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Abstract The skeletal system contains a series of sophisticated cellular lineages arising from the 
mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) that determine the homeo-
stasis of bone and bone marrow. Here, we reasoned that osteocyte may exert a function in regula-
tion of these lineage cell specifications and tissue homeostasis. Using a mouse model of conditional 
deletion of osteocytes by the expression of diphtheria toxin subunit α in dentin matrix protein 1 
(DMP1)- positive osteocytes, we demonstrated that partial ablation of DMP1- positive osteocytes 
caused severe sarcopenia, osteoporosis, and degenerative kyphosis, leading to shorter lifespan 
in these animals. Osteocytes reduction altered mesenchymal lineage commitment, resulting in 
impairment of osteogenesis and induction of osteoclastogensis. Single- cell RNA sequencing further 
revealed that hematopoietic lineage was mobilized toward myeloid lineage differentiation with 
expanded myeloid progenitors, neutrophils, and monocytes, while the lymphopoiesis was impaired 
with reduced B cells in the osteocyte ablation mice. The acquisition of a senescence- associated 
secretory phenotype (SASP) in both osteogenic and myeloid lineage cells was the underlying cause. 
Together, we showed that osteocytes play critical roles in regulation of lineage cell specifications in 
bone and bone marrow through mediation of senescence.

Editor's evaluation
The work provides a new understanding of the role of osteocytes in regulating other lineage cells 
in bone, bone marrow, and skeletal muscle. The set of data from the genetic mouse model, bone 
phenotypic analyses, and scRNA- seq analysis supports the conclusion. This is an important and logi-
cally presented study that offers new insight into the biology of osteocytes.

Introduction
The skeletal system is an elaborate organ mainly containing bone, bone marrow, and other connec-
tive tissues, whose function includes movement, support, hematopoiesis, immune responses, and 
endocrine regulation (Karsenty and Ferron, 2012; Katsnelson, 2010; Quarles, 2011). The skeletal 
system hosts at least more than 12 types of cell lineages arising from hematopoietic stem cells (HSCs) 
and mesenchymal stem cells (MSCs) (Méndez- Ferrer et  al., 2010). During hematopoiesis, HSCs 
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give rise to lymphoid and myeloid lineage cells, including B cells, neutrophils, monocytes, as well as 
osteoclasts. Meanwhile, MSCs differentiate into osteoblastic lineage cells, bone marrow adipocytes, 
and form fibroconnective tissues. The sophisticated processes of differentiation and interaction of 
these cell lineages are critical not only to skeletal development, but also to the integrity of hema-
topoietic, immune, and endocrine systems (Méndez- Ferrer et  al., 2010; Le et  al., 2018; Yu and 
Scadden, 2016). During aging, these cell lineage commitments change rigorously and cause imbal-
ance between myeloid–lymphoid hematopoiesis and adipo- osteogenic differentiation (Chen et al., 
2016; Sinha et al., 2022), which lead to the increased myelopoiesis and adipogenesis as opposed 
to lymphopoiesis and osteogenesis. While the complex communications between these cell lineages 
have been documented, it is still unclear what determines these cell lineages to survive and how 
their cell fates are maintained during development and aging. It has been speculated that cellular 
senescence, characterized by cell proliferation arrest, altered metabolism, and apoptosis resistance 
(Gorgoulis et al., 2019; Tchkonia et al., 2013), may be responsible for the regulation of lineage cell 
fates. However, the precise role in aging and age- related diseases remains unclear.

Osteocytes, as the long- living terminally differentiated cells and the most abundant cells within 
the bone matrix (Tresguerres et al., 2020), play vital roles in maintaining the skeletal homeostasis. 
Apart from mechanical transduction (Long, 2011; Sato et al., 2020), osteocytes have been shown to 
regulate bone formation, bone resorption, bone marrow hematopoiesis (Asada et al., 2013; Azab 
et al., 2020; Fulzele et al., 2013; Xiao et al., 2021), and generate endocrine signals to mediate func-
tion of other organs (Razzaque, 2009; Fulzele et al., 2017; Cain et al., 2012). Osteocytes regulate 

eLife digest A hallmark of aging is the weakening of our muscles and bones, which become more 
fragile as we get older. These gradual changes can result in a humpback and muscle shrinking among 
other conditions. At the same time little is known about what role osteocytes – the most abundant 
type of bone cell – play in the process of bone and muscle aging.

One way to investigate the role of osteocytes in aging is to remove them and observe what 
happens to nearby cells as they age. To achieve this Ding, Gao, Gao et al. genetically altered mice 
so that they would carry and activate a gene called DTA in their osteocytes. DTA is a gene derived 
from the bacterium that causes diphtheria, and when it is activated, it produces a toxin that accumu-
lates in cells, eventually killing them. In the mice line developed by Ding, Gao, Gao et al. DTA slowly 
killed osteocytes, leading to adult mice lacking most of their osteocyte population that have a normal 
embryonic development. This is important because the fact that the mice develop normally before 
birth allowed the team to rule out embryonic defects when looking at their results.

Ding, Gao, Gao et al. found that, without enough osteocytes, the nearby bone and bone marrow 
cells aged faster than expected. Indeed, the skeleton and muscles of adult mice was severely affected 
by the loss of osteocytes, leading to fragile bones with lower mass and muscle shrinking. These mice 
looked old in their young age and died earlier.

At the cellular level, the removal of osteocytes impaired the formation of osteoblasts, the cells that 
are responsible for making bones. It also led to an increase in the numbers of osteoclasts – the cells 
that destroy bone tissue to repair it and maintain it – and fat tissue cells. Furthermore, cells in the 
bone marrow, which go on to make white blood cells, were also affected. The mechanisms through 
which osteocytes affect the growth of these other cells is yet to be fully understood. However, Ding, 
Gao, Gao et al. did observe that these cells acquired traits characteristic of aging cells, implying that 
osteocytes have a role in regulating cellular aging or senescence. Among these senescence traits is 
the increased production and secretion of molecules that interact with the immune system, a feature 
known as the ‘senescence- associated secretory phenotype’.

Overall, the results of Ding, Gao, Gao et al. suggest that reducing the number of osteocytes in 
mice leads to faster bone aging and affects the balance of the different cell types required for healthy 
bone and bone marrow growth. Future research could focus on finding drugs that allow osteocytes 
to keep performing their role during aging, and thus help maintain bone health. The findings of Ding, 
Gao, Gao et al. also suggest that osteocytes may be playing a previously underappreciated role in 
age- related diseases, which warrants further investigation.

https://doi.org/10.7554/eLife.81480
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both the osteoblast and osteoclast activities during bone remodeling (Delgado- Calle and Bellido, 
2022; Tresguerres et al., 2020). Sclerostin, one of the key inhibitors of Wnt signaling pathway, is 
mainly produced by osteocytes (Tresguerres et al., 2020). NO and PGE2 secretion by osteocytes 
in response to mechanical stimulation have anabolic effects on osteoblasts (Rochefort et al., 2010). 
Receptor activation of nuclear factor-κ B ligand (RANKL), the osteoclast differentiation factor, is mainly 
produced by osteocytes (Nakashima et  al., 2011). Osteocytes regulate neutrophil development 
through secretion of soluble factors like IL19 (Xiao et al., 2021) and can also regulate myelopoiesis 
through Gsα-dependent and -independent pathways (Fulzele et al., 2013; Azab et al., 2020). In 
addition, studies have shown that aging is associated with dysfunction of osteocytes. Degeneration 
of osteocytes lacuna- canalicular network had been observed in older adults (Busse et  al., 2010) 
and the aging animal model (Tiede- Lewis et al., 2017). Senescent osteocytes and their senescence- 
associated secretory phenotype (SASP) have been shown to contribute to age- related bone loss (Farr 
et al., 2016; Kim et al., 2020). Together, current data suggest that osteocyte is a singling cell that 
coordinates activities of bone and bone marrow during skeletal aging (Sfeir et al., 2022).

Here, we hypothesize that coordination of bone and bone marrow homeostasis requires the pres-
ence of functional osteocytes. Reduction of osteocytes and their function may result in the detrimental 
impact in altering lineage cell fates and specifications in bone marrow. Using a mouse model of condi-
tional deletion of osteocytes by the expression of diphtheria toxin subunit α (DTA) in dentin matrix 
protein 1 (DMP1)- positive osteocytes, we showed that osteocytes regulated bone and bone marrow 
lineage cell specification. Ablation of osteocytes in these mice caused impairment of osteogenesis and 
lymphopoiesis, and increased osteoclastogenesis and mobilization of myelopoiesis toward myeloid 
lineage differentiation with expanded myeloid progenitors, neutrophils, and monocytes. These have 
resulted in the induction of accelerated skeletal aging. Mice with osteocyte ablation have severe 
sarcopenia, osteoporosis, and kyphosis at the early stage of 13 weeks, resulting in shorter lifespan. 
Together, we demonstrated that osteocytes play a critical role in regulation of the HSC and MSC 
lineage cell differentiations by mediation of senescence.

