a combination of three complemen-
tary processes at pre- and post-synaptic sites in both KF and preBötC regions to explain respiratory 
depression linked to opioid exposure. This study provides very important findings on the circuitry 
involved in opioid-induced respiratory depression, and the present results are of broad interest to 
the respiratory control research community, as well as medically relevant.
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Introduction
With the prevalence of opioid overdose on the rise (Wilson et  al., 2020; Mattson et  al., 2021), 
understanding the network mechanisms of opioid-induced respiratory depression is of particular 
importance. Opioids, due to activation of the mu opioid receptor (MOR) (Dahan et  al., 2001), 
depress breathing by inhibiting interconnected respiratory nuclei in the pons and medulla (Bateman 
et al., 2021; Ramirez et al., 2021). Despite significant progress, detailed mechanisms by which this 
occurs remain elusive, especially for the dorsolateral pons. We sought to identify mechanistic insight 
concerning how opioids inhibit pontomedullary respiratory neurocircuitry that gives rise to opioid-
induced respiratory depression.

Respiration is generated and controlled by an interconnected pontomedullary network in the 
brainstem (Del Negro et  al., 2018). The Kölliker-Fuse (KF) nucleus and adjacent lateral parabra-
chial area (LPB) of the dorsolateral pons are critical to the neural control of breathing (Lumsden, 
1923; Fung and St John, 1995; Dutschmann and Herbert, 2006; Smith et al., 2007). The KF/LPB 
is composed of a heterogeneous population of respiratory neurons that impact respiratory rate and 
pattern (Chamberlin and Saper, 1994; Navarrete-Opazo et al., 2020; Saunders and Levitt, 2020) 
via excitatory projections to respiratory nuclei in the ventrolateral medulla, including, but not limited 
to the Bötzinger complex (BötC), preBötzinger complex (preBötC), and rostral ventral respiratory 
group (rVRG) (Song et al., 2012; Yokota et al., 2015; Geerling et al., 2017; Yang et al., 2020). The 
preBötC generates inspiratory rhythm (Smith et al., 1991), which is relayed to inspiratory premotor 
neurons in the rVRG. The BötC contains mostly inhibitory neurons that fire during expiration and is 
a major source of inhibition within the network (Schreihofer et al., 1999; Ezure et al., 2003). The 
dynamic interplay between the KF/LPB and the BötC, preBötC, and rVRG is essential for optimized 
respiratory output (Dutschmann and Dick, 2012; Smith et  al., 2007). Unfortunately, all of these 
respiratory nuclei express MORs, leading to inhibition of the control of breathing network via multiple 
potential sites and mechanisms (Gray et al., 1999; Lonergan et al., 2003; Montandon et al., 2011; 
Levitt et al., 2015; Cinelli et al., 2020).

Two respiratory nuclei considered critical for opioid-induced respiratory depression are the KF/
LPB of the dorsolateral pons and the preBötC of the ventrolateral medulla (Bachmutsky et al., 2020; 
Varga et  al., 2020). The dorsolateral pontine KF/LPB is considered a key contributor of opioid-
induced respiratory depression because (1) deletion of MORs from the KF/LPB attenuates morphine-
induced respiratory depression (Bachmutsky et al., 2020; Varga et al., 2020; Liu et al., 2021), (2) 
opioids injected into the KF/LPB reduce respiratory rate (Prkic et al., 2012; Levitt et al., 2015; Miller 
et  al., 2017; Liu et  al., 2021), (3) blockade of KF/LPB opioid receptors rescues fentanyl-induced 
apnea (Saunders and Levitt, 2020), and (4) chemogenetic inhibition of MOR-expressing LPB neurons 
induces respiratory depression (Liu et al., 2021). Yet, mechanisms by which the opioid inhibition of 
dorsolateral pontine neurons alter neurotransmission in the respiratory circuitry and causes suppres-
sion of breathing are unknown.

MORs inhibit neurotransmission by hyperpolarizing neurons through activation of somatodendritic 
GIRK channels and/or inhibiting presynaptic neurotransmitter release through inhibition of voltage-
gated calcium channels (Jiang and North, 1992; Chahl, 1996; Zamponi and Snutch, 1998; Al-Hasani 
and Bruchas, 2011). In the preBötC, presynaptic MORs inhibit synaptic transmission (Ballanyi et al., 
2010; Wei and Ramirez, 2019; Baertsch et al., 2021) and are expressed more abundantly than soma-
todendritic MORs (Lonergan et al., 2003). These presynaptic MORs in the preBötC are poised to 
play a major role in the mechanism of opioid suppression of breathing within the inspiratory rhythm-
generating area, but the specific origins of MOR-expressing synaptic projections remain unknown. 
Here, we tested the hypothesis that they are coming from the dorsolateral pons.

Opioids hyperpolarize a subset of KF neurons (Levitt et al., 2015), whose neurochemical identity 
and possible projection targets are unknown. Glutamatergic KF neurons project to the ventrolateral 
medulla (Song et al., 2012; Yokota et al., 2015; Geerling et al., 2017) and, if inhibited by opioids—
either by somatodendritic activation of GIRK channels and/or presynaptic inhibition of neurotrans-
mitter release—could depress breathing. Therefore, we hypothesized that MOR-expressing KF 
neurons project to and form excitatory synapses onto respiratory controlling neurons in the ventrolat-
eral medulla (i.e. the preBötC and rVRG), and that this excitatory synapse is inhibited by presynaptic 
MORs on KF terminals. The results show that this excitatory pontomedullary respiratory circuit is 
robustly inhibited by opioids by three different mechanisms, involving presynaptic and postsynaptic 
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opioid receptors in the dorsolateral pons and the ventrolateral medulla, revealing convergent mecha-
nisms by which opioids can depress breathing.

Results
Oprm1 expression in dorsolateral pontine neurons
To visualize MOR-expressing dorsolateral pontine neurons, Oprm1Cre/Cre mice (Baertsch et al., 2021; 
Liu et al., 2021) were crossed with tdTomato Cre-reporter mice to generate Rosa26LSL-tdT/+::Oprm1Cre/+ 
mice (hereby referred to as Oprm1-tdT mice) that express tdTomato in neurons that also express 
MORs at any point during development. MOR-expressing neurons and neurites were identified in the 
dorsolateral pons, specifically in the lateral parabrachial area and KF (n = 3; Figure 1A–D).

To selectively label neurons that express MORs during adulthood, a virus encoding Cre-dependent 
GFP expression (AAV-DIO-GFP) was injected into the dorsolateral pons of Oprm1Cre/+ 2–4-month-old 
mice (n = 5). MOR-expressing neurons were again identified in the lateral parabrachial and KF areas 

Figure 1. Dorsolateral pontine neurons express mu opioid receptors (MORs). (A–D) Representative images of 
tdTomato expression, as an indicator of MOR expression, in coronal dorsolateral pontine slices from Oprm1-tdT 
mice (n = 3) across the rostral to caudal Kölliker-Fuse/lateral parabrachial area (KF/LPB) axis. Fluorescent tdTomato 
image is overlaid onto brightfield image to show landmarks. (E–H) Representative images of GFP expression, as 
an indicator of MOR expression, following injection of virus encoding Cre-dependent GFP into KF/LPB to label 
MOR+ neurons in adult Oprm1Cre/+ mice (n = 5). Left column are slice schematics corresponding to each row. 
The approximate levels caudal to bregma (in mm) are to the right of each schematic. The images correspond to 
the solid boxed area (A–D) or the dotted boxed area (E–H) of the slice schematic. The scale bar in (D) applies to 
images (A–D). The scale bar in (H) applies to images (E–H). PBel, external lateral subdivision of parabrachial; SCP, 
superior cerebellar peduncle.

https://doi.org/10.7554/eLife.81119
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(Figure 1E–H). Neuronal cell bodies were more apparent in these images since MOR-expressing affer-
ents into the dorsolateral pons were not labeled by this approach. These results are consistent with 
previous studies showing that MORs are expressed in LPB (Huang et al., 2021; Liu et al., 2021) and 
KF (Levitt et al., 2015; Varga et al., 2020).

