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Synthetic analysis of chromatin tracing 
and live-cell imaging indicates pervasive 
spatial coupling between genes
Christopher H Bohrer, Daniel R Larson*

Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, 
National Cancer Institute, National Institutes of Health, Bethesda, United States

Abstract The role of the spatial organization of chromosomes in directing transcription remains 
an outstanding question in gene regulation. Here, we analyze two recent single-cell imaging meth-
odologies applied across hundreds of genes to systematically analyze the contribution of chromo-
some conformation to transcriptional regulation. Those methodologies are (1) single-cell chromatin 
tracing with super-resolution imaging in fixed cells; and (2) high-throughput labeling and imaging 
of nascent RNA in living cells. Specifically, we determine the contribution of physical distance to the 
coordination of transcriptional bursts. We find that individual genes adopt a constrained conforma-
tion and reposition toward the centroid of the surrounding chromatin upon activation. Leveraging 
the variability in distance inherent in single-cell imaging, we show that physical distance – but 
not genomic distance – between genes on individual chromosomes is the major factor driving 
co-bursting. By combining this analysis with live-cell imaging, we arrive at a corrected transcriptional 
correlation of ‍ϕ ≈ 0.3‍ for genes separated by < 400 nm. We propose that this surprisingly large 
correlation represents a physical property of human chromosomes and establishes a benchmark for 
future experimental studies.

Editor's evaluation
In this article, Bohrer and Larson revisit previously published imaging datasets in order to tackle 
a long-standing question in modern genome biology: does the physical proximity of transcribed 
genes correlate with their co-expression? The authors provide convincing evidence to deduce 
that when a pair of loci are brought within sufficiently low physical 3D proximity (unrelated to their 
genomic distance) they are more likely than expected to be co-expressed. This is a result of poten-
tially fundamental importance.

Introduction
The role of spatial heterogeneity in the nucleus in relationship to gene regulation is an enduring ques-
tion in cell biology (Bohrer and Larson, 2021). Heterogeneity or compartmentalization is visible at 
all length and genomic scales, starting from gene loops and proceeding through enhancer–promoter 
interactions, topologically associated domains, A/B compartments, chromosome territories, up to 
inter-chromosomal interactions such as the nucleolus, Cajal bodies, and histone locus bodies, and 
extending to prominent nucleus-wide features such as lamin-associated domains and heterochro-
matin (Misteli, 2020). The synergy between microscopy (mostly light microscopy but also electron 
microscopy; Ou et al., 2017) and chromosome conformation capture approaches has led to funda-
mental insights of how molecular features drive genome organization, the influence they have on 
gene regulation, and the extent to which genome organization varies within individual cells.
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Yet, the chromatin–transcription relationship at length scales smaller than the wavelength of visible 
light (~500 nm) remains challenging to dissect. Foundational work from Cook and colleagues intro-
duced the notion of the transcriptional factory. Transcription factories are areas with an enrichment 
of transcription machinery where genes are thought to be transiently bridged to enable efficient 
transcription (Feuerborn and Cook, 2015). Ensemble chromosome conformation capture seems 
to support this model by revealing that promoter–promoter contacts (smaller than 1 Mb) form as 
transcription levels increase (Hsieh et al., 2021; Zhu and Suh, 2020; Hsieh et al., 2020; Levo et al., 
2022). The model is that actively transcribed genes are positioned to transcription factories. The 
prediction is that genes that are close in 3D space (nm) will 'feel' the same enrichment in transcription 
machinery and exhibit correlated transcriptional bursts. Indeed, genes on the same chromosome 
(Deng et al., 2014; Sun and Zhang, 2019; Tian et al., 2020; Quintero-Cadena and Sternberg, 
2016; Xu et al., 2019) and genes that share the same (ensemble) topologically associated domain 
(Tarbier et al., 2020) are more co-expressed in individual cells (RNA). However, correlations were 
not seen between nascent transcripts (Levesque and Raj, 2013) and the genomic distance between 
genes was found to show a more dominant role in RNA co-expression than Hi-C contact frequency 
(Sun and Zhang, 2019). Furthermore, single-cell RNA-seq showed little to no difference in correla-
tion between genes from the same chromosome with an increased contact frequency, given a similar 
genomic distance between the two, bringing the strength of the hypothesis into question (Tarbier 
et al., 2020).

This static factory view was supplanted by one in which local heterogeneity of the transcription 
machinery was due to dynamic assembly and disassembly (Cisse et  al., 2013; Cho et  al., 2018; 
Henninger et al., 2021). Thus, the 'factory' was not a fixed assemblage but rather a transient and 
movable conglomeration of RNA polymerase II, general transcription factors, and nascent RNA that 
arose in connection to active transcription units. It is clear that these diffraction-limited spots observed 
in the fluorescence microscope exchange constituents with the surrounding nucleoplasm. However, 
the number of terms used to describe these spots – 'factories,' 'foci,' 'hubs,' 'clusters,' 'speckles,' 
'compartments,' 'condensates,' 'phases' – emphasizes the lack of a consensus model in the field. 
Further, it should be noted that many of the utilized super-resolution methodologies are prone to arti-
facts (Bohrer et al., 2021). Consequently, the physical interactions between protein, DNA, and RNA 
and the dynamic changes in chromosome structure that precede RNA synthesis are hotly debated.

Recent advances in single-cell imaging shed light on these questions and motivate the fully theo-
retical analysis in this paper. First, the development of chromatin tracing of an entire chromosome 
using super-resolution light microscopy provides a spatial map of the chromatin fiber at ≈100 nm 
resolution (Su et al., 2020; Hu and Wang, 2021). When coupled with single-molecule fluorescence in 
situ hybridization (smFISH) to look at nascent RNA, one can then connect chromatin conformation to 
transcriptional activity with single-cell resolution (Su et al., 2020). Specifically, the nascent transcrip-
tion state of ~80 genes as well as the 3D centroid positions of 651 50 kb chromosomal segments was 
quantified for thousands of individual chromosomes in IMR90 cells (Figure 1A). Second, the appli-
cation of single-cell imaging of nascent RNA in living cells provides critical information on temporal 
heterogeneity to interpret the observations of spatial heterogeneity. For example, transcriptional 
bursting of human genes expressed in their native genomic context can be monitored with high 
spatial and temporal precision for hours (Rodriguez et al., 2019; Wan et al., 2021).

Here, we take advantage of two single-cell datasets – chromatin tracing in fixed cells and nascent 
RNA imaging in living cells to address two questions: (1) Do genes reposition upon transcriptional 
activation? (2) Do genes in spatial proximity show correlations in transcriptional activity? Our analysis 
indicates that with transcription, chromatin adopts a constrained structure and the gene is positioned 
toward the centroid of the surrounding chromatin. We then probed the distances between genes and 
found that genes are positioned closer to each other with transcriptional bursts when the genomic 
distance between them below 5 Mb, and genes were positioned farther away from each other with 
transcription if the genomic distance was above 5 Mb. Importantly, by capitalizing upon the fluctu-
ations of distances between genes on individual chromosomes, we found that the physical distance 
between genes on individual chromosomes is the major factor driving the transcriptional co-bursting 
between genes. By incorporating temporal information from live-cell imaging of active genes (dura-
tion of active periods and mobility of active genes), we can infer the correlation between transcrip-
tional bursts for proximal genes to be ‍ϕ ≈ 0.3‍. Overall, our synthetic analysis of these two single-cell 
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Figure 1. Transcription confines chromatin and active promoters are located toward the centroid of their surrounding chromatin. 
 (A) An illustration of the chromatin-tracing data where each chromosomal locus is imaged through different rounds of hybridizagtion and the centroid 
of each 50 kb region is determined. Nascent RNA FISH was used to classify genes into ‘on’ (1) or ‘off’ (0) according to their transcriptional state. (B) The 
median physical distances (MPD) between all loci determined on chromosome 21. (C) The cumulative distribution function of the distance between 

Figure 1 continued on next page
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datasets indicates that indeed genes do reposition upon activation and show concomitant correlation 
between individual transcriptional bursts.