Results
Mice with fewer osteocytes have severe osteoporosis, kyphosis, 
sarcopenia, and shorter lifespan
To delineate the role of osteocyte in skeletal tissue development and maturation, we established a 
mouse model based on DTA- mediated cell knockout using the promoter of DMP1 (Breitman et al., 
1990). The latter is a protein highly expressed in late- stage osteocytes but has been shown not to 
be essential for early skeletal development (Feng et al., 2003). The results showed that complete 
ablation of DMP1- positive osteocytes (osteocyteDMP1) in Dmp1cre Rosa26em1Cin(SA- IRES- Loxp- ZsGreen- stop- Loxp- DTA) 
homozygotes (DTAho) caused lethality of mice before birth. This has led us to investigate the impact 

Figure 1. DTAhet mice display partial osteocyte ablation. (A, B) Hematoxylin–eosin staining of WT and DTAhet mice femur at 4 weeks (A) and 
quantification of the ratio of empty lacunae (arrows) (B) (n = 8–12 per group), indicating reduced osteocyte number in DTAhet mice. Scare bar, 20 µm. (C, 
D) Immunofluorescence staining of femoral cortical bone of 4- week- old WT and DTAhet mice (C) and quantification of dendrites per osteocyte based on 
the images (D) (n = 152 osteocytes in WT group and n = 64 osteocytes in DTAhet group). Scare bar, 20 µm. Error bar represents the standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. DTAhet mice display partial osteocyte ablation.

Figure supplement 1. Osteocyte ablation has no impact on embryonic skeletal development.

Figure supplement 1—source data 1. DTAhet mice display partial osteocyte ablation.

https://doi.org/10.7554/eLife.81480
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of partial ablation of osteocytes using Dmp1cre Rosa26em1Cin(SA- IRES- Loxp- ZsGreen- stop- Loxp- DTA) heterozygotes 
(DTAhet). Interestingly, Alizarin red/Alcian blue staining of whole- mount skeleton at E19.0 showed no 
apparent differences of craniofacial, long bones or spines between WT and DTAhet mice (Figure 1—
figure supplement 1A). As shown in Figure 1A and B, DTAhet mice had more empty lacunae without 
the presence of osteocytes within cortical and trabecular bone matrix compared to WT mice. Further, 
reduced dendrites were also observed in residual osteocytes of DTAhet mice (Figure 1C and D), indi-
cating the impairment of osteocyte network. To define how osteocyte partial ablation was achieved, 
we performed the quantification of empty lacunae ratio of DTAhet mice at 13  weeks. About 80% 
empty lacunae was observed in DTAhet mice at 13 weeks, which increased by about 20% compared 
to 4 weeks (Figure 1—figure supplement 1B and C), indicating that diphtheria toxin (DT) had an 
accumulative effect with age in DTAhet mice. Together, these results indicated that although there 
was partial ablation of osteocyteDMP1 in DTAhet mice, the embryonic development of skeletal tissue 
appeared to be normal.

Next, we investigated whether reduction of osteocyteDMP1 in DTAhet mice had an impact on postnatal 
maturation of bone tissue. Micro- computed tomography (μCT) examination of the appendicular skel-
eton revealed a significant decrease in femur bone mineral density (BMD), bone volume fraction (BV/
TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), as well as greater trabecular separation 
(Tb.Sp) in DTAhet mice compared to those in WT mice at 4 weeks (Figure 2A and B). Moreover, abla-
tion of osteocytes also led to cortical bone loss with decreased cortical thickness (Ct.Th) and increased 
cortical porosity (Ct.Po) (Figure 2A and C). At 13 weeks, DTAhet mice exhibited more bone loss in both 
trabecular and cortical bone compared to those in WT mice (Figure 2D–G). The progressive bone 
loss was observed through the life of DTAhet mice. The phenotype observed is unique and gender- 
insensitive (Figure  2—figure supplement 1A–C). Similarly, μCT observation of axial skeleton also 
revealed the significant bone loss in vertebral bodies (Figure 2H and I, Figure 2—figure supplement 
1D and E). Furthermore, there was no increase of bone mass of vertebral bodies from 4 to 13 weeks in 
DTAhet mice (Figure 2J and K), suggesting the retardation of vertebral body maturation. At 13 weeks, 
obvious kyphosis occurred in DTAhet mice (Figure 2L) due to serve osteoporosis and vertebral body 
compression. Whole- body μCT scan revealed that there was a giant increase of thoracic and lumbar 
curvature of DTAhet mice (Figure 2M). At the age of 30 weeks, almost all of DTAhet mice developed 
severe kyphosis (Figure 2N). Consistent with the development of kyphosis, gait analysis revealed that 
DTAhet mice at 4 weeks had abnormal steps when running (Figure 2—figure supplement 2A and B). 
The front and hind stride length were much shorter in DTAhet mice (Figure 2—figure supplement 2C). 
Also, the swing speed of DTAhet mice was much slower than WT mice (Figure 2—figure supplement 
2D, Videos 1–6).

Whole- body examination of DTAhet mice revealed there was a continual body weight loss and 
muscle weight loss (Figure 3A–C) from 4 weeks. Histology examination of gastrocnemius muscles 
revealed focal muscle atrophy with mild inflammation at 4 weeks (Figure 3D and E). Many myonu-
clei were mispositioned and became centralized in contrast to those in WT mice. No muscle fibrosis 
was observed. At 13 weeks, there was continual muscle atrophy, rimmed vacuoles, and inclusion 
bodies seen within the muscle fibers (Figure 3F and G). To preclude the direct target of DMP1 
on muscle, we quantified the number of muscle fibers and the results showed that there was 
no reduction of numbers of muscle fibers after osteocyte ablation at 4 weeks (Figure 3—figure 
supplement 1A) and 13 weeks in DTAhet mice compared to WT mice (Figure 3—figure supple-
ment 1B). Measurement of Dmp1 expression in WT muscle showed that the level of Dmp1 expres-
sion in muscle was very weak and far less than bone (Figure 3—figure supplement 1C). Together, 
these results suggested that DTAhet mice had systemic muscle atrophy and sarcopenia. It is most 
likely that sarcopenia was caused by the impairment of osteocyte- muscle crosstalk. Analysis of 
lifespan in these mice further revealed the average lifespan of DTAhet mice was about 20–40 weeks, 
which was much shorter than WT mice (Figure 3H). Together, these data demonstrated that osteo-
cytes ablation caused severe osteoporosis and kyphosis, as well as sarcopenia, which occurred at 
the very early stage compared to normal aging process. These age- related skeletal phenotypes 
combined with shortened lifespan demonstrated that osteocyte ablation led to the accelerated 
skeletal aging.

https://doi.org/10.7554/eLife.81480
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Figure 2. Osteocyte ablation induces severe osteoporosis and kyphosis. (A–C) Representative micro- computed tomography (µCT) reconstructive 
images of male WT and DTAhet mice femur at 4 weeks (A) and trabecular microstructural parameters (BMD, bone mineral density; BV/TV, bone volume 
fraction; Tb.N, trabecular number; Tb.Sp, trabecular separation; , Tb.Th, trabecular thickness) (B) and cortical microstructural parameters (Ct.Th, cortical 
thickness; Ct.Po, cortical porosity) (C) derived from µCT analysis (n = 4–7 per group). (D–G) Representative µCT reconstructive images of male WT and 
DTAhet mice femur at 13 weeks (D) and trabecular microstructural parameters (BMD, BV/TV, Tb.N, Tb.Sp, and Tb.Th) (E, F) and cortical microstructural 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.81480


 Research article Cell Biology | Developmental Biology

Ding, Gao, Gao et al. eLife 2022;11:e81480. DOI: https://doi.org/10.7554/eLife.81480  6 of 25

Ablation of osteocytes alters mesenchymal lineage commitment and 
promotes osteoclastogensis
To explore the potential mechanism of why reduction of osteocytes has caused severe osteoporosis 
and kyphosis, RNA sequencing was performed on whole bone with bone marrow flushed out from 
DTAhet and WT mice at 4 weeks. Selected skeleton- related Gene Ontology (GO) analysis revealed that 
downregulated genes by osteocyte ablation were enriched in ossification, osteoblast differentiation, 
positive regulation of osteoblast differentiation, endochondral ossification, and bone morphogenesis 
(Figure 4—figure supplement 1A and Supplementary file 1). Heatmap of significantly differentiated 
genes (fold change >2.0- fold, WT average FPKM > 10, false discovery rate [FDR] < 0.05) and subse-
quent RT- qPCR verified that genes that are critical for osteogenesis, including Alpl, Bglap, Col1a1, 
Spp1, Sp7, and Runx2, were affected by the ablation of osteocytes (Figure 4—figure supplement 
1B and C). Also, gene set enrichment analysis (GSEA) revealed that osteogenesis- related pathways, 
including Wnt signaling pathway, Hedgehog signaling pathway, and Notch signaling pathway, were 
downregulated (Figure 4—figure supplement 1D–F). In addition, the number of osteoblasts (N.Ob/
BS) and osteoid- covered surface (OS/BS) was remarkably reduced in DTAhet mice compared to WT 
mice (Figure 4A and B). Also, bone marrow fat accumulation in DTAhet mice was observed (Figure 4C 
and D). Together, these results suggested that DTAhet mice displayed increased adipogenesis and 
decreased osteogenesis. To further evaluate the dynamics of bone formation in DTAhet mice, a 7- day 
dynamic histomorphometric analysis using calcein labeling was performed. The result showed that 
mineral surface (MS/BS), mineral apposition rate (MAR), and bone formation rate (BFR/BS) were 
significantly decreased in DTAhet mice (Figure  4E and F). Serum procollagen type 1 N- terminal 
propeptide (P1NP), a bone formation index, was also reduced after osteocyte ablation (Figure 4G). 
Intriguingly, in vitro osteogenesis showed that there were also decreased osteogenesis and mineral-
ization in DTAhet mice compared to WT mice at both time points of 4 and 13 weeks and the impairment 