Oprm1+ KF neurons project to respiratory nuclei in the ventrolateral 
medulla
We hypothesized that Oprm1+ KF neurons project to respiratory controlling nuclei in the ventrolat-
eral medulla, especially the preBötC and rVRG. To determine this, retrograde virus encoding Cre-
dependent expression of GFP (retrograde AAV-hSyn-DIO-eGFP) was unilaterally injected into the 
preBötC or the rVRG of Oprm1Cre/+ mice (Figure 2). As a control, anterograde virus encoding mCherry 

Figure 2. Oprm1+ Kölliker-Fuse (KF) neurons and neurites retrogradely labeled from the preBötzinger complex (preBötC) and rostral ventral respiratory 
group (rVRG). (A) Schematic illustrating the approach to retrogradely label Oprm1+ KF neurons and neurites projecting to the preBötC or rVRG. 
(B) Images of coronal slices from the medulla with a control injection of AAV2-hSyn-mCherry into the preBötC of an Oprm1Cre/+ mouse to mark the 
injection site. Immunohistochemistry for the neurokinin 1 receptor (NK1R) was used as a marker for the preBötC and the nucleus ambiguous (NA). 
(C) Quantification of normalized AAV2-hSyn-mCherry fluorescence intensity along the rostral to caudal axis in the ventrolateral medulla of preBötC (n 
= 5) and rVRG (n = 5). Anatomical level relative to Bregma is indicated on the x-axis. (D–I) Representative images of GFP expression, as an indicator 
of retrograde-labeled Oprm1-expressing neurons and neurites, following injections into the preBötC (D–F) or the rVRG (G–I) across three levels of 
the dorsolateral pons. The bregma level is indicated on the schematics to the left of each row. The scale bar in (I) applies to all images (D–I). Higher 
magnification images of bregma –4.84 are shown in Figure 2—figure supplement 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Quantification of spread at the injection sites.

Figure supplement 1. Oprm1+ Kölliker-Fuse (KF) neurons project to the Bötzinger complex (BötC).

Figure supplement 2. Higher magnification images of retrogradely labeled Kölliker-Fuse (KF) neurons.

https://doi.org/10.7554/eLife.81119
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(AAV2-hSyn-mCherry) was co-injected to mark the injection site. The intensity of mCherry expression 
was measured throughout the rostral-caudal axis of the ventrolateral medulla to quantify the extent 
of injection spread in accordance with medullary anatomical markers (Figure 2B and C). In addition, 
immunolabeling for the neurokinin 1 receptor (NK1R) was used as a marker of the preBötC (Gray 
et al., 1999; Montandon et al., 2011) and to identify the nucleus ambiguous (NA), which was espe-
cially useful for the compact section of the NA in the preBötC region (Figure 2B). Injection sites were 
categorized based on the location of peak mCherry expression intensity (Figure 2C and Figure 2—
figure supplement 1).

Oprm1+ dorsolateral pontine neurons and neurites were retrogradely labeled from both preBötC 
and rVRG (Figure 2D–I). Interestingly, Oprm1+ projections to the preBötC (Figure 2D–F; n = 5) and 
the rVRG (Figure 2G–I; n = 5) were mostly localized to the rostral and mid-rostral KF, and nearly absent 
in the caudal KF and lateral parabrachial area (Figure 2F and I). The majority of the retrogradely 
labeled dorsolateral pontine neurons and neurites were ipsilateral to the injection site, with very few 
or no contralateral neurons or neurites expressing GFP. Injections in three mice were located rostrally 
from the preBötC with the peak of mCherry expression in the BötC (Figure 2—figure supplement 
1). In contrast to preBötC and rVRG projections, qualitatively fewer Oprm1+ KF neurons projected to 
the BötC (Figure 2—figure supplement 1E–G). Higher magnification images of retrograde-labeled 
GFP-expressing Oprm1+ KF neurons are shown in Figure 2—figure supplement 2.

Presynaptic opioid receptors inhibit glutamate release from KF 
terminals onto excitatory medullary neurons
Given that KF neurons projecting to the ventrolateral medulla are glutamatergic (Geerling et al., 2017) 
and express MORs (Figure 2), we hypothesized that opioids inhibit glutamate release from KF terminals 
onto respiratory neurons in the ventrolateral medulla, particularly the preBötC and rVRG. To test this 
hypothesis, we unilaterally injected a virus encoding channelrhodopsin2 (AAV2-hSyn-hChR2(H134R)-
EYFP-WPRE-PA) into the KF of vglut2Cre/LSL-tdT mice (Figure 3A and B). We made whole-cell voltage-
clamp recordings from tdTomato-expressing, excitatory vglut2-expressing preBötC and rVRG neurons 
contained in acute brain slices (Figure 3C). Because we could not determine the respiratory-related 
firing pattern of the neurons we recorded from in this study, we chose to target vglut2-expressing 
neurons since (1) this contains the population of inspiratory rhythm-generating preBötC neurons 
(Wallén-Mackenzie et al., 2006; Gray et al., 2010; Cui et al., 2016) and inspiratory premotor rVRG 
neurons, (2) KF neurons project to excitatory, more so than inhibitory, preBötC neurons (Yang et al., 
2020), and (3) deletion of MORs from vglut2 neurons eliminates opioid-induced depression of respira-
tory output in medullary slices (Sun et al., 2019; Bachmutsky et al., 2020). Optogenetic stimulation 
of KF terminals drove pharmacologically isolated excitatory postsynaptic currents (oEPSCs) in excit-
atory preBötC and rVRG neurons (Figure 3D and I) that were blocked by the AMPA-type glutamate 
receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX; 10 μM; Figure 3—figure supplement 
1A and B, n = 11). Additionally, KF synapses onto medullary respiratory neurons are monosynaptic 
because oEPSCs were eliminated by tetrodotoxin (TTX; 1 μM) yet restored by subsequent application 
of 4-aminopyridine (4AP; 100 μM) (Figure 3—figure supplement 1A and C; n = 7). Thus, KF neurons 
send monosynaptic, glutamatergic projections to excitatory ventrolateral medullary neurons.

To determine whether opioids inhibit glutamate release from KF terminals onto medullary respira-
tory neurons, pairs of oEPSCs (50 ms inter-stimulus interval) were recorded from excitatory preBötC 
and rVRG neurons, and the endogenous opioid agonist [Met5]enkephalin (ME) was applied to the 
perfusion solution. ME (3 μM) decreased the oEPSC amplitude in preBötC neurons (Figure 3D and 
E; n = 13) and in rVRG neurons (Figure 3I and J; n = 9), which reversed when ME was washed from 
the slice. In addition, ME increased the paired-pulse ratio (PPR) in both preBötC (Figure 3F; n = 11) 
and rVRG neurons (Figure 3K; n = 9), indicating inhibition of glutamate release by presynaptic MORs. 
The proportion of opioid-sensitive KF terminals was surprisingly high, considering that oEPSCs were 
inhibited by ME by a threshold of at least 30% in nearly all preBötC neurons (11 of 13 neurons) and all 
rVRG neurons. Thus, presynaptic opioid receptors inhibit glutamate release from KF terminals onto a 
majority of excitatory preBötC and rVRG neurons (91% [20 of 22 neurons]).

