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Abstract The expression of a mutant Lamin A, progerin, in Hutchinson-Gilford Progeria 
Syndrome leads to alterations in genome architecture, nuclear morphology, epigenetic states, and 
altered phenotypes in all cells of the mesenchymal lineage. Here, we report a comprehensive anal-
ysis of the transcriptional status of patient derived HGPS fibroblasts, including nine cell lines not 
previously reported, in comparison with age-matched controls, adults, and old adults. We find that 
Progeria fibroblasts carry abnormal transcriptional signatures, centering around several functional 
hubs: DNA maintenance and epigenetics, bone development and homeostasis, blood vessel matu-
ration and development, fat deposition and lipid management, and processes related to muscle 
growth. Stratification of patients by age revealed misregulated expression of genes related to 
endochondral ossification and chondrogenic commitment in children aged 4–7 years old, where 
this differentiation program starts in earnest. Hi-C measurements on patient fibroblasts show weak-
ening of genome compartmentalization strength but increases in TAD strength. While the majority 
of gene misregulation occurs in regions which do not change spatial chromosome organization, 
some expression changes in key mesenchymal lineage genes coincide with lamin associated domain 
misregulation and shifts in genome compartmentalization.

Editor's evaluation
This manuscript is of interest to researchers investigating genetic mechanisms of aging and tran-
scriptional regulation of developmental processes in mesenchyme-derived tissues. In this study, 
fibroblast cell lines from patients with and without Hutchinson-Gilford Progeria were compared 
to pinpoint the molecular mechanisms leading to the phenotypes of persons with this condition. 
The identification of five major dysregulated functional hubs in fibroblast cell lines derived from 
Hutchinson-Gilford Progeria Syndrome (HGPS) patients provides a unique opportunity for others 
working on this disorder to utilize animal models to validate the authors' hypotheses.
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Introduction
Hutchinson-Gilford progeria syndrome (HPGS) is a rare disease, characterized by a severe prema-
ture aging phenotype (Gilford and Hutchinson, 1897; Hutchinson, 1886). Patients appear normal 
at birth, with a disease onset around 2 years of age when they present with slow growth rate, short 
stature, and marked lipodystrophy with a characteristic loss of subcutaneous fat. With progression, 
patients experience arthritis, joint contracture, osteoporosis and stiffening of blood vessels. Average 
life expectancy for HPGS patients is 13.4  years, with myocardial infarction and stroke being the 
predominant causes of death (Foundation, 2019).

HGPS is caused by a thymidine substitution mutation at cytidine 608 (GGC >GGT), within exon 11 
of the gene that encodes for Lamin A (LMNA) (De Sandre-Giovannoli et al., 2003; Eriksson et al., 
2003). Lamin A is a structural protein of the nuclear envelope, playing an important role in genome 
structure and nuclear integrity. The mutation does not result in an amino acid substitution, frame shift 
or early termination. Rather, it induces the usage of a cryptic splice site and the subsequent deletion of 
50 amino acids at the C terminus. In turn, this deletion impedes downstream processing of the protein 
and results in conservation of C terminus farnesylation (Davies et al., 2009). This abnormal protein 
product is called Progerin. Aggregation of Progerin leads to a disruption of the normal nuclear enve-
lope meshwork, leading to deformed nuclei, nuclear stiffening, and defective mechanotransduction 
(Apte et al., 2017; Goldman et al., 2004; Lammerding et al., 2004).

Of particular interest, progeria patients present with various defects in all tissues of the mesen-
chymal lineage. Specifically, regarding bone physiology, patients show reduced stature, generalized 
osteopenia, thin calvaria, and clavicle regression with absence of medial and lateral ends, as well 
as resorption of the distal bony phalanges and anterior ribs (Chawla et al., 2017; Cleveland et al., 
2012; Gordon et al., 2011; Nazir et al., 2017). These phenotypes are more striking when considering 
that at birth, bone structure appears normal. Previous observations, where fibroblasts from progeria 
patients showed abnormal levels of aggrecan (Lemire et al., 2006) a marker of chondrogenic differ-
entiation, led us to hypothesize that fibroblasts derived from HGPS patients – themselves a cell of the 
mesenchymal lineage – could harbor vestigial transcriptional signatures to abnormal mesenchymal 
stem cell commitment, which would become apparent by comparing them with different normal age 
group controls.

In this study, we conduct a comprehensive analysis of previously published RNA-seq datasets for 
HPGS fibroblast cells harboring the typical C>T mutation in the LMNA gene and provide transcrip-
tomics data for nine patient fibroblast samples that had no previously reported RNA-seq data. By 
comparing the transcriptional profile of HPGS fibroblasts (33 datasets, 21 patients, 1–20 years old) 
with fibroblasts derived from age-matched controls (21 datasets, 16 donors, 1–19 years old), healthy 
adults, (16 donors, 26–43 years old) and healthy old adults (15 donors, 80–96 years old), we provide 
insight into important defects in repair biology, metabolism (calcium, lipid), and other areas important 
to the mesenchymal cell lineage. Our results show that transcription of genes involved in negative 
regulation of chondrocyte commitment is compromised in fibroblasts from patients that are at the age 
of onset of postnatal endochondral ossification. We report that some genes central to differentiation 
commitment into the chondrogenic-osteogenic lineage and identified as misregulated in this study 
(PTHLH, BMP4, FZD4, and IGF1) show either abnormal genomic architecture or lamin associated 
domain alterations.

Our results support the hypothesis that defects in the initial steps of chondrogenesis commit-
ment are a potential mechanism for mesenchymal stem cell depletion that later results in abnormal 
adipogenesis, diminished microvasculature homeostasis, and poor wound repair observed in HGPS 
patients.

Results
Batch correction is essential for comparison among patient and normal 
cohorts
To determine gene sets that were consistently misregulated in Progeria fibroblasts, we collected both 
newly generated and previously published RNA-seq data from all available Progeria patient fibroblast 
cell samples as well as fibroblasts from control individuals in different age groups (Appendix 1—
tables 1–3; Fleischer et al., 2018; Ikegami et al., 2020; Köhler et al., 2020; Mateos et al., 2018). 

https://doi.org/10.7554/eLife.81290


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Developmental Biology

San Martin et al. eLife 2022;11:e81290. DOI: https://doi.org/10.7554/eLife.81290 � 3 of 34

When the resulting transcriptomics data were analyzed by principal component analysis (PCA), data-
sets clustered according to laboratory of origin regardless of diagnosis, making direct comparisons 
impossible (Figure 1—figure supplement 1A), as has been previously observed in Progeria transcrip-
tomics analysis (Ikegami et al., 2020) However, after batch effect correction (materials and methods 
Zhang et al., 2020a), the first principal component was able to segregate the samples depending on 
progeria/non progeria origin (Figure 1—figure supplement 1B) which enabled direct comparisons 
between patients and controls from different age groups which originated from different sources.

Gene ontology analysis of transcriptional changes reveals eight clusters 
of biological activity affected in HGPS
To derive sets of genes differentially regulated in Progeria, we divided the patient samples into Young 
(0–8 years old) and Teen (>13 years old) categories based on the idea that different developmental 
processes take place in these age groups. We then compared each patient group to age-matched 
controls, middle-aged adults, and older adults and selected up and down-regulated genes (FDR 
adjusted P-value <0.001) for gene ontology analysis. Teenage HGPS patients showed the smallest 
number of genes changing expression levels when compared to age-matched controls, but the 
highest number of genes up/down regulated when compared to healthy middle-aged or old adults 
(Table 1 and Table 1—source data 1). Importantly, comparisons between the normal children cohort 
and the adult normal controls yield few significant changes, suggesting that HGPS is the driver of the 
differences observed among cohorts.

Overall, relevant gene ontology terms identified in the study pertain to eight functional clus-
ters: DNA maintenance and Epigenetics (Figure 1), Repair and Extracellular matrix (Figure 2), Bone 
(Figure 3), Adipose Tissue (Figure 4), Blood Vessels (Figure 5), and Muscle (Figure 6).