Results
Active promoters are positioned to locations defined by chromatin 
organization
To investigate spatial changes in the chromatin fiber for active and inactive genes, we reanalyzed data 
from combined super-resolution imaging of DNA and RNA FISH (Su et al., 2020). We performed a 
spatial metagene analysis consisting of 'centering' the chromatin around the promoter of the each 
gene, quantifying the standard deviations (STD) of the distances between the chromosomal loci, and 
then averaging over all available genes. Note, we utilized the centroid position of the chromosomal 
segment that contained the transcriptional start site of each gene as the location of the promoter for 
the gene and only utilized the chromosome tracing by sequential hybridization data (Su et al., 2020). 
This analysis was done for chromosomal segments where genes were ‘off’ (0) or ‘on’ (1) (Figure 1D and 
E) – we utilize Boolean logic (0 or 1) throughout to describe transcription states based on the absence 
(0) or presence (1) of nascent RNA. We observed that chromatin centered around the promoter shows 
less variability while transcribed, again as determined by the presence of nascent RNA. To more 
clearly visualize distinctions between chromatin configuration ± nascent RNA, we quantified the differ-
ence and found that the distances from a promoter to the surrounding chromatin are more restricted 
with transcription, indicated by a cross-shape pattern on the heatmap (Figure 1F).

The change in confinement could be the result of repositioning active genes to a different nuclear 
environment. To probe whether gene positioning varies with transcription, we performed a similar 
analysis but quantified the median physical distance (MPD) between chromosomal loci with and 
without transcription and quantified the average over all available genes (Figure 1G and H). Again, 
we quantified the difference between them and found a similar red cross (Figure  1I), suggesting 
that when a gene is active the promoter is on average closer to the surrounding chromatin and the 
distances between nonpromoter chromosomal segments are unperturbed.

It is conceivable that repositioning is due to enhancer–promoter proximity that might precede tran-
scription activation: the smaller average MPD to the surrounding chromatin with transcription could be 
due to genes only being active when near surrounding specific enhancers. To investigate, we used the 
density of H3K27Ac as a proxy for enhancer activity. We quantified the density of H3K27Ac ChIP-seq 
reads within each 50 kb segment for IMR90 cells using previously acquired data (Appendix 1; ENCODE 
Project Consortium, 2012). This analysis resulted in varying densities of H3K27ac throughout Chr21 
and is shown in Appendix 1—figure 1A. We then partitioned the H3k27ac density into four groups 
(low, med, high, very high) and investigated the average MPD of each gene to all other loci with and 
without transcription. Like before (Figure 1), we observed that a gene was indeed closer to the other 
individual loci when transcriptionally active, but the MPD change did not show a general difference 
with H3K27ac enrichment when compared to other loci lacking H3K27ac (Appendix 1—figure 1B), 
suggesting that the observed repositioning may not be a result of enhancer–promoter interaction.

Intuitively, a possible reason for the distance to decrease to surrounding chromatin with tran-
scription (on average) is if a gene is located closer to the centroid of the surrounding chromatin for 
single chromosomes when active. To test this supposition, we calculated the mean distance of the 

chromosomal loci separated by various genomic distances – all loci with a given genomic distance were used to generate these distributions. (D) An 
aggregate analysis, calculating the standard deviation (STD) of the distances between chromosomal loci for chromosomes where a gene = 0, centered 
around the loci containing the promoter, and then averaging over all genes. (E) The same as (D) but with gene = 1. (F) The difference in the average 
centered STD in (D) and (E). (G) Similar to (D) but quantifying the MPD instead of the STD. (H) The same as (G) but for chromosomes where gene = 1. (I) 
The difference between the average centered MPD in (G) and (H). (J) The mean distances between chromosomal loci containing genes to the centroid 
of the surrounding chromatin when the genes were either on (1) or off (0) vs. the amount of chromatin around the promoter included in the centroid 
calculation. There is also an illustration of this calculation in the far-right corner to aid interpretation. (K) The difference between the mean distances 
to the local centroid when gene = 0 and gene = 1, showing the results in (J) on a gene-by-gene basis. Boxplots show quartiles and whiskers expand to 
1.5× interquartile range, black diamonds are outliers. Significance was defined as a p-value <0.01 with a t-test (Appendix 1). The analysis was done on 
≈7600 individual chromosomes and 80 different genes.

Figure 1 continued
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promoter of the gene to the centroid of the surrounding chromatin with and without transcription 
(Figure 1J). The centroid was calculated for windows of various genomic size around each gene – 
that is, for a 0.5 Mb chromatin region, 0.25 Mb on both sides of the gene promoter were included in 
the centroid calculation. Tellingly, we found a definitive difference between active promoters (1) and 
inactive promoters (0): the active promoters were closer to the centroids of the surrounding chro-
matin (Figure 1J). Note that the mean distance from a local centroid to an inactive promoter gives 
one an idea to natural spread of the chromatin. To understand this phenomenon on a gene-by-gene 
basis, we quantified the difference between the active promoter and inactive promoter for each gene 
(Figure 1K). We found that even though there are overlaps in the distributions in Figure 1J, nearly 
every gene was closer to the centroid with nascent transcription, suggesting a general phenomenon. 
Overall, these results indicate that transcriptionally active genes are located toward the centroid of 
surrounding chromatin.

We then sought to assess whether the positioning of the genes toward the centroid was depen-
dent upon transcriptional activity. To investigate, we partitioned the available genes into low activity 
or high activity depending upon whether fractional occupancy was below or above the median, and 
then performed the above analysis on each subset of genes. That is, the activity of a gene was deter-
mined from the fraction of chromosomes where that gene was active. Interestingly, we found that 

Figure 2. The distances between genes vary with transcription on individual chromosomes. (A) The mean distances between genes vs. the genomic 
distance for when both genes were (0,0),(1,1), (0,1), and the mean distances between loci not containing the investigated genes. Boxplots show quartiles 
and whiskers expand to 1.5× interquartile range, black diamonds are outliers. (B) The difference between the scenarios shown in (A), showing the 
difference in mean distance on a gene pair by gene pair basis, and a black line is shown to aid in visualization of zero. (C) The same analysis as in (B) but 
vs. the median physical distance (MPD) between the genes. (D–G) The difference shown in (B) and (C) but vs. either the MPD minus the expected MPD 
or the genomic distance minus the expected genomic distance (see text). Boxplots show quartiles and whiskers expand to 1.5× interquartile range, 
black diamonds are outliers. Black lines and dots are means and error bars are SEM from bootstrapping (Appendix 1). Significance was defined as a p-
value < 0.01 with a t-test (Appendix 1).

https://doi.org/10.7554/eLife.81861
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high-activity genes were both less variable (Appendix 1—figure 2A) and showed greater movement 
with active transcription when compared to the low-activity genes (Appendix 1—figures 2B and 3). 
Upon closer inspection (Appendix 1—figure 3A), the greater movement for the high-activity genes 
was not so much due to a different distance to the local chromatin centroid when active but was 
instead due to larger distances from the centroid when inactive – this is illustrated by the first genomic 
distance bin in Appendix 1—figure 3A by comparing the first genomic distance bin of the low-activity 
genes to the high-activity genes. In brief, these results suggest that these processes additionally vary 
depending upon a genes activity level.

Having considered genes individually based on activity (first order moments), we next sought to 
quantify higher-order moments such as pairwise interactions in promoter–promoter distances based 
on transcriptional activity. We first quantified the average distances between promoters when [both 
genes were off, (0,0)], [both were on, (1,1)], [one was off and one was on, (0,1)], and quantified them 
as a function of the genomic separation between them (Figure 2A). We also quantified the average 
distances between chromosomal loci that did not contain the investigated genes as a reference 
control (Figure 2A). We found that the distances between genes were consistently smaller with tran-
scription for short genomic distances (<1.5 Mb), as evidenced by the significant decrease in the (0,1) 
and (1,1) interactions compared to the (0,0) interaction. When we compared (0,0) to the no gene 
control, we saw essentially no difference. We note that the means of the samples were statistically 
different in some cases (i.e., no gene to (0,0)), potentially indicating that the distances between the 
genes are potentially different even when inactive (Figure 2A). Still, overall, these results suggest 
transcriptional bursting (or a consequence of bursting) is correlated with the formation of promoter–
promoter contacts.

