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Abstract Allostery is fundamental to many biological processes. Due to the distant regulation 
nature, how allosteric mutations, modifications, and effector binding impact protein function is diffi-
cult to forecast. In protein engineering, remote mutations cannot be rationally designed without 
large- scale experimental screening. Allosteric drugs have raised much attention due to their high 
specificity and possibility of overcoming existing drug- resistant mutations. However, optimization 
of allosteric compounds remains challenging. Here, we developed a novel computational method 
KeyAlloSite to predict allosteric site and to identify key allosteric residues (allo- residues) based on 
the evolutionary coupling model. We found that protein allosteric sites are strongly coupled to 
orthosteric site compared to non- functional sites. We further inferred key allo- residues by pairwise 
comparing the difference of evolutionary coupling scores of each residue in the allosteric pocket 
with the functional site. Our predicted key allo- residues are in accordance with previous experi-
mental studies for typical allosteric proteins like BCR- ABL1, Tar, and PDZ3, as well as key cancer 
mutations. We also showed that KeyAlloSite can be used to predict key allosteric residues distant 
from the catalytic site that are important for enzyme catalysis. Our study demonstrates that weak 
coevolutionary couplings contain important information of protein allosteric regulation function. 
KeyAlloSite can be applied in studying the evolution of protein allosteric regulation, designing and 
optimizing allosteric drugs, and performing functional protein design and enzyme engineering.

Editor's evaluation
The manuscript reports on a useful tool to study protein allosteric regulation function. The work 
is based on inadequate experimental validation of the predicted residues implicated in mediating 
allosteric signaling. The study highlights the significance of the weak pairwise term for the prediction 
of the allosteric function.

Introduction
Allostery commonly refers to one type of distant regulation, that is, a perturbation at one site of a 
macromolecule can affect the function of another site (Dokholyan, 2016), which plays important 
roles in many biological processes, such as enzyme catalysis (Tsai et al., 2009) and signal transduc-
tion (Hilser et  al., 2012). Compared to traditional orthosteric drugs, allosteric drugs have unique 
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advantages, including higher specificity, fewer side effects, etc. (Changeux and Christopoulos, 2016; 
Thal et al., 2018; Wenthur et al., 2014). However, optimization of allosteric molecules faces great 
challenges as allosteric molecules usually have flat structure- activity relationships (flat SARs or shallow 
SARs, referring to the phenomenon that no robust SARs could be obtained as small modifications 
may destroy the activity), and higher binding affinity does not always correspond to better activity 
(Christopoulos, 2002; Jimenez et al., 2012; Lewis et al., 2008; Lindsley, 2014; Nussinov and Tsai, 
2012). In an allosteric pocket, the contribution of each residue to the allosteric effect is different. Bi 
et al. found that the interactions between allosteric molecules and the target protein can be divided 
into two types, interactions that only contribute to binding and interactions that contribute to both 
binding and signaling. Based on these understandings, they rationally designed Tar variants and engi-
neered Escherichia coli to sense new ligands by maintaining the interactions responsible for chemo-
taxis allosteric signaling while changing the interactions responsible only for ligand binding (Bi et al., 
2013). Nussinov et al. proposed that atoms in allosteric effectors could be divided into anchor and 
driver atoms. The anchors docked into the allosteric pockets, which allowed the drivers to perform 
a ‘pull’ or ‘push’ action (Nussinov and Tsai, 2014). Both drivers and anchors showed specific inter-
actions with their host proteins, with the former mainly responsible for the allosteric efficacy and the 
latter for binding affinity (Nussinov et al., 2014). Therefore, it is important to identify residues in 
the host proteins that form interactions with allosteric molecules and produce allosteric signaling, 
which we refer to as key allo- residues, so that allosteric molecules can be optimized and designed 
based on these key allo- residues. Unfortunately, identifying key allo- residues remains challenging. 
Currently available computational methods mainly focused on the prediction of allosteric sites (Ma 
et al., 2016; Qi et al., 2012; Wagner et al., 2016; Xie et al., 2022), allosteric pathways (Botello- 
Smith and Luo, 2019; Lake et al., 2020), and key residues in allosteric pathways (Wang et al., 2020). 
Kalescky et al. developed the rigid residue scan method to identify key residues for protein allostery, 
in which multiple molecular dynamics (MD) simulations need to be performed for unbound and bound 
proteins. As only one residue was regarded as a single rigid body in each simulation, many simulations 
were necessary, which are computationally expensive and time- consuming (Kalescky et al., 2015). 
Therefore, methods for systematically and rapidly identifying key allo- residues in protein allosteric 
pockets need to be developed.

During evolution, unrelated residues may evolve independently, while functionally coupled resi-
dues coevolve. Coevolution means that when a residue changes, the residues that are structurally 
or functionally coupled with it will also change accordingly to maintain the overall spatial structure 
and biological function (de Juan et al., 2013). In principle, since homologous sequences record the 
long- term evolution of a protein family, the coupling pattern between residues can be estimated from 
multiple sequence alignment (MSA; Reynolds et al., 2011).

Various methods have been developed to analyze residue- residue coupling during evolution, which 
greatly expedite the recent progress of protein structure prediction (Ekeberg et al., 2013; Marks 
et al., 2011; Morcos et al., 2011). Direct coupling analysis (DCA) is one of such approaches that can 
remove the indirect correlation between residues and reflect the direct coevolution between residues 
(Cocco et al., 2013). DCA mainly uses methods in statistical physics to infer the pairwise coupling  Jij  
between positions, which can explain the observed correlation between residues in an MSA. In struc-
ture predictions, only the top couplings in  Jij  were used (Morcos et al., 2011; Weigt et al., 2009). 
Recent studies showed that the weak, non- contact couplings in  Jij  are significantly important for the 
prediction of protein function, although they play as noise in predicting structural contacts. Salinas 
et al. proposed that the information of allosteric energy interactions is included in the statistics of 
MSAs and therefore is part of the entire evolutionary constraints (Salinas and Ranganathan, 2018). 
Russ et al. found that the top coupling items in  Jij  alone cannot effectively reproduce the alignment 
statistics in the AroQ family or the functional effects of mutations. This implies that protein functions 
may depend on many weak, non- contact items in  Jij  . Although there is no simple physical explanation 
for these weak items at present, they seem to represent the collective global evolution of residues, 
and further research is needed to reveal the significance of these items (Russ et al., 2020). Similar 
findings have been reported in the DCA- based prediction of protein- protein interaction (PPI), where 
the quality of prediction depends on many weak couplings (Bitbol, 2018).