The largest number of differentially expressed genes (Nine hundred and seventy) were related to 
the biological processes of epigenetic programming and DNA maintenance (Figure 1A and Figure 
1—source data 1). Gene ontology pathways included in this cohort include epigenetic regulation 
of gene silencing, senescence-associated heterochromatin, DNA repair, DNA recombination, and 
histone methylation/modifications. This is in line with extensive previous evidence of epigenetic and 
DNA repair misregulation in Progeria (Aguado et al., 2019; Gonzalo and Coll-Bonfill, 2019; Misteli 
and Scaffidi, 2005). These genes were predominantly over-expressed in young progeria patients 
when compared to all controls (Figure 1B,C) and between teenaged patients compared to their age 
matched control and adults (Figure 1B,D).

The next biological process with the most misregulated transcription among age groups was tissue 
repair. It bears mentioning that most of the nucleosome-associated proteins and histones identified 
in the DNA maintenance cluster, as previously described, overlap with the repair GO terms. In all, 
585 genes are differentially expressed between cohorts (Figure 2A), with HGPS patients predomi-
nantly overexpressing targets pertaining to the organization of the extracellular matrix (145 genes, 

Table 1. Number of up/down-regulated genes per age comparisons.

Comparisons Upregulated genes Downregulated genes

Young patients – Age matched 260 63

Young patients – Adult control 574 241

Young patients – Old adult control 984 435

Teenaged patients – Age matched 237 81

Teenaged patients – Adult control 1873 1138

Teenaged patients – Old adult control 1872 1022

Young Control – Adult Control 28 25

Young Control – Old Control 817 421

The online version of this article includes the following source data for table 1:

Source data 1. Metascape outputs for gene ontology analysis.

https://doi.org/10.7554/eLife.81290
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Figure 1. Transcriptional misregulation in the DNA Maintainance and Epigenetics functional categories. (A) Summary table of processes related to 
DNA maintenance and epigenetics, represented as transcriptional up or downregulation based on RNA-seq of young/teenager progeria patient 
derived fibroblasts compared to age matched, middle age or old control patients. (B) Heat map of RNA-seq transcriptome analysis for 976 selected 
genes related to DNA maintenance and epigenetics. The heat map shows per-gene z-score computed from batch effect corrected log2 read count 

Figure 1 continued on next page
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Figure 2B). Interestingly, signatures related to coagulation, Bone Morphogenic Protein signaling, and 
response to wound healing are all downregulated in young HGPS patients when compared to adults 
(Figure 2C).

In this analysis of fibroblasts, we also identified misregulation of gene targets typically associ-
ated with the biology of mesenchymal tissue. Specifically, we see misregulation of transcription of 
genes involved in bone (165 genes. Figure 3), fat (261 genes. Figure 4), blood vessel homeostasis 
(131 genes. Figure 5), and muscle (261 genes. Figure 6). All these lineages have been observed as 
compromised in HGPS patients, showing phenotypes like osteopenia, early atherosclerosis, and lack 
of subcutaneous fat deposition. (Gordon et al., 2011; Hamczyk et al., 2018; Xiong et al., 2013).

Bone biology mis-regulation appears to be stratified into two distinct hubs: downregulation of 
pathways related to calcium homeostasis and transport and upregulation of pathways involved in 
cell differentiation of chondrocytes and osteoblasts (Figure  3A,B and Figure 3—source data 1). 
Comparing young patients’ transcriptional profile to that of old adult normal controls shows upreg-
ulation of genes involved in late osteogenic commitment. Such is the case of ontology terms that 
include osteoblast differentiation, ossification, and chondrocyte differentiation (Figure 3C). In parallel, 
genes included in pathways related to cation homeostasis, particularly calcium, are downregulated 
(Figure  3D). This comparison is similar to that of young patients and normal middle-aged adult 
controls (Figure 3E).

Lipid homeostasis and transport pathways are downregulated in all comparisons between samples 
from young patients. Young HGPS samples show downregulation in pathways involving fat cell differ-
entiation when compared to age-matched controls, in line with observed fat deposition defects in 
patients (Revêchon et al., 2017; Figure 4A–C).

Gene ontology terms related to blood vessels show upregulation of blood vessel morphogenesis, 
but a decrease of blood vessel maturation when comparing samples from young patients to either 
age-matched or old controls (Figure 5A–C). This phenotype persists in comparisons between teen 
aged patients and their age-matched controls (Figure 5D). Further, in a possible contribution to the 
circulatory defects observed in HGPS patients, both young and teen-aged patient samples show a 
marked upregulation of genes in pathways related to muscle development and cardiac muscle differ-
entiation and development when comparing both HGPS cohorts against adult controls (Figure 6A–C).

Age stratification of young patients highlights differences in HGPS 
gene misregulation across childhood
To further refine our findings related to young age patients and the mesenchymal phenotypes 
observed, we stratified the young HGPS patients into two age groups: early infancy (0–3 years old) 
and children (4–7 years old), comparing these cohorts to age matched, middle age and old controls 
as before. The total numbers of genes up and down regulated between comparisons are described 
in Table 2 and Table 2—source data 1. In this analysis, about forty percent of genes upregulated 
in early infant patients when compared against their age matched controls are related to epigen-
etic modifications as described in the previous analysis (Figure 1). Specifically, the GO term ‘HDACs 
deacetylate histones’ shows the highest enrichment in this group. These same genes are represented 
in the comparison with the middle age-old adult control groups.

In contrast, the comparison of patients aged 4–7  years to their age matched controls show 
an enrichment for ossification and calcium homeostasis. Out of the cohort of genes identified as 

values, genes in rows and 29 patient samples (progeria and young/adult/old control) organized in columns. Genes were hierarchically clustered based 
on Euclidean distance and average linkage. Within each cohort, columns are organized by patient age. (C) Comparison of young progeria patients 
versus middle age or old donor control fibroblasts. Enriched ontology clusters for upregulated genes related DNA maintenance and epigenetics, as 
characterized by Metascape analysis. Metascape reports p-values calculated based on the hypergeometric distribution. (D) Comparison of teen-aged 
progeria patient fibroblast versus old donor control fibroblasts. Enriched ontology clusters for up regulated genes related to DNA maintenance and 
epigenetics, as characterized by Metascape analysis.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. RNA-seq results: normalized and batch corrected sequencing counts for all samples in this study.

Figure supplement 1. Batch clustering correction.

Figure 1 continued

https://doi.org/10.7554/eLife.81290
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downregulated in this comparison (102), about 10% are related to early chondrogenesis events. 
Among those, parathyroid hormone related protein (PTHLH), insulin like growth factor (IGF1), bone 
morphogenic protein receptor 1B (BMPR1B), and collagen 10a1 (COL10a1), are an integral part of 
early commitment and control necessary for the triggering of endochondral ossification (Bradley and 
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Figure 2. Transcriptional misregulation in tissue repair and extracellular matrix functional categories. (A) Heat map of RNA-seq transcriptome analysis 
for 585 selected genes related to repair. Data presented as in Figure 1B. (B) Heat map of RNA-seq transcriptome analysis for 145 selected genes 
related to extra cellular matrix. Data presented as in Figure 1B. (C) Summary table of processes related to repair and extra cellular matrix organization, 
represented as up or downregulation in transcription based on RNA-seq of young/teenager progeria patient derived fibroblasts, compared to middle 
age or old control patients. Age comparisons that yielded no significant results in relevant categories are not shown.

https://doi.org/10.7554/eLife.81290
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Figure 3. Transcriptional misregulation for genes related to bone development. (A) Summary table of processes related to bone and cartilage 
development and homeostasis represented as up or downregulated transcription based on RNA-seq of young progeria patient derived fibroblasts 
compared to age matched, middle age or old control patients. (B) Heat map of RNA-seq transcriptome analysis for 165 selected genes related to 
bone and cartilage development. Data presented as in Figure 1B. (C) Comparison of young progeria patients versus old donor control fibroblasts. 

Figure 3 continued on next page
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Drissi, 2010; Green et al., 2015; Maruyama et al., 2010). Genes related to ossification and calcium 
homeostasis were also identified as downregulated in this cohort. Further, upregulated genes in age-
matched and adult comparisons include BMP4, and several genes related to WNT5a biology which 
play an important role in skeletal development (Figure 7A–C).

