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Abstract Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome 
were traditionally linked to families and inbred populations. However, a growing literature suggests 
that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in 
populations are limited to aggregated ROH content across the genome, which does not offer the 
resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the effi-
cient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-
of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently 
long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 
1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared 
by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered 
ROH diplotypes across the genome with various self-reported diseases, with the strongest associa-
tions found between the extended human leukocyte antigen (HLA) region and autoimmune disor-
ders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) 
gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped 
or imputed. Using a genome-wide scan, we identified a putative association between carriers of an 
ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value 
= 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large 
outbred population, enables further population genetics into the demographic history of large 
populations. More importantly, our method enables a new genome-wide mapping approach for 
finding disease-causing loci with multi-marker recessive effects at a population scale.

Editor's evaluation
This important study presents a new method for homozygosity mapping in population-scale data-
sets, based on an innovative computational algorithm that efficiently identifies runs-of-homozygosity 
(ROH) segments shared by many individuals. Simulation results provided convincing evidence for 
good accuracy and power of the new algorithm. Application of this new method to the UK Biobank 
dataset largely recapitulated previously known associations but also revealed a small number of 
novel discoveries that were missed by existing genome-wide association study methods, high-
lighting the utility of this new approach. This study will be of substantial interest to readers in human 
genetics and quantitative genetics.
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Introduction
Runs-of-homozygosity (ROH) regions are regions of diploid chromosomes where identical-by-descent 
(IBD) haplotypes are inherited from each parent (Ceballos et  al., 2018). Traditionally, ROH was 
thought to be relevant only to inbred populations, and ROH may be linked to consanguinity and 
population isolation (Kirin et al., 2010). However, a growing number of studies of large cohorts and 
biobanks have found that ROH may be ubiquitously present (Clark et al., 2019; Joshi et al., 2015). 
Still, our understanding of the genetic impacts of ROH is limited.

Most existing studies used individuals’ global ROH content (the sum of lengths or the count of 
ROHs) as a surrogate for the degree of inbreeding and associated it with phenotypes. It has long 
been known that inbreeding is harmful to the health of offspring (Morton et al., 1956), and several 
studies have suggested that the global ROH content is associated with higher risks of recessive disor-
ders (Lencz et al., 2007; Keller et al., 2012; Christofidou et al., 2015). ROHs can also be related to 
complex traits such as height (Yang et al., 2010). With the growing trend of multi-cohort collaboration 
through meta-analysis, the effect of global ROH content has been studied over very large sample sizes 
(Clark et al., 2019; Joshi et al., 2015). A recent study (Yengo et al., 2019) revealed that people with 
extremely long ROH can be found even in outbred populations.

However, collapsing the individual’s rich ROH content into a single number summarizing their global 
content is a drastic oversimplification. In doing so, the opportunities for mapping causal loci of pheno-
types are lost. Ideally, one might wish to identify chromosomal regions with a certain ROH diplotype 
(Luo et al., 2006) (pairs of identical haplotypes) and associate the ROH diplotype with the phenotypes 
of interest. Indeed, homozygosity mapping in pedigree or inbred populations has achieved success in 
identifying recessive loci (Keller et al., 2012; Lander and Botstein, 1987; Leutenegger et al., 2006; 
Pourreza et al., 2020; Tischfield et al., 2005; Gandin et al., 2015). However, for general outbred 
populations, the total number of possible ROH diplotypes at a locus is too enormous to be enumer-
ated efficiently, and ROH mapping of outbred populations has remained only a theoretical possibility.

Here, we proposed an approach, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), 
that bypasses this impossibly large search space of diplotypes. Instead of enumerating all ROH diplo-
types, we focused on those that are sufficiently long and frequent. Such ROH diplotypes are of interest 
because they are at the extreme of distribution: the chance of ROH is determined by the chance of a 
pair of mates having IBD, and such chance and also the length of IBD segments will decay quickly in 
outbred populations, as supported by population genetics theory (Thompson, 2013; Donnelly, 1983) 
and real-world data (Ralph and Coop, 2013; Naseri et al., 2019b). However, little is known about 
such ROH diplotypes because no existing methods can efficiently find them.

We present an efficient positional Burrows–Wheeler transform (PBWT)-based (Durbin, 2014) 
method to find clusters of identical matches. We apply our method to find clusters of ROH diplotypes 
in UK Biobank data. Each cluster of ROH diplotypes is defined as a set of 100 consecutive homozy-
gous sites that are shared among over 100 individuals. We investigate the association between the 
detected ROH diplotype clusters and self-reported non-cancerous diseases and present the results for 
the disease having the strongest associations with the detected ROH diplotype clusters.

Results
Methods overview
An ROH diplotype is a pair of homozygous haplotypes of an individual. A frequent ROH diplotype 
is one shared by several individuals at the same location and with the same consensus sequence. 
Although long and frequent ROH diplotypes are not very common, it is difficult to enumerate ROH 
diplotypes above a certain length and a certain frequency. We refer to frequent ROH diplotypes 
above a certain frequency (set of individuals) and a length as ROH clusters. As a compromise, ROH 
regions are traditionally aggregated into single numbers and their association with phenotypes is 
investigated. As a result, the loci-specific association signals of the ROHs or the allele-specific signals 
are likely to be lost (see Figure 1).

To solve this problem, we first processed the biallelic genotype panel (with three possible values 
0, 1, and 2 at each position) by randomly assigning any heterozygous sites to homozygous sites with 
the reference or the alternative allele. The reasons for such processing are twofold. One, through this 
conversion, the true ROH diplotype clusters, mostly consisting of homozygous sites, are relatively 
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intact and will still have a high probability of maintaining a good portion of their haplotype. However, 
some post hoc processing may be needed to merge the ROH diplotype clustered with minor devia-
tions of their consensus sequences. Notably, this conversion should introduce very few false positives 
as when the length and the width cut-offs are large, there is little chance a non-ROH diplotype cluster 
will emerge. Two, this effectively converts the panel into a haplotype panel (with two possible values 
0 and 2 at each position), where efficient algorithms for identifying haplotype matching blocks are 
available. A haplotype matching block is defined as a sequence of variant sites that have a predefined 
minimum frequency. An extra benefit is, by doing this conversion, no phasing of haplotypes is needed.

