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Response outcome gates the effect of 
spontaneous cortical state fluctuations on 
perceptual decisions
Davide Reato*†, Raphael Steinfeld†, André Tacão-Monteiro, Alfonso Renart*

Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal

Abstract Sensory responses of cortical neurons are more discriminable when evoked on a base-
line of desynchronized spontaneous activity, but cortical desynchronization has not generally been 
associated with more accurate perceptual decisions. Here, we show that mice perform more accu-
rate auditory judgments when activity in the auditory cortex is elevated and desynchronized before 
stimulus onset, but only if the previous trial was an error, and that this relationship is occluded if 
previous outcome is ignored. We confirmed that the outcome-dependent effect of brain state on 
performance is neither due to idiosyncratic associations between the slow components of either 
signal, nor to the existence of specific cortical states evident only after errors. Instead, errors appear 
to gate the effect of cortical state fluctuations on discrimination accuracy. Neither facial move-
ments nor pupil size during the baseline were associated with accuracy, but they were predictive of 
measures of responsivity, such as the probability of not responding to the stimulus or of responding 
prematurely. These results suggest that the functional role of cortical state on behavior is dynamic 
and constantly regulated by performance monitoring systems.

Editor's evaluation
Reato and colleagues investigated a question that has long puzzled neuroscientists: what features of 
ongoing brain activity predict trial-to-trial variability in responding to the same sensory stimuli? The 
data demonstrate that taking into account behavior on the previous trial (specifically an incorrect 
choice) allows these associations to be seen. This is an important advance in our understanding of 
the relationship between brain state, behavioral state, and performance. Technically, the study is 
convincing, with appropriate and validated methodology in line with current state-of-the-art.

Introduction
Successfully performing any behavior, including the acquisition and processing of sensory informa-
tion to guide subsequent action, requires that the dynamical regimes of neural circuits across the 
whole brain be set appropriately in a coordinated fashion. The activation–inactivation continuum – 
the degree to which the activity of cortical neurons tends to fluctuate synchronously and in phase on 
timescales of hundreds of milliseconds (Berger, 1929; Steriade et al., 1990; Vanderwolf, 2003) – 
and pupil dilation – a measure of cognitive load and arousal (Kahneman and Beatty, 1966; Bradley 
et al., 2008) – are commonly used to label these large-scale dynamical regimes, often referred to 
as ‘brain states’ (Gervasoni et  al., 2004; Castro-Alamancos, 2004; Poulet and Petersen, 2008; 
Reimer et al., 2014; McGinley et al., 2015a; Vinck et al., 2015). What is the relationship between 
cortical state and behavior? Although cortical desynchronization during wakefulness in rodents was 
initially linked to movement during exploration (Vanderwolf, 2003), desynchronization and move-
ment can be dissociated (Reimer et al., 2014; Vinck et al., 2015). In fact, it was demonstrated early 
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that desynchronization can occur under immobility during visual attention (Winson, 1972; Kemp and 
Kaada, 1975), suggesting that desynchronization during waking might signal a state where the animal’s 
cognition is oriented toward the environment (Vanderwolf, 2003). Such state would presumably be 
associated with the ability to perform finer perceptual judgments – a hypothesis consistent with many 
studies showing that the discriminability of neural sensory representations increases monotonically 
with the level of cortical desynchronization (Goard and Dan, 2009; Marguet and Harris, 2011; Pachi-
tariu et al., 2015; Beaman et al., 2017; Kobak et al., 2019). Behavioral studies, however, have not 
generally confirmed this picture. During GO-NOGO sensory detection tasks, performance and arousal 
(which tends to be associated with desynchronization [Reimer et al., 2014; McGinley et al., 2015a]) 
are related, but in a non-monotonic fashion (McGinley et al., 2015a) (but see Neske et al., 2019). 
However, GO-NOGO detection tasks are limited in their ability to decouple sensory discrimination 
and the tendency of the subject to respond, which is relevant since both aspects are expected to be 
associated with changes in brain state. Thus, potentially different relationships between cortical state 
and performance could exist in tasks where responsivity and discrimination accuracy can be decou-
pled. Two-alternative forced-choice (2AFC) discrimination tasks allow a cleaner separation between 
responsivity and accuracy, but two studies using this approach failed to find a clear link between 
desynchronization and perceptual accuracy, pointing instead to a role on task engagement, respon-
sivity, and bias (Waschke et al., 2019 ; Jacobs et al., 2020) (but see Beaman et al., 2017 for effects 
of desynchronization during the delay period of a delayed comparison task). Thus, existing evidence 
suggests that the effects of desynchronization on discriminability at the neural and behavioral levels 
are not fully consistent, raising questions about the functional role of the desynchronized state. Here, 
we suggest a possible explanation for this discrepancy, by showing that the effect of desynchroniza-
tion on accuracy during an auditory 2AFC discrimination task depends strongly on the outcome of the 
previous trial, and is occluded if trial outcome is ignored.

Results
Movement, arousal, and temporal fluctuations in baseline activity
In order to investigate the impact of cortical desynchronization on discrimination accuracy, we recorded 
population activity from the auditory cortex (Figure 1—figure supplement 1A) of head-fixed mice 
while they performed a 2AFC delayed frequency discrimination task (Figure 1A–C, Methods). Elec-
trophysiological recordings were made in an acute configuration, targeting the same location in the 
auditory cortex of each hemisphere for three consecutive days. Neither the number of units, discrim-
ination accuracy, or reaction time (RT) changed significantly across recording sessions in each mouse 
(Kruskal–Wallis one-way analysis-of-variance-by-ranks test, ‍punitsD1−3‍ = 0.23, ‍punitsD4−6‍ = 0.51, ‍paccuracy‍ = 
0.09, ‍pRT‍ = 0.32; Figure 1—figure supplement 1B–D). In addition, we monitored pupil size (PupilS) 
as well as the overall optic flow (OpticF; Figure 1D; Methods) of a video recording of the face of the 
mouse (Figure 1—figure supplement 1E), as a proxy for movement signals known to affect synchroni-
zation (Poulet and Petersen, 2008; Niell and Stryker, 2010; Vanderwolf, 2003) and cortical activity 
(Stringer et al., 2019; Musall et al., 2019; Salkoff et al., 2020).

The dynamical regime of baseline spontaneous activity in the auditory cortex in a period of 2 s 
prior to the presentation of the stimulus was quantified using two statistics: overall firing rate (FR) 
across the population, and degree of synchronization (Synch). In order to obtain a measure of synchro-
nization as independent as possible of FR, we quantified Synch for each baseline period relative to 
surrogates of the spike trains from the same period (thus with equal surrogate FR) but shuffled spike 
times (Figure 1E, F, Methods). This measure is normalized, and would take a value of 1 if neurons 
were statistically uncorrelated and displayed Poisson-like firing. We found that the resulting Synch 
and FR measures were effectively uncorrelated (Figure 1F), to a much larger extent than previously 
used measures of synchronization, such as the coefficient of variation of the multiunit activity (Renart 
et al., 2010; Kobak et al., 2019) (Methods), which displayed negative correlations with baseline FR 
(Figure 1G).

The coordinated fluctuations responsible for Synch are of low frequency, as evident from trial-
to-trial comparison of Synch and the power-spectral density of the MUA (Figure  1H1; Methods). 
In particular, strong desynchronization was associated to a suppression of power in the ∼4–16 Hz 
frequency band relative to a Poisson spike train of the same FR (Figure 1I). Analysis of the local-field 
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Figure 1. Task structure, signals monitored, and quantification of synchrony in baseline activity. (A) Task schematic. 
Head-fixed mice lick at one of two spouts depending on whether the frequency of a pure tone is higher or lower 
than 14 kHz. (B) Temporal sequence of events in a trial. Mice should respond after a delay of 0.5 s. Baseline activity 
is analyzed in a window of 2 s before the presentation of the sound. (C) Discrimination performance. Each dot is 
the proportion of times a mouse reports high in a given recording session to a given sound. Solid curve is a logistic 
regression fit. (D) Signals monitored. Top to bottom are population raster, multiunit firing rate (MUA FR), mean 
optic flow of the face (OpticF), size of the pupil (PupilS), and licks. Dashed vertical lines mark stimulus presentation 
times and green background marks the baseline period we analyze. (E) Method for quantifying synchronization. 
Synch effectively measures the population averaged correlation in the baseline period relative to surrogate data 
with the same number of spikes but randomly placed in the same period of time (Methods). (F) Distribution 

Figure 1 continued on next page
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potential (LFP) was complicated due to the presence of movement artifacts. However, the power of 
the LFP in the ∼4–16 Hz frequency range in baseline periods at the lower end of the OpticF distribu-
tion, where movement was largely absent, was significantly correlated with Synch. For instance, for the 
2.5% trials with the lowest OpticF, a regression of the ‍LFP4−16Hz‍ power on Synch had an ‍R2 = 0.096‍ 
which was highly significant (t-test  ‍p < 0.0001‍).

Although our task is not self-paced and trials arrive in a sequence (Methods), we confirmed that the 
range of pupil sizes and cortical states that we sample during the pre-stimulus baseline is wide, and 
depends only weakly on the inter-trial interval (ITI; Figure 1—figure supplement 1F–J; Discussion).