In the present study, we analyzed the evolutionary couplings (ECs) between residues in orthosteric 
and allosteric sites. We found that weak couplings in  Jij  contain allosteric information and developed 
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the first systematic and efficient computational method KeyAlloSite to predict key allo- residues based 
on the EC model (ECM; see Materials and methods for details). For each protein in the allosteric 
protein data set, we first performed MSA (Figure 1A) and calculated the ECs between residues using 
the ECM (Figure 1B). We then studied the coevolution between orthosteric and allosteric sites and 
found that their EC strength (ECS) is stronger than that between orthosteric and other non- functional 
pockets. We further performed pairwise comparison of the differences in EC scores of residues in 
the allosteric pocket with orthosteric pocket (Figure 1C–E; see Materials and methods for details) 
and got the number of significant differences corresponding to each residue in the allosteric pocket 
(Figure 1F). After the numbers of significant differences were normalized into Z- scores, residues corre-
sponding to Z- scores larger than a threshold were predicted as key allo- residues. We have applied 
KeyAlloSite to identify key allo- residues in several allosteric proteins, including BCR- ABL1, Tar, and 
PDZ3, and compared the prediction results with previously reported experimental data. KeyAlloSite 
was also used to predict cancer mutations as well as key distant residues for enzymatic catalysis. Our 
study provides essential information for understanding how allosteric regulations are evolved, for 
designing and optimizing allosteric drugs, and for designing highly efficient enzymes and other func-
tional proteins.

Figure 1. Steps to identify key allo- residues. (A) Multiple sequence alignment. (B) Evolutionary coupling (EC) analysis. (C–D) Calculation of the EC values 
between residues in allosteric and orthosteric pockets. (E) Pairwise compared the difference of EC values corresponding to residues in allosteric pocket. 
(F) The number of significant differences corresponding to each residue in allosteric pocket.

https://doi.org/10.7554/eLife.81850
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Results
The evolutionary coupling between orthosteric and allosteric sites is 
stronger
We selected 23 allosteric proteins from the ‘Core Set’ of ASBench (Huang et al., 2015) as our data 
set, including 25 known allosteric sites (Supplementary file 1; see Materials and methods for details). 
The sequence lengths of the proteins in the data set range from 166 to 788 amino acid residues 
(Figure 2A), and the number of homologous sequences and effective homologous sequences corre-
sponding to each protein were shown in Figure 2B. For each protein in the data set, we used CAVITY 
(Xu et al., 2018; Yuan et al., 2013) to identify all the potential ligand binding pockets on the protein 
surface and designated the mth pocket as cavity_m. Previous studies showed that motions of ortho-
steric and allosteric sites are highly correlated (Ma et al., 2016; Xie et al., 2022; Zhang et al., 2019), 
and the regulation between orthosteric and allosteric site is bidirectional (An et al., 2019). It would be 
interesting to see whether orthosteric and allosteric sites are coupled in evolution. We then explored 
the ECS ( ECScavity_m ) between the orthosteric and allosteric pocket, as well as all the other pockets. 
The ECS between the orthosteric pocket and the mth pocket is defined as the sum of the coupling 
strength between the residues in the two pockets (see Materials and methods for details). Among the 
25 allosteric pockets in the data set, 23 have Z- scores greater than 0.5 (Figure 2C, Supplementary 
file 2), which means that the recall of KeyAlloSite on predicting allosteric sites is 0.92 (Supplementary 
file 8). The probabilities that the known allosteric pockets were ranked in the top 1, top 2, and top 3 of 
Z- scores were 56.0, 76.0, and 96.0%, respectively (Figure 2D, Supplementary file 2), indicating that 
orthosteric and allosteric pockets are more evolutionarily coupled to each other than the orthosteric 
and other pockets, which can be used to predict potential allosteric pockets. We further analyzed the 
two proteins with Z- scores less than 0.5, AR1 and CYP3A4. For AR1, as there were only 108 effec-
tive homologous sequences, we speculated that the number of homologous sequences may not be 
enough for evolutionary analysis. The protein sequence–based phylogenetic tree of AR1 homologous 
proteins showed that AR1 located near the tail of the tree (Figure 2—figure supplement 1), implying 
that this allosteric function did not exist in the early evolutionary period, and it may have appeared in 
the later stage of evolution. Due to the relatively large number of sequences in the early evolutionary 
period and relatively few sequences in the later stage of evolution, the allosteric signal was weak. As a 
cytochrome P450 protein, CYP3A4 can bind and catalyze the transformation of a variety of substrates 
(Williams et al., 2004). Sequence alignments showed that several positions in its orthosteric pocket 
are less conserved, which may lead to the difficulty in allosteric site prediction based on evolutional 
coupling analysis.

We used human Aurora A (AurA) kinase that is not included in the data set as a test case to further 
verify whether the ECS can be used to predict allosteric sites. AurA (PDB ID: 1OL5) is a Ser- Thr protein 
kinase that is essential for the cell cycle progression. Its abnormal levels can lead to inappropriate 
centrosome maturation, spindle formation, and enhanced cancer growth (Toji et al., 2004). AurA is 
known to be regulated by two distinct allosteric mechanisms, one is specific PPI, which binds TPX2 
to its hydrophobic pocket, and the other is phosphorylation of the activation loop at T288 (pT288; 
Hadzipasic et al., 2020). We used CAVITY to find all of the potential ligand binding pockets on the 
surface of AurA, and a total of 12 pockets were found; cavity_3 is the known allosteric PPI pocket, 
and cavity_2 is the orthosteric pocket. For consistency, we chose residues within 6 Å around the ATP 
molecule as the orthosteric pocket. Then we calculated the ECS between the orthosteric pocket and 
each of the remaining 11 pockets. Cavity_3 ranked the second among the 11 pockets with a Z- score 
of 1.48 (Supplementary file 3), indicating that the ECS between the orthosteric and allosteric pockets 
is indeed stronger. Since phosphorylation mainly occurs on Serine/Threonine/Tyrosine (Ser/Thr/Tyr) 
residues, we then calculated the ECS between the orthosteric pocket and each of the 26 exposed 
Ser/Thr/Tyr residues and normalized to Z- scores. Among the 26 Ser/Thr/Tyr residues, 10 residues 
have Z- scores larger than 0.5, and T288 and T287 ranked the fifth and the fourth with a Z- score of 
0.83 and 1.05, respectively (Supplementary file 3). This indicates that KeyAlloSite can also be used 
to predict post- translational modification (PTM) sites, and the predicted Ser/Thr/Tyr residues with 
Z- scores greater than 0.5 in addition to T288 and T287 are worth further investigation.