parameters (Ct.Th and Ct.Po) (G) derived from µCT analysis (n = 3 per group), demonstrating severe bone loss in DTAhet mice. (H, I) Representative 
µCT reconstructive images of male WT and DTAhet mice third lumbar at 4 weeks (H) and trabecular microstructural parameters (BMD, BV/TV, Tb.N, 
Tb.Sp, and Tb.Th) (I) derived from µCT analysis (n = 4–7 per group). (J, K) Representative µCT reconstructive images of male WT and DTAhet mice third 
lumbar at 13 weeks (J) and trabecular microstructural parameters (BMD, BV/TV, Tb.N, Tb.Sp, and Tb.Th) (K) derived from µCT analysis (n = 3 per group), 
showing vertebral body bone loss in the spine of DTAhet mice. (L) Gross images of male WT and DTAhet mice at 13 weeks. (M) Representative whole- body 
µCT reconstructive and sagittal images of male WT and DTAhet mice at 13 weeks. (N) Representative whole- body µCT reconstructive and sagittal images 
of male DTAhet mice at 37 weeks, noting that severe kyphosis occurred in DTAhet mice. Error bar represents the standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Osteocyte ablation induces severe osteoporosis in male mice.

Figure supplement 1. Osteocyte ablation induces severe osteoporosis and kyphosis.

Figure supplement 1—source data 1. Osteocyte ablation induces severe osteoporosis in female mice.

Figure supplement 2. Osteocyte ablation induces severe osteoporosis and kyphosis.

Figure supplement 2—source data 1. Osteocyte ablation induces abnormal steps of mice.

Figure 2 continued

Video 1. Representative movie showing movement in 
WT mice at 4 weeks.

https://elifesciences.org/articles/81480/figures#video1

Video 2. Representative movie showing movement 
defects in DTAhet mice at 4 weeks.

https://elifesciences.org/articles/81480/figures#video2

https://doi.org/10.7554/eLife.81480
https://elifesciences.org/articles/81480/figures#video1
https://elifesciences.org/articles/81480/figures#video2


 Research article Cell Biology | Developmental Biology

Ding, Gao, Gao et al. eLife 2022;11:e81480. DOI: https://doi.org/10.7554/eLife.81480  7 of 25

of osteogenesis was greater in DTAhet mice at 
13 weeks compared to 4 weeks (Figure 4H and 
I). And the mRNA level of osteogenic markers at 
4  weeks, including Alpl, Bglap, and Runx2, was 
also decreased (Figure 4J).

In the aspect of osteoclastogenesis, histo-
morphometry analysis revealed that osteoclast 
surface (Oc.S/BS) and numbers (N.Oc/BS) were 
significantly increased after osteocytes deletion 
(Figure  4K and L). Circulatory RANKL was also 
increased in DTAhet mice (Figure 4M). In contrast, 
circulatory osteoprotegrin (OPG), a decoy 
receptor of RANKL, was decreased (Figure 4M), 
leading to the elevated ratio of RANKL/OPG 
(Figure 4M). Serum collagen type I c- telopeptide 
(CTX), a bone resorption index, was also signifi-
cantly augmented in DTAhet mice compared to 
WT mice (Figure  4N), which implicated a high 
level of osteoclast activity of DTAhet mice in vivo. 
Also, flow cytometry analysis revealed that there was a slight increase (less than 1%) of osteoclast 
progenitors (B220-CD11bloLy- 6Chi) in DTAhet mice at 4 weeks compared to WT mice (Figure 4—figure 
supplement 1G and H). To assess the effects of osteocyte ablation on osteoclastogenesis, bone 
marrow- derived macrophages (BMMs) from WT and DTAhet mice at both time points of 4 and 13 weeks 
were collected and plated at the same density for the examination of osteoclastogenesis in vitro. The 
results showed that osteoclastogenesis was increased in DTAhet mice compared to WT mice at both 
time points (Figure 4O and Q). Interestingly, the induction of osteoclastogenesis was greater in DTAhet 
mice at 13 weeks compared to 4 weeks (Figure 4P and Q), suggesting the time- dependent accu-
mulative effect of osteoclastogenesis in DTAhet mice. Also, the expression of the signature genes of 

osteoclasts, including Acp5, Calcr, and Ocstamp, 
at the mRNA level was significantly upregulated 
in DTAhet mice (Figure 4Q). Together, osteocytes 
ablation impaired osteogenesis and promoted 
osteoclastogenesis.

Alteration of hematopoietic 
lineage commitment by osteocyte 
ablation
As a part of the skeletal system, bone marrow 
has its vital functions in maintaining bone homeo-
stasis (Divieti Pajevic and Krause, 2019; Fulzele 
et al., 2013; Asada et al., 2013). HSCs give rise 

Video 3. Representative movie showing movement in 
WT mice at 13 weeks.

https://elifesciences.org/articles/81480/figures#video3

Video 4. Representative movie showing movement 
defects in DTAhet mice at 13 weeks.

https://elifesciences.org/articles/81480/figures#video4

Video 5. Representative movie showing movement in 
WT mice at 37 weeks.

https://elifesciences.org/articles/81480/figures#video5

https://doi.org/10.7554/eLife.81480
https://elifesciences.org/articles/81480/figures#video3
https://elifesciences.org/articles/81480/figures#video4
https://elifesciences.org/articles/81480/figures#video5


 Research article Cell Biology | Developmental Biology

Ding, Gao, Gao et al. eLife 2022;11:e81480. DOI: https://doi.org/10.7554/eLife.81480  8 of 25

to lymphoid and myeloid lineage cells to establish 
the hematopoietic and immune system. To gain 
a full insight into the role of osteocyte in bone 
marrow homeostasis, single- cell RNA sequencing 
(scRNA- seq) was performed using 10X Genomics 
Chromium platform. After rigorous quality 
control, gene expression data from 26,562  cells 
(13,835 and 12,727 cells from 4- week littermate 
WT and DTAhet mice, respectively) were compiled 
for clustering analysis and revealed 10 distinct 
populations visualized with Uniform Manifold 
Approximation and Projection (UMAP) embed-
dings (Figure  5A–C). These 10 distinct popula-
tions included B cell, hematopoietic stem cell and 
progenitor cell (HSPC), megakaryocyte, neutro-
phil, erythrocyte, monocyte, dendritic cell (DC), 
macrophage, T cell, and MSC (Figure 5A and C). 
Proportion analysis revealed a significant expan-
sion of neutrophils in DTAhet mice (Figure 5D and 
E). Also, the number of B cells was significantly less 
in DTAhet mice than that in WT mice (Figure 5D 
and E), which implicated that osteocytes ablation 
induced lymphoid–myeloid malfunction in the 
bone marrow. To further dissect the differences in 
the bone marrow development between the two 
groups, RNA velocity was performed. The result 
showed that DTAhet mice had stronger direction-
ality of velocity vectors from the HSPC population 
to the neutrophil population compared to WT 
mice (Figure 5F), implying that osteocytes dele-
tion altered HSPC differentiation. Meanwhile, 
myeloid trajectory analysis revealed that there 
was a significantly higher pseudotime density 
distribution in G4 cell (a subcluster of neutrophil) 

in DTAhet mice (Figure 5G). In contrast, lymphoid trajectory analysis demonstrated a relatively lower 
pseudotime density distribution in pre- B cell and immature B cell (subclusters of B cell) in DTAhet mice 
(Figure 5H).

To corroborate the results observed from scRNA- seq, flow cytometry and further analysis were 
performed after removing adherent cells as previously reported (Ding et  al., 2022; Figure  5—
figure supplement 1A and B). Although there was no significant change in HSC (Lin-c- Kit+Sca1+, 
LSK+ cell) numbers between DTAhet and WT mice (Figure 5—figure supplement 2A and B), DTAhet 
mice demonstrated significantly increased number of short- term HSCs (ST- HSCs) with decreased 
number of long- term HSCs (LT- HSCs), indicating that HSCs in DTAhet mice bone marrow were mobi-
lized (Figure 5—figure supplement 2C and D). Further flow cytometry analysis revealed that the 
number of myeloid progenitors, including common myeloid progenitors (CMP), granulocyte–mono-
cyte progenitors (GMP), and common monocyte progenitors (cMoP), was substantially increased after 
osteocyte ablation (Figure 5I and J, Figure 5—figure supplement 2E and F), and megakaryocyte 
erythroid progenitors (MEP) numbers were decreased (Figure 5I and J). Meanwhile, total CD11b+ 
myeloid cells were also increased (Figure 5K and L) in DTAhet mice, in which both neutrophils and 
monocytes significantly expanded (Figure 5M and N, Figure 5—figure supplement 2G and H). In 
addition, while the proportion of common lymphoid progenitors (CLP) was not altered in DTAhet mice 
(Figure 5—figure supplement 2I and J), total B220+ lymphoid cells reduced remarkably after osteo-
cyte ablation (Figure 5O and P), in which DTAhet mice showed a relatively lower proportion of early 
B cell (pro- B pre- B, immature B, and transitional B cell) and a relatively higher proportion of late B 
cell (early mature B and late mature B) (Figure 5Q and R), which suggested that B cell development 