Before inspecting the relationship between each of the four signals we analyze (OpticF, PupilS, FR, 
and Synch) and discrimination performance, we explored the way in which PupilS and OpticF shape 
baseline neural activity. To do this, we separately regressed FR and Synch on PupilS and OpticF using 
a linear mixed model with recording session as a random effect (Methods). This analysis revealed FR 
to be associated to movement and pupil size (Figure 2A, top). Surprisingly, Synch did not show a 
clear association with either predictor (Figure 2A, bottom), and a tendency to increase with pupil size, 
contrary to previous findings (Reimer et al., 2014; Vinck et al., 2015). Seeking to understand this 
puzzling result, we inspected more carefully the time series for each of the four baseline signals. This 
revealed that, in addition to fast trial-by-trial fluctuations, there exist both clear session trends and 
slow fluctuations spanning many trials, leading to broad auto- and cross-correlations (Figure 2—figure 
supplement 1). These slow components – presumably determined by slow physiological processes 
(Okun et al., 2019) which we do not control – generically lead to correlations between the signals 
even if the trial-by-trial fluctuations that we are interested in are independent (Granger and Newbold, 
1974; Amarasingham et al., 2012; Elber-Dorozko and Loewenstein, 2018; Harris, 2020), which can 
lead to false positive inferences. This is because any two randomly fluctuating variables will generally 
be empirically correlated – even if generated independently – unless the number of independent 
samples from each is sufficiently large, as any measure of dependency has an upward bias for limited 
numbers of samples (Treves and Panzeri, 1995). For time series, the effective number of independent 
samples is their duration in units of the timescale of their temporal correlations. Thus, if the temporal 
correlations of our signals are long lived, and comparable to the session length, the number of effec-
tively independent samples will be low, and any two signals will in general be empirically correlated. 
To address this problem and try to minimize the probability of making false positive inferences, we 
sought to remove the slow fluctuations in our signals. To do this, we first fit a linear regression model 
to each signal, trying to predict its value in each trial as a linear combination of: its own value and the 
value of the other signals and trial outcomes in the previous 10 trials, and the session trend (Methods; 
Figure 2—figure supplement 2A). Then we defined the ‘innovation’ associated to each signal (which 
we denote with the subscript I, e.g., FRI) as the difference between the value of the signal in one trial, 
and its predicted value (Kailath, 1968), that is, as the residual of this linear model.

Different signals could be predicted by past information to different extents, with Synch and PupilS 
being the least and most predictable, respectively (‍r

2
Synch = 0.22 ± 0.04‍ and ‍r

2
PupilS = 0.55 ± 0.13‍; median 

± median absolute deviation [MAD] across recordings; Figure 2—figure supplement 2B, C). Innova-
tions, on the other hand, displayed effectively ‘white’ auto- and cross-correlations (Figure 2C). Thus, 
any associations revealed using innovations as regressors will not be caused by random empirical 

of baseline FR and Synch pooled across all recording sessions. Plots on the sides show rasters and population 
firing rates for four example baseline periods. (G) Identical plot to the one in (F)-middle, but where global 
synchronization is assessed using the coefficient of variation (CV) of the instantaneous population rate (Methods). 
CV and FR are negatively correlated. (H) Power spectrum (Methods) of the four individual example baseline 
periods in (F). (I) Average power spectrum of each of the four quantiles of the distribution of Synch across trials. 
Large values of Synch reflect low-frequency coordinated fluctuations across the population. Inset left: Aggregate 
distribution of Synch values across recordings. Each quantile corresponds to one of the spectra in panel (I). Inset 
right: Relationship between Synch and average MUA power in the 4–16 Hz range.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Histology, stability of the recordings and behavior over multiple sessions and pupil size 
analyses.

Figure 1 continued

https://doi.org/10.7554/eLife.81774


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Reato, Steinfeld et al. eLife 2023;12:e81774. DOI: https://doi.org/10.7554/eLife.81774 � 5 of 26

associations between the slow components of the signals (Granger and Newbold, 1974; Amaras-
ingham et al., 2012; Elber-Dorozko and Loewenstein, 2018; Harris, 2020).

When the analysis in Figure  2A was repeated using innovations, a different picture emerged. 
Although FRI is positively correlated with both OpticFI and PupilSI (Figure  2C), the correlation 
with PupilSI is explained away by the positive correlation between OpticFI and PupilSI themselves, 
revealing a clear positive association only between movement and FR innovations during the baseline 
(‍p < 0.0002‍, bootstrap quantile method [Efron and Tibshirani, 1994], from now on referred to as ‘boot-
strap’; Methods). SynchI is much more weakly correlated with both OpticFI and PupilSI (Figure 2C, D). 
Nevertheless, the analysis revealed a positive association between pupil size and desynchronization 
(‍p < 0.0002‍, bootstrap) – consistent with previous studies (Reimer et al., 2014; Vinck et al., 2015) – as 

Figure 2. Innovations clarify the effect of movement and pupil size on cortical state fluctuations. (A) Linear mixed 
model regression (Methods) of firing rate (FR; top) and Synch (bottom) on movement and pupil size. Graphs 
show values of regression coefficients. Box plots here and elsewhere represent median, interquartile range and 
95% confidence interval (CI) on the bootstrap distribution of the corresponding parameter (Methods). Offset can 
be read from the right y-axis. (B) Example of the process of calculating innovations for the baseline FR of one 
recording session. Top, raw data and prediction of the raw data (Figure 2—figure supplement 2; Methods). The 
innovation FRI (bottom) is the difference (prediction residual) between the two traces in the top. (C) Correlation 
between OpticF, PupilS, FR, and Synch innovations. Diagonal and above, cross-correlations between each of the 
four signals (black, median across recordings; gray, median absolute deviation [MAD]). Below diagonal. For each 
pair of innovations, histogram across recordings of their instantaneous correlation. Triangles mark the median 
across recordings. (D) Identical analysis as panel (A) but using innovations instead of the raw signals.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Slow trends of baseline signals during the session.

Figure supplement 2. Constructing innovations by cross-whitening.

https://doi.org/10.7554/eLife.81774


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Reato, Steinfeld et al. eLife 2023;12:e81774. DOI: https://doi.org/10.7554/eLife.81774 � 6 of 26

well as a rather small but significant (‍p = 0.012‍, bootstrap) positive association between movement 
and synchronization (Figure 2D). For the rest of our study, we seek to explain choice behavior in terms 
of innovations to characterize trial-by-trial relationships between discrimination accuracy and brain 
state (although we also use the raw signals as regressors in control analyses).

Outcome-dependent effect of desynchronization on choice accuracy
We used a generalized linear mixed model (GLMM; Methods) to explain whether each trial was 
correct or an error based on the strength of sensory evidence (Stim) and the four innovations during 
the baseline preceding that trial. We sought to predict whether a choice was correct rather than 
the choice itself (left versus right) so that the potential effect of innovations would represent a main 
effect in the model, rather than an interaction with the stimulus (but see Figure 3—figure supple-
ment 1B). This analysis only considers valid trials (Methods) where the mice made a choice within the 
response window, and thus quantifies the effect of brain state on discrimination accuracy regardless of 
unspecific response tendencies. In order to be able to explain within-session trends, we always include 
a regressor coding the trial number within the session (TrN). Finally, to model possible sequential 
dependencies in choice accuracy, we also included a regressor with the outcome (correct/error) of 
the previous trial (pCorr; only valid previous trials were considered). The analysis revealed a positive 
association between TrN and accuracy (Figure 3A; ‍p = 0.005‍, bootstrap) – reflecting the fact that mice 
tend to become more accurate throughout the session – but none of the four baseline predictors had 
an association with accuracy, consistent with a recent study (Jacobs et al., 2020; Figure 3A; a table in 
Supplementary file 1 lists the complete results of all GLMM fits in the main text). However, the coef-
ficient measuring the effect of the outcome of the previous trial was negative (‍p = 0.006‍, bootstrap), 
suggesting that mice tended to be more accurate after errors (Figure 3A). Indeed, across sessions, 
accuracy was larger after an error (Figure 3B; ‍p = 0.021‍, signrank test, Methods). It is well known that 
errors have an effect on the RT of the subsequent trial (Rabbitt, 1966; Laming, 1979; Danielmeier 
and Ullsperger, 2011), and, although less consistently, accuracy enhancements after an error have 
also been observed (Laming, 1979; Marco-Pallarés et al., 2008; Danielmeier and Ullsperger, 2011). 
Given that errors have an impact on task performance, we reasoned that they might modulate the 
role of spontaneous cortical fluctuations on choice. To test this hypothesis, we performed our analysis 
separately after correct and error trials. The results revealed that, while pupil size and movement still 
had no association with accuracy for either outcome separately (Figure 3C, E), the effect of base-
line neural activity on choice accuracy was indeed outcome dependent (Figure 3C–F). After errors, 
both FR and Synch innovations in the baseline period explain accuracy (Figure 3C; ‍p = 0.0056‍ and 

‍p = 0.0124‍ for FRI and SynchI, respectively; bootstrap).
Mice made more accurate decisions when the baseline activity was higher and more desynchro-

nized, a state we refer to as ‘favorable’ for accuracy after an error. In contrast, baseline activity had no 
clear association to accuracy after correct trials (Figure 3E; ‍p = 0.64‍ and ‍p = 0.22‍ for FRI and SynchI, 
respectively; bootstrap), despite the fact that the GLMM for after-correct choices had approximately 
three times as many trials (which is reflected on the smaller magnitude of the confidence intervals 
[CIs] for this model; Figure 3E). Although this makes it difficult to define a ‘favorable’ state for accu-
racy after correct trials, the median value of the coefficients for both FRI and SynchI in Figure 3E is 
positive, suggesting that, if anything, more accurate choices after a correct trial were preceded by 
more synchronized (and stronger) baseline activity. The lack of effect of baseline activity on accuracy 
unconditional on outcome (Figure 3A) is explained partly by the tendency of baseline fluctuations 
preceding a correct choice to have different signs (relative to the mean) after correct and error trials 
and by the fact that most trials (77%) are correct.