To probe the distance changes on a gene pair by gene pair basis, we first calculated the mean 
distance between inactive genes on the same chromosome (0,0) and then subtracted the mean 
distance between the genes when active ((1,1) or (0,1)) – similar to the analysis in Figure 1K. This 
analysis is shown as a function of the genomic distance between genes in Figure 2B. For genomically 
proximal genes, we observed that when both genes were active the mean distances between the 
promoters were indeed closer to each other. When we compared the (0,0)–(0,1) to (0,0)–(1,1), the 
later difference was approximately twice the former difference. Interestingly, we observed that as the 
genomic distance increased, the difference for both seemed to approach a negative value, suggesting 
that sufficiently separated genes are positioned to different locations with transcription. However, 
the spread within the boxplots suggests much variability in whether genes are positioned toward the 
same or different location with transcription. Overall, these analyses provide strong evidence that the 
spatial separation between genes depends on individual transcriptional bursts.

These analyses suggest a characteristic genomic length scale over which pairwise interactions 
might occur. However, since genomic distance and physical distance between chromosomal segments 
are obviously correlated (Sun and Zhang, 2019; Bintu et al., 2018; Su et al., 2020), either might 
define the length scale and drive repositioning with transcriptional bursting. To probe the general 
impact of MPD, we characterized the positioning of genes toward the same or different location with 
transcription based on the 3D distance between the genes. Note that this analysis is only possible 
with microscopy datasets such as this one (Su et al., 2020). We performed the previous analysis as 
a function of the MPD between the genes (Figure 2C) and found a strong decay with increasing 
MPD. The (0,0)–(0,1) resulted in a strong majority of values being negative for MPD above 1300 nm, 
indicating that the genes move away from each other with bursting above this spatial threshold. The 
(0,0)–(1,1) had a majority of negative values for MPD above 1300 nm but the proportion with positive 
values was higher.

Probing further, to disentangle the dependence of this movement on genomic distance and/or 
MPD, we quantified how deviations from the expected influenced repositioning. Given the stronger 
trend with the MPD, we first quantified the difference as a function of the MPD minus the expected 
MPD. The expected MPD was calculated utilizing all chromosomal loci and was defined as the average 
MPD for each genomic distance ('Methods'). We found that for both scenarios a smaller than expected 
MPD resulted in genes moving toward each other with transcription and a larger than expected MPD 
led to the genes moving away from each other (Figure 2D and E), though the latter was less clear 
for the (0,0)–(1,1). These results suggest that the positioning of genes in physical space influences 
the outcome of pairwise interactions: genes which are close to each other (MPD <1100 nm) move 

https://doi.org/10.7554/eLife.81861
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closer when bursting, and genes that are far from each other separate when bursting. Similarly, to 
investigate whether the genomic distance plays a role, we performed the analysis but as a function of 
the genomic distance minus the expected genomic distance — the genomic distance given the MPD 
('Methods'). We found that the analysis did not have a monotonic trend and instead peaked at zero 
(Figure 2F and G). If there were a simple relationship between genomic distance and repositioning, 
one would expect a monotonic trend and therefore it seems unlikely that genomic distance drives this 
phenomenon. Additionally, we found that the zero peak was enriched for gene pairs with low MPDs 
– as we just demonstrated: low MPDs lead to genes moving toward each other (Figure 2D and E). 
In summary, these results suggest that the MPD is predictive of whether genes move toward or away 
from each other with transcription.

Lastly, we sought to probe the extent to which this phenomenon was dependent upon transcrip-
tional activity (low vs. high as described above). As before, we performed the same analysis but on 
the two groups of genes separately. Again, the distance change between genes was stronger for 
more active genes, suggesting these processes also vary depending upon the transcription activity 
level (Appendix 1—figure 4). Of note for high-activity genes, nearly all of them move away from each 
other when they were separated by large MPD (>1300 nm), suggesting the process of moving to a 
different location for transcription may be more deterministic for highly active genes (Appendix 1—
figure 4E).

Figure 3. Limited variability prevents quantification. (A–,C) The Spearman correlation coefficient between genes as a function of genomic distance, 
contact frequency, and median distance. Black lines and dots are means and error bars are SEM from bootstrapping (Appendix 1), boxplots show the 
quartiles as above. (D) Average correlation coefficients of genes given that their genomic distance and contact frequencies were within a specific range. 
(E) Average correlation coefficient of genes given that their genomic distance and median distance were within the specific range. An * illustrates 
whether the average correlation coefficients along that dimension are correlated (p-value<0.01) (Appendix 1).

https://doi.org/10.7554/eLife.81861
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Physical distance – but not genomic distance – correlates with co-
expression
Our analysis of the DNA/RNA FISH dataset indicates that spatial gene positioning is correlated with 
transcriptional activity both in isolation (repositioning of individual genes with transcription) and in 
pairwise interactions. One can conceptualize the conclusions of this analysis as understanding spatial 
position given the transcriptional state. In other words, knowledge of transcription state imparts 
knowledge of spatial position. We next turned to the inverse question of whether correlations exist 
between nascent RNA (nRNA, transcriptional state) based on spatial proximity. To do so, we quanti-
fied the ‍ϕ‍ correlation coefficient ('Methods') between genes on individual chromosomes (Figure 1A) 
and plotted it as a function of the genomic distance (Figure 3A). Note, due to the binary nature of the 
data (0 or 1), the ‍ϕ‍ correlation coefficient is equivalent to the Pearson and Spearman. With approxi-
mately a twofold increase at smaller genomic distances, the correlation showed a monotonic decay 
with increasing genomic distance – the 0.025 plateau persisted with even higher genomic distances 
(data not shown). The increase in co-expression above the asymptotic baseline persists to ≈2 Mb. To 
determine whether ensemble-chromatin structure is what dictates co-expression, we further quanti-
fied the correlation as a function of the contact frequency (Figure 3B) and the MPD between their 
chromosomal segments (Figure 3C). Here, we defined the contact frequency between two genes as 
the proportion of chromosomes with distances less than 200 nm between the genes’ chromosomal 
segments using the chromatin-tracing data. We observed the predicted monotonic behavior with the 
average correlation reaching a minimum around 0.025.

We then attempted to separate the effects of contact frequency/MPD from genomic distance on 
the observed correlation, and proceeded to hold one variable constant and quantify the correlation 
as a function of the other. To do this, we calculated the mean correlation given that the contact 
frequency/MPD and genomic distance between the genes were within a specified range (Figure 3D 
and E). Note that we only included averages if more than 40 data points could be used to calculate the 
mean. The two showed similar behavior and both had a narrow range for specific genomic distances, 
making it difficult to uncouple the variables of contact frequency and mean physical distance. For 
example, we only observed an MPD of 200–400 nm for genomic distances much less than 1 Mb; 
therefore, we could not determine how the correlation varies with increasing genomic distance for 
these values. Moreover, most columns and rows did not show significant p-values. In summary, while 
there is correlation at the nascent RNA level, the limited variability in ensemble-chromatin structure 
for specific genomic distances obscured the relative contributions of genomic distance, contact 
frequency, or MPD to co-expression.

A primary advantage of the single-cell dataset (Su et al., 2020) is the ability to leverage the large 
fluctuations of distances between loci across the population (N ≈ 7600 chromosomes) (Figure 1C). 
We first quantified the correlation between nascent RNA for genes given that their physical distances 
were within a specific range, which showed a similar monotonic behavior (Figure 4A). When calcu-
lating these correlation coefficients, we only included gene pairs for specific single-chromosome 
distance ranges when there were at least 100 chromosomes where the distance between the genes 
was within that range. We then quantified the mean correlation given that their single-chromosome 
distance and genomic distance were within specified ranges (Figure 4B). Again, we only included 
averages if more than 40 data points (gene pairs) could be used to calculate the mean. Notably, we 
observed that co-expression of genes was correlated with the single-chromosome distance between 
those genes (columns, Figure 4B). In contrast, we observed no correlation between co-expression 
and genomic distance (rows). There appeared to be a general decay for the columns with increasing 
single-chromosome distance, more closely resembling the curve in Figure 4A, while the rows did not 
show the behavior. These observations are further solidified by calculations of statistical significance 
(Figure 4B).