Genes of interest are impacted by chromatin compartment switches or 
abnormal lamina associated domains (LADs)
Chromosome conformation capture was performed on skin fibroblasts from parents of HGPS patients 
(Mother AG03257, Father HGADFN168), from 8-year-old male and female HGPS patients (HGADFN167 
and AG11513), and from an age matched (8-year-old male) healthy control (GM08398) (Appendix 1—
table 4). Genome-wide contact maps for all of these cells show globally similar patterns of chromo-
some conformation, with the exception of a translocation between chr3 and chr11 in AG11513 cells 
(Figure 8A). At a whole chromosome folding level, we note that progeria fibroblasts show a decrease 
in telomere interactions and an apparent loss of ‘Rabl’ like structure (Figure 8B). This type of Rabl 
structure loss was previously observed after DNA damage in fibroblasts (Sanders et al., 2020). We 
find that topologically associating domain (TAD) structure is preserved in Progeria fibroblasts, with 
even an increase in TAD boundary strength as compared to healthy parent controls (Figure 8C). A 
similar increase in TAD boundary strength was previously found in senescent and progerin-expressing 
human mesenchymal progenitor cells (Liu et al., 2022). Increased TAD boundary strength was also 
previously observed in DNA damaged fibroblasts (Sanders et al., 2020), suggesting that some of 
these features of genome structure may relate to the increased constitutive levels of DNA damage 
observed in these patient fibroblasts.

Using principal component analysis of Hi-C data at 250 kb-resolution, we classified genomic regions 
into open euchromatin (A) or closed heterochromatin (B) spatial compartments according to positive 
and negative values of the first eigenvector, respectively. Since accelerated senescence has been previ-
ously observed in progeria fibroblasts (Bridger and Kill, 2004; Wheaton et al., 2017), we performed 
compartment analysis on cells belonging to a father-child pair, at early and late passages. Samples 
were collected for the HGADFN168 cells (Father) at passages 12 and 27, and for the HGADFN167 
(Child) at passages 12 and 19. Our results show that in the parent fibroblasts there are small changes 
in compartment strength (the degree of preference for interactions within the same compartment vs. 
between different compartments). In contrast, there is a predominant loss of A compartment strength 
in the late passage HGPS cells (Figure 8E). Interestingly, although the compartmentalization strength 
appears to be altered, the genome-wide compartment identity remains consistent among cohorts, 
with small changes in compartment identity appearing sporadically (Figure 8D). The loss of compart-
ment strength at later passages in Progeria cells is consistent with previous observations, though 
this more deeply sequenced, and less noisy dataset shows that compartments are more preserved in 
Progeria cells than previously observed (McCord et al., 2013).

To test whether the up or downregulation of genes identified through this study relates to compart-
ment switching, we evaluated the compartment identity strength of all up- or down-regulated genes, 
based on their genomic coordinates, in the healthy and patient datasets. We found that genes that 
are upregulated in HGPS tend to be located in the A compartment in both HGPS and WT fibroblast 
samples, suggesting that many expression increases do not require chromosome compartment shifts 
(Figure 8F–H). In contrast, a subset of the genes that are downregulated in the 0–7 HGPS fibroblasts 
vs. normal age- matched or adult fibroblasts also shift toward the B compartment in HGPS samples 
compared to healthy adults. (Figure 8F–H).

Enriched ontology clusters for upregulated genes related bone and cartilage development and homeostasis, as characterized by Metascape analysis. 
(D) Comparison of young progeria patients versus old donor control fibroblasts. Enriched ontology clusters for downregulated genes related to cation 
homeostasis, as characterized by Metascape analysis. (E) Comparison of young progeria patients versus middle age control fibroblasts. Enriched 
ontology clusters for downregulated genes related to bone development and homeostasis, as characterized by Metascape analysis.

The online version of this article includes the following source data for figure 3:

Source data 1. Gene expression analysis (Z-scores) for 164 genes related to bone development.

Figure 3 continued
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To test whether the up or downregulation of genes identified through this study relates to abnormal 
distribution of lamin associated domains, we compiled the genomic coordinates of these genes with 
published Lamin ChIP-seq and DamID-seq data (Dekker et  al., 2017; McCord et  al., 2013). We 
observe that differences between all groups are significant, with HGPS Lamin A association values 
markedly higher than their control counterparts (Figure 8—figure supplement 1A and B, Kruskal-
Wallis p<0.001). However, we found that this shift in Lamin association is true throughout all genomic 
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Figure 4. Transcriptional missregulation in genes related to adipose tissue function and development. (A) Summary table of processes related to fat 
cell differentiation and lipid metabolism, represented as up or downregulation in transcription based on RNA-seq of young/teenager progeria patient 
derived fibroblasts, compared to age matched, middle age, or old control patients. (B) Heat map of RNA-seq transcriptome analysis for 134 selected 
genes related to fat cell differentiation and lipid metabolism. Data presented as in Figure 1B. (C) Comparison of young progeria patients versus 
middle age or old donor control fibroblasts. Enriched ontology clusters for upregulated genes related to fat and lipid metabolism, as characterized by 
Metascape analysis.

https://doi.org/10.7554/eLife.81290
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Figure 5. Transcriptional missregulation in genes related to blood vessel homeostasis. (A) Summary table of processes related to blood vessel 
homeostasis, represented as up or downregulation in transcription based on RNA-seq of young/teenager progeria patient derived fibroblasts, 
compared to age matched, middle age, or old control patients. (B) Heat map of RNA-seq transcriptome analysis for 131 selected genes related to 
blood vessel homeostasis. Data presented as in Figure 1B. (C) Comparison of young progeria patients versus middle-aged donor control fibroblasts. 

Figure 5 continued on next page
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regions, with an overall dampening of the lamin association signal in HGPS patients (Figure 8—figure 
supplement 1C) and small regions switching from associated to dissociated from the nuclear lamina. 
Comparing normal fibroblast cells HGADFN168 (belonging to the father of an HGPS patient) and 
HFFc6 (human foreskin fibroblast), we observe that both show a characteristic bimodal distribution in 
LAD intensity around markedly positive (LAD) and negative (non-LAD) values (log2 Lamin/input). In 
contrast, LAD values for the HGPS fibroblasts HGADFN167 show a normal distribution around zero: 
the intensity of both types of association is reduced in HGPS cells, consistent with an overall misregu-
lated interaction between chromosomes and the nuclear lamina (Figure 8—figure supplement 1D).

Certain key genes of interest related to osteogenesis and chondrogenic proliferation and identified 
as differentially regulated by transcriptomics show notable concordant alterations in compartment 
identity or lamina association. For example, bone morphogenic protein 4 (BMP4), which is upregulated 
in Progeria (Figure 7C), also shows a marked shift toward the A compartment in patient fibroblasts 
compared to both adult and age matched WT fibroblasts (Figure 9). In turn, Frizzled-4 (FZD4), which 
is upregulated in HGPS and involved in skeletal development, does not shift compartments but shows 
an erosion of Lamin association (Figure 9—figure supplement 1). Similarly, the gene that encodes 
parathyroid hormone-like hormone (PTHLH), which is downregulated in HGPS, is in a conserved A 
compartment in both healthy and HGPS cells but shows an increase in Lamin association in patient 
cells (Figure 9—figure supplement 1). Consistent with the observation that compartment shifts were 
more likely to be found alongside gene downregulation, we also identified a set of key genes in the 
mesenchymal lineage that were both downregulated and shifted toward the B compartment in HGPS 
(Figure 9—figure supplement 2).

Discussion
In this study, we present a comprehensive analysis of the transcriptome of HPGS patient derived fibro-
blasts, stratified by age, compared to their age-matched controls. Since progeria patients present 
with accelerated aging, we also compared this data to that derived from middle-aged and old adults. 
Strikingly, HPGS expression profiles do not phenocopy gene ontology analysis from either set of adult 
controls, suggesting an altered aging-like paradigm.

Given the critical role that Lamin A plays in nuclear structure, formation of heterochromatin, and 
subsequent gene silencing (Lammerding et al., 2004; Leemans et al., 2019), it is not surprising that 
one of the main biological processes affected in our study, as per gene ontology analysis, is DNA 
maintenance and epigenetics. Upregulation of genes in the HDAC family is the largest discriminator 
between Progeria and age-matched normal controls in the 0- to 3-year-old cohort and 4- to 7-year-old 
age groups, and this upregulation persists in comparisons with the adult controls. Our data suggests 
an upregulation of genes belonging to ontology terms such as negative epigenetic regulation of 
genes, chromatin silencing, DNA repair, double strand DNA repair and DNA recombination across 
all age comparison with young patients. Overexpression of these genes are a potential overcom-
pensation mechanism for defects found in DNA repair (Aguado et al., 2019; Gonzalo and Kreien-
kamp, 2015; Komari et al., 2020; Reviewed by Misteli and Scaffidi, 2005). In older HGPS samples, 
downregulation of genes related to histone methylation, histone modification, chromatin modifying 
enzymes, and DNA recombination was also observed.