To assess together the effect of baseline FR and Synch innovations on accuracy, we created a 
single predictor for each baseline period whose value was equal to the projection of the (z-scored) 
two-dimensional pair (SynchI, FRI) onto a line of slope −45 deg on this plane (after errors), or 45 deg 
after corrects (Methods). This single predictor takes large positive values when both FR and Synch 
are ‘favorable’ for accuracy for each separate outcome. After errors, the combined effect of FR and 
Synch was 28% stronger than that of either of them separately and highly significant (Figure 3C, right-
most coefficient; ‍p = 0.0006‍, bootstrap), but it was still not significant after correct choices (Figure 3E, 
rightmost coefficient; ‍p = 0.2‍, bootstrap). To more directly quantify the effect of baseline neural 
activity on accuracy, we also computed aggregate psychometric functions for trials where the state of 

https://doi.org/10.7554/eLife.81774
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Figure 3. The effect of spontaneous state fluctuations on accuracy is outcome dependent. (A) Coefficients of a 
generalized linear mixed model (GLMM) fit to the mice’s choice accuracy in valid trials. Accuracy is affected by 
the strength of evidence, the point during the session and the outcome of the previous trial, but none of the four 
signals computed during the baseline explain accuracy. (B) Mean difference in accuracy after errors minus after 
corrects in each of the recording sessions. Triangle, median across sessions. (C) GLMM fit to accuracy computed 
separately after error trials. On the right, we show the distribution of a single coefficient capturing trial-to-trial 
fluctuations in desynchronization and firing rate simultaneously (see text). (D) Psychometric function (logistic fit, 
Methods) of aggregate data across sessions separately for trials with favorable (‍SynchI(z) < 0‍ and ‍FRI(z) > 0‍) and 
unfavorable (‍SynchI(z) > 0‍ and ‍FRI(z) < 0‍) baseline states after a error trials. (E, F) Same as (C, D) but for choices 
after a correct trial. Note that, based on the results in (E), the favorable state after a correct trial is ‍SynchI(z) > 0‍ 
and ‍FRI(z) > 0‍. (G) Schematic illustration of possible relationships between outcome, baseline cortical state 
and accuracy. Left, the association between state and accuracy is spurious and results from a common effect of 
response outcome on these two variables. Middle, epoch hypothesis (see text). An unmeasured variable with 
a timescale of several trials mediates both the effect of state on accuracy and the prevalence of errors. Right, 
response outcome gates the effect of state fluctuations (errors open the gate) on choice accuracy. (H, I) Same as 
(C, E) but conditioned on the outcome of the next, rather than the previous trial.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Robustness of the association between brain state and accuracy.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.81774
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the baseline was favorable or unfavorable, separately after correct and error trials. The slope of the 
psychometric function was 68% larger in a favorable baseline (‍SynchI(z) < 0‍ and ‍FRI(z) > 0‍) after errors 
(Figure 3D; ‍p = 0.04‍, permutation test, Methods). There was no visible effect of a favorable state after 
a correct trial (during which the cortex was more synchronized) on the aggregate psychometric func-
tion (Figure 3F, ‍p = 0.88‍, permutation test).

We tested the robustness of this finding in various ways. The outcome dependence of the effect 
of baseline fluctuations on accuracy was qualitatively similar when assessed using using parametric 
methods for the calculation of CIs (Figure 3—figure supplement 1A, Methods). Results were also 
consistent when predicting trial-by-trial choice (as opposed to accuracy; Figure 3—figure supple-
ment 1B, Methods). Choice predictions allowed us to test whether cortical state has an effect of 
choice bias, as some authors have observed previously (Waschke et al., 2019). In our dataset, cortical 
state was only predictive as an interaction term (i.e., it had an effect on sensitivity, not criterion), and 
only after errors (Figure 3—figure supplement 1B). Considering recording sessions as random effects 
nested within mice also gave similar results (Figure 3—figure supplement 1C).

In GO-NOGO detection tasks, the effect of arousal on accuracy is sometimes non-monotonic 
(McGinley et al., 2015a). To test for the possibility of non-monotonicity in the relationship between 
FRI and SynchI and accuracy we included quadratic terms in our predictive models (Figure 3—figure 
supplement 2A). The presence of quadratic terms did not alter the finding in Figure 3C, E. The only 
significant quadratic coefficient was the one for FRI after errors, revealing a monotonic but acceler-
ating dependence of accuracy on FRI (Figure 3—figure supplement 2B). Our probe insertion strategy 
places the shanks of the silicon probe in a coronal plane, with each shank roughly parallel to the 
cortical layers (Figure 1—figure supplement 1A). We used this arrangement to assess whether the 
results in Figure 3C, E held when defining measures of cortical state (FRI and SynchI) using neurons 
recorded in the three most superficial (deep) shanks, which will largely be located in the most super-
ficial (deep) cortical layers. Using these putatively superficial or deep neural populations (fraction of 
superficial neurons relative to the total 0.55 ± 0.08, median ± MAD) produced a similar general pattern 
of results as the aggregate result in Figure 3C, E (Figure 3—figure supplement 2C, D), although 
the magnitude of the coefficients associated to the FRI and SynchI predictors was weaker, presumably 
because the estimation of cortical state suffers from using neural populations of approximately half 
the size. Finally, in terms of the time window used to define the baseline period, the predictive power 
of FRI and SynchI on accuracy degraded gradually if the window became too small (0.5 or 1 s instead 
of 2 s) or moved away from stimulus presentation ([−4 −2] s instead of [−2 0] s relative to stimulus 
onset), suggesting that the baseline state should be defined and can change in a timescale of seconds 
(Figure 3—figure supplement 3).

What exactly do the results in Figure 3A–F imply for the relationship between spontaneous base-
line activity and choice? An explanation of these results as a spurious correlation caused by the joint 
influence of the outcome of the previous trial on accuracy and on baseline activity in the current trial 
(Figure 3G, left) can be ruled out, since the outcome of the previous trial is fixed in the analyses of 
Figure 3C, E. Rather, our results suggest that errors gate, or enable, the influence of spontaneous 
fluctuations on choice (Figure 3G, right). However, it is still possible the gating is not performed by 
errors per se, but rather by some other quantity that tends to covary in time with errors. In other 
words, there might be epochs within the session during which spontaneous cortical fluctuations have 
an effect on accuracy and during which errors are more frequent (Figure 3G, middle). We refer to 
this as the ‘epoch hypothesis’. The epoch hypothesis can be tested under the assumption that the 
epochs last a few trials, in which case the relationship between baseline activity and accuracy should 

Figure supplement 2. Generalized linear mixed model (GLMM) analysis including quadratic terms and 
differentially for superficial and deep recording shanks.

Figure supplement 3. Robustness of the results on the effects of cortical state on accuracy.

Figure supplement 4. Lack of association between slow cortical state fluctuations and accuracy.

Figure supplement 5. Behavioral predictions including slow trends.

Figure supplement 6. Outcome dependence of the effect of cortical state on stimulus and choice discriminability 
from evoked responses.

Figure 3 continued

https://doi.org/10.7554/eLife.81774
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be approximately symmetric around the time of an error. To test if this is the case, we repeated the 
analysis in Figure 3C, E, but instead of conditioning on the outcome of the previous trial, we condi-
tioned on the outcome of the next trial. If the epoch hypothesis is true, we would expect for FRI and 
SynchI to explain accuracy in a trial when the next trial is an error, just like in Figure 3C. In contrast, we 
found that baseline fluctuations have no predictive power on the accuracy of a trial regardless of the 
outcome of the next trial (Figure 3H1). If trial ‍n + 1‍ is correct, the influence of SynchI and FRI on the 
accuracy in trials ‍n‍ is similar to that observed if trial ‍n − 1‍ is correct: not significantly different from zero 
but with a tendency toward higher accuracy when the baseline is more synchronized (Figure 3E, I ). In 
contrast, baseline activity is clearly predictive of choice accuracy in trial ‍n‍ only if an error takes place in 
trial ‍n − 1‍, but not on trial ‍n + 1‍. These results are inconsistent with the idea that errors mark epochs of 
high correlation between cortical fluctuations and accuracy, and support instead the hypothesis that 
this correlation is triggered by the errors themselves (Figure 3G, right).

By construction, slow fluctuations in the baseline signals do not contribute to the effects in Figure 3, 
but the four ‘raw’ baseline signals do display such slow fluctuations (Figure 2—figure supplement 1). 
We investigated if slow fluctuations were associated to discrimination accuracy in two different ways. 
First, we smoothed, linearly detrended and z-scored the raw baseline FR and Synch time series and the 
corresponding accuracy in those trials (Figure 3—figure supplement 4A, Methods), and computed 
their cross-correlation. We observed no correlations between Synch and accuracy (Figure 3—figure 
supplement 4B; ‍p = 0.94‍, signrank test) and a trend toward epochs of high performance to precede 
epochs of low baseline FR (Figure  3—figure supplement 4B; ‍p = 0.1‍, signrank test). Second, we 
directly ran our predictive models conditioned on the outcome of the previous trial (Figure  3C, 
E) but using the raw signals, instead of their innovations. The predictive power of the regressors 
corresponding to the raw signals are qualitatively similar to those corresponding to their innovations 
(Figure 3—figure supplement 5A,B and E,F; Figure 3C, E). This suggests that, in our experiments, 
slow trends in cortical state, pupil size or facial movement are not associated with discrimination accu-
racy in a way that is consistent across recording sessions.

Finally, we studied the sound-evoked activity of the recorded neurons (in a [0 150] ms window rela-
tive to stimulus onset) to assess whether baseline activity and previous trial outcome shaped the repre-
sentation of sounds by neurons in the auditory cortex or its relationship to choice (Figure 3—figure 
supplement 6A). In order to be able to aggregate data across sessions, we first defined a ‘sound axis’ 
in each recording separately by predicting the sound category (whether a sound required a lick to 
either of the two spouts) using cross-validated regularized logistic regression (Methods). Because the 
overall performance in the task is above chance, stimulus and choice are correlated, so we calculated 
the sound axis separately for each choice. The same exact procedure was used to define a ‘choice 
axis’ separately for each stimulus. We then obtained a scalar, single-trial measure of stimulus or choice 
discriminability by projecting the high-dimensional evoked activity in that trial on the corresponding 
axis (Figure 3—figure supplement 6B). Next, we ran a GLMM (using recording session as a random 
effect) to predict the stimulus category or choice on aggregate across experiments, separately after 
each outcome. An effect of baseline state on sound-evoked stimulus or choice discriminability can be 
detected as a non-zero interaction term between the stimulus or choice projection regressors and FRI 
or SynchI (Figure 3—figure supplement 6C).