In summary, these results indicate that co-expression – as quantified through correlations in nascent 
RNA – is driven by the physical distance between genes on individual chromosomes, uncoupled from 
genomic distance, which shows no statistical correlation with co-expression.

https://doi.org/10.7554/eLife.81861
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Figure 4. Single-chromosome distance dictates nRNA correlation. (A) The correlation coefficients between 
genes as a function of single-chromosome distance. (B) Average correlation coefficients of genes given that their 
genomic distance and single-chromosomal distance were within a specific range. An * illustrates whether the 
average correlation coefficients along that dimension are correlated (p-value<0.01) (Appendix 1). (C) The mean-

Figure 4 continued on next page
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Chromosome dynamics can obscure the true correlation between 
physical proximity and gene co-expression
The single-cell DNA/RNA FISH approach provides exceptional spatial resolution coupled with tran-
scriptional activity, but a potential issue with fixed-cell methodologies is the lack of temporal infor-
mation. For example, in terms of quantifying the distance dependence on co-expression, the lack 
of time-resolved locus position data could distort the observed distance co-expression relationship. 
First, the motion of the genes within the on time (defined here as the time it takes for the nascent 
RNA to dissociate from the DNA) obscures the measurement of the distance at the beginning of a 
transcriptional co-burst. Second, the stochasticity of the on time would similarly lead to a decrease in 
the observed co-expression – that is, even if two genes burst at the exact same time, the nascent RNA 
from one gene will dissociate before the nascent RNA of the other gene, leading to the detection of 
one and not the other, again decreasing the correlation measured in fixed cells. Third, the error due 
to the localization precision of the experiment would also distort the distance co-expression curve 
due to the error in knowing the true distance. Overall, these three sources of noise have the potential 
to change both the amplitude and distance dependent decay of the co-expression correlation coeffi-
cient. Therefore, we utilized a theoretical approach to infer the instantaneous distance co-expression 
relationship analogous to that shown in Figure 4A and to thereby understand the contribution of 
dynamic and temporal fluctuations in gene position and activity. The approach is based on coupling 
measurements of locus diffusion and activity generated from live-cell imaging of nascent RNA with 
the fixed cell measurements analyzed thus far. Here, we first discuss our theoretical approach and then 
our results.

We sought to link the information from live-cell experiments with that of fixed-cell experiments 
by incorporating the motion of chromatin into our model. Chromatin has been suggested to show 
confined diffusion (Marshall et al., 1997; Chubb et al., 2002; Chen et al., 2013; Bronshtein et al., 
2015), but this phenomenon is generally quantified over relatively short timescales of <10 min. Consid-
ering the on time of a human gene – as measured by the dwell time of nascent RNA – is approxi-
mately 10–15 min (Wan et al., 2021), we sought to monitor the diffusion of an active gene over a 
longer timescale. We first utilized the live-cell transcriptional bursting data of TFF1 from Rodriguez 
et al., 2019. This data consists of the spatial coordinates of multiple bursting TFF1 alleles through 
time in individual cells, allowing us to quantify the motion of one allele relative to the other (Chubb 
et al., 2002). Importantly, time-lapse imaging of multiple alleles naturally corrects for cell movement 
over these long timescales. We quantified the mean squared displacement (MSD, 'Methods') over a 
timescale of 3000 s and found that the MSD could be fit with a straight line (Figure 4C), suggesting 
Brownian motion of active genes over these timescales (Bohrer and Xiao, 2020). We computed 
a diffusion coefficient of ‍DTFF1 = .25 × 10−3µm2/s‍, which is comparable to previous results (Chubb 
et al., 2002). We subsequently performed a similar analysis with the previously published live-cell 
transcriptional bursting data of four different genes and obtained similar results but with slightly 
varying diffusion coefficients (Appendix  1—figure 5; Wan et  al., 2021). Taking into account the 
multiple diffusing alleles within the TFF1 data (Appendix 1), the four diffusion coefficients of the 
single-locus genes range from about ‍.25 × DTFF1‍ up to ‍1 × DTFF1‍. Lastly, we ultimately decided to 
proceed with the diffusion coefficient of TFF1 due to the natural cell movement correction and the 
relative similarity with the other diffusion coefficients.

We chose to utilize the over-dampened Langevin equation to model the temporal dynamics of 
the distance between genes located on the same polymer. The model describes the time-dependent 
distance between loci using an arbitrary energy potential of interaction (see 'Methods') – without 

squared displacement of active TFF1, the fitted line, and 95% CI shaded (error bars are individual 95% CIs). (D) 
The average number of chromosomes with nRNA for gene ‍i‍ given the distance between gene ‍j‍ and ‍i‍ divided by 
the average with all distances. (E) The optimal ‍ω‍ function for the model that results in the black curve in (F). (F) 
The correlation–distance relationship for all pairs of genes from the simulation utilizing the ‍ω‍ function in (E). The 
boxplots here are from simulation, red curve is shown for reference and is the experimental data from (A). (G) The 
same as (F) but on a different scale. (H) The results of the simulation without resolution error of the experiment. (I) 
Simulation results without resolution error and with nRNAs having a deterministic on time. (J) Simulation results 
without resolution error, with deterministic on times, and no chromatin diffusion for all pairs of genes.

Figure 4 continued
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the effect of the potential the model exhibits Brownian motion with the determined diffusion coeffi-
cient. For each gene pair, we empirically determined a potential that 'biases' the distance motion so 
the steady-state distribution matches the empirically determined distance distribution ('Methods'). 
We did this using the equivalent Fokker–Planck equation, which allowed us to directly convert the 
empirically defined distance distributions into the potential ('Methods'). The central advantage of 
this approach is that it accounts for the unique distance distributions between the various gene pairs 
on the same chromosome, the diversity of which can be clearly seen with the MPDs in Figure 1B. 
The diverse distance distributions result from a multitude of complex context-specific forces that are 
not considered in the classical polymer models (Osmanović and Rabin, 2017; Vivante et al., 2020). 
Even with the inclusion of additional factors in polymer models (exp. loop extrusion), reproducing 
accurate distance distributions is difficult (Gabriele et al., 2022) – and would be even more difficult 
here due to lack of knowledge as to the underlying forces. Also, more simple first-order approxima-
tions of the Langevin equation have been utilized to model the viscoelastic properties of chromatin 
(Vivante et al., 2020), which has been shown to adequately determine the potential of the Rouse 
chain (Amitai et al., 2015). Again, we emphasize that these gene-specific terms were determined 
empirically ('Methods).

The stochastic dwell time of nascent RNA is due to variability in the processes of elongation, 
termination, and splicing. We incorporate this variability in our analysis by setting the nascent RNA 
decay probability per second (propensity) equal for all genes (‍Pd‍) with a characteristic on time equal 
to ≈13 min. This assumption is motivated by our recent work on high-throughput imaging of hundreds 
of human genes labeled at their endogenous loci using MS2 stem loops – where it was found the 
majority of genes had an average on times between 10 and 15 min (Wan et al., 2021). Again, we note 
that this is an assumption due to our lack of temporal information.

Next we introduce a phenomenological model intended to capture the empirical features of co-ex-
pression as observed in the fixed cell datasets. First, we quantified the average fraction of chromo-
somes with nascent RNA present for gene ‍i‍ as a function of the distance between each pair of genes 
(genes ‍i‍ and ‍j‍), normalized by the average fraction of chromosomes with nascent RNA present for 
gene ‍i‍ over all distances. This metric is a proxy for the burst frequency and was calculated for each 
gene for all possible gene pairs. The reasoning is that if this metric is higher at smaller distances, it 
would suggest that the bursting frequency is dependent upon the distance between genes, hence 
leading to the higher correlation values at smaller distances. Surprisingly, we found that on a distance 
binning scale of 200 nm, the metric did not vary, suggesting that the bursting frequency does not 
generally change as function of distance between genes at this scale (Figure  4D). Therefore, we 
set the probability of nascent RNA production per second equal to a constant for each gene (‍i‍), 
‍P

tot
i ‍, which we determined empirically for each gene ('Methods'). To account for co-expression, we 

modeled nascent RNA production as coming either from a co-burst or from an individual burst, where 
the likelihood that a co-burst or an individual burst occurs is dependent upon the distance between 
the two genes ('Methods'). More specifically, the fact that a pair of genes have differing expression 
levels allowed us to model the proportion of transcription events that are co-bursts with the incorpo-
ration of the function ‍ω(rij(t))‍, which is a function of distance between the genes and ranges between 
0 and 1. For a pair of genes where the burst frequency of gene ‍i‍ is less than gene ‍j‍, ‍ω(rij(t))‍ is the 
proportion of gene i's transcriptional bursts that are co-bursts at each distance ('Methods'). If the 
expression levels of the two genes are approximately equal, ‍ω(rij(t))‍ is equal to the proportion of 
bursts that are co-bursts at a given distance for both genes.