Haplotype matching blocks can be identified by leveraging the efficient sorting of haplotypes in 
the PBWT data structure. For a haplotype panel, PBWT sorts haplotype sequences at each variant site 
according to their reverse suffixes, and thus a set of haplotypes sharing the same sequence before a 
variant site will be adjacent in the sorting and form a ‘matching block’. We use auxiliary PBWT data 
structures to keep track of the length (the number of variant sites) and the width (the number of haplo-
type sequences) of the matching block and trigger the output report by watching the data structures. 
Figure 2 summarizes the overall ROH-DICE method. More details about the algorithms for finding 
blocks of matches and searching for ROH diplotypes are presented in the Methods section.
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Figure 1. Runs-of-homozygosity (ROH)-DICE enables the discovery of loci-specific association signals of ROH diplotypes. The actual ROH contents 
(a) including the locations and sequence identities of ROH (indicated by different colors) were lost in traditional ROH analysis pipelines (b) which 
aggregate the ROH contents per individual and lose the chances for identifying associating loci. ROH-DICE (c) reveals ROH diplotype clusters that are 
long and wide enough, thus enabling mapping loci associated with phenotypes.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Evaluation of runs-of-homozygosity (ROH) clusters using simulated genotype data with and without genotyping errors.

Figure supplement 2. Evaluation of runs-of-homozygosity (ROH) clusters using different cut-off values for the same target length (L) and width (W).

Figure supplement 3. Power of runs-of-homozygosity (ROH)-DICE vs traditional genome-wide association studies (GWAS) for finding associations 
between phenotypes and ROH clusters using 200 samples with 10 Mbps and 100 consecutive causal variant sites.
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Evaluation of ROH clusters in simulated data
Accuracy and power of ROH clusters
To evaluate the detection power and accuracy of ROH clusters, we simulated 200 individuals of Euro-
pean ancestry using msprime (Baumdicker et al., 2022). The IBD segments were computed using the 
tskit (Kelleher et al., 2018). The tskit package extracts IBD segments between any two individuals 
and genomic loci where the alleles have been inherited along the same genealogical path. The variant 
sites with a minor allele frequency of less than 1% were filtered out. We then created an artificial 
variant call file where the number of sites corresponds to the number of sites in the original file. We 
iterated over each pairwise IBD segment and assigned the identical randomly selected alleles for all 
sites covering the IBD segment. Finally, we ran a modified version of cPBWT on the interim panel 
where only homozygous sites are included in each matching block.

We extracted the cluster from the ground truth with the maximum overlap for each reported cluster 
and computed the overlap ratio. The accuracy is then defined as the average of the overlap ratios. The 
computed accuracy would ensure that a reported percentage of each cluster belongs to the one exact 
cluster in the ground truth. The power is defined as the average cumulative overlap ratios between 
the reported clusters and clusters from the ground truth. Large clusters may be reported as two or 
several smaller clusters due to the strict cut-off values for L and W, and the power would determine 
what percentage of the clusters could be recovered based on the cut-off values. We computed accu-
racy and power for the reported ROH clusters using haplotypes with 0% and 0.1% genotyping error 
rates for different L and W cut-off values (Figure 1—figure supplement 1). The results show that our 
approach is robust against genotyping errors up to 0.1%. The detection power for W = 5 and L = 50 
without any error was 79.6% whereas the power for the data with the genotyping error was 79.1%. 
The accuracy increases with increasing the target lengths and widths. For example for W = 5 and L = 
50, the accuracy was 55% whereas the accuracy for W = 20 and L = 100 was 63%. Figure 1—figure 
supplement 2 shows the detection power for clusters with L = 100 and W = 20, where different cut-off 
values were used. The figure shows that the detection power increases with smaller cut-off values. The 
power for the target values W = 20 and L = 100 was 34% if the cut-offs were set the same, however, 
the power increased to 84% with smaller cut-offs (W = 5 and L = 50). To estimate the power and accu-
racy for W = 100 and L = 100, we simulated another dataset containing 1000 individuals of European 
ancestry with a genotyping error rate of 0.1%. The simulation parameters for this dataset were the 
same as for the 200 samples (except the number of samples) and ground truth clusters were extracted 
similarly. The power was 55.96% and accuracy 52.84%, while 58.97% of the reported clusters overlap 
50% or more with a ground truth cluster.

Power of ROH-DICE in association studies
To evaluate the effectiveness of ROH-DICE in association studies, we used the ROH clusters obtained 
from a sample of 200 genomes of 10 Mbp. We set the minimum length of variant sites to 100 and the 
minimum number of samples to 5 (L = 100 and W = 5). We generated 100 phenotypes associated with 
an ROH cluster for each effect size ranging from 0 to 0.3, using the formula ‍Yi = Xiβ + N(0,σ2)‍ with  ‍σ2‍ 
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Figure 2. A simple schematic of searching for runs-of-homozygosity (ROH) diplotype clusters in a genotype panel. The input is a genotype panel 
where each line represents an individual. The heterozygous sites are depicted in violet in the genotype panel. Input genotype data are converted 
into a binarized genotype panel where homozygous sites are preserved. The matching blocks (clusters) are searched using consensus PBWT (cPBWT). 
A matching block is defined by a minimum number of sites, individuals, and also an objective function. The objective can be either maximizing the 
number of individuals or maximizing the number of sites. The clusters of matches are highlighted in different colors. Red represents a cluster with the 
maximized number of individuals and blue represents a cluster with the maximized number of sites.
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= 0.1. We choose large effect sizes so that the power can be evaluated even with small sample sizes. 
Here, Xi equals 1 if the sample belongs to the ROH cluster and 0 otherwise.