Concomitant with changes in gene expression of epigenetic factors, Progeria fibroblasts show 
alterations in chromosome structure, as has been previously observed (McCord et al., 2013). The 
increased resolution and clarity of Hi-C data presented here enables us to describe these alterations 
more clearly. Spatial compartmentalization is weakened in Progeria patients with increasing passages 
consistent with microscopically observed loss of heterochromatin (Goldman et  al., 2004). Unlike 
compartments, topologically associating domain (TAD) boundaries are preserved during in Progeria 
cells, even at higher passages. When we compare gene expression changes to chromosome structure 
changes, we observe that many genes consistently upregulated across Progeria patients are in the 

Enriched ontology clusters for upregulated genes related to blood vessel development, as characterized by Metascape analysis. (D) Comparison of 
teen-aged progeria patient fibroblast versus age-matched control fibroblasts. Enriched ontology clusters for upregulated genes related to blood vessel 
development, as characterized by Metascape analysis.

Figure 5 continued
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Figure 6. Transcriptional missregulation in genes related to muscle function. (A) Summary table of processes related to muscle and cardiac muscle 
development, represented as up or downregulation in transcription based on RNA-seq of young/teenager progeria patient derived fibroblasts, 
compared to middle age or old control patients. (B) Heat map of RNA-seq transcriptome analysis for 261 selected genes related to muscle 
development. Data presented as in Figure 1B. (C) Comparison of young progeria patients versus middle-aged and old donor control fibroblasts 
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characterized by Metascape analysis.
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open, A compartment across all Hi-C samples, suggesting that these gene expression alterations are 
not associated with dramatic chromosome structural change. Downregulated genes are more likely 
to exhibit switching into the B compartment in Progeria patients. We find that certain genes relevant 
to the mesenchymal lineage show gene expression changes that are concordant with compartment 
switches and lamin association changes. It is possible that these changes are more directly influenced 
by mutant lamin and lead to downstream effects on genes without observed chromosome structure 
changes.

A compromised transcriptional landscape, related to developmental 
milestones, points towards a compromised mesenchymal stem cell 
niche
We further describe up and down regulated biological function clusters that could play a detrimental 
role in bone, fat, joint and vascular homeostasis. It has been proposed that progerin accumulation 
in the nucleus results in a defect in the mesenchymal stem cell lineage which gives rise to osteo-
blasts, chondrocytes, adipocytes, pericytes, and myocytes (Reviewed by Andrzejewska et al., 2019). 
Overall, our results are in concordance with previous reports of transcriptional misregulation in mesen-
chymal lineages (Csoka et al., 2004), but the age group comparisons we present here further refine 
these observations to a temporal effect on lineage commitment.

iPSC models in which HGPS fibroblasts were reprogrammed to stem cells, and further differenti-
ated into mesenchymal stem cells lineages were characterized by nuclear dysmorphia and increased 
DNA damage, but resulted in confounding results on differentiation, showing either limited differenti-
ation potential, or no significant changes (Crasto and Di Pasquale, 2018; Xiong et al., 2013; Zhang 
et al., 2011). Interestingly, the most common finding in HGPS-derived iPSCs further differentiated 
into other lineages is premature senescence and the presence of progerin and misshapen nuclei 
(Reviewed by Lo Cicero and Nissan, 2015). In a more direct approach, overexpression of progerin in 
umbilical cord derived MSCs and other MSC systems resulted in a reduced capacity of differentiation 
into chondrogenic, osteogenic and adipogenic capacity in vitro (Mateos et al., 2013) and deficient 
proliferation and migration (Pacheco et al., 2014). In the context of these collective findings, our age-
stratified gene expression comparisons in fibroblasts may shed light on whether this abnormal cell fate 
regulation occurs predominantly in a particular lineage.

Failed arrest of chondrocyte hypertrophy as a potential mechanism of 
MSC depletion in HGPS
Transcriptional upregulation of several members of the WNT5a signaling cascade and downregulation 
of expression of PTHLH, in early age comparisons described in this study, point to an essential defect 
in early endochondral ossification control and osteogenesis. Specifically, WNT signaling has been 
previously implicated as a connection between progeria-like syndromes and a defective deposition 
of extra cellular matrix, essential in bone development (Andrade et al., 2017; Green et al., 2015; 
Hernandez et al., 2010). Not unlike the phenotypes observed in HGPS patients, bone defects are 
also present in murine models for HGPS, with young mice (4-week-old) showing decreased trabecular 
thickness and number, bone volume and decreased mineral density (Hernandez et al., 2010). Not 

Table 2. Number of up/down-regulated genes in young patient cohort comparisons.

Comparisons Upregulated genes Downregulated genes

Early Infant – Age matched 113 25

Early Infant – Middle aged adult 540 172

Early Infant – Old adult 646 388

Children - Age matched 203 102

Children - Middle aged adult 173 184

Children - Old adult 305 394

The online version of this article includes the following source data for table 2:

Source data 1. Metascape outputs for gene ontology analysis.
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Figure 7. Transcriptional missregulation in genes related to endochondral ossification. (A) Heat map of RNA-seq transcriptome analysis for 25 selected 
genes related to endochondral ossification. The heat map shows per-gene z-score computed from batch effect corrected log2 read count values, genes 
in rows and 29 patient samples (progeria and young/adult/old control) organized in columns. Genes were hierarchically clustered based on Euclidean 
distance and average linkage. Blue lines separate young infants (0–3 y/o) from children (4–7 y/o) and older children (8–10 y/o). Genes related to WNT5a 
biology highlighted (red circle). (B) Abridged signaling pathway for WNT5a, highlighting the roles of the genes whose transcription is affected in young 
HGPS patients compared to their aged-matched controls. (C) BMP4 expression, also identified as significantly upregulated in the analysis of all HGPS 

Figure 7 continued on next page
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surprisingly, murine pre-osteoblasts forced to express mouse progerin failed to mineralize and show 
decreased levels of Runx2 expression and alkaline phosphatase upon osteoblastic induction (Tsukune 
et al., 2019). Further, Lamin A knockdown inhibits osteoblast proliferation and impairs osteoblast 
differentiation in an MSC in vitro differentiation model (Rauner et al., 2009).

Unlike other MSC fates, like adipogenesis, which occurs downstream of a positive energy intake all 
through life, bone formation occurs in a carefully orchestrated manner, at specific timepoints during 
development and early life. Secondary endochondral ossification that occurs in long bones like the 
humerus and femur, initiate in early childhood, activate intermittently, and finalize with the fusion of 
the growth plate during the teenage years (Diméglio et al., 2005; Xie and Chagin, 2021; Zoetis 
et al., 2003). This process is tightly regulated by several signaling networks aimed at balancing longi-
tudinal growth of the bone with maintenance of precursor cells, like MSCs and quiescent chondro-
cytes. The transcriptional repression of PTHLH and upregulation of WNT5a in this niche would result 
in early depletion of the latter, as cells continue down a pathway of chondrocyte proliferation and 
hypertrophy unimpeded (Bradley and Drissi, 2010; Olsen et al., 2000; Usami et al., 2016). The 
deficit in clavicular development in HPGS patients could provide some insight as to the spatiotem-
poral consequences of MSC/chondrocyte pool depletion. The clavicle is unique because while it is the 
first bone to start ossification during the embryonic period (Ogata and Uhthoff, 1990), it is the last to 
complete the process. In early events, around the fifth week of gestation, the two primary ossification 
centers, formed from mesenchymal tissues, fuse to form the middle of the clavicle. The complete ossi-
fication of the clavicular epiphysis occurs via endochondral ossification during the teenage years, with 
medial ossification beginning at the onset of puberty (Ferguson and Scott, 2016; Langley, 2016). In 
turn, bone deposition at the terminal ossification center, must occur in adolescents between 11 and 
16 years of age, for the process to successfully proceed to epiphyseal plate ossification in early adult-
hood. (Schulz et al., 2008). Taken together, our observations point towards a ‘fail to arrest’ phenotype 
that results in over-commitment towards the hypertrophic chondrocyte lineage in very young HGPS 
patients. We hypothesize that this results in a premature depletion of the chondro-osteoprogenitor 
pool and, at later stages, of the bone marrow-derived mesenchymal stem cells that feed into this 
niche later in life result in the incomplete endochondral ossification of the claviculae of HGPS patients 
(Video 1).