Regarding stimulus discriminability, there was a clear main effect of the stimulus projection regard-
less of outcome (Figure 3—figure supplement 6D), suggesting that the stimulus category could be 
decoded from the evoked responses of the recorded neurons. None of the interaction terms were 
significantly different from zero after correct trials. After errors, the interaction term between between 
FRI and the stimulus projection was significantly positive (‍p = 0.002‍; conditional mean squared error 
of prediction [CMSEP] method; Methods). The median of the SynchI interaction was negative, but it 
was not significant (‍p = 0.4‍; 95% CI = [−0.32,0.13]). Thus, consistent with the results in Figure 3C, E, 
the favorable state for accuracy after errors is also associated to better stimulus discriminability in the 
auditory cortex, although, at the level of SynchI, the effect does not reach significance (Figure 3—
figure supplement 6D).

The same type of analysis revealed that there was no main effect of the choice projection regard-
less of outcome (Figure  3—figure supplement 6E), indicating that choice-related signals in the 
evoked activity of the recorded neurons in our dataset were too weak to be detected. The fact that 
choice-related signals in sensory areas are typically small (Crapse and Basso, 2015), and the fact that 
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the choice axis needs to be estimated experiment by experiment using small nubers of trials (specially 
after errors [median of 13–14 errors per experiment per stimulus category], which is were Figure 3C 
suggests choice-related signals might be present), could explain this result.

Cortical fluctuations are only weakly affected by trial outcome
We next sought to understand whether the selective influence of baseline activity on choice after 
errors (Figure 3) is due to a particular pattern of cortical state fluctuations that is only evident after 
the mouse makes a mistake. For instance, it is possible that desynchronization is always conducive to 
better performance, but that sufficient levels of desynchronization are only attained after errors. We 
explored this question by quantifying the extent to which trial outcome shapes cortical state fluctua-
tions (Figure 4A). To accomplish this, it is necessary first to modify the way we calculate the baseline 
signal’s innovations, as they are defined to be automatically uncorrelated with the outcome of the 
previous trial (Methods, Figure 2—figure supplement 2). Thus, we simply excluded previous-trial 
outcome from the linear model used to predict the baseline signals in each trial, before calculating 
the residuals (Methods).

The values of SynchI and FRI observed after an error or a correct trial largely overlap (Figure 4B), 
and the joint distribution of SynchI and FRI across recordings are very similar (Figure 4C). We first 
quantified these effects calculating the signed discriminability index ‍d′‍ (correct minus errors) of the 
distributions of SynchI and FRI for each recording. Across recordings, neither of these two measures 
were significantly different from zero (‍p = 0.26‍ and ‍p = 0.13‍ for SynchI and FRI, respectively; sign-
rank test). As an alternative, more sensitive approach to understand which features of the baseline 
contained information about the outcome of the previous trial, we used a GLMM to decode whether 
the outcome of trial ‍n − 1‍ was correct, using as regressors the four innovations in the baseline of trial 
‍n‍, as well as the session trend TrN. Previous-trial outcome is best explained by the PupilSI in the subse-
quent baseline (Figure 4E). This is intuitively clear, as correct trials are followed by licking, which is 
associated to pupil dilation (Cazettes et al., 2021), a relationship that becomes obvious when plotting 
the cross-correlation function between the accuracy and PupilS time series (Figure 4F). In addition 
to the pupil size, FRI is also affected by the outcome of the previous trial, being smaller than average 
after correct trials (consistent with the small negative median value of ‍d

′
FRI‍ in Figure 4D and with the 

Figure 4. Effect of outcome on baseline activity. (A) Schematic illustration of the question addressed in this figure. 
(B) Distribution of FRI (left) and SynchI (right) after each of the two outcomes for an example session. (C) Joint 
histogram of FRI and SynchI on aggregate across recordings after a correct (left) and after an error (right) trial. (D) 
Discriminability index ‍d′‍ between the distributions of FRI and SynchI (such as those in (B)) after each of the two 
outcomes. Each gray dot corresponds to one recording, the colored dot is the example recording in (B), and the 
large black circle is the median. (E) Coefficients of a generalized linear mixed model (GLMM) fit to the outcome 
(correct or error) of the mice’s choices on trial ‍n − 1‍ using as regressors TrN and innovations from the baseline 
of trial ‍n‍. (F) Cross-correlation function between the raw outcome and PupilS time series (Methods). Black is the 
median across recordings, gray is the median absolute deviation (MAD). Throughout this figure, innovations were 
modified so as to exclude previous outcomes in the calculations of the residuals (Methods).
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negative trend in Figure 3—figure supplement 4B). SynchI could not be used to predict the outcome 
of the previous trial. Overall, these results are not consistent with the effects in Figure 3 being due to 
the presence of unique values of FR and Synch exclusively after errors. Errors do increase the FR in the 
next baseline period, but FR distributions after the two outcomes are largely overlapping. In addition, 
and somewhat unexpectedly, trial outcome has no effect at all on baseline synchrony.

Effect of spontaneous fluctuations on measures of responsivity
Arousal and desynchronization have been shown to modulate measures of responsivity (McGinley 
et al., 2015a; Waschke et al., 2019; Jacobs et al., 2020). There are two different facets to responsivity 
in a discrimination task. One relates to the tendency of the subject to respond at all to a presented 
stimulus, which can be taken as a measure of task engagement. The other is RT, the time (since stim-
ulus onset) it takes for the subject to respond. In a delayed response task like ours, there is additionally 
the possibility for mice to respond prematurely, failing to wait for the go signal at the end of the delay 
period (Figure 5A). In our task, most trials were valid (either correct or errors, 70%, Methods), but 
there were also premature trials (7%) and ‘skips’ where the mice did not respond (23%; Figure 5B).

Choice accuracy varied as a function of RT (Figure 5C). Very premature responses where most 
inaccurate. Accuracy tended to increase with RT for premature responses during the delay period, 
and then remained approximately constant within the valid response window and beyond. These 
results suggest that premature and valid responses might be differentially regulated. We explored 

Figure 5. Effect of cortical state fluctuations on premature responding and engagement. (A) Definition of 
premature responses and skips. (B) Aggregate across sessions of the distribution of reaction times (RTs) in our task. 
Dashed lines indicate the response window in which a correct response was rewarded (valid trials). Trials where a 
response is not produced before the dotted line are defined as skips. Top, colors used to signal each trial type in 
(B). (C) Accuracy (median ± median absolute deviation [MAD] across recordings) conditional on RT. (D) Coefficients 
of a generalized linear mixed model (GLMM) fit to explain whether a given trial is premature or valid. Magnitude 
of the offset (‍β0‍) should be read of from the right y-axis. (E) Probability of not responding to the stimulus (skip) in 
an example session. Skips tend to occur in bouts and are more frequent toward the end of the session. (F) Same as 
(D) but for a GLMM aimed at explaining if a particular trial is a skip or valid.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Explaining reaction time (RT) in valid trials.

https://doi.org/10.7554/eLife.81774
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this possibility by trying to explain whether a trial would be premature or valid using a GLMM. Unlike 
Figures 3 and 4, which only deal with transitions between valid trials, here the previous trial could 
be either valid, premature, or a skip, and we thus included corresponding regressors in the GLMM 
(Methods). The most reliable predictor of a premature trial was TrN (Figure 5D; ‍p < 0.0002‍, boot-
strap), signaling a decreasing tendency to respond prematurely as the session progresses, paralleling 
changes in motivational state (Berditchevskaia et al., 2016). Everything else kept equal, premature 
trials also happened more frequently after correct trials (‍p = 0.03‍, bootstrap), in the presence of move-
ment in the baseline (‍p = 0.03‍, bootstrap), and when cortical activity was more synchronized, although 
this last effect did not reach significance (‍p = 0.09‍, bootstrap). Interestingly, baseline periods with 
contracted pupil were predictive of premature responses (‍p = 0.02‍, bootstrap). Although this finding 
might seem at odds with previously reported associations between states of dilated pupil and impul-
sivity (McGinley et al., 2015a; Jacobs et al., 2020), a large body of work has linked pupil dilation 
with the ability to exercise inhibitory control (Wang et al., 2015; van der Wel and van Steenbergen, 
2018), which is needed in order to avoid responding prematurely (Discussion).

Although RT did not primarily reflect decision time and was instead constrained by the delay period 
of the task (Figures 1A, B and 5A), we nevertheless used a similar approach to explore a possible 
effect of cortical desynchronization on RT. Only movement innovations were positively associated 
with RT (‍p = 0.01‍, bootstrap; Figure 5—figure supplement 1). Somewhat surprisingly, we observed 
evidence of post-error slowing (Rabbitt, 1966; Laming, 1979; Danielmeier and Ullsperger, 2011), 
suggesting that the connection between errors and subsequent RT is so strong that it survives the 
constraints in RT imposed by a delayed response task. Just as with our models of choice accuracy, the 
predictive power of all regressors in models of RT was qualitatively similar using the raw signals or 
their innovations (Figure 5—figure supplement 1B, C).