The total number of variant sites was 23,566, and we extracted 1263 ROH clusters. We calculated 
the p-values for both ROH clusters and all variant sites. We used a p-value cut-off of 0.05 divided by 
the number of tests for each phenotype to determine whether the calculated p-value was smaller 
than the threshold, indicating an association. For genome-wide association studies (GWAS), only one 
variant site within the ROH cluster, contributing to the phenotype, was required. We tested for all 
additive, dominant, and recessive effects (Figure 1—figure supplement 3). The figure demonstrates 
that ROH-DICE outperforms GWAS when a phenotype is associated with a set of consecutive homo-
zygous sites. The maximum effect size of 0.3 resulted in ROH clusters achieving a power of 100%, 
whereas the additive model only achieved 11%, and the dominant and recessive models achieved 
52% and 70%, respectively. The GWAS with recessive effect yields the best results among other 
GWAS tests, however, its power is still lower than using ROH clusters.

ROH diplotypes in UK Biobank
Here, we searched for the clusters of ROH regions in the UK Biobank data (Bycroft et al., 2018). All 
autosomal chromosomes of all UK participants (487,409) were searched for ROH regions that are 
shared among at least 100 individuals comprising at least 100 consecutive sites. 56,972 people with 
self-reported non-British ethnicity in UK Biobank were filtered out. We chose a minimal number of 
markers that is large enough to avoid an extensive number of clusters. Moreover, the longer the ROH 
segment, the more likely it is due to shared ancestry rather than statistical noise. Our objective is also 
to select clusters with a sufficiently large number of individuals to correlate them with phenotypes. 
It is worth noting that in previous studies, a minimum cut-off of 100 individuals was commonly used 
(Lencz et al., 2007; Christofidou et al., 2015; Moreno-Grau et al., 2021). On average ~18% of sites 
are heterozygous, and thus for a pair of 100 sites genotype sequences, there is a very small proba-
bility that they will be mapped to the same compressed haplotype. Thus, the rate of false positives 
should be low. To increase statistical power for downstream association tasks, the width-maximal 
blocks were reported. This was achieved by running the ROH-DICE program, with a wall clock time of 
18 hr and 54 min where the program was executed for all chromosomes in parallel (total CPU hours 
of ~242.5 hr). The maximum residence size for each chromosome was approximately 180 MB. After 
running the ROH-DICE program, further post-processing steps were conducted. Each individual with 
more than 1% heterozygous sites within the block was removed from the cluster. Any two clusters with 
the same consensus and the exact starting and ending positions were merged.

A total of 1,880,826 ROH clusters (shared among at least 100 individuals and extending at least 
100 consecutive sites) were identified in all 22 autosomal chromosomes (Supplementary file 1). The 
average length of these ROHs is 553,095 bp (~0.55  cM). The distribution of ROH clusters is very 
uneven (Figure 3a). Interestingly, the number of ROH clusters in chromosome 6 is the highest. This is 
mainly due to the excessive number of ROH clusters in the MHC region (65,458). Figure 4 illustrates 
the genome-wide coverage of the ROH clusters, with visible peaks at chromosomes 2, 6, and 8. A 
peak region in chromosome 2 (chr2:135755899–136827560) has been reported to harbor a high selec-
tion signal (Browning and Browning, 2020). This region contains the lactase gene (LCT) gene which 
includes a variant selected for lactose tolerance in the European population (Itan et al., 2009), though 
the current understanding of the selection pressure is more nuanced (Mathieson and Terhorst, 2022; 
Evershed et al., 2022; Le et al., 2022). The most prominent peak in chromosome 6 is located in the 
MHC region (chr6:28477797–33448354), whose details are shown in Figure 3b. The peak in chro-
mosome 8 (chr8:42531565–42629520) contains two known genes, CHRNB3 and CHRNA6. Previous 
studies have demonstrated the significant role of the CHRNB3–CHRNA6 gene cluster on chromo-
some 8 in nicotine dependence (Wen et al., 2016). Additionally, an earlier study has identified strong 
evidence for selection in the CHRNB3–CHRNA6 region (Sadler et al., 2015). Surprisingly, some clus-
ters comprise more than a hundred thousand individuals sharing the same ROH consensus. The high 
rate of ROH clusters in the MHC region may be attributed to the high density of markers and low 
recombination rates (Traherne, 2008; Lam et al., 2013). We also filtered out all ROH clusters shorter 
than 0.1  cM (Figure  3—figure supplement 1). There is no excessive number of ROH clusters in 
chromosome 6, as identified by a minimum number of variant sites. The number of samples in ROH 
clusters within the MHC regions reduces significantly. Although there is still a peak, it is comparable 

https://doi.org/10.7554/eLife.81698
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to other chromosomes such as chromosome 10 or 12 (Figure 4—figure supplement 1). In all subse-
quent results, we have included clusters with more than 100 sites. However, all the corresponding 
tables contain the genetic length of the clusters. Low recombination rate regions may contain exces-
sive ROH clusters that we prefer not to discard since it will artificially ignore some ROH clusters driven 
by selection. The ROH clusters are abundant in regions with low recombination rates and also their 
distribution is expected to be population specific. Moreover, the ‘hotspots’ and ‘coldspots’ may vary 
in different populations (Pemberton et al., 2012). ‘ROH hotspots’ in study (Pemberton et al., 2012) 
refer to locations where the single nucleotide polymorphism (SNP)-wise ROH frequency is the 99.5th 
percentile among all frequencies, where a frequency was defined for each variant site. To enable a 

164378644644
160486

137962
108742108

103531
117975

98079980980
95658

64149
91020

111496
96639

38600
5927070

641444444
6940040
70483

27207
57155

36008
15749

27237

65458

0 50000 100000 150000 200000

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22

Number of detected ROH clusters

a

b

Figure 3. Total number of detected runs-of-homozygosity (ROH) diplotype clusters in each autosomal chromosome (a) and the detected ROH clusters 
in the major histocompatibility complex (MHC) region (chr6:28477797–33448354) (b) in hg19. Some regions may contain multiple overlapping clusters 
comprising different sets of individuals. The minimum length of the ROH regions was set to 100 sites and the minimum number of individuals to 100.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Total number of detected runs-of-homozygosity (ROH) diplotype clusters in each autosomal chromosome in UK Biobank with a 
minimum length (L) of 100 sites, a minimum genetic length of 0.1 cM, and a minimum width (W) of 100 samples.