Overall, with a single coupling function (‍ω(rij(t))‍), we modeled all pairs of genes with the following 
stochastic reactions utilizing the Gillespie algorithm (Gillespie, 1977):

	﻿‍ 0
Pij(rij(t))−−−−−→ nRNAi + nRNAj,‍�

	﻿‍ 0
Pi(rij(t))−−−−−→ nRNAi,‍�

	﻿‍ 0
Pj(rij(t))−−−−−→ nRNAj,‍�

	﻿‍ nRNAi
Pd−→ 0,‍�

	﻿‍ nRNAj
Pd−→ 0.‍�

https://doi.org/10.7554/eLife.81861
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More specifically, we simulated thousands of trajectories (15,000 s each) for each pair of genes for 
a given ‍ω(rij(t))‍ akin to the number of chromosomes within the experimental data. If the amount of 
nascent RNA for a gene was greater than 0 at the end of the trajectory, the gene was considered 'on' 
(Gene = 1), making our simulation data binary like the experimental data. Lastly, we incorporated the 
error due to the resolution of the experiment (resolution = 100 nm, 'Methods'). In total, using this 
numerical simulation approach, we are able to generate curves like Figure 4A, for a given coupling 
coefficient ‍ω(rij(t))‍, from the underlying spatiotemporal fluctuations of single genes in living cells. 
Importantly, the diffusive properties of active genes and the dwell time of nascent RNA are derived 
empirically from experimental data. Of the parameters described above, the coupling coefficient is 
the least well-determined and lacks an underlying mechanistic motivation at present.

Is it possible for a single function (‍ω(rij(t))‍) to adequately reproduce the experimental results 
(Figure  4A)? To address this question, we iterated over many possible monotonically decreasing 
(‍ω(rij(t))‍) functions. More specifically, we investigated all possible monotonically decreasing func-
tions in 0.05 increments, with specific values for distances binned at a 200 nm resolution ('Methods,' 
Figure 4E). For each ‍ω(rij(t))‍, we quantified the correlation–distance curve for each gene pair and 
sought to find the one that was closest to Figure 4A ('Methods'). The best-performing ‍ω(rij(t))‍ is 
shown in Figure 4E, which resulted in the correlation–distance dependence in Figure 4F, demon-
strating that a single general function can adequately describe this phenomenon at the level of the 
chromatin-tracing experiment.

With this dependence in hand, we are able to computationally remove processes that distort the 
correlation–distance relationship in an effort to uncover the 'true' observable degree of correlation 
for a given distance. The correlation–distance relationship in Figure 4F is also shown in Figure 4G 
with a new y-axis range to aid comparison. We started by simulating all pairs of genes as before but 
without the resolution error of the experiment with the determined ‍ω(rij(t))‍ (Figure 4H). Removing 
resolution error associated with light microscopy resulted in a slight increase in the correlation for 
the first distance bin, resulting in a 66% increase (Figure 4H). For all other distances, the degree of 
correlation was basically unchanged. We then simulated the system without resolution error and with 
a deterministic on time for each nascent RNA – each nascent RNA lasted exactly 800 s. We observed 

Inactive Genes

MPD<900nm ΔMPD < 0

Active Genes

MPD>900nm

ΔMPD > 0

B.A.
Inactive Genes Active Genes

Figure 5. Illustration showing discovered phenomena. (A) An illustration showing the movement toward the same local centroid of genes separated by 
a smaller median physical distances (MPD). Here, the genes move toward the same local centroid and hence have a smaller MPD when active. (B) An 
illustration showing genes separated by a larger MPD. Here the genes still move toward their own local centroids when active but are arranged in such a 
way that they move away from each other when active.
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a much greater increase across all distances with the first distance bin rising to 250% of its initial value 
(Figure 4I). Finally, we simulated the system removing resolution error, with deterministic on times, 
and without diffusion. Removing these three noise sources resulted in a large increase in correlation 
for lower distances and a slight decrease for larger distances (Figure 4J). This latter decrease is due 
to the correlated bursts at small distances not being able to diffuse to larger distance. For the first 
distance bin, the removal of all sources of error in fixed cell experiments leads to an ≈5-fold increase. 
The correlation is surprisingly high (≈ 0.3) and extends over a spatial distance of ≈ 400 nm. Overall, this 
analysis suggests that if one was able to monitor the distance between genes with high resolution and 
at time resolution where one could determine the exact start of each transcriptional burst, one should 
be able to see this true relationship – a clear direction for future pursuit.

Discussion
By capitalizing upon the single-chromosomal nature of chromatin-tracing and nascent RNA smFISH 
data (Su et al., 2020), we discovered a variety of phenomena related to the coupling between tran-
scription and higher order chromosome conformation. Specifically, fixed-cell analysis of chromatin 
conformation and activity coupled with live-cell analysis of transcription dynamics provides two 
features that are key to the analysis performed here: fluorescence microscopy reveals true physical 
distances and the variability across single cells. Leveraging these unique features, we find that (1) the 
chromatin around a gene is 'constrained' with transcription; (2) during a transcriptional burst genes 
are positioned toward the centroid of their surrounding chromatin; (3) transcriptional bursts cause 
promoters to move toward or away from each other depending on the MPD between them (These 
phenomena are illustrated within the simple model shown in Figure 5); (4) the distance between genes 
in individual cells is predictive of co-bursting; and (5) the lack of temporal information and limited 
imaging resolution greatly reduces the true distance–correlation relationship, with the predicted 
correlation coefficient of ~0.3 for a distance below 400  nm. This last finding relies on theoretical 
assumptions regarding chromatin mobility and the precise molecular nature of gene co-expression 
and awaits future experimental validation. At last, we should also note that more datasets from large-
scale microscopy studies are likely on the way, where similar approaches to this study can be taken.

Genes reposition upon transcriptional activation
Our finding that individual transcriptional bursts lead to the repositioning of genes and lower chro-
matin variability suggests the two phenomena could be linked. The traditional view of transcription 
influencing the dynamics of chromatin is that transcription leads to more 'open' and dynamic chro-
matin (Babokhov et al., 2020). While the traditional view has some empirical support (Gu et al., 
2018), the exact opposite has been observed (Germier et al., 2017; Nozaki et al., 2017; Nagashima 
et al., 2019). Accepting the variability of distance distributions as a proxy for the motion of chromatin 
puts our observations in agreement with the latter. One possibility is once a gene is positioned toward 
the centroid of the surrounding chromatin, the confinement could be due to a new microenvironment. 
Another possibility – which we favor – is that the movement toward the centroid is a steric effect. 
Active genes recruit large megadalton complexes such as the pre-initiation complex and RNA poly-
merase II, which ‘pushes’ and confines the gene to a specific location due to the occluded volume 
effect. Our analysis thus suggests behavior consistent with the original factory model (genes reposi-
tion to a factory upon activation) and also the dynamic self-assembly model (genes assemble their 
own transcription factory). The order of events is key to distinguishing these alternatives, and these 
events are not resolved in the fixed-cell datasets analyzed here (Cisse et al., 2013; Cho et al., 2016a; 
Cho et al., 2016b; Cho et al., 2018; Henninger et al., 2021). Nevertheless, almost all of the ≈80 
genes showed this behavior of repositioning and confinement, suggesting a general phenomenon, 
illustrating a fundamental aspect of transcription whose mechanistic details await additional study.