Finally, we examined engagement. As commonly observed, mice underwent periods of disen-
gagement during behavioral sessions (Ashwood et al., 2022; Jacobs et al., 2020), defined as bouts 
of consecutive trials during which the mice did not respond to the stimuli (‘skips’, Figure 5A,E). We 
attempted to predict whether a trial would be a skip or valid using identical regressors as for prema-
ture responses. Opposite to premature trials, skips were more frequent at the end of the session 
(Figure 5F, ‍p < 0.0002‍, bootstrap), and were, everything else kept equal, more frequent after skips 
and less likely after correct trials. Of the four signals in the baseline, only OpticFI had a positive signif-
icant association with skips (Figure 5F; ‍p = 0.0006‍, bootstrap), suggesting that mice are more likely to 
perform facial movements while they are distracted from the task. FR and Synch innovations had no 
explanatory power for skips (‍p = 0.19‍ and ‍p = 0.90‍ for FRI and SynchI, respectively; bootstrap). Thus, 
cortical desynchronization innovations had no association with engagement for our mice (Figure 5F). 
As for choice accuracy, we repeated our analysis using the raw baseline signals, instead of their inno-
vations, in predictive models of premature responses or Skips. Again, we found the results were very 
similar with or without innovations (Figure 3—figure supplement 5), suggesting no consistent asso-
ciations across recording sessions between the slow components of the baseline signals and behavior.

Discussion
Our main finding is that the effect of spontaneous cortical fluctuations on perceptual accuracy is only 
evident after errors, with mice making more accurate choices after errors when baseline activity in 
the auditory cortex was higher and more desynchronized (Figure 3C–F). This outcome dependence 
could not be explained through the existence of epochs where cortical fluctuations are linked to 
accuracy and where errors are simultaneously more prevalent (Figure 3H), nor through the presence 
of a particular baseline state favorable for accuracy found only after errors (Figure 4). Instead, errors 
appear to permit baseline fluctuations to become associated with choice accuracy, consistent with a 
gating role. Discrimination accuracy was not associated to pupil dilation or facial movement during 
the baseline, but these two signals did show associations with measures of responsivity. Pupil dilation 
predicted the ability of the mice to withhold responding during the delay period, an ability which 
tended to also be associated with desynchronization (although not significantly, Figure 5D). Facial 
movement clearly predicted whether the mice would disengage in a particular trial (Figure 5F) and 
also, to a smaller extent, premature responding (Figure 5D), whereas baseline neural activity did not 
predict engagement (Figure 5F).

https://doi.org/10.7554/eLife.81774
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A possible limitation of our study is that our recording strategy did not allow us to quantify the 
spatial resolution to the brain–behavior relationships we describe. We recorded from the same mice 
during several consecutive days using different penetrations (targeted to the same location in the 
auditory cortex; Methods), which precluded the histological reconstruction of the tracts left by the 
silicon probe in most recording sessions. However, previous work suggests that, at least in rodents, 
dynamical states associated with specific patterns of choice are shared across large regions of the 
cortex (Jacobs et al., 2020).

Another possible concern is that our task is not self-paced, and each trial is followed by another 
after a period of 3–12 s, depending on outcome (Methods). The corresponding sequence of stimuli 
might ‘over arouse’ the mice, that is, preventing us from sampling a wide range of cortical states and, 
in particular, to sample periods of low arousal. To investigate whether this is the case, we evaluated 
how the distributions of pupil size, FR and Synch depend on the ITI. For all ITIs, the distribution of the 
pupil had at least 25% of its probability mass for pupil sizes lower than 20% of its minimum within-
session value (Figure  1—figure supplement 1H), suggesting that constricted pupils are broadly 
sampled in our task regardless of the ITI. Furthermore, the range of the pupil size distribution was 
constant for ITIs longer than 9 s (quantile linear regression of 2.5 and 97.5 percentiles of the pupil 
against ITI; 95% CI2.5 = [−0.32 0.54]; 95% CI97.5 = [−0.03 1.34]; bootstrap), implying that the pupil size 
distribution reaches its steady state at ITIs of approximately 10 s and that longer ITIs will not lead to 
further changes. A similar analysis on the two measures of cortical state revealed that the distribution 
of both FR and Synch did not change as a function of ITI (Figure 1—figure supplement 1I). Finally, 
we compared the shape of the pupil size distribution (identically pre-processed and normalized) in our 
task and in a foraging task we have described previously (Cazettes et al., 2021), where trials are self-
paced and mice run in a treadmill. Compared to our task, the pupil distribution in the treadmill task 
has more mass at the dilated end, coming from periods of locomotion. However, this is at the expense 
of less mass at intermediate pupil sizes: the constricted end of the pupil distribution is completely 
overlapping across the two tasks (Figure 1—figure supplement 1J). In summary, although the extent 
to which our findings depend on the specific features of our task is an empirical question that will 
need to be addressed in future studies, these analyses suggest that the parameters of our task do not 
particularly restrict the range of cortical states or pupil-linked arousal that we sample.

There is renewed awareness (Elber-Dorozko and Loewenstein, 2018; Harris, 2020) that observed 
covariations between neural activity and behavior might be spurious, in the sense of reflecting ‘small 
sample’ biases when slow trends are present in predictors and prediction targets (Granger and 
Newbold, 1974). Such slow trends are ubiquitous (since many physiological processes vary slowly) 
and, indeed, the physiological and behavioral signals we analyzed all displayed slow trends of varia-
tion across the recording session (Figures 3–5, Figure 2—figure supplement 1A) as well as auto- and 
cross-correlations spanning several trials (Figure 2—figure supplement 1B). We attempted to avoid 
this problem by regressing the behavior of the mice on pre-processed versions of the baseline signals 
that were cross-whitened (Methods, Figure 2—figure supplement 2) in such a way that they did not 
display any temporal correlations (with themselves or with each other) across trials (Figure 2B, C), 
which we called innovations. Results obtained using innovations reflect associations that are taking 
place between the fast, trial-by-trial components of the baseline signals and behavior. For complete-
ness, however, we also conducted our analyses using the raw baseline signals (Figure  3—figure 
supplement 5, Figure  5—figure supplement 1). As long as the session trend was included as a 
regressor in the predictive models, these two approaches gave similar results, suggesting that all the 
brain–behavior relationships in our dataset which are systematic across recording sessions, take place 
between the fast components of the measured signals. Considering predictive models with either 
temporally uncorrelated or the raw regressors can provide information about the timescale at which 
the observed brain–behavior relationships are taking place. In particular, the difference between the 
magnitude of the fixed component of a given regression coefficient without or with innovations is a 
measure of the systematic association between the slow components of the corresponding regressor 
and the output across sessions. In our dataset, these slow associations are marginal.

What can be the mechanistic implementation of the outcome-dependent gating of cortical state 
fluctuations on choice? The fact that the coupling takes place only after errors suggests the involve-
ment of anterior cingulate and medial frontal brain areas, which are associated with performance 
monitoring and cognitive control (Botvinick et  al., 2001; Ridderinkhof et  al., 2004; Ullsperger 
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et al., 2014). The relationship between errors and cognitive control is well established (Botvinick 
et al., 2001; Ullsperger et al., 2014), and probably arises both through the effect of errors on motiva-
tion (Botvinick and Braver, 2015) (errors by definition lower the local reward rate) and on surprise. In 
our task, errors signal deviations from an expectation, as most trials are correct, and prediction errors 
are believed to be important for the recruitment of performance monitoring (Notebaert et al., 2009). 
In fact, similar brain systems appear to be recruited after mistakes and after surprising outcomes 
(Wessel et al., 2012).

A recent study characterized the role of a projection from the anterior cingulate cortex (ACC) to the 
visual cortex (VC) on performance monitoring in the mouse, showing that post-error increases in perfor-
mance in a visual attention task can be mediated by this projection (Norman et al., 2021). Although 
the authors did not interpret their findings in the context of modulations in cortical state, there are 
interesting parallels between their results and our findings. Optical pulsatile activation (30 Hz) of the 
ACC to VC projection resulted in decreases in low-frequency LFP power (consistent with a decrease in 
our Synch measure, Figure 1H1) and increases in high-frequency power (consistent with an increase 
in FR; Yizhar et al., 2011; Guyon et al., 2021) in the VC – akin to our favorable state for accuracy 
after errors. Interestingly, a behavioral effect of either excitation or suppression of this projection was 
only observed when the manipulation was performed in the baseline period after errors, so the effect 
of the manipulation in Norman et al., 2021 is also gated by previous-trial outcome. These findings 
suggest that the favorable state for accuracy after errors we identified might signal the successful 
recruitment of performance monitoring frontal networks (which for the auditory modality comprise 
the ACC and also premotor cortex [Zhang et al., 2016; Sun et al., 2022]). After correct trials, the link 
between baseline fluctuations and medial frontal areas might be weaker, or might be intact, but the 
corresponding top-down projections appear ineffective (Norman et al., 2021), which would explain 
the absent relationship between baseline fluctuations and choice accuracy that we see after correct 
trials. This outcome dependence of top-down influence, which potentially explains our results and 
those of Norman et al., suggests that errors produce changes in functional connectivity. The thalamus 
has recently been suggested to be important for this function (Nakajima and Halassa, 2017), and 
is also an important and necessary structure in the performance monitoring network (Seifert et al., 
2011; Peterburs et al., 2011; Ullsperger et al., 2014), which projects to the ACC (Seifert et al., 
2011). Changes in the activity of the local ACC network have also been suggested to gate functional 
connectivity between sensory and motor ACC ensembles (Kim et al., 2021). Finally, neuromodulatory 
systems, which are engaged by prediction errors and negative outcomes (Hollerman and Schultz, 
1998; Gardner et al., 2018; Fischer and Jocham, 2020; Danielmeier et al., 2015) are likely to coor-
dinate large-scale changes in brain-wide functional connectivity.

Although the effect of cortical fluctuations on both choice accuracy (Figure 3) and stimulus discrim-
inability (Figure  3—figure supplement 6) changes after errors, the nature and range of cortical 
fluctuations themselves is only weakly affected by outcome (Figure 4). This suggests that cortical 
synchronization and FR are correlates of a number of distinct physiological processes. In fact, there 
is substantial evidence that this is the case, as cortical fluctuations are shaped by neuromodulation 
(mainly cholinergic [Goard and Dan, 2009; Chen et al., 2015; Reimer et al., 2016]), locomotion and 
arousal (McGinley et al., 2015a; Vinck et al., 2015) and, specially for the auditory cortex, motor 
activity (Schneider et al., 2014). The effect of spontaneous fluctuations on evoked sensory responses 
and on behavior is thus likely to be context dependent, reflecting the differential engagement of 
these diverse brain systems in different situations.