https://doi.org/10.7554/eLife.81698
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comparison with the ROH frequencies from the Pemberton et al., 2012 study, we also calculated a 
score for the variant sites by using the intersecting ROH clusters with the sites. We extracted ROH 
clusters with more individuals than the 99.5th percentile and lower than the 0.5th percentile (see 
Methods section). The top-ranked ROH ‘coldspot’ in the European population is located in chro-
mosome 18 (Pemberton et al., 2012) and is also identified as below the 0.5th percentile using our 
method. The top-ranked ‘hotspot’ was reported in chromosome 15 for Europeans (Pemberton et al., 
2012) which also overlaps with a peak for British people in chromosome 15 (72100881–72681976) in 
our study where the number of samples in detected ROH cluster exceeds the 99.5th percentile. The 
common hotspots and coldspots are listed in Supplementary files 2 and 3, respectively. However, 
further investigation may be required to confirm ‘hotspots’ as other factors such as marker density 
may contribute to excessive clusters in certain regions. We also calculated Spearman’s rank correlation 
coefficient (ρ) between the two datasets. The correlation coefficient between combined ROH classes 
in the European population (Pemberton et al., 2012) and the ROH clusters in UKBB was 0.54. Of 
note, Pemberton et al., 2012 defined three types of ROH clusters (short or class A, intermediate or 
class B, and long or class C). Our reported ROH regions are based on shared diplotypes with at least 

Figure 4. Detected runs-of-homozygosity (ROH) diplotype clusters with at least 100 individuals sharing the same consensus with a minimum number 
of 100 SNPs. Chromosome 18 has the lowest peak for individuals sharing an ROH diplotype. Chromosomes 2, 6, and 8 contain diplotypes shared with 
more than 100,000 individuals.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The number of individuals sharing the same runs-of-homozygosity (ROH) consensus with a minimum number of 100 SNPs after 
filtering out segments shorter than 0.1 cM.

https://doi.org/10.7554/eLife.81698
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100 SNPs. These regions may not necessarily align with all ROH classes, as variations in length and 
consensus may lead to differences in ROH regions.

ROH clusters and disease association
We conducted a phenotypic association analysis of the found ROH diplotype clusters with 445 self-
reported non-cancerous diseases, as they are conveniently available in the UK Biobank. We first 
conducted a quick chi-squared test associating each of the 1,880,826 ROH diplotype cluster member-
ship against each of the 445 phenotypes (see Methods section). The p-values for the 100 regions with 
the lowest p-values were re-computed using age, sex, genetics principal components, and genotype 
measurement batch fields by PHESANT (Millard et al., 2018) (details see Methods). This identified 61 
associations passing the Bonferroni-corrected p-value threshold of 10−12. Table 1 shows the p-values 
for disease associated with the HLA region (chr6) computed by PHESANT. p-values for some diseases 
are very low in both the chi-squared test and regression analysis using PHESANT. It also includes 
the SNP with the lowest p-value in each cluster that is associated with the corresponding disease. 
The SNP with the lowest p-value in each cluster was extracted from Neale’s lab results [http://www.​
nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank]. Most of the 
clusters with low p-values contain at least one SNP with a very low p-value that is associated with the 
corresponding disease. The top 100 diplotypes with the lowest p-values using chi-squared tests and 
PHESANT are included in Supplementary file 4.

Not surprisingly, the most prominent associations we found are ROH diplotypes in the HLA 
region with autoimmune diseases. We found that malabsorption/coeliac disease, psoriasis, rheuma-
toid arthritis, and multiple sclerosis have the strongest association with loci in the HLA region. These 
results are largely consistent with known literature (Dieli-Crimi et al., 2015; Gutierrez-Achury et al., 
2015; Kurkó et al., 2013; Bhalerao and Bowcock, 1998; Baranzini and Oksenberg, 2017; Canela-
Xandri et al., 2018). One of the most significant associations we identified is the association between 
the ROH diplotype at chr6:25988167–26122453 and hemochromatosis (p-value = 9.16 × 10−120). The 
frequency of the ROH diplotype is only 0.02% and the odds ratio of having the disease for the carrier 

Table 1. Clusters of the runs-of-homozygosity (ROH) diplotypes with the lowest p-values in the HLA region for self-reported diseases 
using the British population in UK Biobank.
Detailed diplotype consensus sequences are available in Supplementary file 5. The p-values were calculated using PHESANT. Only 
the region with the lowest p-value has been included for each disease. Beta represents the effect size reported by PHESANT and D′ 
describes the non-random association of an ROH cluster and the overlapping SNP.

Disease (binary trait) Diplotype ID
Position (on 
chr6) p-value Beta

Carrier 
frequency 
(%)

Odds 
ratio

Genetic length 
(cM)

GWAS p-
value* GWAS beta*

GWAS lead 
SNP* D′

Ankylosing spondylitis 1
31431031–
31464050

4.62 × 
10−34 0.121 0.29 8.66 0.071198 0 1.45 × 10−2 rs113340460 0.61

Hemochromatosis 2
25969631–
26108168

8.02 × 
10−120 0.417 0.09 24.51 0.011597 - - - -

Malabsorption/coeliac 
disease 3

32564985–
32629755

3.41 × 
10−259 0.315 4.12 1.64 0.005408 0 7.74 × 10−3 rs9271352 1

Multiple sclerosis 4
32410215–
32554129

4.36 × 
10−45 0.192 0.37 3.79 0.012736 1.05 × 10−107 4.58 × 10−3 rs9268925 0.99

Polymyalgia rheumatica 5
31710968–
31794592

7.31 × 
10−09 0.080 0.23 5.90 0.006808 1.59 × 10−08 6.80 × 10−3 rs1150748 1

Prostate problem (not 
cancer) 6

34607958–
35163974

2.84 × 
10−08 0.082 0.18 6.94 0.034889 9.81 × 10−04 9.81 × 10−4 rs76117834 0.03

Psoriasis 7
31254263–
31263216

1.20 × 
10−122 0.214 1.21 2.73 3.07×10–05 0 1.93 × 10−2 rs13214872 1

Psoriatic arthropathy 8
33072522–
33115762

8.54 × 
10−12 0.122 0.20 3.97 0.008708 4.76 × 10−10 1.01 × 10−3 rs17221401 1

Rheumatoid arthritis 9
32412539–
32573760

8.15 × 
10−122 0.208 0.23 2.34 0.01293 6.96 × 10−124 8.24 × 10−3 rs188575117 0.98