We were also able to determine whether the excitatory preBötC or rVRG neuron that received 
opioid-sensitive glutamatergic synaptic input from the KF was itself hyperpolarized by opioids by 
monitoring the holding current. ME (3 μM) induced an outward current in 68% of preBötC neurons 
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(8 of 12 neurons) (Figure 3G and H) and 88% of rVRG neurons (7 of 8 neurons) (Figure 3L and M). 
There was no difference in the amplitude of the ME-mediated current in preBötC and rVRG neurons 
(p=0.294; unpaired t-test). Thus, a majority of excitatory preBötC and rVRG neurons that receive 
opioid-sensitive glutamatergic synapses from KF neurons are themselves hyperpolarized by opioids, 
indicating both pre- and postsynaptic suppression of this excitatory synapse by opioids.

Opioids hyperpolarize medullary-projecting KF neurons
Opioids hyperpolarize a subpopulation (~60%) of KF neurons by activating G protein-coupled 
inwardly rectifying potassium (GIRK) channels (Levitt et al., 2015). Given that KF neurons that project 

Figure 3. Presynaptic opioid receptors inhibit glutamate release from Kölliker-Fuse (KF) terminals onto excitatory preBötzinger complex (preBötC) 
and rostral ventral respiratory group (rVRG) neurons. (A) Schematic of approach to optogenetically stimulate KF terminals and drive optogenetically 
evoke excitatory postsynaptic currents (oEPSCs) in excitatory preBötC and rVRG neurons in an acute brain slice. (B) Representative image of ChR2-
GFP expression in the KF (injection area) of vglut2-tdT mouse. (C) tdTomato-expressing, excitatory vglut2-expressing preBötC (or rVRG) neurons were 
identified in acute brain slices. (D) Recording of pairs of oEPSCs (5 ms stimulation, 50 ms inter-stimulus interval) from an excitatory preBötC neuron in 
an acute brain slice at baseline (black), during perfusion of Met-enkephalin (ME, 3 μM) (red), and after wash (gray). (E) ME decreased oEPSC amplitude 
in preBötC neurons (n = 13; **p=0.007, *p=0.013 by one-way ANOVA and Tukey’s post-test). (F) ME increased the paired-pulse ratio (P2/P1) in preBötC 
neurons (n = 11; *p=0.001 paired t-test). (G) ME (3 μM) induced outward currents in 8 of 12 preBötC neurons. OS, opioid-sensitive; NS, non-opioid-
sensitive. (H) The amplitude of the outward current (I–ME, pA) in OS preBötC neurons. (I) Recording of pairs of oEPSCs (5 ms stimulation, 50 ms inter-
stimulus interval) from an excitatory rVRG neuron in an acute brain slice at baseline (black), during perfusion of ME (3 μM) (red), and after wash (gray). (J) 
ME decreased oEPSC amplitude in rVRG neurons (n = 9; *p=0.027 by one-way ANOVA and Tukey’s post-test). (K) ME increased the paired-pulse ratio 
(P2/P1) in rVRG neurons (n = 9; *p=0.043 by paired t-test). (L) ME-mediated outward currents were observed in 7 of 8 rVRG neurons. (M) The amplitude 
of the outward current (I–ME, pA) in OS rVRG neurons. For all graphs, bar/line and error represent mean ± SEM. Individual data points are from 
individual neurons.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Presynaptic opioid receptors inhibit glutamate release from Kölliker-Fuse (KF) terminals onto excitatory preBötzinger complex (preBötC) 
and rostral ventral respiratory group (rVRG) neurons.

Figure supplement 1. Kölliker-Fuse (KF) neurons send monosynaptic, glutamatergic projections to excitatory ventrolateral medullary neurons.

https://doi.org/10.7554/eLife.81119
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to excitatory neurons in the ventrolateral medulla express functional MORs on presynaptic terminals 
at a higher percentage than expected (91% [20 of 22 neurons]; Figure 3), we wanted to determine 
whether KF neurons also express functional somatodendritic MORs leading to hyperpolarization in 
a projection-specific manner. We recorded from KF neurons retrogradely labeled with FluoSpheres 
(580/605) that were unilaterally injected into the preBötC or rVRG of wild-type mice (Figure 4A). 
FluoSpheres were chosen over viral retrograde tracers for these experiments because they are highly 
visible in acute brain slices and do not spread as far in the injection area (Figure 4A), genetically alter 
neurons, require fluorescent amplification, or take long to express (2 d vs. 4 wk). Furthermore, Fluo-
Spheres will label KF neurons regardless of Oprm1 expression status, enabling us to determine the 
projection pattern of both Oprm1+ and Oprm1- neurons. Whole-cell voltage-clamp recordings were 
made from fluorescent KF neurons contained in acute brain slices (Figure 4B). The presence of an 
ME-mediated outward current identified KF neurons that express functional MORs and were opioid 
sensitive (OS) (Figure 4C) compared to neurons that lacked an ME-mediated outward current (non-
sensitive [NS]) (Figure 4D). ME induced an outward current in 59% (13 of 22 neurons) of KF neurons 
that project to the preBötC (Figure 4E) and 67% (12 of 18 neurons) of KF neurons that project to the 
rVRG (Figure 4F). The average amplitude of the ME-mediated current was not different between 
KF neurons that project to preBötC (n = 13) or rVRG (n = 12) (p=0.8250; unpaired t-test). Thus, both 
opioid-sensitive and non-sensitive KF neurons project to preBötC and rVRG, with a proportion similar 
to the general population of KF neurons with unidentified projection targets (Levitt et al., 2015).

Given the potentially lesser degree of projections from Oprm1+ KF neurons to the BötC (Figure 2—
figure supplement 1) and the ability to retrogradely label Oprm1-negative neurons with FluoSpheres, 
we also injected FluoSpheres into the BötC (n = 11) to test the hypothesis that Oprm1-negative KF 

Figure 4. Opioids hyperpolarize Kölliker-Fuse (KF) neurons that project to the preBötzinger complex (preBötC) 
and rostral ventral respiratory group (rVRG). (A) Schematic (left) of approach to retrogradely label KF neurons that 
project to the preBötC or rVRG with FluoSpheres in wild-type mice. Images (right) of FluoSpheres in the injection 
area (preBötC or rVRG). The scale bar applies to both injection images. (B) A KF neuron retrogradely labeled by 
FluoSpheres shown with IR-Dodt and epifluorescent (FL) illumination. (C, D) Whole-cell voltage-clamp recordings 
from opioid-sensitive (‘OS’) and non-opioid-sensitive (‘NS’) retrogradely labeled KF neurons. Met-enkephalin (ME) 
(1 µM) induced an outward current in the opioid-sensitive (OS) neuron (C), but not the non-opioid-sensitive (NS) 
neuron (D). (E, F) Quantification of the amplitude of the ME-mediated current (I-ME [pA]) in OS and NS KF neurons 
that project to the preBötC (E; n = 22; ***p=0.0005; unpaired t-test) or the rVRG (F; n = 18; ***p=0.0007; unpaired 
t-test). ME induced an outward current in 13 of 22 KF neurons that project to the preBötC and 12 of 18 KF neurons 
that project to the rVRG. Individual data points are from individual neurons in separate slices. Line and error are 
mean ± SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Opioid-mediated outward currents in Kölliker-Fuse (KF) neurons that project to the preBötzinger 
complex (preBötC) and rostral ventral respiratory group (rVRG).

Figure supplement 1. Opioids hyperpolarize Kölliker-Fuse (KF) neurons that project to the Bötzinger complex 
(BötC).

https://doi.org/10.7554/eLife.81119
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neurons project to the BötC (Figure 4—figure supplement 1). We made whole-cell voltage-clamp 
recordings from fluorescent KF neurons and found that ME induced an outward current in only 36% 
(4 of 11 neurons) of KF neurons that project to the BötC (Figure 4—figure supplement 1C). Thus, a 
lower proportion of opioid-sensitive neurons project to BötC compared to preBötC and rVRG.