Our work complements previous characterizations of the role of brain state using detection 
GO-NOGO tasks. McGinley et al., 2015a found a non-monotonic effect of pupil size and synchroniza-
tion on performance in an auditory detection paradigm for mice, a pattern often observed (McGinley 
et al., 2015b; Yerkes and Dodson, 1908; but see Neske et al., 2019). In studies using sensory detec-
tion tasks for human subjects, another consistent finding is a relationship between electroencephalo-
gram (EEG) power in the alpha range and responsiveness (Ergenoglu et al., 2004; Iemi et al., 2017; 
Samaha et al., 2020) (subjects are less responsive when alpha power in the pre-stimulus baseline is 
higher). 2AFC discrimination tasks and GO-NOGO detection tasks, however, place different require-
ments on the subject and, in particular, differ on the extent to which variations in overall responsivity 
affect task performance. As such, it might be expected that the relationship between brain state and 
performance in these two types of psychophysical paradigms differs. Consistent with this idea, alpha 
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power in the pre-stimulus baseline consistently lacks association with choice accuracy in discrimination 
tasks (Ergenoglu et al., 2004; Iemi et al., 2017; Samaha et al., 2020). Nevertheless, Waschke et al., 
2019 found an inverted-U relationship between pupil size and choice accuracy in a 2AFC pitch discrim-
ination task performed by human subjects, consistent with results in sensory detection tasks. Beaman 
et al., 2017 found that monkeys were more accurate in a 2AFC delayed visual discrimination task if 
activity in the delayed period was more desynchronized and that, in this state, the comparison stim-
ulus was more discriminable, consistent with our results after error trials (Figure 3C, Figure 3—figure 
supplement 6). The effect of cortical state on accuracy in this study was evident, however, regardless 
of the outcome of the previous trial. This could reflect the fact that primates, by default, engage 
cognitive control to solve the delayed visual discrimination task. Waschke et al., 2019 did not find 
a positive relationship between auditory cortex desynchronization and discriminability (instead, they 
found an inverted-U relationship between desynchronization and bias). Regarding work in rodents, 
another recent study by Jacobs et al., 2020 examined the relationship between cortical state fluctu-
ations and performance in a 2AFC visual discrimination task for mice. Our results are consistent with 
theirs regarding the lack of effect of cortical state on accuracy when trial outcome is not considered 
(Figure 3A), but the outcome-dependent relationship between cortical state fluctuations and accu-
racy which we revealed was not addressed in this study.

Overall, our results and those from previous studies suggest that the relationship between brain 
state during the pre-stimulus baseline and performance is more subtle during discrimination than 
during detection. These studies, however, are heterogeneous, involving different species (few reports 
exist, for instance, on brain-state modulation of discrimination accuracy in 2AFC tasks in rodents) and 
methods for assessing brain state. Although we believe that measures of desynchronization based 
on absence of low-frequency (delta) power should be consistent with each other, whether derived 
from spikes, calcium imaging, LFP or EEG (Whittingstall and Logothetis, 2009; Figure 1I), different 
species and tasks, and even subtle task differences in the case of rodents, might lead to different 
results. Jacobs et  al., 2020, for instance, found cortical desynchronization to be associated with 
engagement, whereas we did not (Figure 5F). This discrepancy might be due the different behavioral 
state of the mice in both studies before Skip trials. For our mice, facial movement (OpticF) during the 
baseline is a significant predictor of Skips (Figure 5F, Figure 3—figure supplement 5H), signaling 
that mice move their faces more than average while they are distracted and disengaged, whereas 
mice in the Jacobs et al., 2020 study had a no-movement trial-initiation condition.

Although we found no relationship between baseline pupil size or synchronization and Skip proba-
bility (Figure 5F), both of these baseline signals where associated with the probability of a premature 
response, which were more likely when the baseline was more synchronized and the pupil was smaller 
(Figure 5D). This is interesting given that, in tasks without a delay period, it is pupil dilation (McGinley 
et al., 2015a) and desynchronization (Jacobs et al., 2020) that tend to be associated with faster 
RTs and ‘false alarms’. On the other hand, the result is expected given the well-known association 
between pupil dilation and inhibitory control (van der Wel and van Steenbergen, 2018). In an anti-
saccade task, for instance, it was found that pupil size was bigger before correct anti-saccades than 
before incorrect pro-saccades in anti-saccade trials (Wang et al., 2015). That a diversity of cognitive 
processes converge on pupil dilation is consistent with its dependence on different neuromodulatory 
systems (Joshi et al., 2016; Reimer et al., 2016; Cazettes et al., 2021). In tasks with a delay period, 
explanatory accounts of pupil dilation based on distractability or exploration (Gilzenrat et al., 2010; 
Aston-Jones and Cohen, 2005) and cognitive control (Kahneman and Beatty, 1966; van der Wel 
and van Steenbergen, 2018) appear to make opposite predictions regarding responsivity. In our 
task, processes associated with control seem to have a stronger hold on the pupil signal.

Our results, together with those from previous studies (Jacobs et al., 2020), demonstrate that 
mice can sustain high-level discrimination performance relatively independently of cortical synchroni-
zation (in our case after correct trials). What general conclusions can be derived from these findings 
regarding the relationship between cortical state and sensory discrimination accuracy? In addressing 
this question, we first note that, in humans, good levels of performance can be obtained in well 
rehearsed tasks, with high degrees of automaticity and in the presence of frequent feedback – exactly 
the conditions present in psychophysical tasks like ours – in the absence of the kind of mental effort 
associated with focused attention (Harris et al., 2017; Gold and Ciorciari, 2020). These ‘flow’ states, 
in which subjects experience dissociation and lack of self-consciousness, are thought to arise when 
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skills and demand are matched (Csikszentmihalyi, 1990). Interestingly, brain structures implicated in 
performance monitoring and engaged by task errors, such as the ACC and medial prefrontal cortex 
(Botvinick et al., 2001; Ullsperger et al., 2014; Norman et al., 2021), are downregulated during 
flow (Ulrich et al., 2016; McGuire and Botvinick, 2010). We hypothesize that, when discriminating 
simple sensory stimuli, mice might operate in a behavioral state equivalent to ‘flow’ during streaks 
of correct trials, with different brain systems sustaining performance in this state compared to the 
behavioral state prevalent after errors. Thus, unlike the hypothesis advanced in the introduction, good 
performance in sensory discrimination might not necessitate a state of elevated top-down control 
where cognition is oriented toward the environment, and might instead also be possible in flow-like 
states characterized by effortless automaticity. Our results suggest that, in these states, cortical state 
fluctuations in sensory areas are not relevant for accurate choices.

Materials and methods
All procedures were reviewed and approved by the Champalimaud Centre for the Unknown 
animal welfare committee and approved by the Portuguese Direção Geral de Veterinária (Ref. No. 
6090421/000/000/2019). All experiments were performed using male C57BL/6J mice that were 
housed on a 12-hr inverted light/dark cycle.

Head bar surgery
During induction of anesthesia, animals (6–8 weeks of age, 20–22 g body weight) were anesthetized 
with 2–3% (volume in O2) isoflurane (Vetflurane, Virbac) and subsequently mounted in a stereotactic 
apparatus (RWD Life Science) on a heating pad (Beurer). Once animals were stably mounted, isoflu-
rane levels were lowered to 1–1.5% and the eyes were covered with ointment (Bepanthen, Bayer 
Vital). The head was shaved and the scalp cleaned with betadine. A midline incision was performed to 
expose lambda and bregma, which were subsequently used to align the skull with the horizontal plane 
of the stereotactic frame by measuring their position with a thin glass capillary (Drummond Scientific). 
The skull anterior of bregma was exposed by cutting a small area of skin. The exposed area was 
cleaned with betadine and slightly roughened by scraping it with a surgical blade (Swann-Morton). 
Subsequently, the skull was dried with sterile cotton swabs and covered with a thin layer of super glue 
(UHU). To further increase long-term stability, four 0.9-mm stainless steel base screws (Antrin Minia-
ture Specialties) were placed in the skull. The exposed skull and base screws were then covered with 
dental cement (Tap2000, Kerr). A custom designed head bar (22 × 4 × 1 mm, aluminum, GravoPlot) 
was lowered into the dental cement while still viscous until the head bar was in contact with the base 
screws. Subsequently, an extra drop of dental cement was applied to the center of the head bar in 
order to fully engulf its medial part. The remaining skin incision along the midline was then sutured. 
The animals were injected with buprenorphine (opioid analgesic, 0.05 mg/kg) into the intraperitoneal 
cavity and allowed to recover for 3–5 days.