Video 6. Representative movie showing movement 
defects in DTAhet mice at 37 weeks.

https://elifesciences.org/articles/81480/figures#video6

https://doi.org/10.7554/eLife.81480
https://elifesciences.org/articles/81480/figures#video6


 Research article Cell Biology | Developmental Biology

Ding, Gao, Gao et al. eLife 2022;11:e81480. DOI: https://doi.org/10.7554/eLife.81480  9 of 25

was impaired along the immature B to mature B cell transition in DTAhet mice. As scRNA- seq revealed 
that neutrophils underwent a significant change after osteocyte ablation, neutrophil population were 
further reclustered into four subclusters from G1 to G4 (Figure 5—figure supplement 3A and B) and 
G4 population was significantly increased in DTAhet mice compared to WT mice (Figure 5—figure 
supplement 3C and D), which implied that osteocyte ablation accelerated neutrophil maturation. 
Consistent with this observation, neutrophil functions, including activation and chemotaxis, were all 
upregulated in DTAhet mice (Figure 5—figure supplement 3E and F). Genes related to glycolysis and 
necroptosis were also upregulated (Figure 5—figure supplement 3G and H), indicating that osteo-
cyte ablation altered neutrophil functions. Together, these results demonstrated that osteocyte abla-
tion altered hematopoietic lineage, characterized by the shift from lymphopoiesis to myelopoiesis.

Senescence of osteoprogenitors and myeloid lineage cells leads to the 
accelerated skeletal aging
Senescence occurred during development as a precise programmed cellular process, contributing to 
cell fate specification, tissue patterning, and transient structure removal (Muñoz- Espín and Serrano, 
2014; Rhinn et  al., 2019). Given that DTAhet mice had accelerated skeletal phenotype of aging, 
including increased myelopoiesis, osteoporosis, kyphosis, and sarcopenia with shortened lifespan, we 
hypothesized that osteocyte ablation may be associated with senescence of osteoprogenitors and 
myeloid lineage cells. ScRNA- seq revealed that total bone marrow had increased senescence with a 
higher SASP score in DTAhet mice compared to WT mice (Figure 6A). DTAhet mice also had increased 

Figure 3. Osteocyte ablation leads to severe sarcopenia and shorter lifespan. (A, B) Gross images (A) and weight (B) of male WT and DTAhet mice at 
4 weeks (n = 5–8 per group). (C) The ratio of gastrocnemius muscle weight in WT and DTAhet mice at 4 weeks (n = 3 per group). (D, E) Hematoxylin–eosin 
staining of WT and DTAhet mice gastrocnemius muscle at 4 weeks (D) and quantification of myonuclear number per area fiber (n = 11 per group) and 
centralized nucleus per field (E) (n = 5 per group), showing focal muscle atrophy, increased centralized myonuclei, and mild inflammation in DTAhet mice. 
Scale bar, 20 µm. (F, G) Hematoxylin–eosin staining of WT and DTAhet mice gastrocnemius muscle at 13 weeks (F) and quantification of myonuclear 
number per area fiber (n = 11 per group) and centralized nucleus per field (G) (n = 6 per group), noting muscle atrophy, rimmed vacuoles, and inclusion 
bodies within the muscle fibers in DTAhet mice. Scale bar, 20 µm. (H) Kaplan–Meier survival curve of WT and DTAhet mice (n = 4–5 per group), showing 
that DTAhet mice had shorter lifespan than that of WT mice. Error bar represents the standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Osteocyte ablation leads to severe sarcopenia and shorter lifespan.

Figure supplement 1. Osteocyte ablation leads to severe sarcopenia and shorter lifespan.

Figure supplement 1—source data 1. Osteocyte ablation leads to severe sarcopenia.

https://doi.org/10.7554/eLife.81480
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Figure 4. Ablation of osteocytes alters mesenchymal lineage commitment and promotes osteoclastogensis. (A, B) Goldner trichrome staining of male 
WT and DTAhet mice femur at 4 weeks (A) and histomorphometry analysis of osteoblast numbers (N.Ob/BS) (arrows) and osteoid- covered surface (OS/
BS) (B) (n = 6 per group). Scale bar, 20 µm. (C, D) Hematoxylin–eosin staining of WT and DTAhet mice femur at 4 weeks (C) and histomorphometry 
analysis of adipocyte (arrows) volume (Ad.V/TV) (D) (n = 6 per group). Scale bar, 50 µm. (E, F) Representative images of calcein double labeling of the 
mineral layers of male WT and DTAhet mice femur at 4 weeks (E) and histomorphometry analysis of the mineral surface (MS/BS), mineral apposition rate 
(MAR), and bone formation rate (BFR/BS) (F) (n = 4 per group). Scale bar, 50 µm. (G) ELISA of the concentration of bone formation index P1NP in the 
serum (n = 6–7 per group). (H, I) Alizarin red staining of osteogenesis from 4- week (H) and 13- week mice (I). Scale bar, 250 µm. (J) RT- qPCR analysis of 
osteoblast signature genes expression at the mRNA levels of osteogenesis from 4- week mice (n = 3 per group from three independent experiments), 
indicating impaired osteogenesis in DTAhet mice. (K, L) Tartrate- resistant acid phosphatase (TRAP) staining of WT and DTAhet mice femur at 4 weeks 
(K) and histomorphometry analysis of osteoclast (arrows) surface (Oc.S/BS) and osteoclast numbers (N.Oc/BS) (L) (n = 6 per group). Scale bar, 20 µm. 
(M) ELISAs of the concentration of receptor activation of nuclear factor-κ B ligand (RANKL), osteoprotegrin (OPG), and the ratio of RANKL/OPG in 
the serum (n = 6–7 per group). (N) ELISA of the concentration of bone resorption index CTX in the serum (n = 6–7 per group). (O, P) TRAP staining 
of osteoclastogenesis from 4- week (O) and 13- week mice (P) and quantitative analysis (Q) of TRAP- positive cells (nucleus > 3) per well (n = 3 per 
group from three independent experiments). Scale bar, 250 µm. (R) RT- qPCR analysis of osteoclast signature genes expression at the mRNA level of 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.81480
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maturity in bone marrow reflected from RNA velocity (Figure 6B). Meanwhile, circulatory SASP index, 
including TNF-α, IL- 1β, and IL- 6, were also elevated in DTAhet mice (Figure 6C). Further scRNA- seq 
analysis uncovered that MSC, CMP, monocyte, and its subcluster Ly6c2_monocyte, neutrophil, and 
its subcluster G2, G3, and G4, had increased SASP scores (Figure 6D–G) and higher- level expres-
sions of senescence- related genes in DTAhet mice (Figure 6H). RT- qPCR also verified the elevated 
senescence with increased gene expressions, including Cdkn2a and Cdkn1a in DTAhet mice (Figure 6I 
and J). Further, senescence- associated β-galactosidase (SA-βGal) staining revealed that there were 
obvious increased numbers of SA-βGal+ cell in the primary spongiosa, bone marrow, and cortical 
bone in DTAhet mice compared to WT mice (Figure 6—figure supplement 1A). Together, these results 
suggested that cell senescence of osteoprogenitors and myeloid lineage cells was associated with 
ablation of osteocyte.

Owning to the fact that osteoblast derives from MSC lineage, we next investigated whether 
accumulation of osteoprogenitor cell senescence impaired osteogenesis. GO analysis revealed that 
downregulated genes after osteocyte ablation were enriched in ossification and biomineral tissue 
development (Figure 6—figure supplement 1B), which was consistent with the finding of impaired 
osteoblast differentiation (Figure 4H–J). Meanwhile, the mRNA level of adipogenic markers, including 
Adipoq, Fabp4, Pparg, and Cebpa, was significantly increased (Figure 6—figure supplement 1C), 
indicating increased adipogenesis and alteration of MSC commitment after osteocyte ablation. In 
addition, the mRNA levels of cartilage anabolism- related genes (Col1a2, Acan, Sox9, and Prg4) and 
catabolism- related genes (Mmp3, Mmp13, Adamts1, and Adamts5) were not significantly changed 
(Figure 6—figure supplement 1D), indicating that chondrogenesis was not altered after osteocyte 
ablation. Similarly, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the 
subclusters 2 and 4 of Ly6c2+ monocytes demonstrated the enrichment of osteoclast differentiation- 
related genes after osteocyte ablation (Figure 6—figure supplement 1E and F), which was corrobo-
rated in our enhanced in vitro osteoclast differentiation (Figure 4O–R). Together, our data suggested 
that senescence in osteoprogenitors and myeloid lineage cells led to the impaired osteogenesis and 
increased osteoclastogenesis, respectively.

Discussion
In this study, we showed that coordination of bone and bone marrow homeostasis requires the pres-
ence of functional osteocytes. Reduction of osteocytes number results in the detrimental impact of 
lineage cell fate and specifications in bone and bone marrow. Partial ablation of osteocytesDMP1 caused 
severe sarcopenia, osteoporosis, and degenerative kyphosis, which led to shorter lifespan. Acquisition 
of SASP in both osteogenic and myeloid lineage cells may be an underlying cause that led to the 
accelerated skeletal aging phenotype of impaired osteogenesis, increased osteoclastogenesis, and 
myelopoiesis.