To exclude the possible influence of the pocket size, we further checked the dependence of 

 ECScavity_m  on the number of residues used in the calculation. For allosteric and other pockets in each 
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Figure 2. Z- scores of allosteric pockets and probabilities of ranking an allosteric pocket in the top 3. (A) The sequence lengths of all proteins in our 
data set. (B) The number of homologous sequences. Neff represents the number of effective homologous sequences obtained under 80% reweighting. 
(C) Z- scores of allosteric pockets on proteins in the data set. Among the 25 allosteric pockets, the Z- scores of 23 allosteric pockets were greater than 0.5. 
(D) The probabilities that the known allosteric pockets were ranked in the top 1, top 2, and top 3.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data for Figure 2.

Figure supplement 1. Phylogenetic tree of the androgen receptor.

Figure supplement 2. Comparison of evolutionary coupling strength between pockets when all residue pairs and partial residue pairs were used.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.81850
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protein, we summed the ECS of the top 200, top 300, and top 400 residue- residue pairs with the 
highest  FN

(
i, j
)
  corresponding to each pocket as the ECS between each pocket (except for ortho-

steric pocket) and orthosteric pocket. When different numbers of residue- residue pairs were used, 
the Z- scores corresponding to the ECS between allosteric and orthosteric pockets in most proteins 
were still greater than 0.5, which is weakly different from that when all residue- residue pairs were 
used (Figure 2—figure supplement 2). This indicates that the number of residues in the mth pocket 
does not play important role on the ECS between pockets. In other words,  ECScavity_m  revealed the 
intrinsic EC between allosteric and orthosteric pockets. These results indicate that the ECS between 
orthosteric and allosteric pockets is stronger than that between orthosteric and other pockets, which 
can be used to predict potential allosteric pockets.

We further checked whether the coevolutionary signal between allosteric and orthosteric pockets 
is significantly different from that between two random patches in proteins with the same number of 
residue pairs. For each protein in the data set, two residues that are not part of the orthosteric and 
allosteric sites were randomly selected from the surface residues. Among them, one was taken as the 
first center, and the residues around it with the same number as the residues in orthosteric pocket 
were selected as patch1; and the other residue was taken as the second center, and the residues 
around it with the same number as the residues in allosteric pocket were selected as patch2. Then 
we calculated the ECS between patch1 and patch2. The process was repeated four times, and then 
the mean and standard deviation of the ECS were calculated. We then compared the ECS between 
patch1 and patch2 with that between orthosteric and allosteric sites. The results showed that the 
ECS between orthosteric and allosteric sites was significantly higher than that between two random 
patches (Figure 2—figure supplement 3). In other words, there is intrinsic EC between orthosteric 
and allosteric sites, which is different from the EC between any two random patches.

Coevolution analysis revealed key allo-residues in allosteric pockets
For each protein, we calculated the EC values between the residues in the orthosteric and allosteric 
pockets by ECM and compared the corresponding pairwise EC values of the residues in the allosteric 
pocket (Figure 1C–E, Figure 3—figure supplement 2). Since orthosteric and allosteric pockets are 
two different pockets, the residues in the two pockets generally do not contact. Therefore, most 
of the EC values between residues in the two pockets are relatively small, that is, they correspond 
to the weak terms in  Jij  (Figure 1D). We then calculated the number of significant differences of 
each residue in the allosteric pocket and normalized to Z- scores. Finally, residues were predicted as 
key allo- residues if their corresponding Z- scores were greater than 0.8 (Supplementary file 4). We 
chose this threshold to ensure that the most known key allo- residues can be correctly predicted by 
KeyAlloSite, and at the same time, the number of predicted key allo- residues should be as small as 
possible. We calculated the number of known key allo- residues that could be predicted by KeyAlloSite 
(Supplementary file 5) and the ratios of the predicted key allo- residues in all residues of allosteric 
pockets in all proteins of the data set (Figure 3—figure supplement 1) for thresholds of 0.5, 0.6, 
0.7, 0.8, 0.9, and 1.0. Therefore, we finally chose the threshold as 0.8. For the allosteric pockets, the 
average number of pocket residues is 43, and the average number of identified key allo- residues is 8, 
accounting for 18.6% of all the residues in the allosteric site (Figure 3).

Since the number of homologous sequences is important in coevolution analysis, we selected seven 
proteins with a relatively large number of homologous sequences and randomly sampled different 
numbers of homologous sequences. Since the number of homologous sequences required might 
be related to the sequence length of the protein itself, the number of homologous sequences was 
divided by the length of the protein to obtain a ratio. Within this ratio, different ratios of homologous 
sequences were randomly sampled according to different gradients, and each gradient was repeated 
three times. Then we calculated how many key allo- residues determined by homologous sequences 

Figure supplement 2—source data 1. Raw data for Figure 2—figure supplement 2.

Figure supplement 3. Difference between the evolutionary coupling between orthosteric and allosteric sites and the evolutionary coupling between 
two random patches.

Figure supplement 3—source data 1. Raw data for Figure 2—figure supplement 3.

Figure 2 continued

https://doi.org/10.7554/eLife.81850
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with different gradients were the same as those determined by all homologous sequences. Taking the 
key allo- residues determined by all homologous sequences as references, we calculated the propor-
tion of the same residues (Figure 3—figure supplement 3). It can be seen that generally speaking, 
7 L ( ± 4L ) number of effective homologous sequences is enough to give good and stable results. If the 
protein sequence was relatively short, the number of homologous sequences required could be less; 
otherwise, more homologous sequences were needed.