Deficient repair responses exacerbate the depletion of tissue resident 
MSC pools
A secondary function of tissue resident MSCs is to aid in repair during wounding and disease.

Our data shows that dermal fibroblasts derived from HPGS patients present with abnormal repair, 
including downregulated signatures of wound healing, hemostasis, and BMP signaling. These obser-
vations recapitulate previous reports of HGPS patient-derived skin precursors, which can differentiate 
intro fibroblasts and smooth muscle cells (smooth muscle alpha actin positive – myofibroblasts). In the 
precursor stage, these cells express low levels of progerin in vivo and in vitro, but differentiation into 
the lineages increases progerin expression and deposition in the nucleus (Wenzel et al., 2012). In 
concordance with our findings, a progeria murine model, deficient in the downstream processing of 
lamin A, shows abnormal skin wound repair, with prolonged time to wound closure, poor vasculogenic 
signaling and angiogenesis, which includes a limited mobilization of bone-marrow derived progenitor 
cells (Butala et al., 2012). Related to this phenotype, the LMNAΔ9 murine progeria model for HPGS 
show a significant decrease in postnatal fibroblast proliferation, with accelerated senescence levels 
in cell lines derived from kidney, lung, skin, and skeletal muscle (Hernandez et al., 2010). Further, a 
decreased epidermal population of adult stem cells was observed in another murine model of HGPS 
(Rosengardten et al., 2011), which are also deficient for skin wound repair.

Overall, growth, development, and maintaining homeostasis place a considerable burden on the 
mesenchymal stem cell pool and its many lineages. Under a paradigm of biology of priority during 
development the organism’s structural integrity in the shape of bones and joints, the homeostasis of 
blood microvessels – regulated by pericytes – should take precedence to fat deposition (Figure 10A).

patients (Figure 3) differs between Progeria (pink) and control (blue) samples. (* indicates p<0.05 by Kruskal Wallis test; dotted lines within the violin 
plots indicate 25th, median, and 75th percentiles).

Figure 7 continued
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Figure 8. Changes in chromatin architecture in HGPS cells: translocations, compartment strength and identity, and correlation to genes of interest. 
(A) 2.5 Mb Hi-C heatmaps for AG03257-P7 (Mother, WT), and HGPS patients (HGADFN167-P19 and AG11513-P7) Translocations between chromosomes 
appear as high interaction frequency regions (red) away from the diagonal. A translocation between chromosomes 3 and 11 is apparent in AG11513 
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We propose that these defects in repair in Progeria patients strain the mesenchymal stem cell 
pools from which repair reactive stroma originates, which have been characterized as both pools of 
CD44/CD99-positive cells in glandular tissues and as pluripotent cells located at the pericyte posi-
tion (Crisan et al., 2008; Kim et al., 2014). Interestingly, it has been reported that normal fibroblast 
cell lines contain a subset of pluripotent MSCs, indistinguishable from those derived from the bone 
marrow (Denu et al., 2016) and it is established that normal MSCs lose proliferative and differenti-
ation potential within a few passages when cultured in vitro. This phenomenon has been correlated 
with a defect in lamin A maturation that leads to cellular senescence (Bellotti et al., 2016), which is 
similar to the terminal differentiation into wound-repair-myofibroblasts resulting from the TGF-beta 
induction of prostate resident MSCs (Kim et al., 2014). HPGS fibroblasts experience an increased 
rate in apoptosis, with subsequent cell divisions, concomitant with mutant Lamin A accumulation 
(Bridger and Kill, 2004), and chronic DNA damage that lead to premature senescence (Wheaton 
et al., 2017),which could be indirect evidence of early depletion of the MSC pool in these cell lines. 
(Figure 10B).

Related to later differentiation events, the depletion of microvasculature resident MSCs occurring 
as a result of chronic, deficient wound repair would carry a severe impact to adipogenesis. Cells at 
the pericyte position have been characterized as the primary source for adipocytes in vivo (Traktuev 
et al., 2008; Zannettino et al., 2008). These cells, which are CD44, CD90 double positive, phenocopy 
the pluripotency of tissue resident mesenchymal stem cells, and are able to differentiate into repair-
like myofibroblasts expressing smooth muscle alpha actin (Merfeld-Clauss et al., 2017). Coupled with 
a preadipocyte depletion phenotype, lipodystrophy in HGPS has also been experimentally induced 
by the introduction of progerin expression into a subset of pre adipogenic cells in mice, which led 
to fibrosis, senescence, and macrophage infiltration, with the ultimate result of white fat depletion 
(Revêchon et al., 2017).

The fibroblast as a sentinel of general mesenchymal lineage health
The criticism can be made that it is a stretch to make hypotheses about different mesenchymal stem 
cell pools based only on gene expression from dermal fibroblasts. This is indeed a limitation that must 
be considered, but primary samples of other mesenchymal lineage tissues from HGPS patients are 
not available, and there is evidence of interplay between fibroblasts and the MSC lineage. After birth, 
the bone marrow mesenchymal stem cell niche is in close synergy with pools of fibroblasts (LeBleu 
and Neilson, 2020; Soundararajan and Kannan, 2018), tissue resident mesenchymal stem cells (El 

patches in the corner of each chromosome. (C) TAD boundary strength boxplots calculated using the InsulationScore approach between early (left) and 
late (right) passage Progeria cells minus their respective controls. Boxes represent the upper and lower quartiles with the center line as the median. 
Upper whiskers extend 1.5×IQR beyond the upper quartile, and lower whiskers extend either 1.5×IQR below the lower quartile or to the end of the 
dataset. (D) Plots of the first eigenvector for a section of chromosome 12, obtained from principal component analysis (PC1) of 250 kb binned Hi-C 
data for control fibroblasts (Mother AG03257, Father HGADFN168) and HGPS fibroblasts (HGADFN167 and AG11513). Compartment identity remains 
predominantly unchanged (A compartment: Red, B compartment: Blue). (E) Graphs showing the A-A compartment interaction strength (red) and B-B 
compartment interaction strength (blue) within each chromosome for related father and child cell lines (HGADFN168, HGADFN167). Samples were 
collected a both early (left; P12) and late passages (middle; P19 for Progeria and P27 for father). Comparison between the two samples (right) shows 
that the HPGS cell line shows a marked decrease in A-A compartment interaction strength in late passages in the majority of chromosomes. (F) Eigen 1 
values represent the compartment identity (same as plotted in D) for genes identified in this study as upregulated (left) or downregulated (right) in the 
0–7 year-old age-matched comparison. While differences between groups are not significant overall (Kruskal-Wallis), a subset of downregulated genes 
appear to be changing conformation to a B compartment in progeria samples (box). Violin plots for the global distribution of values; median denoted 
by a thick dashed line, 25th and 75th percentiles highlighted as thin dashed lines. Percentages of genes in the B compartment are indicated in the 
box below downregulated gene graph. (G) Compartment identity for genes identified in this study as upregulated (left) or downregulated (right) in the 
0–7 year-old HGPS samples compared to normal middle-aged controls. (H) Compartment identity for genes identified in this study as upregulated (left) 
or downregulated (right) in the 0–7 year-old HGPS samples compared to old-aged controls.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Genes of interest vs LADS.

Figure 8 continued
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Figure 9. 40 kb resolution heatmaps for the parental and HGPS fibroblasts around the BMP4 gene (highlight: blue), aligned to their associated 
compartment and LAD tracks. The gene is located in a region that shifts toward the A compartment (red) in HGPS compared to WT parent and healthy 
child controls.

Figure 9 continued on next page
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Agha et al., 2017) and pericytes (Lamagna and Bergers, 2006). Since these cell pools are in flux, 
and can compensate for each other under duress (Di Carlo and Peduto, 2018; Direkze et al., 2004; 
Ozerdem et al., 2005; San Martin et al., 2014), comparing the global transcriptional status of fibro-
blasts between a patient cohort and its aged-matched controls can provide an insight into potential 
systemic deficits and compensatory mechanisms at play.