Sarcopenia usually occurs concurrently with osteoporosis during aging (Clynes et  al., 2021). 
Our study has shown for the first time that osteocyte ablation caused severe sarcopenia and muscle 
atrophy. Consistent with our observation, previous studies have reported that osteocyte- specific abla-
tion of Cx43 impaired muscle formation (Shen et al., 2015). Osteocyte- derived factors have also been 
shown to stimulate myogenic differentiation in vitro (Huang et al., 2017). On the contrary, specific 
deletion of Mbtps1 in osteocyte promotes soleus muscle regeneration and increase its size with age 
(Gorski et  al., 2016). Sclerostin, an osteocyte- derived circulating protein, is negatively correlated 
with skeletal muscle mass (Kim et al., 2019). Previously there has been a study showing weak Dmp1 
expression in skeletal muscle fibers (Lim et al., 2017). This has led us to suggest that sarcopenia may 

osteoclastogenesis from 4- week mice (n = 3 per group from three independent experiments), showing increased osteoclastogensis in DTAhet mice. Error 
bar represents the standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Ablation of osteocytes alters mesenchymal lineage commitment and promotes osteoclastogensis.

Figure supplement 1. Ablation of osteocytes alters mesenchymal lineage commitment and promotes osteoclastogensis.

Figure supplement 1—source data 1. Ablation of osteocytes alters mesenchymal lineage commitment and promotes osteoclastogensis.

Figure 4 continued
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Figure 5. Alteration of hematopoietic lineage commitment by osteocyte ablation. (A, B) The Uniform Manifold Approximation and Projection (UMAP) 
plot of cells isolated from the bone marrow of 4- week WT and DTAhet mice and inferred cluster identity (A) and number of mRNA per cell (B). (C) Dot 
plot showing the scaled expression of selected signature genes for each cluster. Dot size represents the percentage of cells in each cluster with more 
than one read of the corresponding gene, and dots are colored by the average expression of each gene in each cluster. (D, E) The UMAP plot of cells 

Figure 5 continued on next page
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be caused directly by the Dmp1 expression in muscle. However, our histology finding of no obvious 
changes in the total number of nuclei of muscle in partial ablation of DMP1- positive osteocytes 
suggested that the sarcopenia and muscle atrophy phenotype is most likely caused by the disturbance 
of osteocyte- muscle crosstalk. Certainly, further studies based on a more specific osteocyte ablation 
model are needed to understand the link of osteocytes between osteoporosis and sarcopenia. Never-
theless, severe kyphosis observed in these osteocyte ablation mice supports our hypothesis of direct 
osteocyte- muscle crosstalk as kyphosis is the direct result of the significant bone loss and sarcopenia 
(Wijshake et al., 2012; Woods et al., 2020).

Osteocytes regulate the process of bone resorption and coupled bone formation via secreting 
factors, including sclerostin and RANKL (Tresguerres et  al., 2020; van Bezooijen et  al., 2005; 
Nakashima et al., 2011). Theoretically, osteocyte ablation may lead to lower expression of sclerostin 
and RNAKL, which in term increased osteogenesis and impaired osteoclastogenesis. However, our 
results demonstrated that osteocyte ablation impaired osteogenesis and induced osteoclastogen-
esis. In mice with partial ablation of osteocytes, expression of sclerostin was reduced but the serum 
RNAKL was increased. In addition, osteogenesis- related pathways, including Wnt signaling pathway, 
Hedgehog signaling pathway, and Notch signaling pathway, were also downregulated. We specu-
lated that induction of SASP in both osteoprogenitors and myeloid progenitors may account for the 
underlying cause. Senescent osteoprogenitors have reduced self- renewal capacity and predominantly 
differentiate into adipocytes as opposed to osteoblasts (Chen et al., 2016; Li et al., 2017; Rosen 
et  al., 2009). Consistently, our model indicated an increased adipogenesis after osteocyte abla-
tion. Also, fat- induction factors inhibit osteogenesis during adipogenesis (Chen et al., 2016). Thus, 
senescence accumulation in osteoprogenitors led to the impaired osteogenesis. As for enhanced 
osteoclastogenesis, besides the production of RANKL from osteogenic cells like osteocytes and 
osteoblasts (Nakashima et al., 2011; Fumoto et al., 2014), other cells like adipocyte and T cell, also 
secret RANKL to regulate bone metabolism (Yu et al., 2021; Hu et al., 2021; Djaafar et al., 2010; 
Takayanagi et al., 2000). Also, B cell can produce OPG to regulate RANKL/OPG axis (Li et al., 2007). 
In our model, increased adipogenesis, T cell expansion (data not shown), and decreased B cell number 
may compensate for the altered RANKL/OPG axis. Intriguingly, we also found that even under in vitro 
condition in which osteocyte ablation no longer exists, impairment of osteogenesis and induction of 
osteoclastogenesis were still observed. Our study has suggested that osteoprogenitors and BMMs 
have been primed by the altered bone microenvironment in DTAhet mice before in vitro differentiation. 
In support of this, previous studies have suggested that progenitor cells can receive a long- lasting 
impact from the in vivo local microenvironment, where these cells are situated. Isolation of cells for 
in vitro cell differentiation or even transferring cells to healthy mice would not alter their original in 
vivo phenotypes (Cao et al., 2020; Isaac et al., 2014; Ding et al., 2022; Edgar et al., 2021; Li et al., 
2022).

shown by sample (D) and proportions of each cluster in two samples (E). (F) RNA velocity analysis of clusters of WT and DTAhet mice shown by the 
UMAP embedding, showing stronger directionality of velocity vectors from hematopoietic stem cell and progenitor cell (HSPC) cluster to neutrophil 
cluster in DTAhet mice. (G) Trajectory analysis of myeloid clusters of WT and DTAhet mice, demonstrating myeloid- biased hematopoiesis in DTAhet mice. 
(H) Trajectory analysis of lymphoid clusters of WT and DTAhet mice, demonstrating impaired lymphopoiesis in DTAhet mice. (I, J) Representative image 
of flow cytometry (I) and analysis of proportions of myeloid progenitors (common myeloid progenitors [CMP], granulocyte–monocyte progenitors 
[GMP], and megakaryocyte erythroid progenitors [MEP]) (J) of 4- week WT and DTAhet mice (n = 3–4 per group). (K, L) Representative image of flow 
cytometry (K) and analysis of proportions of CD11b+ myeloid cells (L) of 4- week WT and DTAhet mice (n = 3 per group). (M, N) Representative image of 
flow cytometry (M) and analysis of proportions of neutrophils (N) of 4- week WT and DTAhet mice (n = 3–4 per group). (O, P) Representative image of flow 
cytometry (O) and analysis of proportions of B220+ lymphoid cells (P) of 4- week WT and DTAhet mice (n = 3 per group). (Q, R) Representative image of 
flow cytometry (Q) and analysis of proportions of ProB PreB, immature B, transitional B, early mature B, and late mature B (R) of 4- week WT and DTAhet 
mice (n = 3–4 per group), indicating altered B cell development pattern in DTAhet mice. Error bar represents the standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Alteration of hematopoietic lineage commitment by osteocyte ablation.

Figure supplement 1. Flow cytometry gating strategy.

Figure supplement 2. Alteration of hematopoietic lineage commitment by osteocyte ablation.

Figure supplement 2—source data 1. Alteration of hematopoietic lineage commitment by osteocyte ablation.

Figure supplement 3. Increased granulopoiesis after osteocyte ablation.

Figure 5 continued
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Figure 6. Senescence of osteoprogenitors and myeloid lineage cells leads to the accelerated skeletal aging. (A) Comparisons of total bone marrow 
cells senescence- associated secretory phenotype (SASP) score between 4- week WT and DTAhet mice. (B) Latent time of RNA velocity analysis of WT 
and DTAhet mice shown by the Uniform Manifold Approximation and Projection (UMAP) embedding. (C) ELISAs of the concentration of TNF-α, IL- 1β, 
and IL- 6 of 4- week WT and DTAhet mice in the serum (n = 5–6 per group). (D) Comparisons of mesenchymal stem cells (MSCs) SASP score between 

Figure 6 continued on next page
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Bone marrow, embedded in the skeletal system, has a close link with matrix- embedded osteo-
cyte. Previous studies have reported that osteocyte regulates myelopoiesis via Gsα-dependent and 
-independent signaling (Fulzele et al., 2013; Azab et al., 2020). A recent study also reported that 
osteocyte mTORC1 signaling regulates granulopoiesis via secreted IL- 19 (Xiao et al., 2021). Mean-
while, sclerostin secreted by osteocyte adversely affects B cell survival (Horowitz and Fretz, 2012). 
In our study, when osteocytes were partially depleted, myelopoiesis, especially granulopoiesis, was 
significantly induced, but B cell development was significantly impaired. Further studies demonstrated 
that HSCs were mobilized and shifted to myelopoiesis with increased CMP, GMP, cMoP, and CD11b+ 
myeloid cells, in which monocytes and neutrophils were increased, and neutrophil function was also 
activated after osteocyte ablation. While B cell number was severely reduced with altered develop-
ment pattern. Interestingly, a previous study has shown that osteoblastic cell supports megakaryo-
poiesis and platelet formation (Xiao et  al., 2017). In our study, the number of MEP (erythrocyte 
and platelet precursors) was also reduced, and scRNA- seq analysis showed no significant change in 
erythrocyte population (data not shown), inferring that osteocyte may also participate in regulating 
platelet formation.