Training
We adapted previously described procedures for training head-fixed mice in psychophysical tasks 
(Guo et al., 2014). After recovery from head bar implantation the animals were water deprived for 
12 hr prior to the first handling session. In handling sessions, mice were accustomed to the experi-
menter and being placed in an aluminum tube to restrain their movement. In the first days of handling, 
the tube was placed in the animal’s home cage. Once the mouse voluntarily entered the tube, it 
was presented with water delivered manually from a syringe at the end of the tube. This procedure 
therefore roughly mimicked the water delivery system in the training apparatus. Mice were allowed 
to drink a max of 1.5 ml of water during each handling session (30 min). Once mice were accustomed 
to receiving water in the aluminum tube and being handled by the experimenter, they were placed 
in the behavioral setup and head fixed with the two water delivery spouts approximately 1 cm in 
front of their mouth. To adapt them to head fixation, free water was delivered upon licking at either 
of the water delivery spouts. Lick detection was based on junction potential measures between the 
aluminum restraining tube and the stainless steel lick spout (Hayar et al., 2006). After triggering and 
consuming 15 rewards (single reward size: 3 µl), training proceeded as follows. In the first stage of 
training, every 3.1 s a random high (distribution: 22–40 kHz, presented sound randomly selected each 
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trial, category threshold at 14 kHz) or low (distribution: 5–8.5 kHz) frequency sound was presented to 
both ears at 60 dB SPL for 600ms, indicating at which of the spouts water was available (mapping is 
counterbalanced across animals). 150 ms after sound onset, a green LED flash of 50 ms indicated the 
onset of the 1.5-s response period. If the first lick in the response period occurred at the correct water 
spout, a 3-µl water reward was delivered. In order to facilitate the animals’ engagement, a free water 
drop was delivered 150 ms after sound onset in a random 10% subset of trials. Once mice were readily 
trying to trigger water rewards by licking at either lick spout after sound presentation (minimum of 
18 out of the last 20 trials without free water), the sound duration was reduced to 150 ms, followed 
by a 1-s response period. The ITI was drawn randomly from a set of four possible values: 3, 4, 5, and 
6 s. After mice were engaged in the new timing of the task, free water delivery ceased and incorrect 
responses were punished by an additional 6-s time delay in between sound presentations. As soon as 
the animals had learned to correctly respond by licking at the appropriate water delivery spout in at 
least 34 of 40 consecutive trials, the response delay was introduced, by gradually delaying the appear-
ance of the go signal. Impatient licks triggered the abort of the trial and were signaled with white light 
flashes. The delay period was increased in 10 ms increments as long as the animal performed at an 
accuracy of at least 80% for maximal five increments per session.

Mice were taught to withhold their responding after the stimulus by progressively delaying the 
go signal across sessions, contingent on their ability to refrain from premature responding. After this 
process, which typically took 10–12 weeks of training, the difficulty of the presented frequencies was 
gradually increased by approximating the range of possible low and high frequencies. These increases 
were performed in 19 increments, depending on a low bias and high performance (bias ≤20%; perfor-
mance ≥80%, only one change per training session), until a final frequency distribution of low (9.9–
13 kHz) and high (15–20 kHz) frequencies was reached. After reaching the final frequency distributions, 
mice were presented with three fixed frequencies per condition (low: 9.9, 12, and 13 kHz; high: 15, 
16.3, and 20 kHz), with the easy conditions presented only 15% of the times to obtain more error trials 
and hard trials presented in 8% of the trials. Due to the resulting low number of hard trials per behav-
ioral session, their presentation was omitted during most acute recording sessions (24 of 36). Exces-
sive bias or disengagement at any time during the training were corrected by delivering free water at 
the unpreferred spout right after stimulus presentation until the animal readily responded again. All 
such intervention trials and the trials subsequent to each of them were excluded from analysis.

Electrophysiological recordings
Six to 12 hr prior to the first probe insertion in each hemisphere, mice were deeply anesthetized with 
2–3% (volume in O2) isoflurane, mounted in a stereotactic apparatus and kept on a thermal blanket. 
The eyes were covered with ointment. Isoflurane levels were subsequently lowered to 1–1.5%. The 
animal’s head was placed in a stereotactic frame using the head bar. The skin covering the areas 
above the recording sites and the midline was removed and the exposed skull was cleaned from peri-
ostium with a surgical scalpel blade and cleaned with betadine and dried with sterile cotton swabs. 
Subsequently a small craniotomy was performed above the desired recording site (2.8 mm posterior, 
2.2  mm medio-lateral to bregma under a 35° medio-lateral angle). The exposed dura mater was 
opened using a small needle (BD Microlance 0.3 × 13 mm) and subsequently the recording silicone 
probe (BuzA64sp, Neuronexus) was slowly lowered to the desired depth (2.6 mm from brain surface). 
Probes were inserted with the shanks in a medio-lateral orientation, so that the six shanks in the final 
position approximately span the cortical layers (Figure 1—figure supplement 1A). Neural activity was 
digitized with a 64-channel headstage (Intan) at 16 bit and stored for offline processing using an Open 
Ephys acquisition board (Open Ephys) at a 30 kHz sampling rate. Behavioral sessions and storage of 
recording neural signals started only 10–20 min after probe insertion to allow for tissue relaxation and 
stabilization of the recording. Recording sessions were limited to three recordings per hemisphere in 
each animal due to the tissue damage caused by probe insertion. In the final recording session in each 
hemisphere the probe was coated with DiI (VybrantTM DiI, Invitrogen) to confirm correct placement 
of the recording probe histologically.

Dataset
We recorded neural activity in 36 behavioral sessions from 6 mice (3 recordings per hemisphere). 
Out of these, 23 sessions had at least 100 trials and a behavioral sensitivity (‍d′‍ from signal detection 
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theory) of at least 1, and were considered for further analysis. From these 23 sessions, 3 sessions 
from 1 mouse were discarded from the dataset because it was not possible to properly estimate the 
size of its pupil due to eyelid inflammation. We confirmed histologically that recordings were made 
in both primary, as well as ventral and dorsal auditory cortex, using the location of the recordings 
shanks (during the last insertion of each hemisphere as a reference for all insertions at these target 
coordinates) relative to salient anatomical landmarks. Relevant brain structures for this purpose were 
identified by comparing the fluorescent patterns obtained in a DAPI staining with reference areas 
demarcated in Paxinos and Franklin, 2007. Thus, the correct probe placement along the anterior–
posterior axes, as well as placement of all shanks within the cortex, could be confirmed reliably (see 
Figure 1—figure supplement 1A for an example recording). In hemispheres where the most medial 
shank exceeded cortical depth (1 of 12), this shank was excluded in all recordings performed in that 
hemisphere that passed all criteria for inclusion (2 of 20). Thus, the dataset consists of 18 recordings 
of 6 shanks, and 2 recordings of 5 shanks. For 6 out of these 20 recordings, we have histological veri-
fication of probe/shank placement.

Unless otherwise specified in the text, we did not consider for analysis the first 10 trials in each 
behavioral session during which the mice are adjusting to the setup and the position of the licking 
ports is being fine tuned. We also did not consider trials where the current or the previous trial were 
free rewards (trials in which the experimenter delivered a free reward to re-engage the animal). For 
the analysis on accuracy we considered the first lick within the response window (0.7–1.7 s after sound 
onset) which was also used to determine if animals would be rewarded. For the analysis of engage-
ment, ‘skips’ were defined as trials in which no licks were detected in the first 2 s since stimulus onset. 
Premature responses were defined as trials in which the first lick occurred before the go-signal, at 
0.65 s.

Videos recording and analysis
We collected videos of mice performing the task at 60 fps using regular USB cameras without an 
infrared (IR) filter and applying direct IR illumination to increase pupil contrast (Figure  1—figure 
supplement 1E). From the videos, we extracted a proxy for face movement and one for arousal. For 
face movement, for each recording session, we selected a region of interest (ROI) around the face of 
the animal and computed the average magnitude of the optic flow in that ROI (using Lucas–Kanade 
method [Lucas and Kanade, 1981]). To compare across sessions, we z-scored the optic flow session 
by session. What is referred to as OpticF in the text corresponds to the median OF in the base-
line period (2 s before stimulus presentation). As a proxy for arousal, we estimated pupil size. We 
used DeepLabCut (DLC; Mathis et al., 2018) to detect points around the pupil frame by frame and 
then estimated the pupil size as the major axis of an ellipse fitted using those points (for robustness 
of the pupil estimates, we further smoothed the data by applying a robust local regression using 
weighted linear least squares and a first degree polynomial model with a 250 ms window – rlowess 
in MATLAB). For training the model using DLC, we labeled 8 points in 20 frames for each of the 20 
behavioral sessions. To remove frames where the detection was poor, we only considered those where 
the average likelihood of the DLC detection was higher than a threshold (0.8). Finally, for each session, 
we normalized the pupil by the 2% lowest values in the session (so, e.g., 100% means a 100% increase 
in pupil size relative to its smallest values). What we referred in the main text as PupilS represents the 
median values of the pupil in the baseline period (2 s before stimulus presentation).

Spike sorting
Spike events were detected using Kilosort2 (Pachitariu et al., 2016; Pachitariu, 2020) and subse-
quently manual clustering was performed using phy2 (Rossant, 2020) to remove artifact clusters. We 
did not use unit identity in any of our analyses, which pertained only to the structure of the population 
(‘multiunit’ MUA) activity.

Estimation of baseline FR and synchrony
We described baseline neural activity in each trial using two variables, the population FR and synchrony 
(Synch; Figure 1F). We estimated FR as the average number of spikes of the MUA in the baseline 
period (average in time and across the number of units). To estimate synchrony, we first pooled all 
spikes from the units in the baseline period. Then computed the magnitude of the standard deviation 
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across time of the instantaneous FR (in bins of 20 ms) of the population (which is a measure of the 
population averaged covariance between all pairs [Renart et al., 2010]) and divided it by the average 
of the same quantity calculated for 100 surrogates where the spike times of the MUA in that partic-
ular baseline are randomly shuffled (Figure 1E). We used this measure because we observed that it 
is less dependent on overall number of spikes in the baseline period than related measures such as 
the coefficient of variation of the MUA across time (Renart et al., 2010; Kobak et al., 2019). This 
measure of synchrony is ‘normalized’, with a reference value of 1 expected if the neural population is 
asynchronous and neurons fire with Poisson-like statistics. In Figure 1G, we assessed synchrony using 
the coefficient of variation of the MUA, defined as the ratio between the standard deviation and the 
mean the spike count of the MUA across each 20-ms period in the baseline period.