Ideas and speculation
Overall, the cohorts of biological processes that we observe to be misregulated across different age 
groups of Progeria patients lead us to speculate the impact of this misregulation across a series of 
events in development, which will warrant further investigation:

1.	 Biology of priority: the formation of bone ‘fires’ at specific times. These events are ‘non-
negotiable’, potentially taking precedence over other concomitant MSC fates. Deficits in endo-
chondral ossification can condition the system to draw from pericyte and tissue resident MSCs 
in an attempt to compensate.

2.	 The loss of bone fusion and regression of bone length observed in teenaged HGPS patients 
is an indirect result of deficits in arrest of chondrogenesis proliferation, that occurred in early 
childhood. These deficits may result in depletion of MSC pools, both in the bone marrow and 
in tissues

3.	 Depletion of the pericyte niche is exacerbated by a chronic, incompetent, wound repair 
response. Ultimately, this depletion will result in loss of microvasculature integrity and subse-
quent vascular events observed in HGPS, such as vascular stiffness and atherosclerosis.

4.	 In adipose tissue, the activation of MSCs located at the pericyte niche for addressing deficient 
wound repair response or osteogenesis, could lead to a deficient differentiation into adipocytes

5.	 Elaborating on proposed MSC interventions (Infante and Rodríguez, 2021) and current gene 
editing efforts (Koblan et al., 2021), targeting the bone marrow niche in young patients could 
rescue the later HGPS phenotypes.

Conclusion
Our comprehensive analysis of previously published and newly generated RNA-seq datasets for 
Progeria fibroblast cells enabled careful age-stratified comparisons. Comparing young children and 
teenagers with Progeria to age-matched controls, middle-aged, and elderly adults, we find misreg-

ulated genes which suggest important defects 
in cell and tissue repair biology, epigenetics, 
metabolism (calcium, lipids), and other functions 
important to the mesenchymal cell lineage. Our 
comparisons show altered regulation of chon-
drocyte commitment genes in the fibroblasts of 
Progeria patients who are at the age of postnatal 
ossification compared to typically developing 
age-matched controls. Interestingly, the Progeria 
gene expression patterns are distinct from older 
adult fibroblast expression patterns, emphasizing 
that this disease does not simply mimic normal 
aging. While genome spatial compartmentaliza-
tion in these patients is overall weakened, much 

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. 40 kb resolution Hi-C contact maps for the parental and HGPS cell lines, aligned with A/B compartment tracks for parental, 
healthy child, and HGPS cell lines.

Figure supplement 2. A/B compartment tracks for parental, healthy child, and HGPS cell lines and Lamin A association tracks for healthy father and 
HGPS patient centered on genes detected as downregulated in Progeria compared to healthy children.

Figure 9 continued

Video 1. A visual explanation of ideas presented in the 
Discussion, hypotheses derived from transcriptomics 
results.

https://elifesciences.org/articles/81290/figures#video1
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Figure 10. Discussion model. HGPS affects differentiation commitment and subsequent biology of priority during early development, which results in 
premature depletion of MSC pools.
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of the gene misregulation occurs in regions that do not change their compartment status or lamin 
association. However, a few key misregulated genes in the osteogenic and adipogenic lineage show 
a clear concordant switch in spatial compartmentalization or lamin association, suggesting that some 
alterations in these pathways may result directly from the influence of progerin on chromosome 
structure.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG01178 Male 20 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG03198 Female 10 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG06917 Male 3 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG07493 Female 2 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG08466 Female 8 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG10578 Male 17 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG10677 Male 4 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG11572 Female 2 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute GM01178 Male 20 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute GM01972 Female 14 y/o

Biological sample 
(Homo sapiens) Purified RNA Coriell Institute AG11513 Female 8 y/o

Cell line (Homo sapiens)
HGPS human primary dermal 
fibroblast

Progeria Research  
Foundation (PRF)  
Cell and Tissue Bank HGADFN167

8-year-old male 
progeria patient

Cell line (Homo sapiens)
WT human primary dermal 
fibroblast

Progeria Research  
Foundation (PRF)  
Cell and Tissue Bank HGADFN168

Father of progeria 
patient

Cell line (Homo sapiens)
HGPS human primary dermal 
fibroblast Coriell Institute AG11513

8-year-old female 
progeria patient

Cell line (Homo sapiens)
WT human primary dermal 
fibroblast Coriell Institute AG03257

Mother of progeria 
patient

Cell line (Homo sapiens)
WT human primary dermal 
fibroblast Coriell Institute GM08398

8-year-old male 
healthy child

Peptide, recombinant 
protein HindIII New England Biolabs R0104L

Peptide, recombinant 
protein DpnII New England Biolabs R0543L

Peptide, recombinant 
protein T4 DNA Ligase Invitrogen 15224041

Peptide, recombinant 
protein

DNA Polymerase I Klenow 
Fragment New England Biolabs M0210L

https://doi.org/10.7554/eLife.81290
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Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Peptide, recombinant 
protein T4 DNA Polymerase New England Biolabs M0203L

Peptide, recombinant 
protein Biotin-dATP Invitrogen 19524016

Commercial assay or kit Arima-HiC +Kit Arima Genomics
Mammalian Cell Lines 
Protocol (A160134 v01)

Commercial assay or kit NEBNext Ultra II kit New England Biolabs E7645S

Commercial assay or kit
NEBNext Multiplex Oligos for 
Illumina (Index Primers Set 4) New England Biolabs E7730S

Commercial assay or kit
NEBNext Multiplex Oligos for 
Illumina (Index Primers Set 1) New England Biolabs E7335S

Software, algorithm BBDuk https://github.com/kbaseapps/BBTools RRID:SCR_016968

Software, algorithm STAR aligner https://github.com/alexdobin/STAR RRID:SCR_004463

Software, algorithm HTSeq-Counts https://github.com/simon-anders/htseq RRID:SCR_011867

Software, algorithm DESeq2

https://bioconductor.org/ 
packages/release/bioc/ 
html/DESeq2.html

Software, algorithm cMapping

https://github.com/dekkerlab/cMapping 
(Lajoie et al., 2015; Lajoie and Oomen, 
2015)

v1.0.6; Bryan Lajoie 

Software, algorithm cWorld-dekker
https://github.com/dekkerlab/cworld-​
dekker (Lajoie and Venev, 2019) v0.41.1; Bryan Lajoie

Software, algorithm ComBat-seq

https://github.com/zhangyuqing/ComBat-​
seq (Zhang et al., 2020a; Zhang et al., 
2020b)

 Continued

RNA-seq
Ten micrograms of purified RNA from several progeria cell samples were acquired from the Coriell Insti-
tute (Camden, NJ) as follows: AG06917 (HGPS. Male 3 y/o), AG10578 (HGPS. Male 17 y/o), AG11572 
(HGPS. Female 2 y/o), AG10677 (HGPS. Male 4 y/o), AG08466 (HGPS. Female 8 y/o), AG03198 
(HGPS. Female 10 y/o), AG07493 (HGPS. Female 2 y/o), AG01178 (HGPS. Male 20 y/o), AG11513 
(HGPS. Female 8 y/o), GM01972 (HGPS. Female 14 y/o), GM01178 (HGPS. Male 20 y/o). After internal 
quality control upon receipt, RNA-seq library construction and sequencing of two technical replicates 
was carried out by Genewiz (South Plainfield, NJ). Further, previously published RNA-seq datasets 
from HPGS fibroblasts and normal controls were included in the study (Appendix 1—tables 1–3; 
Fleischer et al., 2018; Ikegami et al., 2020; Köhler et al., 2020; Mateos et al., 2018).

RNA-seq data processing
The fastq reads were first processed with BBDuk tool (https://github.com/kbaseapps/BBTools), 
performing adapter trimming with parameters “ktrim = r k=23 mink = 11 hdist = 1”. Adapter trimmed 
reads were processed for quality trimming using the BBDuk tool to discard reads with quality score 
lower than 28 (parameters “qtrim = r trimq = 28”). Following the adapter and quality trimming 
steps, the reads were aligned to the reference genome hg19 using STAR aligner (https://github.com/​
alexdobin/STAR) with both ‘--outFilterScoreMinOverLread’ and ‘ --outFilterMatchN-
minOverLread’ parameters set to 0.2. Finally, the mapped reads were sorted based on genomic 
coordinates and feature count was performed with HTSeq-Counts (https://github.com/simon-anders/​
htseq).