Bone and bone marrow harbor different cell lineages and form specific niches to maintain complex, 
delicate and extensive communications between them (Hu et al., 2016). Previous studies have shown 
that osteocyte controls bone remodeling, regulates hematopoiesis, and even remote organ function 
(Divieti Pajevic and Krause, 2019; Asada et al., 2015), via secretion of factors, including sclerostin, 
RANKL, FGF23, and IL19 (Xiao et  al., 2021). Although our study has shown that osteocytes also 
influence cell lineage commitments of bone and bone marrow via the mediation of cell senescence, 
it is still not clear what factors osteocytes produce to regulate this process. Further study is required 
to identify the mechanism in which osteocytes regulate the homeostasis of bone and bone marrow. 
Furthermore, as our study only focuses on the effect of osteocyte ablation in muscle, bone, and bone 
marrow, it is still not clear what is the impact of osteocyte ablation on other organs. Nevertheless, a 
previous study showed that osteocyte ablation induces lymphoid organ atrophy, thymocyte depletion, 
and altered fat metabolism in ‘osteocyte- less’ mice model (Sato et al., 2013), suggesting the role of 
osteocytes in the extraskeletal system.

In conclusion, we demonstrated a critical role of osteocytes in regulating senescence of bone 
and bone marrow (Figure 7). Ablation of osteocytes induced SASP accumulation in bone marrow 
osteoprogenitors and myeloid lineage cells, which altered MSC and HSC lineage commitments with 
impaired osteogenesis, and promoted myelopoiesis and osteoclastogenesis, leading to the accel-
erated skeletal aging phenotype with severe sarcopenia, osteoporosis, degenerative kyphosis, and 
bone marrow myelopoiesis, thus shortened lifespan of mice. Targeting osteocyte function and cell fate 
may shed light on the therapeutic regimens for aging- associated bone diseases.

Materials and methods
Mice
All mouse lines were maintained on a C57BL/6J background. Dmp1cre mice were provided by J. Q. 
(Jerry) Feng from Texas A&M College of Dentistry, USA (Jackson Laboratory stock number: 023047). 

4- week WT and DTAhet mice, indicating the senescence of osteoprogenitors in DTAhet mice. (E) Comparisons of common myeloid progenitors (CMP) 
SASP score between 4- week WT and DTAhet mice. (F) Comparisons of monocytes and its subcluster Ly6c2_monocytes SASP score between 4- week WT 
and DTAhet mice. (G) Comparisons of neutrophils and its subcluster (G2, G3, and G4) SASP score between 4- week WT and DTAhet mice, indicating the 
senescence of myeloid lineage cells. (H) Bubble plot of the expression of senescence- related genes in subclusters of WT and DTAhet mice. (I) RT- qPCR 
analysis of senescence- related genes expression at the mRNA level of 4- week WT and DTAhet mice cortical bone (n = 3 per group). (J) RT- qPCR analysis 
of senescence- related genes expression at the mRNA level of 4- week WT and DTAhet mice bone marrow (n = 3 per group). Error bar represents the 
standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Senescence of osteoprogenitors and myeloid lineage cells leads to the accelerated skeletal aging.

Figure supplement 1. Senescence of osteoprogenitors and myeloid lineage cells leads to the accelerated skeletal aging.

Figure supplement 1—source data 1. Osteocyte ablation induced MSC lineage towards adipogenesis.

Figure 6 continued
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Rosa26em1Cin(SA- IRES- Loxp- ZsGreen- stop- Loxp- DTA) heterozygotes were from GemPharmatech (strain ID: T009408). 
Osteocyte ablation mice model during development was established by crossing Dmp1cre mice with 
Rosa26em1Cin(SA- IRES- Loxp- ZsGreen- stop- Loxp- DTA) homozygotes to obtain Dmp1cre Rosa26em1Cin(SA- IRES- Loxp- ZsGreen- stop- 

Loxp- DTA) heterozygotes (DTAhet). All mice experiments were approved by the Animal Care and Use 
Committee of Shanghai Sixth People’s Hospital (permit number: 2021- 0935, 2021- 0936). All surgeries 
were performed under anesthesia using isoflurane or sodium pentobarbital, and every effort was 
made to minimize suffering.

Bone histomorphometry analysis
Mice femur was dissected and fixed in 4% paraformaldehyde (PFA) for 2 days and further decalcified 
with 10% EDTA (pH = 7.2) at 4℃ for about 2 weeks. Then, specimens were embedded in paraffin and 
sectioned at 4 μm thickness. TRAP staining was performed for osteoclast analysis. Hematoxylin–eosin 
(H&E) staining was performed for adipocyte and osteocyte analysis. For osteoblast analysis, undecal-
cified femur was embedded in plastic and sectioned at 5 μm thickness and Goldner trichrome staining 
was performed. For dynamic histomorphometry analysis, double calcein labeling was used. Briefly, 
each mouse was given 30 μg/g body weight calcein (Sigma) on days 1 and 7 by intraperitoneal injec-
tion before sacrifice. Bones were then fixed, dehydrated, embedded in plastic, cut into 5 μm slices, 
and calculated using the software under fluorescence. BioQuant Osteo software (BioQuant) was used 
for histomorphometry analysis. Accepted nomenclature was used to report the results (Dempster 
et al., 2013). ImageJ was used to measure the number of osteocyte lacunae.

Immunofluorescence staining
Both ends of the mice’s tibias/femurs were removed. Then, they were embedded in OCT for frozen 
sectioning and cut parallel to the long axis of the long bones. Stop cutting when the maximum cross 
section of the long bones was observed. The OCT around the rest of the bones were melted at room 

Figure 7. Schematic diagram of osteocyte ablation- induced skeletal senescence. Ablation of osteocytes induced senescence- associated secretory 
phenotype (SASP) accumulation in bone marrow osteoprogenitors and myeloid lineage cells, which altered mesenchymal stem cell (MSC) and 
hematopoietic stem cell (HSC) lineage commitments with promoted adipogenesis, myelopoiesis, and osteoclastogenesis at the expense of 
osteogenesis and lymphopoiesis, leading to the accelerated skeletal aging phenotype with severe sarcopenia, osteoporosis, degenerative kyphosis, 
and bone marrow myelopoiesis, thus shortened lifespan of mice.

https://doi.org/10.7554/eLife.81480
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temperature. The remaining bone samples were washed three times in PBS for 10 min and fixed in 
4% PFA for 2 hr. Then, they were immersed in 0.1% Triton X- 100 for 1 hr, blocked using 3% BSA, and 
stained using Alexa Fluor 568 Phalloidin (Invitrogen) for 48 hr at 4°C in the dark with gentle shake. The 
samples were washed three times with PBS for 10 min. The cross section of the sample was inverted in 
the confocal dish. Pictures were captured using confocal microscopy (Olympus), and ImageJ was used 
to measure the number of dendrites per osteocyte.

SA-βGal staining
For SA-βGal staining, mice femur was dissected and fixed in 4% PFA for 2 days and further decalci-
fied with 10% EDTA (pH = 7.2) at 4°C for about 2 weeks. Then, specimens were dehydrated in 30% 
sucrose and embedded in OCT and frozen sectioned at 10 μm thickness. Then, SA-βGal staining was 
performed according to the manufacturer’s instructions (Beyotime).

Bone density measurements
Mice femurs and L3 lumbar were stripped of soft tissue and fixed in 4% PFA overnight at 4°C, then 
stored in 70% ethanol until scanned using the μCT instrument (SkyScan 1176). Relevant structure 
parameters of the μCT instrument were as previously reported (Ding et al., 2022): scanning voxel size, 
9 × 9 × 9 µm3; X- ray tube potential, 50 kV and 450 μA; integration time, 520 ms; and rotation step, 0.4° 
for 180° scanning. CTAn micro- CT software version 1.13 (Bruker) was used to analyze the images. The 
threshold value (grayscale index) for all trabecular bone was 75. For all cortical bones, the threshold 
value (grayscale index) was 110. The femurs were analyzed at a resolution of 9 μm. The volumetric 
regions for trabecular analyses include the secondary spongiosa located 1 mm from the growth plate 
and extending 1.8 mm (200 sections) proximally. For cortical bone analysis, the volumetric regions 
include 600 μm long at mid- diaphysis of the femur (300 μm extending proximally and distally from the 
diaphyseal midpoint between the proximal and distal growth plates). For vertebrae, the volumetric 
regions include the entire trabecular region without the primary spongiosa (300 μm below the cranial 
and above the caudal growth plate). Morphometric parameters, including BMD, BV/TV, Tb.N, Tb.Th, 
Tb.Sp, Ct.Th, and Ct.Po, were calculated.