Distribution of Oprm1+ and Oprm1- dorsolateral pontine neurons 
projecting to the ventrolateral medulla
To further examine the distribution of Oprm1+ and Oprm1- dorsolateral pontine neurons projecting to 
the ventrolateral medulla, retrograde AAV-hSyn-DIO-eGFP and retrograde AAV-hSyn-mCherry were 
unilaterally injected into the preBötC and rVRG of Oprm1Cre/+ mice (Figure 5A). Using this approach, 
projection neurons that express Oprm1 will express GFP and mCherry, whereas projection neurons 
that do not express Oprm1 will only express mCherry (Figure 5B). The number of mCherry and/or 
GFP-expressing neurons was evaluated in rostral (~bregma level –4.84 mm), mid-rostral (~bregma 
level –4.96 mm), and caudal (~bregma level –5.20 mm) sections of the dorsolateral pons (n = 4 mice, 
three slices per region per mouse). There were significantly more retrograde-labeled neurons in rostral 
and mid-rostral slices, regardless of Oprm1 expression status (Figure 5D). Consistent with previous 
observations (Figure  2), retrograde-labeled Oprm1+ neurons were mostly localized to the rostral 
and mid-rostral slices, and not in caudal slices or lateral parabrachial area (Figure  5C and E and 
Figure 5—figure supplement 1). The percentage of retrograde-labeled neurons that were Oprm1+ 
(co-labeled with mCherry and GFP) in rostral slices (56%) and mid-rostral slices (47%) was higher than 
in caudal slices (15%) (Figure 5C). Taken together, Oprm1+ and Oprm1- KF neurons that project to 

Figure 5. Oprm1+ and Oprm1- dorsolateral pontine neurons project to the ventrolateral medulla. (A) Schematic 
of approach injecting retrograde virus encoding Cre-dependent GFP expression and a retrograde virus encoding 
mCherry expression into the ventrolateral medulla of Oprm1Cre/+ mice to label Oprm1+ and Oprm1- dorsolateral 
pontine neurons that project to these respiratory nuclei. (B) Representative images of mCherry expression 
(retrogradely labels neurons regardless of Oprm1 expression) and GFP expression (retrogradely labels Oprm1+ 
neurons) in a rostral dorsolateral pontine slice (bregma –4.84 mm). (C) Summary of percentage of retrograde-
labeled neurons that were Oprm1+ (co-labeled with mCherry and GFP) in rostral (Rstrl, bregma –4.84 mm), 
mid-rostral (Mid, bregma –4.96 mm), and caudal (Cdl, bregma –5.2 mm) slices. (D, E) Summary of the average 
number of mCherry-expressing (D) or GFP-expressing MOR+ (E) dorsolateral pontine neurons per slice in rostral, 
mid-rostral, and caudal slices. Bar and error are mean ± SEM. Individual data points are from individual mice. N = 
4 mice, three slices per region per mouse. *p<0.05, **p<0.01, ns = p>0.05 by one-way ANOVA and Tukey’s post-
test.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Oprm1+ and Oprm1- dorsolateral pontine neurons project to the ventrolateral medulla.

Figure supplement 1. Medullary-projecting Oprm1+ neurons are mostly absent from the caudal Kölliker-Fuse (KF) 
and lateral parabrachial areas.

https://doi.org/10.7554/eLife.81119
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respiratory nuclei in the ventrolateral medulla are 
distributed to the rostral and mid-rostral regions 
of the KF of mice.

Oprm1+, medullary-projecting KF 
neurons express FoxP2, but not 
CGRP
Rostral glutamatergic KF neurons express FoxP2 
(Forkhead box protein P2) (Geerling et al., 2017; 
Karthik et  al., 2022), whereas MOR-expressing 
glutamatergic neurons in the external lateral 
parabrachial subnucleus that project to the fore-
brain express Calca, a gene that encodes the 
neuropeptide calcitonin gene-related peptide 
(CGRP) (Huang et  al., 2021). Considering this, 
we performed immunohistochemistry for FoxP2 
and CGRP on Oprm1+ KF neurons projecting to 
the ventrolateral medulla. Oprm1+, medullary-
projecting KF neurons expressed FoxP2 (n = 3; 
Figure 6), consistent with the population of gluta-
matergic FoxP2 and Lmx1b neurons in the rostral 
KF (Karthik et  al., 2022). These are a separate 
population from FoxP2-expressing neurons 
located more dorsally and caudally in the inner 
portion of the external lateral parabrachial area 
and those activated by sodium deprivation (Geer-
ling et  al., 2011; Karthik et  al., 2022). FoxP2 
expression also overlapped with a smaller popu-
lation of Oprm1+ medullary-projecting neurons 
in the caudal KF, which contains GABAergic 
neurons (Figure 6—figure supplement 1; Geer-
ling et al., 2017; Karthik et al., 2022). FoxP2 was 
not detected in the outer portion of the external 
lateral parabrachial subnucleus (Figure 6—figure 
supplement 1), consistent with previous findings 

(Geerling et al., 2011; Karthik et al., 2022).
Oprm1+, medullary-projecting KF neurons did not express CGRP (n = 3; Figure 7). Although CGRP 

expression was absent from the rostral KF and medullary-projecting Oprm1+ neurons and neurites, it 
was robust in external lateral parabrachial neurons and their axon fiber projections (Figure 7C and D).

Discussion
Opioid suppression of breathing could occur via multiple mechanisms and at multiple sites in the 
pontomedullary respiratory network. Here, we show that opioids inhibit an excitatory pontomedul-
lary respiratory circuit via three mechanisms: (1) postsynaptic MOR-mediated hyperpolarization of 
KF neurons that project to the ventrolateral medulla, (2) presynaptic MOR-mediated inhibition of 
glutamate release from KF terminals onto excitatory preBötC and rVRG neurons, and (3) postsynaptic 
MOR-mediated hyperpolarization of the preBötC and rVRG neurons that receive pontine glutama-
tergic input (Figure 8). These mechanisms converge on a projection-specific opioid-sensitive circuit, 
whereby MOR-expressing excitatory KF neurons synapse onto MOR-expressing excitatory preBötC 
and rVRG neurons at a proportion that is higher than predicted based on MOR expression in either 
of these populations alone (Bachmutsky et al., 2020; Kallurkar et al., 2022; Levitt et al., 2015). We 
targeted the excitatory vglut2-expressing neurons in the ventrolateral medulla because they contain 
the populations of inspiratory rhythm-generating preBötC neurons (Wallén-Mackenzie et al., 2006; 
Gray et al., 2010; Cui et al., 2016) and inspiratory premotor rVRG neurons, and MOR deletion from 

Figure 6. Oprm1+, medullary-projecting Kölliker-Fuse 
(KF) neurons express Forkhead box protein P2 (FoxP2). 
Oprm1+ neurons that project to the ventrolateral 
medulla were retrogradely labeled by injection of 
retrograde AAV-DIO-GFP into Oprm1Cre/+ mice. 
Immunohistochemistry was used to label FoxP2. (A, B) 
In rostral slices (bregma –4.84), FoxP2 is expressed in 
Oprm1+ KF neurons that project to the ventrolateral 
medulla. Schematic (A) depicts the approximate 
bregma level and imaging area (dotted boxed area). 
The scale bar applies to all images. SCP, superior 
cerebellar peduncle.

The online version of this article includes the following 
figure supplement(s) for figure 6:

Figure supplement 1. Forkhead box protein P2 
(FoxP2) expression in caudal Kölliker-Fuse (KF), but not 
external lateral parabrachial subnucleus.

https://doi.org/10.7554/eLife.81119
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vglut2 neurons prevents opioid-induced respiratory depression in medullary slices (Sun et al., 2019; 
Bachmutsky et al., 2020). Opioid inhibition of excitatory drive from KF onto these respiratory neuron 
populations is important for rhythm generation (preBötC) and respiratory pattern formation (rVRG). 
Thus, there are convergent mechanisms of opioid-induced respiratory suppression, including both 
presynaptic and postsynaptic opioid receptors in the dorsolateral pons and the ventrolateral medulla, 
resulting in distributed effects of opioids on the pontomedullary respiratory network.