Batch effect removal
Since the RNA-seq files used in this study were generated in different laboratories, using different 
technologies, the raw gene counts produced by HTSeq-Counts suffer from batch effect. To mitigate 

https://doi.org/10.7554/eLife.81290
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https://github.com/zhangyuqing/ComBat-seq
https://github.com/zhangyuqing/ComBat-seq
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that issue, the raw counts are batch effect adjusted using the ComBat-seq tool (https://github.com/​
zhangyuqing/ComBat-seq). For this purpose, files from the same laboratory are assigned the same 
batch number. In addition, the sex and status of the samples are provided as the biological covariates 
to the ComBat-seq tool to preserve that signal in the adjusted data.

Differential expression analysis
Differential gene expression analysis was performed between different groups of diseased and healthy 
samples using DESeq2 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html) tool. 
HGPS samples from Young (0–7 y/o) or teenage (13+y/o) patients were compared to age matched 
(AM), middle aged (M), and old (O) control samples (Table 1—source data 1). Further, to correlate 
gene expression profiles with known patient survival statistics, comparisons were further refined by 
stratifying early infancy progeria patients (0–3 years old) and older children (4–7 years old), comparing 
those populations to age matched, middle aged and old control samples, as before (Table 2—source 
data 1).

Gene ontology analysis
Genes defined as up/down regulated for each of the age group comparisons, were considered for 
gene ontology analysis based on an FDR adjusted p-value cutoff of 0.001. These gene lists, in turn, 
were then analyzed using Metascape (Zhou et al., 2019). Metascape output files were manually clus-
tered into gene ontology themes, observed throughout the analysis. Gene lists derived from this 
manual clustering were then visualized via heatmaps to facilitate comparisons among age groups.

Gene expression heatmap plotting
To plot expression of specific genes across different samples as a heatmap, the batch adjusted counts 
for all the genes for each sample were log2 normalized with a pseudo count of 1. The expression of 
specific genes across specific samples was then extracted and Z-score normalization was performed 
for each of the genes. Finally, the Z-score normalized values were plotted using the Seaborn python 
package as a heatmap. (https://seaborn.pydata.org/).

DamID-seq data processing
All the DamID-seq data was processed as previously reported (Leemans et al., 2019), with modifica-
tions in the trimming step. Briefly, the bwa mem (https://github.com/lh3/bwa, Li, 2022) tool was used 
to map gDNA reads starting with GATC to a combination of hg19 reference genome with a ribosomal 
model. For further processing, only the mapped reads having a mapping quality of at least 10 were 
considered as GATC fragments. Next, the reads were combined into the bins of 40 kb resolution 
depending on the middle of the GATC fragments and then scaled to 1 M reads. For normalization, 
log2-ratio of the scaled target over the scaled Dam-only bins was calculated with a pseudo count of 1.

Cell culture
Human primary dermal fibroblast cell lines were obtained from The Progeria Research Foundation 
(PRF) Cell and Tissue Bank (HGPS: HGADFN167 and healthy adult: HGADFN168). Dermal fibroblasts 
(HGPS: AG11513, healthy adult: AG03257, and healthy child GM08398) were purchased from Coriell 
Institute (Camden, NJ). Cells were grown in DMEM (Gibco) supplemented with 15% FBS (Corning), 
1% Pen-strep (Gibco), and 1% L-glutamine (Gibco). Cells were passaged at a density of 80%.

Chromosome conformation capture (Hi-C)
Hi-C experiments were performed according to standard protocols (Golloshi et al., 2018). The starting 
material was comprised of skin fibroblasts of parents of HGPS patients (Mother AG03257, Father 
HGADFN168), a healthy age matched child (GM08398) and two HGPS patient fibroblast samples 
(HGADFN167 and AG11513). Further, HGADFN168 and HGADFN167, belonging to a parent-child 
matched cells were analyzed both at an early and late passage: p12-27 and p12-19, respectively.

Briefly, ~5 million cells were fixed with 1% formaldehyde, suspended in cell lysis buffer for permea-
bilization, and homogenized by douncing. Crosslinked chromatin was digested overnight with HindIII 
(HGADFN167 and HGADFN168) or DpnII (HGADFN167, HGADFN168, AG03257 and AG11513). 
GM08398 cells were processed using the Arima-HiC +Kit from Arima Genomics following the protocol 
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for Mammalian Cell Lines (A160134 v01). Sticky ends were filled in with biotin-dATP (Invitrogen), and 
the blunt ends of interacting fragments were ligated together. DNA was purified by two phenol-
chloroform extractions and ethanol precipitation. Biotin-dATP at unligated ends was removed, and 
the DNA was sheared to a target size of 200–400 bp by a Covaris sonicator (Covaris, M220). DNA 
between 100–400 bp was selected for using AMPure XP beads (Beckman Coulter). Biotinylated DNA 
was pulled down using streptavidin coated magnetic beads and prepared for multiplex sequencing 
on an Illumina platform using the NEBNext Ultra II kit (NEB, E7645S). All end preparation, adaptor 
ligation, and PCR amplification steps were carried out on bead bound DNA libraries. Sequencing was 
carried out on Illumina HiSeq 3000 or NovaSeq platforms with 75 bp or 150 bp paired end reads. All 
Hi-C data statistics are presented in Appendix 1—table 4.

Analysis of Hi-C data
Sequencing reads were mapped to the reference human genome hg19, filtered, and iteratively 
corrected using previously published pipelines (Imakaev et al., 2012), available on github (https://​
github.com/dekkerlab/cMapping). Publicly available tools (https://github.com/dekkerlab/cworld-​
dekker) were used to produce Hi-C heatmaps at 2.5 Mb and 250 kb resolution and to perform prin-
cipal component analysis (using the matrix2compartment script) to generate compartment tracks at 
250 kb resolution, assigning A and B compartments to positive and negative PC1 values, respectively. 
Values from replicate experiments were averaged, by bin, to produce the final compartment track. 
TAD boundary strength analysis was carried out using the insulation score approach (Crane et al., 
2015) (matrix2insulation) from this cworld package with 500 kb insulation square using 40 kb resolu-
tion contact maps.

ChIP-seq data and processing: Lamin associated domain analysis
Raw LMNA ChIP-seq data was obtained from the NCBI Gene Expression Omnibus (GEO) under acces-
sion number GSE41764 (McCord et al., 2013). For comparison, DamID-seq for the fibroblast line 
HFFc6 (van Steensel Lab, Netherlands Cancer Institute) was obtained from the 4D Nucleome data 
portal (Dekker et al., 2017; Reiff et al., 2021), through the bio sample identifier 4DNBSR7TC87A.

The fastq reads were first processed for adapter and quality trimming with the help of BBDuk tool. 
The reads were then aligned to the hg19 reference genome using STAR aligner. Finally, both the target 
and input mapped reads were binned at 40 kb resolution and log2-ratio of the target over the input 
bins was calculated using the ‘bamCompare’ function of deepTools with parameters “--operation 
log2 -bs 40000 --ignoreDuplicates --minMappingQuality 30 --scaleFactorsMethod SES 
--effectiveGenomeSize 2864785220”.
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

San Martin R, Das P, 
Sanders JT, Hill AM, 
McCord RP

2022 Transcriptional profiling 
of Hutchinson-Gilford 
Progeria syndrome 
fibroblasts reveals deficits 
in mesenchymal stem 
cell commitment to 
differentiation related 
to early events in 
endochondral ossification

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE206707

NCBI Gene Expression 
Omnibus, GSE206707

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Lyko F, Rodriguez-
Paredes M

2020 Epigenetic deregulation of 
lamina-associated domains 
in Hutchinson-Gilford 
Progeria Syndrome (RNA-
Seq)

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE150137

NCBI Gene Expression 
Omnibus, GSE150137

Fleischer JG, Schulte 
R, Tsai H, Tyagi S, 
Ibarra A, Shokhirev 
MN, Huang L, Hetzer 
MW, Navlakha S

2018 Predicting age from the 
transcriptome of human 
dermal fibroblasts

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE113957

NCBI Gene Expression 
Omnibus, GSE113957

Ikegami K, Secchia S 2020 RNA-seq reported in 
"Phosphorylated Lamin 
A/C in the nuclear interior 
binds active enhancers 
associated with abnormal 
transcription in progeria"

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE113343

NCBI Gene Expression 
Omnibus, GSE113343
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Appendix 1
This appendix includes details on the patients and experimental approaches and statistics for the 
RNA-seq data and Hi-C data included in this study.