The predicted key allo-residues were supported by experimental 
results
We searched for literatures to see whether the key allo- residues we predicted were experimentally 
tested before. The first example is tyrosine- protein kinase ABL1 (BCR- ABL1), which is a fusion protein 
whose constitutive activity can cause chronic myeloid leukemia (CML). Tyrosine kinase inhibitors 
targeting the ABL1 ATP- binding site, such as imatinib (Gleevec) and nilotinib (Tasigna), significantly 
improved the overall survival of CML patients (Kalmanti et al., 2015; Miura, 2015). However, patients 
may develop drug resistance due to mutations in the ATP- site. The novel fourth generation ABL1 
drug, asciminib (ABL001) was developed, which is an allosteric inhibitor that binds to the myristoyl 
pocket of BCR- ABL1 (Figure  4A). Asciminib was developed from fragment- based drug discovery 
approach. In the early stage of hit identification, compounds that bind BCR- ABL1 without inhibition 
activity were found. Among them, hit 4 binds BCR- ABL1 with a Kd of 6 μM. After changing the Cl 

Figure 3. The number of predicted key allo- residues. Number of residues refers to the number of residues from 
allosteric pockets, including the number of all residues in allosteric pockets and predicted key allo- residues.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Raw data for Figure 3.

Figure supplement 1. Distribution of the ratios of the number of key allo- residues predicted by KeyAlloSite in the 
number of all residues in allosteric pockets when using different cutoffs in all proteins.

Figure supplement 1—source data 1. Raw data for Figure 3—figure supplement 1.

Figure supplement 2. Examples of distributions of the statistics corresponding to significant scores obtained from 
the t- test.

Figure supplement 3. Random sampling of homologous sequences.

Figure supplement 3—source data 1. Raw data for Figure 3—figure supplement 3.

https://doi.org/10.7554/eLife.81850
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atom at the para- position of the aniline to the CF3O- group, hit 5 showed inhibition activity with a 
slightly weakened Kd of 10 μM compared to hit 4 (Figure 4C; Schoepfer et al., 2018). This shows that 
the interaction between CF3O- and BCR- ABL1 is essential for the allosteric signaling and inhibitory 
activity. This group forms favorable hydrophobic interaction with L359, one of the key allo- residues 
predicted by our method (Figure 4B). In contrast, there is no favorable interaction between hit 4 and 
L359. These experimental evidences support that the predicted allo- residue L359 plays key role in 
allosteric signaling.

In the allosteric pocket of the asciminib binding site which contains 44 residues, we predicted 7 
key allo- residues. In addition to L359, R479, V525, Y454, E450, T453, and T364 were also identified as 
potential key allo- residues (Supplementary file 6). T453 forms favorable hydrophobic interaction with 
the pyrazole ring in asciminib, and Y454 participates in the water- mediated H- bond with the oxygen 
atom in asciminib. Previous studies have shown that the conformational state of helix- I is important 
for functional activity, and V525 serves as a good indicator for the conformational change. Functional 
antagonists binding to the myristoyl pocket can bend helix- I and make the disordered region that 
V525 locates become ordered (Jahnke et al., 2010; Schoepfer et al., 2018). This indicates that V525 

Figure 4. Key allo- residues predicted in BCR- ABL1. (A) The crystal structure of the kinase domain of BCR- ABL1. The allosteric inhibitor asciminib, 
represented by sticks, binds to the myristoyl pocket (marine). (B) Predicted key allo- residues in the myristoyl pocket. The predicted key allo- residues are 
represented by marine sticks. One of the predicted key allo- residues, L359, forms a favorable hydrophobic interaction with a fluorine atom in asciminib, 
represented by a red dashed line. Water is represented by a red sphere. (C) The structure of fragment- derived hit 4 and hit 5 and the final marketed 
drug asciminib.

The online version of this article includes the following source data for figure 4:

Source data 1. Raw data for Figure 4.

https://doi.org/10.7554/eLife.81850
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plays key role in allosterically regulating ABL1 kinase activity. At the same time, it also shows that 
coevolutionary information can help to capture multiple allosteric functional conformations of proteins 
(Morcos et al., 2013).

KeyAlloSite correctly identified key allo-residues in other proteins not 
in the data set
We further tested KeyAlloSite on proteins not included in the data set. The first protein is the E. 
coli aspartate (Asp) chemoreceptor Tar. Tar mediates the chemotaxis of bacteria toward attractants, 
such as Asp, and away from repellents. Tar is a homodimer during transmembrane signaling, and the 
signals are transmitted from the extracellular region of Tar to the cytoplasmic region through the 
transmembrane domain (Mise, 2016). Bi et al. discovered six new attractants and two new antag-
onists of Tar by computational virtual screening and experimental study. By comparing the binding 
patterns of attractants and antagonists, they found that the interactions between the chemoeffectors 
and Y149 and/or Q152 in Tar are critical for attractant chemotactic signaling (Bi et al., 2013). We 
chose the holo structure that binds Asp (PDB ID: 4Z9H) for analysis and used the CAVITY to identify all 
potential ligand binding pockets on the surface of chain B. Among the three pockets found, cavity_2 is 
the pocket where Asp binds, containing 21 residues, which we referred as the allosteric pocket. Since 
previous studies proposed that transmembrane signaling is triggered by the relative piston- like down-
ward sliding of the α4 helix in the periplasmic domain (Mise, 2016), we chose the 16 residues (A166- 
T181) in the C- terminal of the α4 helix as the orthosteric site (Figure 5A). Through the coevolutionary 
analysis of residues in the orthosteric and allosteric sites, KeyAlloSite identified six key allo- residues in 
cavity_2, which were I65', F150', Y149', Q152', P153', and T154' (Figure 5B). It can be seen that our 
method could predict the key allo- residues Y149 and Q152. We also tested KeyAlloSite on the apo 
structure of Tar (PDB ID: 4Z9J). Of the eight pockets found by CAVITY, cavity_5 is the allosteric pocket, 
which contains 24 residues. As in the holo structure, the 16 residues (A166- T181) in the C- terminal 
of the α4 helix were chosen as the orthosteric site. In the prediction results, Y149' and Q152' ranked 
fourth and fifth among the 24 residues, with corresponding Z- scores of 1.01 and 0.66, respectively. 
Therefore, KeyAlloSite could also correctly predict the key allo- residue Y149 in the apo structure. For 
Q152, its Z- score is slightly smaller than the threshold of 0.8, though with a high ranking. This indicates 

Figure 5. The key allo- residues predicted by our method in Tar and PDZ3. (A) The crystal structure of holo- Tar. Aspartate (Asp) is represented by 
magenta sticks, the allosteric pocket is represented by marine surface, and the salmon helix is selected as the orthosteric site. (B) The key allo- residues 
predicted at the Asp- binding site. The predicted key allo- residues in the allosteric cavity_2 are represented by marine sticks, among which Y149 and 
Q152 are the true key allo- residues that have been confirmed by experiments. Hydrogen bonds are shown as red dash lines. (C) The predicted key allo- 
residues in PDZ3. The peptide bound to the orthosteric site is represented by salmon sticks, the allosteric pocket is represented by marine surface, and 
the predicted key allo- residues are represented by marine sticks.