On a higher level, promoter–promoter distances (Hsieh et  al., 2020) are clearly variable with 
individual transcriptional bursts and are likely important for understanding enhancer biology and 
other higher order functional assemblies. Considering the functional similarity between promoters 
and enhancers (Kim and Shiekhattar, 2015), we speculate that the rules of promoter–promoter 
interaction observed here may apply to enhancer–promoter interaction. In most cases, the distance 
change of promoters with transcription is small when compared to the MPD, but for MPD < 400 nm 

https://doi.org/10.7554/eLife.81861
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a repositioning of 100 nm could be functionally relevant (Figure 2C; Levo et al., 2022; Bohrer et al., 
2021; Heist et al., 2019; Chen et al., 2018; Fukaya et al., 2016) – putting the distances at the scale 
of enhancer–promoter communication (Chen et al., 2018). On the other hand, transcription factories 
have also been shown to be highly dynamic (Cisse et al., 2013; Cho et al., 2018; Henninger et al., 
2021), raising the question of whether these dynamic promoter–promoter distances are linked to the 
dynamics of the factories (Heist et al., 2019). The unexpected finding that high MPD promoters tend 
to move away from each other with transcription suggests the possibility of specific locations for tran-
scription, but this observation might also be used to explain specificity of enhancer–promoter inter-
actions. Intriguingly, whether genes move toward or away from each is dependent upon ensemble 
chromatin organization, raising the possibility that genes are distributed according to chromatin 
organization and not genomic distance – given there is an underlying fitness advantage. Finally, it 
should be noted that for all these results described here there is a lack of temporal information, which 
obscures the cause and effect of these phenomena (just as we showed for the distance–correlation 
relationship). It therefore seems likely that these distance changes are likely more significant – a direc-
tion for future research.

Genes in spatial proximity show high correlations in transcriptional 
activity: Interpreting ‍ϕ ∼ .3‍
The hypothesis that genes in close spatial proximity are transcriptionally correlated has long persisted 
in the field despite conflicting data. Notable studies have taken advantage of single-cell RNA-seq and 
Hi-C data to disentangle the influence of genomic distance and physical distance on correlation with 
unclear results (Sun and Zhang, 2019; Tarbier et al., 2020). For example, while genes from the same 
(ensemble) topologically associated domain are more co-expressed, intra-chromosomal genes sepa-
rated by similar genomic distances show essentially no difference in correlation with enrichments in 
contact frequency (Tarbier et al., 2020). The study of Sun et al. even found that the genomic distance 
is slightly more strongly correlated with co-expression than contact frequency (Sun and Zhang, 2019) 
– rightly explained away given the contact frequency was of a lower resolution with high error. Further, 
nascent RNA FISH found intra-chromosomal genes are not more correlated than when in trans 
(Levesque and Raj, 2013). Yet, single-cell imaging experiments coupled with detailed chromosomal 
perturbations have revealed spatial interactions that dictate a ‘hierarchical’ organization in multiple 
genes in response to stimulus (Fanucchi et al., 2013). Moreover, a recently proposed transcription 
factor activity ‘gradient’ model is a diffusion-based model that relies again on the spatial proximity of 
cis-acting regulatory elements, which might equally well be applied to promoter–promoter interac-
tions (Karr et al., 2022). Overall, the hypothesis has persisted due to the intuitive mechanism even 
with the lack of definitive experimental demonstration.

Our results verify the null hypothesis and explain the negative results of previous single-cell 
studies. We found an enrichment in correlation for nascent RNA given that the genes are separated 
by a genomic distance of less than 2.5 Mb (Figure 3A). The fact that the average genomic distance 
between genes in the previous work was 3 Mb explains why enriched correlations were not seen at the 
nascent RNA level (Levesque and Raj, 2013). With our finding that the variability in MPD (or contact 
frequency) for a given a genomic distance is too low to disentangle these variables (Figure 3D and E), 
the defined enrichments in contact frequency for previous studies were likely quite minor in terms of 
producing a change in correlation (Tarbier et al., 2020). Utilizing the large amount of stochasticity in 
chromatin structure for individual chromosomes (Finn and Misteli, 2019) definitively shows the phys-
ical distance drives co-expression. This result is illustrated with the extremes: we observed an enrich-
ment in correlation for genomic distances up to 10 Mb when the physical distance between genes was 
less than 200 nm on individual chromosomes, and very low correlations between genes separated by 
less than.5 Mb given that the physical distance was above 1200 nm (Figure 4B). In summary, our key 
finding is a correlation gradient with physical distance but not genomic distance.

The lack of temporal data and the spatial resolution limits of the chromatin-tracing methodology 
greatly obscures both the ‘true’ transcriptional correlation between spatially proximal genes and 
also the length scale over which transcriptional correlation is measured. The reasons for this reduced 
correlation are obvious: both the position and the activity status of genes vary randomly. One can 
imagine, for example, genes that were far apart at activation and then diffused together and vice 
versa. Correcting for this behavior requires assumptions about chromatin mobility and also utilization 

https://doi.org/10.7554/eLife.81861


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Computational and Systems Biology

Bohrer and Larson. eLife 2023;12:e81861. DOI: https://doi.org/10.7554/eLife.81861 � 15 of 27

of live-cell nascent RNA data. We predict that if one were able to measure the distances between 
genes at the initiation of the transcriptional bursts, one should obtain a correlation of ~0.3 if the 
distance between the promoters of the genes is less than 400 nm. Intriguingly, this level of correlation 
has been reported between the mRNA levels of adjacent genes in yeast but was attributed to DNA 
supercoiling (Patel et al., 2022). Considering the shorter lifetimes of mRNA in yeast, this correlation 
may be comparable to the nascent RNA in humans. Furthermore, other live-cell studies have seen 
correlated bursts between spatially proximal genes (in trans and cis), but did not specifically inves-
tigate this as a function of the physical distance between the genes or account for the variable on 
times (Fukaya et al., 2016; Lim et al., 2018; Heist et al., 2019; Levo et al., 2022) – finding enrich-
ments in correlation similar to the uncorrected curve (Figure 4A; Levo et al., 2022). The enrichment 
in co-bursting for genes separated by <400  nm suggests the working distance of the underlying 
mechanism is not direct contact. Exactly what mechanism leads to these general correlations is still 
unknown; however, these results are consistent with the idea of enhancers coordinating transcription 
with working distances of hundreds of nm (Fukaya et al., 2016; Lim et al., 2018; Heist et al., 2019; 
Levo et al., 2022; Bohrer et al., 2021).

The analysis suggests co-expression is a general property of the system, that is, unrelated genes 
show correlated bursts with each other when in spatial proximity. This transcriptional correlation 
would then be an unavoidable emergent behavior due to the physicality of the system. Hence, the 
appearance of correlated bursts may not suggest a specific regulatory mechanism. Stated another 
way: we hypothesize that the physical distance between the vast majority of genes arises from the 
physical constraints of the nucleus and DNA and is not indicative of a biologically functional relation-
ship requiring coordinated expression conferred by that proximity. Support for this hypothesis comes 
from the observation that disrupting genomic clusters of metabolic genes such as the GAL genes in 
yeast have no measurable impact on fitness (Lang and Botstein, 2011). Of course, there are certainly 
instances where coordinated co-expression conferred by spatial proximity is important, for example, 
in the segmentation clock genes her1 and her7 located on the same chromosome and separated by 
12 kb (Zinani et al., 2021). The corollary to our hypothesis is that one can look for deviations from the 

‍ϕ ∼ .3‍ to identify bona fide regulatory relationships. Thus, we establish a theoretical benchmark that 
can be used in future studies.

Lastly, we should note here that we consider this methodology a first theoretical step due to the 
lack of information about the underlying mechanisms on the chromosomal scale. Therefore, future 
work should be the adaption of more complicated chromatin polymer models to refine our under-
standing of this phenomena – of special note are those that explicitly model the links between chro-
matin organizations and their influence on transcription regulation (Brackley et  al., 2021). These 
future models will likely need to explicitly model the underlying processes (like loop extrusion) to 
capture the variability in chromatin structure and dynamics whose specifics are likely to emerge in 
future studies – either validating or suggesting modifications to our approach above.

Methods
Expected MPD and genomic distance
To determine the expected MPD for a given genomic distance, we simply calculated the average 
MPD for each specific genomic distance. For example, to determine the expected MPD for a genomic 
distance of 50 kb, we quantified the average MPD between all loci separated by 50 kb.

To determine the expected genomic distance for a given MPD, we used the same curve and found 
the genomic distance with the closest average MPD. For example, say the MPD between two loci 
is 500  nm, using the previously quantified curve, the expected genomic distance is the genomic 
distance whose average MPD is closest to 500 nm.