Opioid effects distributed throughout the pontomedullary respiratory 
network
The mechanistic insights shown here are parsimonious with previous studies examining the role of 
MORs in the dorsolateral pons (Prkic et al., 2012; Levitt et al., 2015; Miller et al., 2017; Bachmutsky 
et al., 2020; Saunders and Levitt, 2020; Varga et al., 2020; Liu et al., 2021) and the preBötC (Gray 
et al., 1999; Sun et al., 2019; Bachmutsky et al., 2020; Varga et al., 2020) in opioid-induced respi-
ratory depression. Genetic deletion or pharmacological blockade of different subsets of pre- and 

Figure 7. Oprm1+, medullary-projecting Kölliker-Fuse (KF) neurons do not express calcitonin gene-related 
peptide (CGRP). Oprm1+ neurons that project to the ventrolateral medulla were retrogradely labeled by injection 
of retrograde AAV-DIO-GFP into Oprm1Cre/+ mice. Immunohistochemistry was used to label CGRP. (A, B) CGRP is 
absent from rostral KF and Oprm1+ KF neurons that project to the ventrolateral medulla (Oprm1+). (C, D) CGRP 
marks lateral parabrachial area (LPB) neurons and their axon fiber projections, but is absent from retrograde-
labeled Oprm1+ axon fiber projections in mid-rostral (C) and caudal (D) slices. The approximate bregma levels 
are to the right of each schematic. The images correspond to the dotted boxed area (row A) or the solid boxed 
area (rows B–D) of the slice schematic. The images in (A) are zoomed into the dotted boxed area of the image in 
(B). The scale bar in (A) applies to the images in row (A). The scale bar in (D) applies to images in rows (B–D). SCP, 
superior cerebellar peduncle; MCP, medial cerebellar peduncle.

https://doi.org/10.7554/eLife.81119
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postsynaptic MORs in these areas mostly resulted in partial attenuation of opioid-induced respiratory 
rate suppression, presumably due to redundancy from the subset(s) of MORs in this pontomedullary 
circuit that were not deleted or blocked. Furthermore, additional MORs outside of the dorsolateral 
pontine and preBötC circuit likely contribute to respiratory suppression since deletion of MORs from 
both dorsolateral pons and preBötC did not eliminate morphine-induced respiratory suppression 
(Bachmutsky et al., 2020).

Often overlooked in the context of opioids, the rVRG contains abundant opioid receptors 
(Lonergan et  al., 2003) and application of an opioid agonist into the rVRG suppresses rate and 
amplitude of phrenic nerve bursting (Lonergan et al., 2003; Cinelli et al., 2020). Here, we showed 
that MOR-expressing KF neurons densely project to the rVRG (Figures 2 and 4) and form glutama-
tergic synapses onto excitatory rVRG neurons (Figure 3). Presynaptic opioid receptors inhibit gluta-
mate release from KF terminals synapsing onto rVRG neurons (Figure 3), and the excitatory rVRG 
neurons that receive glutamatergic input from the dorsolateral pons are hyperpolarized by postsyn-
aptic opioid receptors (Figure 3). The impact of this highly opioid-sensitive projection on respiration 
warrants further investigation. Other respiratory-related areas in the medulla, such as the retrotrap-
ezoid nucleus and the nucleus of the solitary tract (NTS), that receive Oprm1+ pontine input (Liu 
et al., 2022) could also be involved, but functional connectivity and impact remains to be determined. 
Another potential contributor to OIRD are the caudal medullary raphe nuclei since antagonism of 
opioid receptors in the dorsolateral pons, ventrolateral medulla, and caudal medullary raphe was able 
to eliminate remifentanil-induced respiratory depression (Palkovic et al., 2022).

Opioids inhibit excitatory pontomedullary circuitry
Unexpectedly, KF neurons were more likely inhibited by presynaptic vs. somatodendritic MORs. 
The vast majority of KF terminals expressed presynaptic MORs since opioids inhibited glutamate 
release onto 91% of preBötC and rVRG neurons (Figure 3). In contrast, postsynaptic (somatodendritic) 
MOR-mediated outward currents were only observed in about two-thirds of medullary-projecting 
KF neurons (Figure 4), which matches prior studies without projection identification (Levitt et al., 
2015; Varga et al., 2020). There are multiple possible reasons for this apparent heterogeneity. First, 
KF neurons may express MORs more abundantly on terminals than in the somatodendritic region. 
Second, KF neurons that did not have outward currents and were deemed not sensitive to opioids 
may express MORs, but lack GIRK channels, the functional readout we used to assess opioid sensi-
tivity. MORs on these neurons could instead couple to other effectors, such as voltage-gated calcium 
channels (Ramirez et al., 2021). However, this seems unlikely since the percentage of retrograde-
labeled neurons that were Oprm1+ (56% in rostral and 47% in mid-rostral slices; Figure 5) nearly 
matched the percentages of functionally identified opioid-sensitive KF neurons (59% of preBötC-
projecting and 67% of rVRG-projecting neurons; Figure 4).

Figure 8. Summary schematic of mu opioid receptor (MOR) regulation of excitatory pontomedullary circuitry. 
Kölliker-Fuse (KF): Somatodendritic MORs hyperpolarize KF neurons that project to the ventrolateral medulla. 
Ventrolateral medulla: presynaptic MORs inhibit glutamate release from KF axon terminals onto glutamatergic 
preBötzinger complex (preBötC) and rostral ventral respiratory group (rVRG )neurons. Somatodendritic MORs 
hyperpolarize glutamatergic preBötC and rVRG neurons that receive KF input. Glutamatergic neurons are in green.

https://doi.org/10.7554/eLife.81119
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The last and most interesting possibility is that opioid-sensitive glutamatergic KF neurons prefer-
entially synapse onto excitatory medullary neurons, while non-opioidergic KF neurons might prefer-
entially synapse onto non-excitatory (i.e. inhibitory) medullary neurons. This hypothesis is consistent 
with anatomical-tracing studies showing that KF neurons project to excitatory and, to a lesser extent, 
inhibitory preBötC neurons (Yang et al., 2020), and could be tested by recording from labeled inhib-
itory neurons in the ventrolateral medulla. Inhibitory transmission in the medullary rhythm generator 
influences respiratory rate in the case of phasic inhibition or causes sustained apnea in the case of 
prolonged inhibition (Baertsch et al., 2018; Cregg et al., 2017; Sherman et al., 2015). We have 
recently found that inspiratory dorsolateral pontine neurons are silenced by fentanyl, whereas expi-
ratory neurons are not (Saunders et  al., 2022). An intriguing possibility is that opioid-insensitive 
pontine neurons, which have continued activity during opioid exposure, send prolonged input to 
inhibitory neurons in the ventrolateral medulla to promote apnea, perhaps using pathways overlap-
ping those involved in apneas evoked by excitation of certain parts of the KF area (Saunders and 
Levitt, 2020; Dutschmann and Dick, 2012; Dutschmann and Herbert, 2006). This could include 
opioid-insensitive KF neurons that project to inhibitory neurons in the BötC since a higher proportion 
of opioid-insensitive pontine neurons projected to the BötC (Figure 2 and Figure 4—figure supple-
ment 1). Inhibitory input could also come from the NTS, which contains abundant MOR-expressing 
afferents and non-MOR-expressing neurons that are activated by disinhibition during opioid exposure 
(Glatzer et al., 2007; Maletz et al., 2022).