The online version of this article includes the following source data for figure 5:

Source data 1. Raw data for Figure 5.

https://doi.org/10.7554/eLife.81850
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that conformational changes do have subtle influence on the predicted results, probably mainly due 
to the change of residue composition in the allosteric pocket detected by CAVITY, which will lead 
to some fluctuations in the predicted key allo- residues. However, when the conformational changes 
between apo and holo states are not large, the influence on the results is small.

The second protein is the PDZ3 domain, and its allosteric mechanism has been extensively studied. 
We selected the crystal structure of PDZ3 binding with a peptide in its orthosteric site for analysis 
(PDB ID: 1BE9; Doyle et al., 1996). Since the allosteric site of this structure does not bind an allosteric 
ligand, we used CAVITY to find the potential ligand binding pockets on its surface. Among the three 
pockets identified, cavity_1 is the orthosteric pocket, and cavity_2 contains the known allosteric sites, 
which were used for further analysis. KeyAlloSite predicted D306, S409, L302, A347, and L353 as key 
allo- residues (Figure 5C). Kalescky et al. used rigid residue scan to identify residues that are important 
for the allosteric effect of the PDZ3 domain. In the rigid residue scan, only one residue was regarded 
as a single rigid body in each MD simulation. They proposed that A347 is a ‘switch residue’, which is 
needed to turn on the allosteric effect (Kalescky et al., 2015). Lockless et al. used evolutionary data 
of protein families to measure the statistical coupling between amino acid positions. For the PDZ 
protein family, they found that there are strong statistical couplings between A347 and L353 and 
the key residue H372 of the orthosteric site, and verified using thermodynamic mutational studies 
(Lockless and Ranganathan, 1999). Moreover, McLaughlin et al. developed a high- throughput quan-
titative method that can individually replace a residue at each position with every other residue for 
comprehensive single- mutation studies. Their results showed that mutations of A347 and L353 caused 
significant functional loss (McLaughlin et al., 2012). These evidences all indicate that the key allo- 
residues A347 and L353 we predicted are important for the protein function by allosteric regulation.

KeyAlloSite identified pathogenetic mutations in human proteins
Previous studies have shown that allosteric mutation, that is, abnormal protein allosteric regulation 
caused by mutation is related to pathological processes such as cancer (Kurochkin et  al., 2017). 
Shen et al. analyzed the dysfunction of allosteric proteins caused by somatic mutations in about 7000 
cancer genomes across 33 cancer types, mapped these mutations to allosteric sites, orthosteric sites, 
and other sites in the Allosteric Database and established the Allo- Mutation data set (Shen et al., 
2017). We searched for the somatic mutation data corresponding to the human proteins in our data 
set from the Allo- Mutation data set, and found that 11 of a total of 51 predicted key allo- residues in 
7 human proteins were mutated in a variety of cancers (Table 1). Among them, cancers that contain 
a large number of mutations in key allo- residues are uterine corpus endometrial carcinoma and skin 
cutaneous melanoma. This indicates that the abnormal allosteric regulation caused by the mutation of 
key allo- residues plays key role in the occurrence and development of cancer. These key allo- residues 
can affect allosteric signal transduction and thus affect protein functions, suggesting that KeyAlloSite 
can be used to predict key pathogenetic mutations in proteins.

Table 1. Predicted key allo- residues that were mutated in cancers.

Protein Gene Predicted key allo- residues Mutation* Cancer type†

AR1 AR D732 D732N SKCM

AR2 AR M832 M832I SKCM

PTP- 1B PTPN1 M282 M282T COAD

CDK2 CDK2 P155 P155H UCEC

CK2alpha CSNK2A1 F54; A110 F54C; A110T UCEC; UCEC, GBM

MAPK14 MAPK14 P191; E192 P191S; P191H; E192Q SKCM; KIRC; BLCA

MAPK8 MAPK8 E195; M200 E195K; M200I UCEC; SKCM

CYP3A4 CYP3A4 F219 F219L UCEC

*Mutation: confirmed disease mutations among the predicted key allo- residues.
†Cancer type: COAD: colon adenocarcinoma; SKCM: skin cutaneous melanoma; UCEC: uterine corpus 
endometrial carcinoma; GBM: glioblastoma multiforme; KIRC: kidney renal clear cell carcinoma; BLCA: bladder 
urothelial carcinoma.

https://doi.org/10.7554/eLife.81850
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KeyAlloSite can also identify key allosteric functional residues of 
enzymes
Enzyme evolution studies mainly focus on mutations in the substrate binding pocket (Wu et al., 2013; 
Yi et al., 2011). However, covariant residues far from the substrate binding site may also play an 
important role in regulating catalysis, which are difficult to identify. Since KeyAlloSite can calculate the 
functional coupling between residues outside and inside the orthosteric pocket, we wonder whether 
it can also be used to identify key allo- residues for enzyme activity regulation. We used Candida 
antarctica lipase B (CALB, PDB ID: 1TCA), which has many annotated key functional residues (Wu 
et al., 2020), as a test case. CALB is one of the most widely used biocatalysts in academia and industry 
that is often applied in acylating kinetic resolution of racemic alcohols and amines and desymmetri-
zation of diols and diacetates, and is robust and easy to express (Wu et al., 2013). We selected the 
six angstrom- cutoff orthosteric pocket and calculated the EC values between each residue outside 
the orthosteric pocket and the residues in the orthosteric pocket. Then we compared the difference 
in EC values corresponding to each residue outside the orthosteric pocket and calculated the signif-
icant difference number  di  corresponding to each residue. Finally, the significant difference number 

 di  was normalized to Z- score. Due to the large number of residues outside the orthosteric pocket, 
residues with Z- scores greater than 0.9 were referred as key allo- residues here. Our method predicted 
a total of 52 residues from the 296 residues outside the orthosteric pocket, of which 20 residues have 
been annotated as functional residues in literature according to mutagenesis experiments (Figure 6A, 
Supplementary file 7). For example, A225 ranked the third out of the 52 predicted residues with a 
Z- score of 3.04, and A225M improves the catalytic efficiency of the enzyme by about 11 folds. V37 
ranked the 35th out of the 52 predicted residues with a Z- score of 1.42, and V37I improves the cata-
lytic efficiency of the enzyme by about threefolds (Wu et al., 2020). Therefore, our method can also 
be used to predict allosteric functional residues that are important for enzyme catalysis, providing a 
new computational tool for identifying mutant enzyme with improved catalytic properties.