*p-values are for the reported SNP from http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank.

https://doi.org/10.7554/eLife.81698
http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank
http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank
http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank
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is 102.21. Interestingly, several other ROH diplotypes at this locus also have a strong association 
with hemochromatosis (Table 1). This locus is in the extended HLA region and has a low recombina-
tion rate. Hemochromatosis is an inherited disorder in which iron levels in the body slowly build up 
over several years. The gene HFE (chr6:26087509–26095469) is a well-known recessive locus for this 
disease (Pietrangelo, 2010). The C282Y polymorphism (rs1800562, chr6:26092913) in HFE is the 
most penetrant but other polymorphisms with lesser penetrance are also known. Interestingly, the 
minor allele frequency of the SNP rs1800562 is 6% in the European population but it is not genotyped 
(and is also not available in the imputed panel) in the UK Biobank data. As a result, this association 
signal has been completely missing in the Neale Lab results. In another study, the SNP has been 
imputed and a specific association study for the recessive effect between the homozygous alleles 
of rs1800562 and hemochromatosis has been reported (Tamosauskaite et al., 2019). Our approach 
found this recessive association signal without direct genotyping of any SNP with high linkage disequi-
librium (LD) to the causal SNP, demonstrating the power of our approach beyond regular additive 
effect GWAS. However, we did not verify that this SNP is indeed part of the ROH diplotype as we do 
not have access to the WGS data.

We also found some loci outside of the HLA region that are presumably associated with non-
cancerous diseases (Table  2). The most prominent one is an ROH diplotype at chr1:151515188–
151902494 with eczema/dermatitis. This signal overlaps with the GWAS finding of rs4845604 at 
chr1:151829204 (Johansson et al., 2019).

The beta values for effect size were included in all reported tables. These beta values for ROH-
DICE are positive, indicating that carriers of these ROH diplotypes may have an increased risk of 
certain non-cancerous diseases. We also used D′ as a measure of linkage between the reported GWAS 
results and ROH clusters (see Methods section). We found that most of the GWAS results and ROH 
clusters are strongly correlated. However, in a few cases, D′ is small or close to zero. In such cases, 
the reported p-value from GWAS was also insignificant, while the ROH cluster indicated a significant 
association (See Table 1 and Supplementary file 4). The SNP IDs and consensus alleles for all ROH 
clusters in Tables 1 and 2 are reported in Supplementary file 5.

ROH clusters and COVID-19 association
We computed the p-value using the chi-square test for the association between mortality of COVID-19 
and the detected ROH regions. We considered only the clusters that had at least 10 cases (tested 
positive and passed away in 2020). Figure 5 shows the Manhattan plot for ROH regions and mortality 
of COVID-19. The most significant ROH region is located in chr4:106318456–106483898 (0.114 cM) 
with the p-value 1.63 × 10−10. 4389 individuals share the diplotypes and 76 of them have tested posi-
tive for COVID-19. Eleven persons who carried the same ROH consensus and had tested positive, 
died in 2020. In other words, carriers of this diplotype have a fivefold mortality compared to non-
carriers among COVID-19 patients. We used the GMMAT (Hoare, 1961) mixed model regression 

Table 2. Clusters of the runs-of-homozygosity (ROH) diplotypes with the lowest p-values outside of the HLA region for self-reported 
diseases using the British population in UK Biobank.
The p-values were calculated using PHESANT.

Disease (binary trait) Diplotype ID Position p-value Beta
Carrier 
frequency (%)

Odds 
ratio

Genetic 
length 
(cM)

GWAS p-
value* GWAS beta*

GWAS lead 
SNP* D′

Deep venous 
thrombosis (dvt) 10

chr1:169075589–
169528830 3.10 × 10−21 0.039 2.08 10.49 0.56 7.41 × 10−166 −3.13 × 10−2 rs6025 1

Eczema/dermatitis

11
chr1:151515188–
151902494 1.52 × 10−27 0.044 2.85 7.31 0.36 3.45 × 10−36 1.43 × 10−2 rs55875222 1

12
chr1:151940401–
152280032 9.46 × 10−24 0.053 11.76 2.07 0.12 1.35 × 10−64 1.84 × 10−2 rs61815559 1

13
chr1:152493154–
152964479 1.53 × 10−21 0.039 2.85 7.35 0.36 1.01 × 10−42 1.62 × 10−2 rs61813875 1

Hypothyroidism/
myxoedema 14

chr12:111910219–
112874179 4.51 × 10−21 0.062 5.06 1.25 0.04 1.88 × 10−80 9.87 × 10−3 rs7137828 0.99

*p-values are for the reported SNP from http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank.

https://doi.org/10.7554/eLife.81698
http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank
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to validate the association of this diplotype while adjusting for age, gender, and genetic similarity 
(see Methods section). The reported p-value was 1.82 × 10−11 which is even smaller than the p-value 
from the chi-square test. The region includes the PPA2 gene. The gene product is an inorganic pyro-
phosphatase located in the mitochondrion (Curbo et al., 2006). Missense mutations in this gene are 
reported to cause sudden unexpected cardiac arrest in infancy (Guimier et al., 2016). The PPA2 gene 
has also been recently implicated in COVID-19 through an integrated analysis of GWAS of European 
patients and lung expressed quantitative trait loci (eQTL) data by the summary-data-based (SMR) 
method (Zong and Li, 2021). The identified region linked to COVID-19 mortality overlaps also with 
the ARHGEF38 gene. A genetic variant within the gene (rs72670002) has been reported to be signifi-
cantly associated with severe illness from COVID-19 in a recent study that used 24,202 cases of critical 
COVID-19 (Pairo-Castineira et al., 2023). Other nearby genes within a 200-kb range include TET2, 
INTS12, and GSTCD.