Dorsolateral pontine subpopulations
The dorsolateral pons includes the lateral parabrachial area and the KF, both of which have been impli-
cated in opioid-induced respiratory depression (Levitt et al., 2015; Prkic et al., 2012; Varga et al., 
2020; Liu et al., 2021). Although effects of MORs in the lateral parabrachial and KF areas appear 
similar, mechanisms likely differ since the neuronal populations have different projection patterns 
(Geerling et al., 2017; Huang et al., 2021; Liu et al., 2022) and are involved in different behav-
iors besides breathing, especially the lateral parabrachial area, which has many different subpopu-
lations (Campos et al., 2018; Chen et al., 2018; Liu et al., 2022; Karthik et al., 2022). In addition, 
the anatomical distinction between KF and lateral parabrachial area is not clear cut, though recent 
descriptions of transcription factor and neuropeptide/receptor expression in the dorsolateral pons 
provide opportunity to improve this (Karthik et al., 2022; Pauli et al., 2022).

The most well-defined area in the dorsolateral pons is the external lateral parabrachial subnucleus, 
which expresses Lmx1b and CGRP, but not FoxP2 (Karthik et al., 2022; Huang et al., 2021). CGRP-
expressing external lateral parabrachial neurons project primarily to the forebrain (Huang et al., 2021) 
and are involved in pain processing, feeding, and CO2-induced arousal (Campos et al., 2018; Chen 
et al., 2018; Kaur et al., 2017). Although MORs are highly co-expressed with CGRP in these neurons 
(Huang et al., 2021), we did not observe opioid-sensitive or Oprm1+retrograde-labeled neurons in 
the external lateral parabrachial area. We also did not observe a ‘shell’ pattern of retrograde-labeled 
Oprm1+ neurons surrounding the external lateral parabrachial area, in contrast with Liu et al., 2022, 
which could be due to slight differences in injection location, the fluorescent probe, and/or sensi-
tivity of the experimental design. Rather, electrophysiologically or histologically identified opioid-
sensitive/Oprm1+ neurons that project to the ventrolateral medulla were found rostrally and ventrally 
in the area overlapping FoxP2 expression in the KF. Thus, at least two distinct subpopulations of 
Oprm1+ dorsolateral pontine neurons exist that can be distinguished based on CGRP expression and 
projection pattern: forebrain-projecting CGRP-expressing neurons and medullary-projecting neurons 
that do not express CGRP. Both populations are involved in pain and breathing due, at least in part, to 
reciprocal excitatory synaptic connections (Liu et al., 2022). Although medullary-projecting Oprm1+ 
pontine neurons did not express CGRP (Figure 7), they can still be involved in pain processing, just 
not to the same extent as forebrain-projecting Oprm1/CGRP+ pontine neurons (Liu et al., 2022).

Both populations of Oprm1+ dorsolateral pontine neurons are also likely involved in opioid-
induced respiratory depression. MORs in glutamatergic medullary-projecting rostral KF neurons could 
reduce respiratory rate by decreasing excitatory input to the preBötC and rVRG (Figure 3), leading to 
a distributed blunting effect on inspiration-generating processes within the ventrolateral medulla. In 
contrast, MORs in forebrain-projecting pontine neurons could reduce respiratory rate through intra-
pontine excitatory connections with medullary-projecting MOR+ pontine neurons (Liu et al., 2022) 

https://doi.org/10.7554/eLife.81119
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or through reduced excitatory input to forebrain areas involved in arousal (Kaur et al., 2017), which 
may be especially important in sleep-dependent effects of opioids on breathing (Montandon and 
Horner, 2019).

PreBötC complex mechanisms
Significant attention has been given to the mechanisms of opioid suppression of inspiratory rhythm 
generation in the preBötC (Sun et  al., 2019; Bachmutsky et  al., 2020; Baertsch et  al., 2021). 
Presynaptic opioid receptors in the preBötC inhibit synaptic transmission and have been postu-
lated to disrupt preBötC neuron bursting (Ballanyi et al., 2010; Wei and Ramirez, 2019; Baertsch 
et al., 2021) by inhibition of excitatory neurotransmission that is dominant during bursts (Ashhad 
and Feldman, 2020), but the projection-specific location(s) of these presynaptic MORs is unknown. 
Our study has revealed a projection-specific presence of presynaptic MORs on glutamatergic termi-
nals from dorsolateral pontine inputs to the preBötC. Although other MOR-expressing glutamatergic 
inputs are also likely contributors, including collaterals within the preBötC (Rekling et al., 2000), the 
role of these specific pontine inputs on opioid inhibition of respiratory rhythm generation is worthy of 
further investigation.

Only a subpopulation of preBötC neurons contain MORs (Bachmutsky et al., 2020; Baertsch et al., 
2021; Kallurkar et al., 2022). The population of MOR-expressing preBötC neurons is heterogeneous, 
including nearly equal numbers of glutamatergic, GABAergic, and glycinergic neurons (Bachmutsky 
et al., 2020), type 1 and type 2 Dbx1-expressing inspiratory neurons (Kallurkar et al., 2022), and 
pre-inspiratory, inspiratory, expiratory, and tonic neurons (Baertsch et  al., 2021). We found that 
MOR-expressing dorsolateral pontine glutamatergic inputs seem to preferentially synapse onto MOR-
expressing excitatory preBötC neurons since 68% of preBötC neurons (8 of 12 neurons) that received 
glutamatergic input from the dorsolateral pons were hyperpolarized by opioid (Figure  3G). This 
percentage is higher than even the highest estimate of MOR-expressing preBötC neurons (Baertsch 
et al., 2021), suggesting dorsolateral pontine neurons preferentially target MOR-expressing glutama-
tergic preBötC neurons, which are important mediators of inspiratory rhythm generation and opioid-
induced respiratory depression in medullary slices (Sun et al., 2019; Bachmutsky et al., 2020).

Sensitivity and regulation of presynaptic and postsynaptic opioid 
receptors
Presynaptic and postsynaptic MORs couple to distinct effectors and are regulated differently, which can 
lead to differences in sensitivity that change with prolonged opioid exposure (Coutens and Ingram, 
2023). For instance, postsynaptic, but not presynaptic, opioid receptors couple to GIRK channels 
(Lüscher et al., 1997) through binding of up to four Gβγ subunits directly to the channel (Whorton 
and MacKinnon, 2013). In contrast, presynaptic opioid receptors inhibit neurotransmitter release 
through inhibition of VGCCs (Heinke et al., 2011) or direct inhibition of vesicle release machinery 
(Blackmer et al., 2001; Gerachshenko et al., 2005). Coupling to these presynaptic effectors may be 
more sensitive since VGCCs can be inhibited by a single Gβγ subunit (Zamponi and Snutch, 1998) and 
vesicular release is steeply calcium dependent (Katz and Miledi, 1967). Consistent with this, presyn-
aptic opioid receptor responses have higher sensitivity than postsynaptic responses when directly 
compared (Pennock and Hentges, 2011). Prolonged exposure to high doses of opioids can exacer-
bate differences in sensitivity since postsynaptic receptors desensitize more readily than presynaptic 
receptors (Blanchet and Lüscher, 2002; Fyfe et al., 2010; Lowe and Bailey, 2015; Pennock et al., 
2012; Rhim et al., 1993). Thus, the responses of presynaptic receptors may predominate, especially 
after prolonged opioid exposure, for reasons related to receptor reserve, coupling to effectors and/
or receptor regulation. The relative sensitivity of presynaptic and postsynaptic receptors in the ponto-
medullary circuit identified here will be important to determine, especially since postsynaptic opioid 
receptors on KF neurons are resistant to desensitization (Levitt and Williams, 2018), suggesting 
unique receptor regulation in these neurons.