Gait analysis
CatWalk automated gait analysis system (Noldus Information Technology) was used to analyze gait. 
Mice were expected to run along a special glass plate with a green LED lit and a high- speed video 
camera under it. Their paws were captured by the camera. Before the formal experiments, the mice 
were habituated in the plate to achieve an unforced locomotion. Three compliant runs without stop-
ping, changing direction, and turning around were analyzed with CatWalk Software. Relevant data 
were generated by CatWalk Software after each footprint was checked manually. Data including stride 
length, swing speed, and normal step sequence radio were analyzed.

Whole-mount Alcian blue/Alizarin red staining
The skin and viscera of the intact fetal mice (E19.0) were removed. The embryos were fixed in 95% 
ethanol overnight and then degreased in absolute acetone overnight with gentle agitation. The 
embryos were stained overnight in 0.015% Alcian blue (Sigma)/0.005% Alizarin red (Sigma) in 70% 
ethanol with gentle agitation. They were washed in 70% ethanol for 30 min three times and digested 
using 1% KOH solution. When most of the soft tissue was digested, the embryos were immersed in 
75% (vol/vol)/1% KOH/glycerol solution for further clearing. Graded glycerol was changed according 
to the degree of embryos digestion and relevant pictures were obtained under the microscope (Leica).

Whole-body µCT scan
The 13- and 37- week- old DTAhet and WT mice were deeply anesthetized and carefully positioned with 
a dedicated cradle and holder to capture the whole- body (excluding the tail) radiographs at a reso-
lution of 35 µm using the μCT instrument (SkyScan 1176). Scanning details are listed as follows: X- ray 
tube potential, 65 kV and 375 μA; exposure time, 150 ms; and rotation step, 0.5° for 180° scanning. 
CTAn micro- CT software version 1.13 (Bruker) was used to reconstruct pictures.

https://doi.org/10.7554/eLife.81480
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RNA-seq
Total RNA of whole bone with bone marrow flushed out from 4- week WT and DTAhet mice was 
extracted using TRIzol reagent (Thermo Fisher), quantified and purified using Bioanalyzer 2100 
and RNA 6000 Nano LabChip Kit (Agilent). Following purification, mRNA library was constructed, 
fragmented, amplified, and loaded into the nanoarray and sequencing was performed on Illumina 
NovaSeq 6000 platform following the vendor’s recommended protocol. After sequencing, generated 
reads were filtered and mapped to the reference genome using HISAT2 (v2.0.4) and assembled using 
StringTie (v1.3.4d) with default parameters. Then, all transcriptomes from all samples were merged 
to reconstruct a comprehensive transcriptome using GffCompare software (v0.9.8), and the expres-
sion levels of all transcripts were calculated by Stringtie and ballgown. Differential gene analysis was 
performed by DESeq2 software and then subjected to enrichment analysis of GO functions. GSEA was 
performed using GSEA software (version 4.1.0; Broad Institute, MIT). Genes were ranked according 
to their expression; gene sets were searched from website (https://www.gsea-msigdb.org). The data 
were deposited into the GEO repository (GSE202356).

Cell culture
In vitro osteoclastogenesis assay
The bone marrow of mice femurs and tibias were flushed to get bone marrow cells. Cells were 
cultured overnight by using α-MEM (Hyclone), which contains 10% FBS (Gibco), 100  μg/ml strep-
tomycin (Gibco), and 100 U/ml penicillin (Gibco). The nonadherent cells were collected, layered on 
Ficoll- Paque (GE Healthcare), and separated through density gradient centrifugation at 4°C and 2000 
rpm for 20 min. The BMMs in the middle layer of the separation were collected and washed twice 
with ice- cold PBS. To induce osteoclast differentiation, BMMs (2.5 × 104  cells per well for 96- well 
plates and 8 × 105 per well for 6- well plates) were cultured by using α-MEM, which contains 10% FBS, 
100 μg/ml streptomycin, 100 U/ml penicillin, 100 ng/ml M- CSF (PeproTech), and 100 ng/ml RANKL 
(PeproTech) for 5 days before TRAP staining. Cells were cultured at 37°C in a humidified incubator 
at 5% CO2. The medium was changed every 2 days. At the end of assay (the fifth day), the cells were 
fixed and stained with tartrate- resistant acid phosphatase (TRAP) kit according to the manufacturer’s 
instructions (Sigma) to quantify osteoclast numbers, or RNA was extracted as per the recommended 
protocol. TRAP- positive cells that contain more than three nuclei were counted as mature osteoclast- 
like cells (OCLs). The assay was repeated three times, and the number of OCLs per well was recorded 
for each biological replicate.

Isolation of mesenchymal stem cells and trilineage differentiation
Bone marrow cells were collected by flushing femur and tibia from WT and DTAhet mice and were 
cultured in DMEM (Hyclone) containing 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin. 
After 48 hr, nonadherent cells were removed and fresh medium was added. The adherent spindle- 
shaped cells were further cultured for 2 days. After culturing the cells to 70–80% confluence, they 
were replated at a density of 5000 cells per well for 96- well plates or 2 × 105 cells per well for 6- well 
plates. When the cells were cultured to 70–80% confluence, the medium was replaced with osteo-
genic differentiation medium (Cyagen) for osteogenesis or with adipogenic differentiation medium 
(Cyagen) for adipogenesis or with chondrogenic differentiation medium (Cyagen). RNA extraction 
was performed after 2 days of differentiation. After 3 weeks of differentiation of osteogenesis, Alizarin 
red staining was performed.

RT-qPCR
Total RNA was isolated using RNeasy Mini Kit (QIAGEN). 500 ng of total RNA was reverse- transcribed 
into cDNA using PrimeScript RT Master Mix (Takara, RR036A). qPCR analyses were performed using 
SYBR Premix Ex Taq Ⅱ (Takara, RR820L) and samples were run on the ABI HT7900 platform (Applied 
Biosystems). SYBR Green PCR conditions were 1 cycle of 95°C for 30 s, and 40 cycles of 95°C for 5 s 
and 34°C for 60 s. Melting curve stage was added to check primers’ specificity. Relative gene expres-
sion levels were calculated using the threshold cycle (2–ΔΔCT) method. Relevant primers are listed as 
follows: Gapdh: 5′-ACC CAG AAG ACT GTG GAT GG- 3′ and 5′-CAC ATT GGG GGT AGG AAC AC- 3′; 
Cdkn1a: 5′-GTC AGG CTG GTC TGC CTC CG- 3′ and 5′-CGG TCC CGT GGA CAG TGA GCA G- 3′; 
Cdkn2a: 5′-GTC AGG CTG GTC TGC CTC CG- 3′ and 5′-CGG TCC CGT GGA CAG TGA GCA G- 3′; 
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Ccl2: 5′-GCA TCC ACG TGT TGG CTC A- 3′ and 5′-CTC CAG CCT ACT CAT TGG GAT CA- 3′; Tnf: 
5′-ATG AGA AGT TCC CAA ATG GC- 3′ and 5′-CTC CAC TTG GTG GTT TGC TA- 3′; Il1b: 5′-GCC CAT 
CCT CTG TGA CTC AT- 3′ and 5′-AGG CCA CAG GTA TTT TGT CG- 3′; Alpl: 5′-TCA GGG CAA TGA 
GGT CAC AT- 3′ and 5′-CCT CTG GTG GCA TCT CGT TA- 3′; Bglap: 5′-CCC TGA GTC TGA CAA AGC 
CT- 3′ and 5′-GCG GTC TTC AAG CCA TAC TG- 3′; Col1a1: 5′-ATA AGT CCC TTC CTG CCC AC- 3′ and 
5′-TGG GAC ATT TCA GCA TTG CC- 3′; Spp1: 5′-ATG CCA CAG ATG AGG ACC TC- 3′ and 5′-CCT 
GGC TCT CTT TGG AAT GC- 3′; Sp7: 5′-TCG GGG AAG AAG AAG CCA AT- 3′ and 5′-CAA TAG GAG 
AGA GCG AGG GG- 3′; Runx2: 5′-GCC CAG GCG TAT TTC AGA TG- 3′ and 5′-GGT AAA GGT GGC 
TGG GTA GT- 3′; Dmp1: 5′-CAG TGA GGA TGA GGC AGA CA- 3′ and 5′-CGA TCG CTC CTG GTA 
CTC TC- 3′; Sost: 5′-GCC GGA CCT ATA CAG GAC AA- 3′ and 5′-CAC GTA GCC CAA CAT CAC AC- 3′; 
Acp5: 5′-TGG ACA TGA CCA CAA CCT GCA GTA- 3′and 5′-TCG CAC AGA GGG ATC CAT GAA 
GTT- 3′; Calcr: 5′-AGC CAC AGC CTA TCA GCA CT- 3′ and 5′-GAC CCA CAA GAG CCA GGT AA- 3′; 
Ocstamp: 5′-TGG GCC TCC ATA TGA CCT CGA GTA G- 3′ and 5′-TCA AAG GCT TGT AAA TTG GAG 
GAG T- 3′; Atp6v0d2: 5′-ACA TGT CCA CTG GAA GCC CAG TAA- 3′ and 5′-ATG AAC GTA TGA GGC 
CAG TGA GCA- 3′; Tyrobp:5′-CTG GTG TAC TGG CTG GGA TT- 3′ and 5′-CTG GTC TCT GAC CCT 
GAA GC- 3′; Adipoq: 5′-GAC CTG GCC ACT TTC TCC TC- 3′ and 5′-TCC TGA GCC CTT TTG GTG 
TC- 3′; Fabp4: 5′-GAT GAA ATC ACC GCA GAC GAC A- 3′ and 5′-ATT GTG GTC GAC TTT CCA TCC 
C- 3′; Pparg: 5′-GGA AAG ACA ACG GAC AAA TCA C- 3′ and 5′-TAC GGA TCG AAA CTG GCA C- 3′; 
Cebpa: 5′-TGG ACA AGA ACA GCA ACG AG- 3′ and 5′-TCA CTG GTC AAC TCC AGC AC- 3′; Col1a2: 
5′-GGG AAT GTC CTC TGC GAT GAC- 3′ and 5′-GAA GGG GAT CTC GGG GTT G- 3′; Acan: 5′-CCT 
GCT ACT TCA TCG ACC CC- 3′ and 5′-AGA TGC TGT TGA CTC GAA CCT- 3′; Sox9: 5′-CGG AAC AGA 
CTC ACA TCT CTC C- 3′ and 5′-GCT TGC ACG TCG GTT TTG G- 3′; Prg4: 5′-GGG TGG AAA ATA CTT 
CCC GTC- 3′ and 5′-CAG GAC AGC ACT CCA TGT AGT- 3′; Mmp3: 5′-ACA TGG AGA CTT TGT CCC 
TTT TG- 3′ and 5′-TTG GCT GAG TGG TAG AGT CCC- 3′; Mmp13: 5′-CTT CTT CTT GTT GAG CTG 
GAC TC- 3′ and 5′-CTG TGG AGG TCA CTG TAG ACT- 3′; Adamts1: 5′-CAT AAC AAT GCT GCT ATG 
TGC G- 3′ and 5′-TGT CCG GCT GCA ACT TCA G- 3′; Adamts5: 5′-GGA GCG AGG CCA TTT ACA 
AC- 3′ and 5′-CGT AGA CAA GGT AGC CCA CTT T- 3′. All these primers were synthesized by Sangon 
Biotech Company (Shanghai).