Correlations between genes
When quantifying the correlations between a pair of genes (aka. whether they were on or off, 1 or 0), 
we quantified the ‍ϕ‍ coefficient (used for binary data):

	﻿‍
ϕ = n11n00−n10n01√

(n11+n10)(n11+n01)(n00+n10)(n00+n01) ,
‍�
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where ‍n11‍ is the number of observations where both genes are active and ‍n10‍ is the number of obser-
vations where the first gene is on and the second is off, etc. Here, we should state that ‍ϕ‍ is equivalent 
to the Pearson correlation coefficient and the Spearman correlation coefficient for this data due to a 
gene’s transcription state being either 1 or 0 – that is, on (1) or off (0).

Determining ‍Ptot
i ‍

To determine the bursting propensity for each gene, we first conducted many different simulations 
with ‍P

tot
i ‍ values ranging from 0 to 0.05 with our set nRNA decay rate. For each propensity, we simu-

lated 2000 trajectories (15,000 s each). Then, with the last timepoints of each trajectory, we classified 
the gene as being either 'on' or 'off' – if the gene’s nRNA was greater than zero, the gene was classi-
fied as 'on' (aka 1). We then simply created a lookup table with the average number of 'on' states vs. 
the bursting propensity. To determine a genes specific propensity, we simply calculated the average 
number of 'on' state with the experimental data and found the closest match within the lookup table.

Modeling co-transcriptional bursts
To account for co-expression for a pair of genes, we modeled nascent RNA production as coming 
either from a co-burst or from an individual burst:

	﻿‍ Ptot
i = Pij(rij(t)) + Pi(rij(t)),‍� (1)

	﻿‍ Ptot
j = Pij(rij(t)) + Pj(rij(t)).‍� (2)

Here, ‍Pij(rij)‍ is the probability of a transcriptional co-burst per second given the distance between the 
two genes, ‍Pi(rij)‍ is the probability of an individual burst per second given the distance, and ‍rij(t)‍ was 
determined beforehand utilizing the above Langevin equation specific for that gene pair ('Methods).

The fact that genes have different expression levels limits the values of ‍Pij(rij(t))‍. Arranging the pair 
of genes so that ‍P

tot
i < Ptot

j ‍, the maximum value that ‍Pij(rij(t))‍ can be is ‍P
tot
i ‍ – or else ‍Pi(rij(t))‍ would 

have to be negative. With this, we can then rewrite the above as the following:

	﻿‍ Pij(rij(t)) = ω(rij(t)) × Ptot
i ,‍� (3)

	﻿‍ Pi(rij(t)) = Ptot
i − ω(rij(t)) × Ptot

i ,‍� (4)

	﻿‍ Pj(rij(t)) = Ptot
j − ω(rij(t)) × Ptot

i ,‍� (5)

where ‍ω(rij(t))‍ is a function of distance between the genes and ranges between 0 and 1. ‍ω(rij(t))‍ is the 
proportion of gene i's transcriptional bursts that are co-bursts at each distance; if the expression levels 
of the two genes are approximately equal, ‍ω(rij)‍ is equal to the proportion of bursts that are co-bursts 
at a given distance for both genes.

Overall, with a single function (‍ω(rij(t))‍), we modeled all pairs of genes with the following stochastic 
reactions utilizing the Gillespie algorithm (Gillespie, 1977):

	﻿‍ 0
Pij(rij(t))−−−−−→ nRNAi + nRNAj,‍�

	﻿‍ 0
Pi(rij(t))−−−−−→ nRNAi,‍�

	﻿‍ 0
Pj(rij(t))−−−−−→ nRNAj,‍�

	﻿‍ nRNAi
Pd−→ 0,‍�

	﻿‍ nRNAj
Pd−→ 0.‍�

Incorporating resolution error
The resolution of the experimental data was previously quantified in the work of Su et al., 2020, and 
the resolution of each chromosomal segment was determined with approximately 100 nm resolution. 
The 3D resolution error is not Gaussian due to the Pythagorean theorem and was determined by 
Churchman et al., 2006. Therefore, for our case, the error must be applied to all three dimensions 
independently – similar to in Su et al. To do this, with the 'true distance’ from the Langevin simula-
tion we randomly decompose the distance into three dimensions – so that the distances along each 
dimension satisfy the Pythagorean theorem. We then added two random variables of Gaussian noise 
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with standard deviations of 100  nm (one for each loci), generating a new displacement for each 
dimension with localization error. Lastly, we took the displacements along each dimension with the 
error and quantified the distance in 3D using the Pythagorean theorem.

Quantifying best ‍ω(rij)‍
To determine the ‍ω‍ that captures the behavior of the experimental data, we first generated a 
large number of unique monotonically decreasing functions. This was first done in 0.1 iterations 
and with a distance binning of 200 nm. For example, ‍ω

1(rij) = [.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]‍ 
means genes that are within 200  nm of each other (first number in array) have the value 0.1, 
and the rest of the distances have the value 0. We would then iterate and produce the next ‍ω‍, 

‍ω
2(rij) = [.1, .1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]‍, etc. We then simulated a large number of trajectories 

for all gene pairs according to the model in the main text with each function. We then quantified the 
error between each ‍ω‍’s distance–correlation relationship and the experimental data with the following:

	﻿‍ Error(ωk) =
∑

i
∑

j
∑

r |ϕωk

ij (r) − ϕ
exp
ij (r)|,‍�

where ‍ϕ
ωk

ij (r)‍ is the correlation for the gene pair ‍ij‍ given that the observed distances were within the 
distance bin ‍r‍ (200 nm for each bin) and ‍ϕ

exp
ij (r)‍ is the correlation for the experimental data for that 

gene pair. Once we found the ‍ω‍ that resulted in the minimum error was found, we then varied the 
values for distance bins below 1000 nm by plus or minus 0.05. We then quantified the error again to 
result in the best-fit function shown in the main text.

Mean squared displacement (MSD)
We quantified the motion of the TFF1 gene utilizing the multiple allele data from Rodriguez et al., 
2019. This live-cell data provided the 2D coordinates of active alleles over extended periods of time, 
allowing us to monitor the motion of chromatin over a timescale longer than the on time of a gene. 
To account for the movement of the cell over these long periods, we monitored the motion of one 
tagged allele relative to another. We then quantified the MSD for a given time (Δt): MSD(Δt)=<[R(t)-
R(t-Δt)]2. Where R(t) is the position of an allele relative to another, and the arrows are the ensemble 
average and over all measured trajectories and times.

Modeling distance diffusion
To model the distance between two chromosomal loci, we utilized the following Langevin equation:

	﻿‍
drij
dt = − 1

γij

∂Vij(rij)
∂rij

+
√

2D × g(t).‍ �

Here, ‍rij‍ is the distance between genes ‍i‍ and ‍j‍, ‍Vij(rij)‍ is the potential (specific to that gene pair, 
described below), ‍γij‍ is a constant specific for that gene pair, and the last term ‍

√
2D × g(t)‍ accounts 

for the Brownian motion with the determined diffusion coefficient – if the potential is a constant inde-
pendent of distance, ‍rij‍ will exhibit Brownian motion. For each gene pair, we empirically determined 
a ‍

1
γij

∂Vij(rij)
∂rij ‍ that 'biases' the distance’s motion so the steady-state distribution matches the empirically 

determined distance distribution (corrected for the resolution of the experiment) – this accounts for 
the genes being on the same chromosome.