In conclusion, our results show that opioids inhibit an excitatory pontomedullary respiratory circuit 
by three distinct mechanisms—somatodendritic MORs on dorsolateral pontine and ventrolateral 
medullary neurons and presynaptic MORs on glutamatergic dorsolateral pontine axon terminals in 
the ventrolateral medulla—all of which could influence distributed network function and contribute to 
the profound effects of opioids on breathing.

https://doi.org/10.7554/eLife.81119
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Methods
Animals
All experiments were approved by the Institutional Animal Care and Use Committee at the University 
of Florida (protocol #09515) and were in agreement with the National Institutes of Health ‘Guide for 
the Care and Use of Laboratory Animals.’ Homozygous Oprm1Cre/Cre mice (Liu et al., 2021) (Jackson 
Labs Stock #035574, obtained from Dr. Richard Palmiter, University of Washington) were crossed 
with homozygous Ai9-tdTomato Cre-reporter mice (Rosa26LSL-tdT/LSL-tdT) (Jackson Labs Stock #007909) 
to generate Oprm1-tdT mice. Homozygous vglut2-ires-Cre mice (Jackson Labs Stock #028863) were 
crossed with homozygous Ai9-tdTomato Cre-reporter mice (Jackson Labs Stock #007909) to generate 
vglut2-tdT mice. Oprm1Cre/+, Oprm1-tdT, vglut2-tdT, and wild-type C57BL/6J mice (male and female, 
2–4 months old, weights commensurate with age and sex of normally developing C57BL/6J mice) 
were used for all experiments (Table 1). Mice were bred and maintained at the University of Florida 
animal facility. Mice were grouphoused with littermates in standard sized plastic cages and kept on a 
12 hr light–dark cycle, with water and food available ad libitum.

Stereotaxic injections
Mice (1–4 months old) were anesthetized with isoflurane (2–4% in 100% oxygen; Zoetis, Parsippany-
Troy Hills, NJ) and placed in a stereotaxic alignment system (Kopf Instruments model 1900, Tujunga, 
CA). The dorsal skull was exposed and leveled horizontally in preparation for a small, unilateral crani-
otomy targeting either the KF (y = –5 mm, x = ±1.7 mm, z = - 3.9 mm from bregma), BötC (y = 
–6.6 mm and x = ±1.3 mm from bregma, z = - 5.625 mm), preBötC (y = –6.9 mm and x = ±1.3 mm 
from bregma, z = –5.625 mm), or rVRG (y = –7.2 mm and x = ±1.3 mm from bregma, z = –5.625 mm). 
Virus (undiluted) or FluoSpheres (580/605, 0.04 µm, diluted to 20% in saline, Invitrogen) were loaded 
into freshly pulled glass micropipettes and injected using a Nanoject III pressure injector (Drummond 
Scientific Company, Broomall, PA) at a rate of 10 nl every 20 s (100–200 nl total) (Table 2). Following 
the injection, the pipette was left in place for 10 min and slowly retracted. The wound was closed 
using Vetbond tissue adhesive (3M Animal Care Products, St Paul, MN). Mice received meloxicam (5 
mg kg–1 in saline, s.c.) and were placed in a warmed recovery chamber until they were ambulating 
normally. Mice were used either 2–6 d (FluoSpheres) or 4–5 wk (virus) later for electrophysiology, 
microscopy, or immunohistochemistry.

For retrograde labeling in Oprm1Cre/+ mice, a 1:1 mixture (100  nl total) of either retrograde 
AAV-hSyn-DIO-eGFP (Addgene) and AAV2-hSyn-mCherry (UNC vector core) (Figures 2, 6, and 7, 
Figure 2—figure supplement 1) or retrograde AAV-hSyn-DIO-eGFP (Addgene) and retrograde AAV-
hSyn-mCherry (Addgene) (Figure 5) was injected into the BötC, preBötC, and/or the rVRG. For labeling 
Oprm1+ pontine neurons, AAV2-hSyn-DIO-EGFP (Addgene; 100 nl) (Figure 1E–H) was injected into 
the dorsolateral pons of Oprm1Cre/+ mice. Vglut2-tdT mice received AAV2-hSyn-hChR2(H134R)-EYFP-
WPRE-PA (Addgene; 100  nl) injections targeting the KF (Figure  3). Lastly, FluoSpheres (580/605, 
diameter: 0.04 µm, 20% in saline; 100 nl) were unilaterally injected into the BötC (Figure 4—figure 
supplement 1), preBötC or rVRG of wild-type C57BL/6J mice (Figure 4).

The correct placement of injections into the either the KF, BötC, preBötC, or rVRG was verified by 
anatomical landmarks, immunohistochemistry, and fluorescence in free-floating coronal brain slices 
(40–100 µm) using a MultiZoom microscope (Nikon AZ100). The BötC, preBötC ,and rVRG are located 
bilaterally in a rostro-caudal column in the ventrolateral medulla, just ventral to the nucleus ambig-
uous. The BötC, preBötC, and rVRG can be distinguished using the inferior olives, nucleus ambiguous, 
and nucleus tractus solitarius as medullary landmarks (Franklin and Paxinos, 2008; Varga et  al., 
2020). The KF is located bilaterally in the dorsolateral pons, just ventrolateral to the tip of the superior 
cerebellar peduncle and medial of the middle cerebellar peduncle (Varga et al., 2020; Karthik et al., 
2022).

Brain slice electrophysiology
Brain slice electrophysiology recordings were performed from KF neurons in acute brain slices from 
wild-type C57BL/6J mice (2–4 months old) or from vglut2-expressing preBötC and rVRG neurons in 
acute brain slices from vglut2-tdT mice (2–4 months old) injected with AAV2-hSyn-hChR2(H134R)-
EYFP-WPRE-PA into the KF. Mice were anesthetized with isoflurane, decapitated, and the brain was 
removed and mounted in a vibratome chamber (VT 1200S, Leica Biosystems, Buffalo Grove, IL). Brain 

https://doi.org/10.7554/eLife.81119
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slices (230 µm) containing either the KF, BötC, preBötC, or rVRG (identified based on anatomical land-
marks and coordinates from Franklin and Paxinos, 2008) were prepared in warmed artificial cerebro-
spinal fluid (aCSF) that contained the following (in mM): 126 NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 
NaH2PO4, 11 d-glucose, and 21.4 NaHCO3 (equilibrated with 95% O2–5% CO2). Slices were stored at 
32°C in glass vials with equilibrated aCSF. MK801 (10 µM) was added to the cutting and initial incu-
bation solution (at least 30 min) to block NMDA receptor-mediated excitotoxicity. Brain slices were 
transferred to a recording chamber and perfused with 34°C aCSF (Warner Instruments, Hamden, CT) 
at a rate of 1.5–3 ml min−1.

Cells were visualized using an upright microscope (Nikon FN1) equipped with custom-built LED-
based IR-Dodt gradient contrast illumination and DAGE-MTI IR1000 camera. Cells containing Fluo-
Spheres (580/605) or tdTomato were identified using LED epifluorescence illumination and a Texas 
Red filter cube (ex 559  nm/ em 630  nm). Whole-cell recordings were made using a Multiclamp 
700B amplifier (Molecular Devices, Sunnyvale, CA) in voltage-clamp mode (Vhold = −60 mV). Glass 
recording pipettes (1.5–3 MΩ) were filled with internal solution that contained (in mM) 115 potassium 
methanesulfonate, 20 NaCl, 1.5 MgCl2, 5 HEPES(K), 2 BAPTA, 1–2 Mg-ATP, 0.2 Na-GTP, adjusted to 
pH 7.35 and 275–285 mOsM. The liquid junction potential (10 mV) was not corrected. Data were low-
pass filtered at 10 kHz and collected at 20 kHz with pCLAMP 10.7 (Molecular Devices), or collected 
at 400 Hz with PowerLab (LabChart version 5.4.2; AD Instruments, Colorado Springs, CO). Series 
resistance was monitored without compensation and remained <15 MΩ for inclusion. For optogenetic 
experiments, ChR2-expressing KF terminals were stimulated using 470 nm LED illumination (5 ms 
duration) through a ×40 objective to optogenetically evoke excitatory postsynaptic currents (oEPSC) 
in preBötC and rVRG neurons. A pair of optical stimuli (5 ms pulse, 50 ms interval) was delivered every 
20 s. Blockers of glycine (strychnine, 1 µM) and GABA-A (picrotoxin, 100 µM) receptors were added to 
the aCSF to isolate excitatory neurotransmission. Peak amplitudes were determined in Clampfit 10.7 
(Molecular Devices), and paired-pulse ratios (peak 2/peak 1), were determined in Microsoft Excel. All 
drugs were applied by bath perfusion. Bestatin (10 µM) and thiorphan (1 µM) were included with ME 
to prevent degradation.