Russ et al. recently used an evolution- based model to design chorismate mutase enzymes (CMs). 
They used DCA to learn the constraints for specifying proteins purely from evolutionary sequence 
data and performed Monte Carlo sampling from this model to generate artificial sequences. They 
were able to obtain proteins with natural- like catalytic function with sequence diversity. Eight resi-
dues (L40, L41, R44, D50, D83, L92, Q93, and H95) at the periphery of the active site were found to 
be important for CM catalysis in E. coli specific function (Russ et al., 2020; Figure 6B). We wonder 
if some of these residues regulate the enzyme function by allostery. We used the 6 angstrom- cutoff 
orthosteric pocket and identified 46 residues on the surface of the protein outside the orthosteric 

Figure 6. KeyAlloSite predicted key allo- residues for enzymes. (A) KeyAlloSite predicted key allo- residues for Candida antarctica lipase B. Among the 
predicted residues, the residues that have been annotated by the literature are shown as marine spheres, and the orthosteric pocket is represented 
by salmon surface. (B) KeyAlloSite predicted key allo- residues for Escherichia coli chorismate mutase (CM). Experimentally discovered key functional 
residues of CM are shown as marine spheres, the labels of key allo- residues predicted by KeyAlloSite are shown in marine, and the orthosteric pocket 
and ligand are represented by salmon surface and sticks.

The online version of this article includes the following source data for figure 6:

Source data 1. Raw data for Figure 6.

https://doi.org/10.7554/eLife.81850
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pocket. We calculated the EC values between each of these 46 residues and the orthosteric pocket 
and compared the difference in EC values of these 46 residues. We then calculated the significant 
difference number  di  corresponding to each of these 46 residues and normalized to Z- scores. Using 
the criterion of Z- score >0.9, we predicted 10 key allo- residues from the 48 residues, which were L86, 
A9, R44, Q89, E57, E12, L40, D69, R58, and N5. Among them, two residues (R44 and L40) were shown 
to be important for CM catalysis by Russ et al. And Russ et al. used DCA to show that sequence- based 
statistical models contain protein function information, while our study used DCA to predict allosteric 
sites or key allosteric residues based on the significance analysis of EC between these sites with the 
orthosteric site. Their study showed that the function of proteins seems to depend on many weak 
terms in  Jij  , which lack simple physical interpretations. Our study demonstrated that weak terms in  Jij  
contain information for protein allosteric function evolution and can be used to predict allosteric sites 
and key allosteric residues.

To further verify the effectiveness of KeyAlloSite, we made indirect comparisons with the statistical 
coupling analysis (SCA) method. SCA predicts several groups of coevolved residues (sectors) that 
form physically continuous networks, often able to connect major functional site and allosteric sites, 
that is, allosteric pathways (Lockless and Ranganathan, 1999; Rivoire et  al., 2016; Salinas and 
Ranganathan, 2018; Shulman et al., 2004; Süel et al., 2003). We analyzed all the proteins in our 
data set using SCA. We first compared the performance of SCA and KeyAlloSite in predicting known 
key allo- residues in allosteric sites (Supplementary file 9). For the known key allo- residue L359 in the 
BCR- ABL1 protein, it was not present in the sectors predicted by SCA, despite that the sectors contain 
68 residues, while it could be correctly predicted by KeyAlloSite. For the known key allo- residues Y149 
and Q152 in the Tar receptor, KeyAlloSite could correctly predict both of them. However, although the 
sectors predicted by SCA contained Y149 and Q152, it also included two residues (R69 and R73) that 
have been experimentally verified to contribute only to ligand binding and not to allosteric signaling 
(Bi et al., 2013). For the PDZ3, the sectors predicted by SCA contained the key allo- residues A347 
and L353, which were also successfully predicted by KeyAlloSite. We further compared the perfor-
mance of SCA and KeyAlloSite in predicting the key allosteric functional residues of enzymes. For 
the CALB, the sectors predicted by SCA missed one of the key allo- residues A225, which has been 
experimentally shown to have a great impact on enzyme activity, and the predicted known key allo- 
residues account for 32.8% of all the residues in the sectors, while KeyAlloSite could predict the key 
allo- residue A225, and the predicted known key allo- residues account for 38.5% of all the predicted 
key allo- residues. For the CMs, the sectors predicted by SCA contained only one key allo- residue D83, 
while KeyAlloSite could predict key allo- residues R44 and L40. For the KeyAlloSite correctly predicted 
functional phosphorylation sites T288 and T287 in the AurA, SCA missed both of them. Thus, KeyAl-
loSite performs better than SCA in predicting key allo- residues.

Discussion
Identifying key allosteric residues responsible for allosteric signaling is important for the design and 
optimization of allosteric drugs, enzyme, and protein engineering studies. We developed, KeyAl-
loSite, a novel method for predicting allosteric sites and key allo- residues based on the ECM. To the 
best of our knowledge, this is the first systematic and efficient computational method to predict key 
allo- residues. Our study demonstrated that orthosteric and allosteric pockets are coupled in protein 
function evolution. Our predicted key allo- residues are in accordance with previously reported exper-
imental studies in the BCR- ABL1, Tar, and PDZ3 systems, as well as key cancer mutations. We further 
showed that KeyAlloSite can be applied to predict key allosteric residues distant from the catalytic site 
that are important for enzyme catalysis. Our study also gives a possible physical explanation for the 
weak couplings in  Jij  , that is, they may represent allosteric functional couplings. The predicted key 
allo- residues can help us to understand the mechanism of allosteric regulation, to provide reference 
and guidance for the rational design and optimization of allosteric drugs and to facilitate enzyme 
engineering.