Discussion
In this work, we introduced an efficient algorithm, ROH-DICE, for finding clusters of ROH regions in 
very large cohorts. The algorithm can find all clusters of ROH regions based on the given parameters: 

a

b

Figure 5. Runs-of-homozygosity (ROH) associations between ROH diplotypes and mortality of COVID-19. (a) Manhattan plot of ROH diplotypes across 
all chromosomes and mortality of COVID-19. Diplotypes with less than 10 cases were discarded. (b) UCSC genome browser (https://genome.ucsc.edu) 
view of the region containing the diplotype with a significant p-value in chromosome 4.

https://doi.org/10.7554/eLife.81698
https://genome.ucsc.edu
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the minimum number of individuals, the minimum length of the ROH regions, and the objective func-
tion. The running time of the algorithm is linear to the size of the genotype panel which enables fast 
processing of millions of individuals without requiring extravagant resources.

Using ROH-DICE, we conducted a systematic investigation of ROH diplotype clusters in a large 
population cohort, the UK Biobank. To the best of our knowledge, there has been no such inves-
tigation of the genomic distribution of ROH diplotypes conducted previously. We found over 1.8 
million ROH diplotype clusters spanning over 100 SNPs and shared by over 100 individuals. While we 
reported this single data point, the interpretation of the genome-wide ROH diplotype distribution 
is difficult. First, the expected distribution of ROH diplotype clusters is not known. For populations 
with an idealized infinite population size, ROH diplotype distribution can be estimated from the allele 
frequency spectrum. However, for any finite population, when we are looking at haplotypes spanning 
100 sites, only a small fraction of possible allele combinations is observed and the distribution will be 
heavily dependent on the population history. Large ROH clusters can be used to identify signatures 
of selection in humans or other species. Positive selection reduces haplotype diversity, increasing 
homozygosity around the target locus, resulting in higher frequencies of ROH in regions containing 
selection loci (Pemberton et al., 2012; Sabeti et al., 2002). Therefore, excessive ROH regions can 
be linked to selective sweeps and have been found to coincide with positive selection in humans 
(Pemberton et  al., 2012), and other species (Hewett et  al., 2023). Three large ROH clusters in 
chromosomes 2, 6, and 8 of UKBB overlap with known hotspots for selection signals. It should be 
noted that although the selection of 100 individuals and 100 sites has been used in other studies, it is 
somewhat arbitrary. While we believe that small variations in the values would not affect the results, 
using different values such as 200 or 1000 may lead to different ROH clusters. Our preliminary analysis 
indicates that increasing the length and width of the clusters improves accuracy but reduces power. 
Future works may investigate the effect of different parameters on the distribution of ROH clusters 
and downstream analysis.

We found a strong association between non-cancerous diseases and some ROH diplotypes. The 
majority of ROH regions harboring strong associations with non-cancerous diseases were located in 
the extended HLA region in chromosome 6. As expected, most of the related diseases were also auto-
immune system disorders. While the association signals we found mostly overlap with existing GWAS 
hits, we are testing different genetic effects. The existing GWAS are mainly testing the additive effects 
of single SNPs, while we are testing the recessive effects of relatively long haplotypes. In a sense, our 
analysis is similar to traditional family-based homozygosity mapping (Lander and Botstein, 1987), but 
at a population scale. Future works are warranted to fully develop this potential new gene mapping 
approach. We want to clarify that we are not claiming ROH-DICE to be superior to regular GWAS in 
all scenarios. Our simulation only demonstrates that ROH-DICE performs better under certain condi-
tions. Specifically, when the causal variant is located in a long ROH diplotype shared by many indi-
viduals (ROH diplotype clusters), ROH-DICE outperforms regular GWAS. It is important to note that 
ROH-DICE is not meant to replace regular GWAS, but to complement it.

The disease associations presented in this work largely do not represent novel discoveries. The 
significant associations can be identified in the first place if a recessive mode of inheritance is assumed 
or a more powerful imputation panel is implemented. However, there is no guarantee that the sites 
are well imputed if the LD between the genotyped sites is low. We also showed in our simulation that 
the ROH clusters would outperform GWAS with an additive or even recessive model in terms of power 
if a phenotype is associated with a set of consecutive homozygous sites.

We used age, gender, and genetic principal components as confounding variables in the associa-
tion analysis. Genetic principal components can reduce the confounding effect brought on by popu-
lation structure but it may be insufficient to completely eliminate the effects of recent demographic 
structure and the local environment (Zaidi and Mathieson, 2020). For example, individuals sharing 
excessive ROH diplotypes may share similar environments since they are closely related and reside 
close to one another. Since we did not rule out related individuals, some of the reported GWAS 
signals may not be attributable to ROH.

Our association analysis is a proof of concept and opens up many future opportunities. With our 
methods, it is possible to extend this analysis to non-disease complex traits. For example, one can 
investigate whether individuals who share more ROH diplotype clusters have similar phenotypes. Such 
an analysis may reveal the contribution of dominance variance to the heritability of traits of interest. It 

https://doi.org/10.7554/eLife.81698
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will also be interesting to compare the findings with previous research based on genome-wide aggre-
gate ROH content.