Appendix 1—table 1. RNA-seq datasets from progeria patients used in this study.

Progeria Patient Age Sex Race RNA-seq approach Lab GEO Series

HGADFN155 1 yr 2 mo F Unknown

polyA (TruSeq RNA 
Sample Preparation 
v2 protocol) Rodríguez-Paredes GSE150137

NG07493 2 yr F White rRNA depletion McCord GSE206684

NG11572 2 yr F White rRNA depletion McCord GSE206684

HGADFN188 2 yr 3 mo F Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

HGADFN188 2 yr 3 mo F Unknown

polyA (TruSeq RNA 
Sample Preparation 
v2 protocol) Rodríguez-Paredes GSE150137

HGADFN367 3 yr F Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

NG06917 3 yr M White rRNA depletion McCord GSE206684

HGADFN127 3 yr 9 mo F Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

NG10677 4 yr M White rRNA depletion McCord GSE206684

HGADFN164 4 yr 8 mo F Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

HGADFN164 4 yr 8 mo F Unknown

polyA (TruSeq RNA 
Sample Preparation 
v2 protocol) Rodríguez-Paredes GSE150137

HGADFN122 5 yr F Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

HGADFN178 6 yr 11 mo F Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

AG11513 8 yr F White
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

NG08466 8 yr F White rRNA depletion McCord GSE206684

NG11513 8 yr F White rRNA depletion McCord GSE206684

HGADFN167 8 yr 5 mo M Unknown
polyA (NEBNext Ultra 
DNA Library Prep Kit) Ikegami GSE113343

HGADFN167-2 8 yr 5 mo M Unknown
polyA (NEBNext Ultra 
DNA Library Prep Kit) Ikegami GSE113343

HGADFN167 8 yr 5 mo M Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

HGADFN167 8 yr 5 mo M Unknown

polyA (TruSeq RNA 
Sample Preparation 
v2 protocol) Rodríguez-Paredes GSE150137

HGADFN169 8 yr 6 mo M Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

HGADFN169 8 yr 6 mo M Unknown

polyA (TruSeq RNA 
Sample Preparation 
v2 protocol) Rodríguez-Paredes GSE150137

HGADFN143 8 yr 10 mo M Unknown
polyA (TruSeq 
Stranded mRNA) Fleischer GSE113957

Appendix 1—table 1 Continued on next page
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Progeria Patient Age Sex Race RNA-seq approach Lab GEO Series

HGADFN143 8 yr 10 mo M Unknown

polyA (TruSeq RNA 
Sample Preparation 
v2 protocol) Rodríguez-Paredes GSE150137

AG03199 10 yr F White

polyA (Illumina 
SureSelect Strand 
Specific RNA library 
Prep) Arufe GSE113648

NG03198 10 yr F White rRNA depletion McCord GSE206684

AG03513 13 yr M
White 
Mexican

polyA (Illumina 
SureSelect Strand 
Specific RNA library 
Prep) Arufe GSE113648

AG11498 14 yr M
African 
American

polyA (NEBNext Ultra 
DNA Library Prep Kit) Ikegami GSE113343

AG11498-2 14 yr M
African 
American

polyA (NEBNext Ultra 
DNA Library Prep Kit) Ikegami GSE113343

NA01972 14 yr F White rRNA depletion McCord GSE206684

NG10578 17 yr M White rRNA depletion McCord GSE206684

NA01178 20 yr M Unknown rRNA depletion McCord GSE206684

NG01178 20 yr M Unknown rRNA depletion McCord GSE206684

Appendix 1—table 2. RNA-seq datasets from adult controls used in this study.

Donor Age Sex Race RNA-seq approach Lab GEO Series

Parent of Progeria Patient

AG03257 35 F
polyA (Illumina SureSelect Strand 
Specific RNA library Prep) Arufe GSE113648

AG03512 41 F
polyA (Illumina SureSelect Strand 
Specific RNA library Prep) Arufe GSE113648

Healthy Mid-Age Adult

AG07124 26 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

GM00495 29 M Unknown polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG07478 29 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG04054 29 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG09599 30 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG09605 30 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

GM04503 31 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

GM04504 31 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

GM00043 32 F
Black, Puerto 
Rican polyA (TruSeq Stranded mRNA) Fleischer GSE113957

GM01650 37 F Unknown polyA (TruSeq Stranded mRNA) Fleischer GSE113957

GM01717 39 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG16358 41 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG13967 41 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG04063 43 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

Appendix 1—table 1 Continued
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Older Adult Control

GM03525 80 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

GM01706 82 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG04386 83 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG11744 84 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG11725 84 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG05274 84 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG05247 87 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG04662 87 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG13129 89 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG12788 90 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG07725 91 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG09602 92 F White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG04064 92 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG08433 94 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

AG04059 96 M White polyA (TruSeq Stranded mRNA) Fleischer GSE113957

Appendix 1—table 3. RNA-seq datasets from children controls used in this study.

Healthy Child Age Sex Race RNA-seq approach Lab GEO Series

AG08498 1 M Asian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM00969 2 F Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM00969 2 F Caucasian
polyA (TruSeq RNA Sample 
Preparation v2 protocol) Rodríguez-Paredes GSE150137

GM05565 3 M Latino/Hispanic
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM00498 3 M Unknown
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM05400 6 M Black
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM00409 7 M Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM00499 8 M Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM08398 8 M Caucasian
polyA (NEBNext Ultra DNA 
Library Prep Kit) Ikegami GSE113343

GM08398-2 8 M Caucasian
polyA (NEBNext Ultra DNA 
Library Prep Kit) Ikegami GSE113343

GM08398 8 M Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM00038 9 F Black
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM01652 11 F Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM01582 11 F Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

Appendix 1—table 3 Continued on next page
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Healthy Child Age Sex Race RNA-seq approach Lab GEO Series

AG16409 12 M Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM07532 16 F Unknown
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM07753 17 M Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM07492 17 M Caucasian
polyA (NEBNext Ultra DNA 
Library Prep Kit) Ikegami GSE113343

GM07492-2 17 M Caucasian
polyA (NEBNext Ultra DNA 
Library Prep Kit) Ikegami GSE113343

GM07492 17 M Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

GM08399 19 F Caucasian
polyA (TruSeq Stranded 
mRNA) Fleischer GSE113957

Appendix 1—table 4. Hi-C Data Statistics.

Sample Name Enzyme Genotype Gender, Age Raw Reads
Both Sides 
Mapped % Map

% Dangling 
Ends Valid Pairs

Unique Valid 
Pairs %Cis

Progeria-167-
DpnII-P19-R1 DpnII HGPS Male, 8Y 364,961,495 220,942,665 60.5 3.05 208,963,277 152,974,533 54.69

Progeria-168-
DpnII-P16-R1 DpnII WT Male, 40Y 358,703,556 220,880,406 61.6 3.48 212,152,596 148,022,234 54.98

Progeria-
AG03257-P7-R1 DpnII WT Female, 35Y 274,364,560 177,877,476 64.8 0.95 174,730,268 132,694,872 49.65

Progeria-
AG03257-P7-R3 DpnII WT Female, 35Y 127,656,906 73,190,497 57.3 2.26 70,541,316 46,463,429 83.56

Progeria-
AG11513-P7-R1 DpnII HGPS Female, 8Y 251,483,696 154,772,051 61.5 0.46 153,219,873 116,077,671 48.77

Progeria-
AG11513-P7-R2 DpnII HGPS Female, 8Y 251,776,055 153,160,225 60.8 0.75 151,305,617 114,631,955 50.22

Progeria-
HGADFN167-
P12-R1 HindIII HGPS Male, 8Y 165,040,682 116,708,094 70.7 24.91 86,987,628 81,047,934 67.32

Progeria-
HGADFN167-
P19-R1 HindIII HGPS Male, 8Y 202,090,523 136,172,100 67.4 14.12 116,222,620 95,537,352 82.72

Progeria-
HGADFN168-
P12-R1 HindIII WT Male, 40Y 194,414,002 136,139,915 70.0 16.61 112,990,317 77,889,695 81.23

Progeria-
HGADFN168-
P27-R1 HindIII WT Male, 40Y 157,637,031 110,558,519 70.1 15.06 93,504,712 86,842,660 67.32

Progeria-
GM08398-
P13-R1 Arima WT Male, 8Y 475,221,692 309,944,409 65.2 1.59 301,485,345 182,322,975 83.07

Appendix 1—table 3 Continued
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