Flow cytometry
Bone marrow cells were isolated by flushing the bone marrow of mice femurs and tibias with PBS and 
were dissociated into a single- cell suspension by gently filtering them through 70 μm nylon mesh. After 
red blood cells lysis, the isolated cells were blocked by anti- mouse CD16/32 antibody (BioLegend, 
101302) for 15 min and stained with fluorescence- conjugated antibodies for 30 min at 4°C in the dark. 
Relevant antibodies are listed as follows and their catalog numbers are provided in the parentheses: 
anti- Ly- 6C- Pacific Blue (128013), anti- Ly- 6C- PE (128007), anti- Ly- 6G- Pacific Blue (127611), anti- Ly- 
6G- PE/Cy7 (127617), anti- CD16/32- FITC (101305), anti- CD115- PE (135505), anti- CD117- PE (105808), 
anti- CD117- APC/Cy7 (105825), anti- CD45R- PE/Cy5 (103209), anti- CD45R- APC (103212), anti- Ly- -
6A/E- APC (108111), anti- Ly- 6A/E- Alexa Fluor700 (108142), anti- CD34- PerCP/Cyannine5.5 (128607), 
anti- CD135- APC (135309), anti- lineage cocktail- Pacific Blue (133305), anti- CD127- PE (121111), anti- 
CD127- APC(135011), anti- CD11b- FITC (101205), and anti- CD24- Pacific Blue (101819). All these anti-
bodies were purchased from BioLegend. Samples were analyzed using cytometer CytoFlex (Beckman 
Coulter) and FlowJo software version 10.4. A total of 50,000 events were collected for each sample.

Preparation of mice serum
For serum collection, mice were anesthetized with isoflurane and blood samples were collected from 
the ophthalmic vein. Samples were then centrifuged at 5000 rpm for 5 min. Supernatants were trans-
ferred to a new tube and centrifuged at 5000 rpm for 5 min again. Supernatants were collected to a 
new tube and treated with liquid nitrogen fastly and then stored at –80°C.

Enzyme-linked immunosorbent assay (ELISA)
ELISA was performed as per the manufacturer’s instructions (Jianglai). Briefly, working standards and 
diluted samples were prepared and added to each well. Plates were sealed and incubated for 1 hr 
at 37°C. After washing three times, 100 μl enzyme- labeled reagents were added and plates were 
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incubated for 1 hr at 37°C. Finally, TMB substrates were added and incubated for 15–30 min at 37°C 
followed by Stop solution addition. Then, plates were read at 450 nm within 5 min.

Singe-cell collection, library construction, and sequencing
Bone marrow cells from WT and DTAhet mice were flushed and sieved through a 70 µm cell strainer. 
After red blood cell analysis, dissociated single cells were stained with AO/PI for viability assessment. 
scRNA- seq was performed using 10X Genomics Chromium platform. Related operations, including 
generation of gel beads in emulsion (GEMs), barcoding, GEM- RT cleanup, complementary DNA 
amplification, and library construction, were all carried out following the manufacturer’s protocol. By 
using 150- base- pair paired- end reads, the final libraries were sequenced on the Illumina NovaSeq 
6000 platform. The scRNA- seq data could be accessed from GEO database (GSE202516, secure 
token for reviewer: ihudckqqxvopruz).

Data processing, dimension reduction, unsupervised clustering, and 
annotation
ScRNA- seq data analysis was performed by NovelBio Co., Ltd with NovelBrain Cloud Analysis Plat-
form (https://www.novelbrain.com). Fastp was applied with default parameters filtering the adaptor 
sequence, and the low- quality reads were removed to achieve the clean data. Then, the feature- 
barcode matrices were obtained by aligning reads to the mouse genome (mm10 Ensemble: version 92) 
using CellRanger v3.1.0. Down- sample analysis among samples sequenced was applied according to 
the mapped barcoded reads per cell of each sample and finally the aggregated matrix was achieved. 
Cells contained over 200 expressed genes, mitochondria UMI rate below 20% passed the cell quality 
filtering, and mitochondria genes were removed in the expression table.

Seurat package (version 3.1.4; https://satijalab.org/seurat/) was used for cell normalization and 
regression based on the expression table according to the UMI counts of each sample and percent 
of mitochondria rate to obtain the scaled data. Principal component analysis (PCA) was constructed 
based on the scaled data with top 2000 high- variable genes and top 10 principles were used for tSNE 
construction and UMAP construction. Utilizing graph- based cluster method, the unsupervised cell 
cluster results based on the PCA top 10 principles were acquired, and the marker genes by FindAll-
Markers function with Wilcoxon rank- sum test algorithm were calculated using the following criteria: 
lnFC > 0.25, p- value<0.05, and  min. pct > 0.1. To identify the cell type detailed, the clusters of same 
cell type were selected for re- tSNE analysis, graph- based clustering, and marker analysis.

Identification of differential gene expression and gene enrichment 
analysis
To identify differentially expressed genes among samples, the function FindMarkers with Wilcoxon 
rank- sum test algorithm was used using the following criteria: lnFC > 0.25, p- value<0.05, and  min. 
pct > 0.1. GO analysis was performed to facilitate elucidating the biological implications of marker 
genes and differentially expressed genes. The GO annotations from NCBI (http://www.ncbi.nlm.nih. 
gov/), UniProt (http://www.uniprot.org/), and the Gene Ontology (http://www.geneontology.org/) 
were downloaded. Fisher’s exact test was applied to identify the significant GO categories, and FDR 
was used to correct the p- values. Pathway analysis was used to find out the significant pathway of the 
marker genes and differentially expressed genes according to KEGG database. Fisher’s exact test was 
applied to select the significant pathway, and the threshold of significance was defined by p- value and 
FDR. To characterize the relative activation of a given gene set such as pathway activation, QuSAGE 
(2.16.1) analysis was performed, and related gene sets involving neutrophil function and SASP were 
according to the publications (Xie et al., 2020; Zhang et al., 2021) and are listed in Supplementary 
file 2. Briefly, based on the gene set, the gene set variation analysis (GSVA) software package (Hänzel-
mann et al., 2013) was used to calculate the score of SASP in each cells. Ggpubr R package via the 
Wilcoxon test (version 0.2.4; https://github.com/kassambara/ggpubr; Kassambara, 2020) was used 
to analyze changes in the scores between WT and DTAhet mice.

Developmental trajectory inference and RNA velocity analysis
The single- cell trajectories analysis was applied utilizing Monocle2 (https://cole-trapnell-lab.github. 
io/monocle-release; Trapnell, 2019) using DDR- Tree and default parameter. Before Monocle analysis, 
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marker genes of the Seurat clustering result and raw expression counts of the cell passed filtering were 
selected. Based on the pseudotime analysis, branch expression analysis modeling (BEAM Analysis) 
was applied for branch fate- determined gene analysis. To estimate the cell dynamics, RNA velocity 
analysis was performed through scVelo package (version 0.2.3) based on ScanPy package (version 
v1.5.0) with default parameters.

Statistical analysis
All data were analyzed using GraphPad Prism (v8.2.1) software for statistical significance. p- Value 
was determined by the Student’s t- test for two- group or one- way ANOVA test for multiple- group 
comparisons. Gehan–Breslow–Wilcoxon test was used for analyzing Kaplan–Meier curve of WT and 
DTAhet mice.
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