Methods
Identification of haplotype clusters in PBWT
The PBWT proposed by Durbin, 2014 facilitates an efficient approach to search for all pairs of long 
matches in haplotype or genotype panels. The basic idea behind the PBWT search is to sort the panels 
at each site by their reversed prefix order. As a result, the matches in the panel will be placed adjacent 
to each other. However, at the time we started this project, all existing PBWT algorithms (Durbin, 
2014; Naseri et al., 2019c; Naseri et al., 2019a; Sanaullah et al., 2020) were aimed at identifying 
pairwise matches. In this work, we propose to employ the PBWT data structures to search for clusters 
of multi-way matches instead of individual pairs of matches. Independent of our work, a couple of 
algorithms have been proposed to find haplotype blocks in a PBWT panel (Cunha et al., 2018; Alanko 
et al., 2020). The algorithm by Cunha et al., 2018; Alanko et al., 2020 may not be feasible to handle 
biobank scale data. The recently proposed algorithms by Cunha et al., 2018; Alanko et al., 2020, 
however, will scale well for large-scale data, but they aim to enumerate all maximal haplotype blocks. 
For datasets comprising hundreds of thousands or millions of individuals, the number of reported clus-
ters of any length may be excessive. Moreover, a minimum length threshold in terms of both sites and 
number of individuals would be more meaningful for downstream analysis especially association anal-
ysis, for example where a minimum number of cases are required. Hence, after detecting all possible 
clusters, filtering has to be applied to remove spurious clusters. Here, we formulate the haplotype 
blocks problem with two distinct objective functions which will reduce the complexity of filtering the 
detected clusters afterward.

Block maximal match problems
Based on the different formulations of the problem, we may have different objective functions: the 
first problem is to find all clusters with at least L sites that are shared among at least t sequences while 
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Figure 6. Consensuses of haplotype matches with a minimum length (L) of 3 and a minimum width (W) of 3. (a) Clusters of haplotypes with two different 
objectives: maximizing the number of sites and maximizing the number of indivdiuals. The green rectangle ending at site 4 highlights a cluster that 
meets the requirement of W ≥ 3 and L ≥ 3 while maximizing the number of individuals (width-maximal). The blue rectangles ending at 4 maximize the 
number of sites (length-maximal). The blue rectangles ending at site 8 show a cluster with W ≥ 3 and L ≥ 3 maximizing the number of sites and number 
of individuals. This cluster is length-maximal because adding either column 5 or 9 will introduce a mismatch; It is also width-maximal because adding 
the third haplotype will introduce a mismatch. (b) Two clusters (clusters A and B) with the same starting and ending positions but different consensuses. 
Therefore, these two clusters are not merged and considered as separate clusters. Each line represents one individual and 0/0 alleles are highlighted in 
gray, and 1/1 alleles in black.

https://doi.org/10.7554/eLife.81698
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maximizing the number of sequences for each cluster. Using proper data structures, we can keep 
track of the starting position of the matches and report them efficiently. The second problem is to find 
clusters with at least L sites among at least t sequences while maximizing the number of sites for each 
cluster. Again, the sequences that share a consensus are put in the same block.

PBWT sorting at the site k places sequences with identical reverse prefixes into clusters of matches 
that are adjacent to each other. We refer to these clusters as blocks, where the number of sequences 
W is the width of the block in terms of the number of haplotypes, and the length of matches L is the 
length of the block in terms of the number of sites. Recall the concept of the set maximal match of 
Durbin, 2014 as the pairwise haplotype match that cannot be extended at either end. We extend 
the concept of set maximal match to block maximal match, that is, the haplotype match block that 
cannot be extended. As the block is a 2D object, the extension can be defined either lengthwise or 
widthwise. Therefore, we can define the lengthwise block maximal match as the matching block that 
cannot be extended lengthwise. Similarly, the widthwise block maximal match is that which cannot be 
extended widthwise.

For the PBWT block match problem, the goal is to identify all block maximal matches that have 
a minimal sequence length L and a minimal width W. Note that for an identified PBWT block, the 
boundary of the block may not be exactly defined (see Figure 6 for an example). We can either report 
the block boundary that maximizes the length – length-maximal PBWT block, or the block boundary 
that maximizes the width – width-maximal PBWT block. We developed exact algorithms for identi-
fying and reporting block maximal matches. This is achieved by using proper data structures tracking 
the starting position of the matches and the upper and lower boundaries of each matching block. A 
detailed description of the algorithms is provided in the cPBWT algorithms subsection.

cPBWT algorithms
Maximizing the number of haplotypes
Given a haplotype or genotype panel, the objective is to find all matches greater than a given length 
L that are shared among at least c haplotypes (or individuals). By sorting the panel at each site the 
matches are placed in the same block. The divergence value for each sequence contains the starting 
position of the match to its preceding sequence in the reversed prefix order. The matches are sepa-
rated by a sequence with a divergence value greater than k − L. To maximize the number of sequences, 
the maximum value of the divergence values in each block is considered. The size of the block should 
also be greater than c to be reported. Algorithm 1 (Supplementary file 6) illustrates the procedure for 
finding long matches while maximizing the number of haplotypes or sequences in detail. Algorithm 2 
(Supplementary file 6) illustrates the procedure for updating the intermediate variables V and Q to 
compute dk+1 and ak+1 based on the dk and ak. The time complexity of this algorithm is O(NM), where N 
denotes the number of variant sites and M denotes the number of individuals. Divergence values and 
prefix arrays are computed in linear time for each variant site and the maximal number of matching 
blocks at each site is bound by O(M).

Maximizing the length of the match
The objective is to find the longest matches greater than a given length L shared among at least c 
sequences. The match will not be reported if the block of matches can be extended while at least c 
sequences are not terminating. To do this, two conditions should be held: First, at least c sequence 
for one allele should be present in the block, and second, the cth lowest divergence value in the block 
should be greater or equal to the cth lowest divergence of the matches ending with the allele with 
at least c occurrences. To find the cth lowest divergence value, the Quickselect algorithm, a modified 
one-sided version of Quicksort (Hoare, 1961), is used. Quickselect has the average time complexity 
of O(N), where N denotes the size of the given list. Algorithm 3 (Supplementary file 6) illustrates the 
procedure of finding long matches while maximizing the length of the match in detail.

ROH-DICE algorithm
Any of the two cPBWT algorithms can be applied to search for ROH–diplotype clusters from geno-
type data. Maximizing the number of haplotypes would guarantee the inclusion of all samples that 
may share specific ROH diplotypes. Hence, for association analysis between ROH diplotype and 
phenotypes, this optimization would be preferred. On the other hand, maximizing the number 

https://doi.org/10.7554/eLife.81698
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of sites would ensure the inclusion of all variant sites between the individuals contributing to the 
matches which may be more appropriate for other applications such as studying population struc-
tures or imputation.