Spectral analysis
We performed spectral analysis using the Chronux MATLAB Package (http://chronux.org). In partic-
ular, we used the function mtspectrumpt.m, which uses a multitaper approach to calculate efficiently 
the power spectrum of a point process. In Figure 1H, for each of the four example baseline periods, 
we used a value for the time-bandwidth parameter ‍TW = 10‍. For Figure 1I, since additional smoothing 
is provided by the average across trials, we used ‍TW = 5‍. In each case, we used the recommended 
‍2TW − 1‍ tapers to calculate the spectrum in each baseline period. Each power spectrum was normal-
ized by the mean power for all frequencies above a high-frequency cutoff of 10 kHz (the sampling rate 
of the recordings was 30 kHz), which is equivalent to a normalization by the FR within that baseline 
period (since the high-frequency limit of the spectrum of a point process is the FR).

Innovations
We ‘cross-whitened’ the four signals under analysis (FR, Synch, OpticF, and PupilS) by making linear 
fits of each of them separately for each session, using as regressors the outcome in the previous 10 
trials (1: reward; 0: no reward), the values of four signals in the previous 10 trials and the current trial 
number (TrN, to account for within-session trends). Each regression thus specified 51 parameters plus 
the offset. We then defined the innovations FRI, SynchI, PupilSI, and OpticFI as the residuals of this 
linear fit (Figure 2—figure supplement 2). In Figure 4, we address the influence of the outcome of 
the previous trial on the four baseline innovations. We did this by trying to explain previous outcome 
using a GLMM based on these signals plus the session trend. For this fit, the innovations were modi-
fied by excluding previous-trial outcome as a regressor (since their relationship to outcome is the 
target of the analysis).

Generalized linear mixed models
To analyze the behavioral and neural data we used GLMM (Stroup, 2013) (using the function fitglme 
in MATLAB) using recording session as a random effect for both slopes and offset. When fitting contin-
uous variables (e.g., FRI in Figure 2D) we used a linear mixed model. When fitting binary variables 
(such as accuracy or skips) we used a binomial distribution and a logit link function. In order to prevent 
global covariations between session-by-session differences in the marginal statistics of the predictors 
and the prediction targets to contribute to the trial-by-trial associations that we seek to reveal, we 
always z-scored all predictors separately within each session. In all fits, we also include a regressor 
with the number of the trial in the session (TrN) to account for session trends in the target of the fit. 
In Figure 3C, E, we evaluated the joint effect of FRI and SynchI on choice (rightmost predictor). To 
do this, we first constructed a joint predictor by projecting each z-scored (FRI(z), SynchI(z)) pair (for 
each trial) onto an axis with −45 deg slope for Figure 3C (so that the joint predictor would take large 
positive values when the baseline state was favorable after errors), or 45 deg slope for Figure 3E 
(using the same reasoning after corrects). We then run GLMMs in which the two separate FRI and 
SynchI predictors were replaced by the single joint one. In Figure 3C, E, we only show the value of 
the joint coefficient in these new GLMM fits. The values of all other predictors were not different. 
The specific models that we fitted to the data are the following (in Wilkinson notation). To predict 
FR and Synch in Figure 2A, we used the model ‍FR ∼ 1 + OpticF + PupilS + (1 + OptiF + PupilS|session)‍ 
and ‍Synch ∼ 1 + OpticF + PupilS + (1 + OptiF + PupilS|session)‍. For Figure  2D, we used the same 
model but using innovations, ‍FRI ∼ 1 + OpticFI + PupilSI + (1 + OpticFI + PupilSI|session)‍ and 
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‍SynchI ∼ 1 + OpticFI + PupilSI + (1 + OpticFI + PupilSI|session)‍. The model we fitted to the accuracy of 
the mice (Figure 3C, E) is:

	﻿‍

Correct ∼ 1 + Stim + TrN + OpticFI + PupilSI + FRI + SynchI +

+ (1 + Stim + TrN + OpticFI + PupilSI + FRI + SynchI|session) ‍.�

To fit the model to the accuracy independently on the outcome of the previous trial (Figure 3A), we 
also included ‍pCorr‍ both as a fixed and random term. The model we fitted to the accuracy of the 
animals in the previous trial (Figure 4E) is:

	﻿‍

pCorr ∼ 1 + TrN + OpticFI + PupilSI + FRI + SynchI +

+ (1 + TrN + OpticFI + PupilSI + FRI + SynchI|session)‍.�

The model we fitted to premature responses (Figure 5D) is:

	﻿‍

Premature ∼ 1 + TrN + pPrem + pCorr + pSkip + OpticFI + PupilSI + FRI + SynchI +

+ (1 + TrN + pPrem + pCorr + pSkip + OpticFI + PupilSI + FRI + SynchI|session) ‍,�

while the one for skips (Figure 5F) is:

	﻿‍

Skip ∼ 1 + TrN + pPrem + pCorr + pSkip + OpticFI + PupilSI + FRI + SynchI +

+ (1 + TrN + pPrem + pCorr + pSkip + OpticFI + PupilSI + FRI + SynchI|session).‍�

In Figure 3—figure supplement 5, we applied the same models but without innovations for panels 
E–H while we also removed ‍TrN ‍ for panels A–D. In Figure 5—figure supplement 1, we predict the RT 
of the animals with or without innovations using the same predictors we used for skips and premature 
responses.

Although our GLMMs often contained many predictors and their relative random slopes, they 
generally converged and gave consistent results across our resampling procedure (which we used for 
estimating CIs on the magnitude of the model coefficients). However, since we run many resamples 
(5000), sometimes the results were inconsistent. We identified this ’outlier’ model runs as those for 
which the (absolute) distance between any of the GLMM coefficients in the model, and the median of 
the distribution across resamples, was more than seven times the MAD. These cases constituted just 
a small portion of all resamples. For instance, for predicting accuracy using all valid trials, the propor-
tion of outliers was 0.12%, after error trials it was 0.22%, and after correct trials 0.08%. These outliers 
model runs were excluded from the statistics we used to report the results.

Analysis of the sound-evoked neuronal activity
In order to determine if information in the evoked population activity about the stimulus or upcoming 
choice depends on properties of the pre-stimulus baseline, we devised a two-step analysis workflow.

In the first step, for every recording session, we used the evoked activity in each trial – defined 
as the number of spikes fired by each unit during the stimulus presentation (0–150 ms) – to decode 
stimulus or choice (the number of predictors is therefore equal to the number of units). Because 
performance, on average, is relatively high (approximately 80% correct), stimulus and choice are 
correlated. Thus, to make sure that choice decoding did not reflect tuning to the stimulus (and 
vice versa), we constructed separate choice decoders for each of the two stimulus categories (and 
vice versa). Specifically, for each recording we performed cross-validated (five folds) L2-regularized 
logistic regression on 90% of the data to identify decoders that could be used to predict choice/
stimulus on the remaining 10% of the data. The same procedure was repeated for each fold (10 
times). To reduce variability due to randomness in fold selection during cross-validation, the same 
procedure was repeated 1000 times and the projection that we used in the following part of the 
analysis was the median across the 1000 repetitions of this procedure. The two projections for 
choice (stimulus) conditional on stimulus (choice) were merged into a single ‘projection’ regressor 
that contained the projection onto the relevant axis for each trial. Logistic regression was performed 
using the MATLAB version of the free software package glmnet (Friedman et al., 2010) (http://​
hastie.su.domains/glmnet_matlab/). In the second step, we used a GLMM to predict either stim-
ulus category or choice with recording session as a random effect. The predictors for the analysis 
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were the scalar projection that we identified in the first step of the analysis, FRI and SynchI as in the 
rest of our study, and the interaction terms between the projection and FRI and SynchI. Projections 
and FRI and SynchI were z-scored separately for each recording. The GLMM analysis could then be 
performed independently for after correct and after error trials. Weights of the model and 95% CI in 
Figure 3—figure supplement 6 were found using the parametric estimation of the fitglme function 
in MATLAB.

Statistics
We estimated the uncertainty of the estimates of the coefficients of our GLMM fits using bootstrap 
resampling (Efron and Tibshirani, 1994). We resampled with replacement ‘hierarchically’, so that 
the number of trials from each recording was preserved in each global surrogate. Distributions of 
the magnitude of each coefficient and associated 95% CIs came from 5000 resamples. In figures, 
we always display median, interquartile range and 95% CI for each coefficient. p values for the 
null hypothesis of a coefficient being equal to zero were computed using the quantile method 
(Efron and Tibshirani, 1994), that is twice the value of the fraction of resamples with opposite 
sign as the estimate of the coefficient from the data. For consistency, we verified that estimates of 
significance obtained using bootstrap CIs for parameters agreed with parametric estimates from 
fitglme (Figure  3—figure supplement 1) which uses an approximation to the CMSEP method 
(Booth and Hobert, 1998). To test for differences in accuracy after a correct versus an error trial 
(Figure 4B), we computed, for each recording, the difference between the median accuracy of 
trials where the previous trial was correct and the median accuracy of trials where the previous 
trial was an error. We assessed the significance of this difference using a Wilcoxon signed rank 
test. To fit psychometrics curves, we used the psignifit MATLAB toolbox (Schütt et al., 2016b; 
Schütt, 2016a). When fitting an aggregate psychometric across sessions, we weighted each trial 
by the proportion of trials its corresponding session contributes to the whole dataset. To test for 
differences in the slope of the psychometric functions in Figure 4D, F conditional on whether the 
baseline state was favorable or unfavorable, we used the difference in slope between fits of the 
aggregate data conditional on the state of the baseline as a test statistic. To assess the significance 
of this difference, we first computed the distribution of the test statistic under a null hypothesis 
of no difference implemented by randomly shuffling, within each session separately, the label that 
signals whether the baseline for a trial is favorable or unfavorable, and we then computed the 
fraction of the surrogates from this distribution for which the value of the test statistic was equal 
or larger than in the actual observed data. Unless otherwise stated, data across recordings are 
reported as median ± MAD.
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