It should be noted that due to limited available experimental information, for the protein systems 
that we tested, although all the predicted known key allo- residues ranked among top 20%, there 
are other residues among the top list with unidentified function. Our analysis predicted that these 
residues should play important roles in allosteric signaling. Further experimental studies are needed 
to verify their functions in the future. At the same time, our predicted list of key allo- residues greatly 

https://doi.org/10.7554/eLife.81850
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reduces the number of residues that needs to be verified experimentally. We expect future experi-
mental studies on the functions of these newly predicted key ‘allo- residues’ can not only verify and 
demonstrate the predictive power of KeyAlloSite but also offer more data to improve it.

Several methods were developed to infer protein function based on the coevolutionary couplings 
between residues. For example, Hopf et al. developed EV mutation to predict the effects of muta-
tions based on the coevolutionary couplings between residues (Hopf et al., 2017). The theoretical 
formulation for extracting the coupling scores between residues in the initial step of our method is 
the same as that of Hopf et al., but the problem studied by us is different from that of Hopf et al., and 
the usage of the coupling scores between residues in the later steps of the two methods is different. 
Hopf et al. used the coevolutionary coupling scores between residues to predict the effects of muta-
tions by calculating the difference in statistical energy between mutant and wild- type sequences. In 
contrast, we used the coevolutionary coupling scores between residues to predict the allosteric sites 
and key allo- residues in allosteric pockets that are mainly responsible for allosteric signaling by pair-
wise comparing the difference of the coevolutionary coupling scores of residues in allosteric pockets. 
Although Hopf et al. highlighted the significance of the pairwise coupling term for the prediction of 
mutation effects, we highlighted the importance of the weak pairwise coupling term for the study of 
allosteric function.

As KeyAlloSite attempts to capture coevolutionary coupling between residues from MSA, it 
requires that MSA should contain sufficient homologous and diversified sequences. For the MSAs 
with only a few homologous sequences, KeyAlloSite usually cannot give accurate predictions. How to 
reduce the number of homologous sequences required remains further research.

The scores of the key allo- residues predicted by KeyAlloSite depend not only on the coevolu-
tionary information but also on the residues contained in allosteric pockets. When different confor-
mations of the protein are used, pocket detection method may give allosteric sites with slightly or 
largely different residues (depending on the difference of the conformations) that may influence the 
final KeyAlloSite. For example, in the case of Tar, the ECs between residues are the same for the 
apo and holo conformations, while the allosteric pockets found by CAVITY in the two conformations 
contained a small number of different residues. Because the prediction of key allo- residues by KeyAl-
loSite requires pairwise comparison of residues in allosteric pockets, the predicted key allo- residues 
in the two conformations were slightly different. For the apo Tar, on the one hand, although the score 
of Q152 is 0.66, which is less than the threshold of 0.8, Q152 ranked high among all residues in the 
allosteric pocket with a ranking of 5/24. When we lower the threshold slightly, we will be able to 
correctly predict Q152. On the other hand, Bi et al. showed that although Y149 and Q152 are both 
key allo- residues, Y149 seems to be more important as allosteric signaling can be conducted when 
the allosteric molecule only interacts with Y149 but not Q152 (Bi et al., 2013). Although the holo Tar 
has some conformational changes compared to apo Tar, the key allo- residueY149 can be captured by 
KeyAlloSite when using either the holo or the apo structure. For applications, we recommend to use 
the holo structure whenever possible.

Although we used the three- dimensional structure of proteins and their binding ligands in our 
analysis, KeyAlloSite can also be applied in cases where no three- dimensional structures are available 
on condition that a certain number of homologous sequences of the protein under investigation and 
location of the functional site are known. Along with the rapid progress in recent years, protein struc-
ture prediction methods, such as AlphaFold (Jumper et al., 2021), can be used to predict the protein 
structure first. At the same time, as our method calculates the EC between any residue of the protein 
and residues of the orthosteric pocket, KeyAlloSite can be used to predict not only key allosteric 
residues but also PTM sites that have functional correlation with orthosteric sites, which will be further 
studied in the future.

Key residues in protein allosteric sites determine the direction and strength of allosteric signaling, 
while other residues in allosteric sites mainly contribute to binding. When optimizing allosteric mole-
cules, we often face the challenge that simply increasing binding affinity cannot improve the efficacy 
of allosteric regulation. Therefore, to optimize the allosteric molecules, one can first use KeyAlloSite 
to predict the key allo- residues in the allosteric pocket and then maintain or enhance the interactions 
between the allosteric molecules and the key allo- residues while altering the interactions between the 
allosteric molecules and other residues in the allosteric pocket. In this way, the optimized allosteric 
molecules can be ensured to have both strong binding affinity and allosteric signal transduction ability.

https://doi.org/10.7554/eLife.81850
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Materials and methods
The allosteric protein data set
We selected allosteric proteins from the ‘Core Set’ of ASBench (Huang et al., 2015) and constructed 
our data set according to the following criteria: (1) the protein functions as a monomer; (2) the corre-
sponding three- dimensional protein structure data should contain both allosteric ligand and ortho-
steric ligand; (3) the number of effective homologous sequences of the protein should be greater 
than 100. Finally, 23 allosteric proteins were selected, including 25 known allosteric sites (Supplemen-
tary file 1). We collected another two proteins from published literatures, including E. coli aspartate 
chemoreceptor Tar (PDB ID: 4Z9H) (Mise, 2016) and PDZ3 domain (PDB ID: 1BE9) (Doyle et  al., 
1996), as key allo- residues have been reported for these two proteins that can be used for compar-
ative analysis. We used HMMER to search for the homologous sequences of each of the selected 
allosteric proteins from pfam (Finn et al., 2015). Due to the redundancy of homologous sequences, 
they were reweighted according to the standard of 80% sequence identity to obtain the effective 
homologous sequences.

The evolutionary coupling model
We used a global statistical model, the ECM, which can calculate the direct couplings between resi-
dues and remove the indirect couplings. The ECM we used here was mainly based on the work of 
Marks and her co- workers (Ekeberg et al., 2013; Weinreb et al., 2016). From the MSA of a protein 
family, we can calculate the observed frequency  f

a
i   and pairwise co- occurrences  f

ab
ij   of residues (a, b) 

at position (i, j). From this first- order and second- order statistics, we can infer a model to account for 
the observed statistics optimally, which mainly includes two parameters: single- site propensities  hi

(
a
)
  

and direct coevolutionary couplings between residues  Jij
(
a, b

)
 . This model defines a probability P for 

each protein sequence  a  = ( a1, . . . , aL ) of length L:
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The parameters h and J of the model were estimated by pseudo- maximum likelihood (PLM) which 
approximates the full likelihood for each sequence  a  = ( a1, . . . , aL ) by a product of conditional likeli-
hoods for each site i:
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The global partition function Z is replaced by a number of local partition functions:
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After modifying with L2- regularization and sample reweighting, the approximate likelihood func-
tion was optimized using a quasi- Newton method (Limited- memory BFGS).