The equivalent Fokker–Planck equation is

	﻿‍
∂Pij(rij,t)

∂t = 1
γij

∂
∂rij

[∂Vij(rij)
∂rij

Pij(rij, t)] + D × ∂2P(rij,t)
∂r2

ij
,
‍�

where the initial condition is dropped for simplicity and ‍Pij(rij, t)‍ is the probability distribution to have 
a distance ‍rij‍ at time ‍t‍ specific to that gene pair. We then set the left hand of the equation equal to 
zero, defining the steady-state distance distribution (‍P

s
ij(rij)‍). The equation then becomes

	﻿‍
1
γij

∂Vij(rij)
∂rij

Ps
ij(rij) + D × ∂Ps

ij(rij)
∂rij

= 0‍�

with the solution

https://doi.org/10.7554/eLife.81861
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	﻿‍ Ps
ij(rij) = Cij × exp(−Vij(rij)

γijD ),‍ �

where ‍Cij‍ is a normalization constant.
From the experimental data, we can empirically determine ‍P

s
ij(rij)‍. To do this, we took the natu-

rally observed distance distribution and performed a deconvolution with the resolution distribution. 
This provided us with ‍P

s
ij(rij)‍ minus the resolution error, and we can therefore solve for the potential 

with

	﻿‍
Vij(rij)
γij

= D[ln(Cij) − ln(Ps
ij(rij))]‍�

With this we can then simulate the Langevin equation with the Euler–Maruyama method, which results 
in the proper steady-state distribution with the approximate diffusion coefficient.
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

J-H Su, Zheng P, 
Kinrot SS, Bintu B, 
Zhuang X

2020 Genome-Scale Imaging of 
the 3D Organization and 
Transcriptional Activity of 
Chromatin (​chromosome21.​
tsv)

https://​doi.​org/​10.​
5281/​zenodo.​3928890

Zenodo, 10.5281/
zenodo.3928890
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Appendix 1
H3K27ac analysis
To quantify the density of H3K27ac within each corresponding 50 kb segment of Chr21 in IMR90 
cells, we utilized the Chip-seq data from the Bing Ren Lab at UCSD. https://www.encodeproject.​
org/experiments/ENCSR002YRE/. More specifically, we quantified the average number of reads 
within each 50 kb segment from two biological repeats – this was done using the software packages 
Samtools and deepTools. We then normalized the reads by dividing by the sum, allowing us to 
understand these values in relation to the whole – this is shown in Appendix  1—figure 1A. To 
understand whether there is a dependence upon the transcription-induced repositioning of the 
genes based on the H3K27ac signal, we then partitioned each locus into one of four groups (low, 
med, high, very high, Appendix 1—figure 1A) and quantified the repositioning based off of the 
H3K27ac density (Appendix 1—figure 1B, colors).

Method specifics for single-locus diffusion
To investigate the diffusive behavior of transcriptionally active genes that were tagged at a single 
allele, we utilized the live-cell microscopy data for four different genes (MYH9, RAB7A, CANX, 
SLCA1) from Wan et al. Of note, this data is different from the multiallele diffusion analysis within the 
main text in that there was no internal nuclear reference point to correct for cellular movement over 
these long timescales. Still, in order to try and correct for the cellular movement we segmented the 
nucleus using the background GFP signal, resulting in a binary image of which pixels belonged to 
the nucleus and which did not. We then utilized the center of mass of the nucleus of the cell to adjust 
the diffusive trajectory within that cell.

Simulation for single- and double-locus diffusion
To understand how the diffusion of the single-allele genes relate to the multiallele TFF1 data within 
the main text, we sought to utilize a simple 2D random diffusion model to simulate the diffusive 
behavior of the two. This is important as the diffusion coefficient we seek to capture for the model 
is the distance between two different chromosomal loci. To do this, we simulated a simple random 
2D walks consisting of either one particle or two particles with 1000 individual trajectories each with 
a time of 10,000 s. Each of the particles was simulated with a diffusion coefficient approximately 
equal to that of RAB7A (‍D = .1e − 3µm2/sec‍). When we quantified the diffusion coefficients of the 
single particles by fitting the 2D MSDs of the simulated data it resulted in the proper diffusion 
coefficient (Appendix 1—figure 5B). Then when we quantified the diffusion of the simulations with 
two particles – taking the distance of one relative to the other, similar to that of ‍TFF1‍ – the MSD 
resulted in a coefficient approximately double (‍D = .2e − 3µm2/sec‍) , suggesting that the diffusion of 
the single-locus data is more similar to the ‍TFF1‍.

Specifics on statistics
Bootstrapping methodology
The bootstrapping shown within the box plots of the main text was calculated utilizing the Python 
plotting software seaborn, with the pointplot function. More specifically, the estimator was the 
Python software numpy’s mean function and the number of bootstraps was 1000. From these, the 
standard error of mean was quantified and displayed using the seaborn pointplot function.

Statistical significance for box plots
The significance quantified for the data shown within the boxplots is defined as having a p-value 
< 0.01 determined using a t-test. The specific software used to perform the t-test was the Python 
software SciPy with the stats package and the specific function ttest-ind.

Statistical significance for average correlation
To quantify if the average correlation values were themselves correlated along a specific dimension 
(Figures 3 and 4), the Python software SciPy was used with the stats package and the spearmanr 
function. The spearmanr function quantifies the monotonicity between two datasets and also 
produces a p-value that is equivalent to 'the probability of an uncorrelated system producing 
datasets that have the same Spearman correlation coefficient.' We, therefore, defined a significant 
correlation along a dimension (for the average correlation values) those that resulted in a p-value 
<0.01.
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Appendix 1—figure 1. Genes do not reposition for enhancer activation. (A) The normalized number of reads 
within the corresponding 50 kb segment of chromosome 21. The reads were normalized by the total number 
of reads from the 651 chromosomal segments. The black horizontal lines show how the H3K27ac signal was 
partitioned into each group (low, medium, high, very high). (B) The difference in the median physical distance 
(MPD) between loci ‍i‍ and ‍j‍, given the transcription state of the investigated gene located within loci ‍i‍. This 
difference is shown as a function of the genomic distance between the loci and was partitioned based off of the 
the H3K27ac state of loci ‍j‍ (the different colors). For each genomic distance bin, t-tests were performed on the 
various pairs, and none were found to be significant (p-value < 0.01).

https://doi.org/10.7554/eLife.81861
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Appendix 1—figure 2. High-activity genes are more constrained with transcription and show a stronger 
repositioning trend. (A) The average standard deviation (over all high-activity genes) given the transcription state 
of the gene, and the difference between the average standard deviations with the different transcription state. 
(B) Same as (A) but for the low-activity genes. (C) The same as (A) but for the average median distances for the 
high-activity genes. (D) Same as (C) but for the low-activity genes.

https://doi.org/10.7554/eLife.81861
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Appendix 1—figure 3. High-activity genes travel a farther distance toward the local centroid with transcription 
activation. (A) The average distance to the local centroid as a function of the amount of chromatin included within 
the centroid calculation. This is calculated for high-activity genes (first row) and the low-activity genes (second row). 
Significance was defined as a p-value <0.01 with a t-test (Appendix 1). (B) The change in the average distance to 
the local centroid with transcription activation on a gene-by-gene basis (similar to the main text). The first row is for 
the high-activity genes, and the second row is for the low-activity genes.

https://doi.org/10.7554/eLife.81861
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Appendix 1—figure 4. Pairs of high-activity genes move greater distances, toward or away from each other, 
depending upon transcription. (A) The average distances between pairs of high-activity genes (depending upon 
transcription state) as a function of the genomic distance. (B) The average distances between pairs of low-activity 
genes (depending upon transcription state) as a function of the genomic distance. (C) The difference between the 
scenarios shown in (A), showing the difference in mean distance on a gene pair by gene pair basis, and a black 
line is shown to aid in the visualization of zero. (D) The difference between the scenarios shown in (B), showing 
the difference in mean distance on a gene pair by gene pair basis, and again a black line is shown to aid in the 
visualization of zero. (E) The same analysis in (C), but as a function of the median physical distance (MPD) between 
the high-activity genes. (F) The same analysis in (D), but as a function of the MPD between the low-activity genes. 
For all subplots: significance was defined as a p-value <0.01 with a t-test (Appendix 1).

https://doi.org/10.7554/eLife.81861
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Appendix 1—figure 5. Diffusive behavior of single-allele-tagged genes. (A) The mean squared displacement of 
four different genes with the fitted lines and error bars showing individual 95% confidence intervals (Appendix 1). 
The diffusion coefficients are listed under each gene for reference. (B) The mean square displacement from the 
simple diffusion simulation (see Appendix 1) illustrates how the diffusion coefficient increases when considering 
the distance of one locus relative to the other. Again, there are the fitted lines and error bars showing individual 
95% confidence intervals (Appendix 1).

https://doi.org/10.7554/eLife.81861
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