ROH-DICE maps the genotype sequence ‍x‍, defined over the alphabet of {0,1,2}, into a compressed 
haplotype sequence ‍y‍, defined over the alphabet of {0,1}. For homozygous sites, the mapping is 
straightforward: for ‍xi = 0‍, ‍yi = 0‍; for ‍xi = 2‍, ‍yi = 1‍. For heterozygous sites ‍xi = 1‍, a random value 
from 0 and 1 was assigned with a probability of ½ for 0 and ½ for 1. The identified maximal matching 
blocks in the PBWT panel comprising all compressed haplotype sequences ‍

{
yi
}
‍, correspond to the 

approximate ROH clusters in the original genotype sequences ‍
{

xi
}

.‍ After finding all ROH clusters for 
a given cut-off, the clusters with the identical start and end positions, and consensus (determined by 
majority alleles) was merged.

Identification of ROH hotspots and coldspots
The frequency of ROH calculated over all three size classes at each SNP in the combined data set 
from the Pemberton study was downloaded (Pemberton et al., 2012). The genomic locations were 
lifted over to hg19 using the liftOver tool (Hinrichs et al., 2006). The overlapping ROH cluster from 
ROH-DICE results with the maximum number of individuals (samples) was assigned for each SNP. 
ROH hotspots were considered locations where the number of samples in ROH clusters exceeded the 
99.5th percentile. ROH coldspots were considered locations where the number of samples in ROH 
clusters was lower than the 0.5th percentile (equal to 0).

UK Biobank dataset
The phased haplotype data of the UKBB data (version 2) comprising 658,720 sites were extracted. The 
Data-Field 20002 contains self-reported non-cancer illnesses comprising 445 categories (diseases). 
For the association analysis, 430,437 individuals of British ethnicity were selected. The ethnic back-
grounds were extracted using the Data-Field 21000.

Genetic association analysis
We computed the p-values for each disease in all detected ROH clusters that were present in at least 
10 individuals. p-values were computed using chi-squared test considering the following numbers: 
D1: Number of individuals sharing a disease within the detected consensus of ROH. N1: Number of 
individuals in the detected ROH not sharing the disease. D2: Total number of individuals sharing the 
disease subtracting D1. N2: M − N1 − N2 − D2, where M denotes the total number of individuals. 
100 regions with the lowest p-values (for any disease) were selected and further investigated using 
PHESANT (downloaded on August 22, 2018).

For PHESANT analysis, age was calculated manually using the date of attending the assessment 
center (53), year of birth (34), and month of birth (52). Sex (31), genetic principal components (22009), 
number of self-reported non-cancer illnesses (135), genotype measurement batch (22000), and non-
cancer illness (20002) fields were also maintained. PHESANT tests the associations of a trait of interest 
with a set of other phenotypes, and we considered all diplotypes in the 100 regions as traits of 
interest. Most of the regions include multiple clusters with the same starting and ending positions but 
different consensus. We considered all of the clusters in the same region as traits of interest (660 traits 
of interest in total). Regressions were performed on each diplotype cluster separately, so more than 
one cluster may have been tested in the same region.

Retrieval and annotation using the genetic association result from 
Neale Lab
Each of the associations (computed by PHESANT) was validated against the GWAS results published 
by Neale’s lab [http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-​
the-uk-biobank, accessed July 27, 2018]. For each disease in each cluster (according to PHESANT), 
all reported SNPs within the genomic region of the cluster that were reported to be associated with 
the disease (according to Neale’s lab results) were searched and the SNP with the lowest p-value was 
reported.

https://doi.org/10.7554/eLife.81698
http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank
http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-biobank
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Linkage pattern analysis between GWAS and ROH-DICE results
In linkage disequilibrium analysis, D and D′ are commonly used measures to quantify the degree of 
non-random association between alleles at different loci. D measures the difference between the 
observed frequency of a haplotype and the frequency expected under random mating, while D′ is a 
normalized measure of D that considers the allele frequencies at each locus. In this study, we have 
adapted these measures between two loci into a location and an ROH cluster.

D′ between an ROH cluster and an SNP overlapping the cluster was calculated by normalizing the 
D between the ROH cluster membership and alternate allele of the SNP similar to linkage analysis 
between variant sites. Assume pR is the frequency of samples that belong to the cluster, pS is the 
frequency of alternate allele, and pRS is the frequency of samples belonging to the cluster and having 
the minor allele. We calculate pr as 1 − pR and ps as 1 − pS. Finally, the D′ can be calculated by using 
the following formula:

if ‍(D < 0) : D′ = max
(
−pRpS,−prps

)
‍

else: ‍D
′ = max

(
pRpS, prps

)
‍

where ‍D = pRS − pRpS‍.

COVID-19 mortality and ROH diplotypes
Two tables ‘​covid19_​result.​txt’ and ‘​death.​txt’ provided by the UK Biobank were downloaded on July 
24, 2020. The table ‘​covid19_​result.​txt’ contains the test results whether the sample was reported as 
positive or negative for COVID-19. The table ‘​death.​txt’ includes the date of death for samples. In the 
July 24, 2020 release of the table in UK Biobank, 201 British individuals have been reported COVID-19 
positive and died in 2020. Those individuals were considered as cases for mortality analysis. A total 
of 8120 British individuals have been tested for COVID-19. The controls contained the individuals 
who had been tested but no death information was provided for them. We tested all detected ROH 
diplotypes for COVID-19 mortality association (with at least 10 cases) using the chi-square test. For 
the chi-square test, the total number of individuals M corresponds to the number of tested individuals 
for COVID-19 (8120). GMMAT (Hoare, 1961) was used to recalculate the p-value for the diplotype 
with the lowest p-value from the chi-square test (chr4:106318456–106483898) while adjusting for age, 
gender, and genomic relationship matrix (GRM). The GRM was computed using the kinship coeffi-
cients calculated from KING (Hoare, 1961).
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