Once the parameters h and J are fitted, the Frobenius norm  FN
(
i, j
)
  of  Jij  is used to measure the 

ECS between the two sites i and j.
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 J
,
ij  was obtained after  Jij  was centralized.

Since the FN may include bias caused by phylogeny and undersampling, it can be corrected with 
average product correction (Dunn et al., 2008). The EC value is the EC score of the two sites.
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Evolutionary coupling strength between orthosteric and other pockets
We first performed MSA (Figure  1A) and calculated the ECs between residues using the ECM 
(Figure 1B). We then used the CAVITY program (Xu et al., 2018; Yuan et al., 2013) to identify all 
the potential ligand binding pockets on the surface of a protein and designated the mth pocket as 
cavity_m. The ECS ( ECScavity_m  between the orthosteric pocket and the mth pocket is defined as the 
sum of the coupling strength between the residues in the two pockets. The orthosteric pocket here is 
defined as all of the residues within 6 Å around the orthosteric ligand. If more than 50% of the residues 
in the mth pocket overlap with the orthosteric pocket, the pocket will be excluded. Otherwise, the 
overlapping residues between the mth pocket and orthosteric pocket will be removed from the mth 
pocket, and the remaining residues will be used to calculate the ECS between the mth pocket and 
orthosteric pocket.

 
ECScavity_m =

∑
i∈cavity_m

∑
j∈orthosteric pocket

FN
(
i, j
)
  

(7)

Finally, we normalized the ECS of the pockets:

 
Z-scorecavity_m = ECScavity_m−µcavity

σcavity   (8)

 µcavity  is the mean value of the ECS between the orthosteric pocket and the other pockets, and 

 σcavity  is the standard deviation of the ECS.

Identification of key allo-residues
We first calculated the pairwise EC value between one residue  ai  (i=1,2,...,N) in the allosteric pocket 
and one residue  bj  (j=1,2,...,M) in the orthosteric pocket. An N × M matrix E was obtained, and each 
element  Eij  in the matrix E represents the EC value between residues in the allosteric and orthosteric 
pockets (Figure 1C–D). The allosteric pocket here refers to the allosteric pocket found by the CAVITY. 
In rare cases, if the CAVITY does not find the known allosteric pocket, all of the residues within 8 Å 
around the allosteric ligand are used as the allosteric pocket. After that, the difference of EC values 
corresponding to each residue in allosteric pocket was pairwisely compared by using the student’s 
t- test (α=0.05), that is, whether there was a difference between the mean values of each two rows 
of matrix E. The result of the comparison was expressed by  Cmi  (m=1,2,...,N, i=1,2,...,N), if there 
was a significant difference,  Cmi  was assigned a value of 1, if there was no significant difference,  Cmi  
was assigned a value of 0. Finally, an N × N matrix C was obtained, and each element in C indicates 
whether there was a difference between the residues in the allosteric pocket (Figure 1E). On this 
basis, by adding up each column of C, we could get the number of significant differences  di  (i=1, 2,..., 
N) between each residue and the remaining residues in the allosteric pocket, that is, the number of 
significant differences corresponding to ith residue (Figure 1F).

 
di =

N∑
m=1

Cmi
  

(9)

Finally, we normalized the number of significant differences of the residues:

 
Z-scoreresidue_i = di −µresidue

σresidue   (10)

 µresidue  is the mean value of the number of significant differences of the residues, and  σresidue  is the 
standard deviation of the number of significant differences.

In enzyme catalysis, in addition to residues in the active site, distant residues may also affect enzyme 
activity, which could not be rationally designed in enzyme engineering. We systematically studied the 
effect of residues outside of the active site on enzyme catalysis. We calculated the EC value between 
each residue outside the orthosteric pocket and residues in the orthosteric pocket (i.e. the rows in 
matrix E are all residues outside the orthosteric pocket here). Using the same steps as above, we 
determined the number of significant differences  di  for each residue outside the orthosteric pocket 
and normalized it to Z- score.
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Data availability
The data that support the results of this study are in the Supplementary data, including information 
of the allosteric proteins in the data set (Supplementary file 1); list of the Z- scores and ranking 
of allosteric pockets in the data set (Supplementary file 2); KeyAlloSite prediction results of AurA 
kinase (Supplementary file 3); list of the predicted key allo- residues in allosteric pockets (Supple-
mentary file 4); key allo- residues predicted by KeyAlloSite with different cutoffs (Supplementary file 
5); KeyAlloSite prediction results of tyrosine- protein kinase ABL1 (Supplementary file 6); the key allo- 
residues predicted by our method on CALB (Supplementary file 7); the confusion matrices of KeyAl-
loSite in different scenarios (Supplementary file 8); comparison of KeyAlloSite and SCA methods 
(Supplementary file 9); phylogenetic tree of androgen receptor (Figure  2—figure supplement 
1); comparison of ECS between pockets when all residue pairs and partial residue pairs were used 
(Figure 2—figure supplement 2); difference between the EC between orthosteric and allosteric sites 
and the EC between two random patches (Figure 2—figure supplement 3); distribution of the ratios 
of the number of key allo- residues predicted by KeyAlloSite in the number of all residues in allosteric 
pockets when using different cutoffs in all proteins (Figure 3—figure supplement 1); examples of 
distributions of the statistics corresponding to significant scores obtained from the t- test (Figure 3—
figure supplement 2); and random sampling of homologous sequences (Figure 3—figure supple-
ment 3). The homologous sequences of the proteins in the data set are available in the following 
GitHub repository: https://github.com/huilan1210/KeyAlloSite, Xie et al., 2023.

Code availability
KeyAlloSite is available at GitHub (https://github.com/huilan1210/KeyAlloSite, copy archived at 
swh:1:rev:8464b27b588af48d14033ab40d62f9eca4ed0051, Xie et al., 2023).
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