Immunohistochemistry and microscopy
Mice (2–4 months old) were anesthetized with isoflurane and transcardially perfused with phosphate-
buffered saline (PBS) followed by 10% formalin. The brains were removed and stored at 4°C in cryo-
protectant (30% sucrose in 10% formalin). A vibratome (VT 1200S, Leica Biosystems) was used to 
prepare free-floating coronal brain slices (40–100 µm) for microscopy or immunohistochemistry.

Free-floating slices were stained for forkhead box P2 (FoxP2), calcitonin gene-related peptide 
(CGRP), or neurokinin 1 receptor (NK1R) (Table 3). Slices were washed in diluting buffer (TBS with 2% 
bovine serum albumin, 0.4% Triton X-100, and 1% filtered normal goat serum) for 30 min, blocked in 
TBS and 20% normal donkey serum for 30 min, and incubated in primary antibody for 24 hr at 4°C. 
Primary antibodies included sheep polyclonal anti-FoxP2 (Cat# AF5647; R&D Systems, Minneapolis, 
MN; 1:1000 in diluting buffer), rabbit polyclonal anti-CGRP (Cat# T-4032; Peninsula, San Carlos, CA, 
1:1000 in diluting buffer), and rabbit polyclonal anti-NK1R (Cat# S8305; Sigma-Aldrich; 1:1000 in 
diluting buffer). Slices were washed in diluting buffer and then incubated in secondary antibody (goat 

Table 1. Mice used in this study.

Strain Reference Source information Key gene

Oprm1-cre
Liu et al., 2021.

Jax 035574
https://www.jax.org/strain/035574
Dr. Richard Palmiter (University of 
Washington) Cre recombinase expressed in neurons with mu-opioid receptors

Vglut2-cre Vong et al., 2011
Jax 028863
https://www.jax.org/strain/028863 Cre recombinase expressed in excitatory glutamatergic neurons

Ai9, tdTomato Cre-
reporter

Madisen et al., 
2010

Jax 007909
https://www.jax.org/strain/007909

LoxP-flanked STOP cassette preceding transcription of CAG 
promoter-driven red fluorescent protein variant (tdTomato) inserted 
into the Gt(ROSA)26Sor locus

C57BL/6J (wild-type) Simon et al., 2013
Jax 000664
https://www.jax.org/strain/000664

https://doi.org/10.7554/eLife.81119
https://www.jax.org/strain/035574
https://www.jax.org/strain/028863
https://www.jax.org/strain/007909
https://www.jax.org/strain/000664
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anti-rabbit 647 [Cat# A32733; Thermo Fisher Scientific, Waltham, MA] or donkey anti-sheep 647 [Cat# 
A21448; Thermo Fisher Scientific; 1:500]) in diluting buffer. Finally, slices were rinsed with TBS and 
ddH20 and mounted onto glass slides with Fluoromount-G DAPI (Thermo Fisher Scientific). A confocal 
laser scanning microscope (Nikon A1R) with a ×10 objective (N.A. 0.3) or a multizoom microscope 
(Nikon AZ100) with a ×1 objective (N.A. 0.1) were used to image sections. All images were processed 
in Fiji (Schindelin et al., 2012).

To determine the spread and intensity of mCherry expression in the BötC, preBötC, and rVRG, 
serial coronal brain slices (50 µm) were collected and every slice containing mCherry expression was 
imaged in sequential order with a multizoom microscope (Nikon AZ100) at 500 ms exposure. Mean 
fluorescence intensity was determined for a region of interest drawn ventral to the NA to encompass 
the 7N/pFRG, BötC, preBötC, or rVRG in sequential slices. Mean intensity data were background 
subtracted and normalized to the peak intensity per injection. Bregma level was assigned using 
anatomical landmarks, including the inferior olives, nucleus ambiguus, and nucleus tractus solitarius 
(Franklin and Paxinos, 2008; Varga et al., 2020).

Drugs
ME ([Met5]-enkephalin acetate salt), bestatin, DL-thiorphan, strychnine, picrotoxin, DNQX, 
4-aminopyridine (4AP), and MK801 were from Sigma-Aldrich (St Louis, MO). Tetrodotoxin and ML-297 
was from Tocris Bio-Techne (Minneapolis, MN). All drugs were applied by bath perfusion. Bestatin 
(10 µM) and thiorphan (1 µM) were included with ME to prevent degradation. ME is an endogenous 
opioid peptide agonist for mu and delta opioid receptors. Delta opioid receptors are not expressed in 
KF or preBötC neurons (Varga et al., 2020) and do not cause opioid-induced respiratory depression 
(Dahan et al., 2001). An EC80 concentration of ME (1–3 µM) was used to ensure robust and reliable 
responses but avoid acute receptor desensitization that occurs with higher concentrations (Levitt and 
Williams, 2018).

Table 2. Key resources.

Injectate Strain used Injection target Figure Source Information

FluoSpheres
580/605, diameter: 0.04 µm C57BL/6J BötC, preBötC, or rVRG

Figure 4 and Figure 4—figure 
supplement 1 Invitrogen

Retrograde AAV-hSyn-DIO-EGFP Oprm1Cre/+ BötC, preBötC, or rVRG
Figure 2 and 
Figure 2—figure supplement 1 Addgene

AAV2-hSyn-mCherry Oprm1Cre/+ BötC, preBötC, or rVRG
Figure 2 and 
Figure 2—figure supplement 1 UNC Vector Core

Retrograde AAV-hSyn-mCherry Oprm1Cre/+ BötC, preBötC, and rVRG Figure 5 Addgene

AAV2-hSyn-DIO-EGFP Oprm1Cre/+ KF/PB Figure 1E–H Addgene

AAV2-hSyn-hChR2(H134R)-EYFP-WPRE-PA vglut2-tdT KF/PB Figure 3 UNC Vector Core

PreBötC, preBötzinger complex; rVRG, rostral ventral respiratory group; KF, Kölliker-Fuse; PB, parabrachial area.

Table 3. Antibodies used in this study.

Antigen Immunogen description Source, host species, RRID Concentration

Forkhead box P2 (FoxP2)
Targets human and mouse 
FoxP2

R&D Systems, sheep polyclonal, 
Cat# AF5647, RRID:AB_2107133 1:1000

Calcitonin gene-related 
peptide (CGRP)

Targets alpha-CGRP in 
canine, mouse, and rat

Peninsula, rabbit polyclonal, 
Cat# T-4032,
RRID:AB_518147 1:1000

Neurokinin 1 receptor (NK1R)

Targets C-terminal of NK1R 
in mouse, guinea pig, and 
human

Sigma-Aldrich, rabbit 
polyclonal, Cat# S8305
RRID:AB_261562 1:1000

https://doi.org/10.7554/eLife.81119
https://identifiers.org/RRID/RRID:AB_2107133
https://identifiers.org/RRID/RRID:AB_518147
https://identifiers.org/RRID/RRID:AB_261562
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Statistics
All statistical analyses were performed in GraphPad Prism 8 (La Jolla, CA). All error bars represent 
SEM unless otherwise stated. Replicates are biological replicates. Data with n > 8 were tested for 
normality with Kolmogorov–Smirnov tests. Comparisons between two groups were made using paired 
or unpaired two-tailed t-tests. Comparisons between three or more groups were made using one-way 
ANOVA followed by Tukey’s post hoc test.
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