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Abstract
Background: Machine learning (ML) techniques improve disease prediction by identifying the 
most relevant features in multidimensional data. We compared the accuracy of ML algorithms for 
predicting incident diabetic kidney disease (DKD).
Methods: We utilized longitudinal data from 1365 Chinese, Malay, and Indian participants aged 
40–80 y with diabetes but free of DKD who participated in the baseline and 6-year follow-up visit 
of the Singapore Epidemiology of Eye Diseases Study (2004–2017). Incident DKD (11.9%) was 
defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 with at least 25% 
decrease in eGFR at follow-up from baseline. A total of 339 features, including participant char-
acteristics, retinal imaging, and genetic and blood metabolites, were used as predictors. Perfor-
mances of several ML models were compared to each other and to logistic regression (LR) model 
based on established features of DKD (age, sex, ethnicity, duration of diabetes, systolic blood 
pressure, HbA1c, and body mass index) using area under the receiver operating characteristic 
curve (AUC).
Results: ML model Elastic Net (EN) had the best AUC (95% CI) of 0.851 (0.847–0.856), which was 
7.0% relatively higher than by LR 0.795 (0.790–0.801). Sensitivity and specificity of EN were 88.2 and 
65.9% vs. 73.0 and 72.8% by LR. The top 15 predictors included age, ethnicity, antidiabetic medi-
cation, hypertension, diabetic retinopathy, systolic blood pressure, HbA1c, eGFR, and metabolites 
related to lipids, lipoproteins, fatty acids, and ketone bodies.
Conclusions: Our results showed that ML, together with feature selection, improves prediction 
accuracy of DKD risk in an asymptomatic stable population and identifies novel risk factors, including 
metabolites.
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The authors wanted to see which patients with diabetes develop kidney disease and outcomes. They 
used clinical characteristics, eye pictures, genetic factors and blood levels of metabolites, and they 
found a combination of these factors predicted kidney disease in people with diabetes.

Introduction
Diabetes affected an estimated 415 million people worldwide in 2015, and this number is expected 
to increase to 642 million by 2040, with the greatest increase expected in Asia, particularly in India 
and China (Ogurtsova et  al., 2017). With the rising prevalence of diabetes and an aging popu-
lation, the burden of diabetic kidney disease (DKD), a leading cause of end-stage kidney disease 
(ESKD), cardiovascular disease (CVD), and premature deaths, is also set to rise in parallel. Diabetes 
accounts for 30–50% of all chronic kidney disease (CKD) cases, affecting 285 million people world-
wide (Webster et al., 2017). As CKD is asymptomatic till more than 50% of kidney function decline, 
early detection of individuals with diabetes who are at risk of developing DKD may facilitate preven-
tion and appropriate intervention for DKD (Hill et  al., 2016; Hirst et  al., 2020). However, early 
identification of individuals at risk of developing CKD in type 2 diabetes is challenging (Alicic et al., 
2017). Although most ESKD cases are due to diabetes, awareness of diabetes as a risk factor for 
CKD is markedly lower in several countries, which may constitute a barrier for early detection of CKD 
(White et al., 2008; Hussain et al., 2019; Couser et al., 2011). Moreover, in people with diabetes, 
adherence to annual screening for DKD with estimated glomerular filtration rate (eGFR) and urine 
albumin-creatinine ratio (UACR) remains a challenge (Manski-Nankervis et  al., 2018). Therefore, 
there is an urgent need for the characterization of new biomarkers to identify individuals at risk of 
progressive eGFR decline and enable timely intervention for improving outcomes in DKD (Alicic 
et al., 2017).

Several risk prediction models have been developed in the past for predicting progression to 
ESKD, but studies predicting onset of CKD in diabetic populations are limited. These studies were 
focused on clinical populations utilizing data from clinical trials (Dunkler et al., 2015) or heteroge-
neous cohorts of patients with different CKD definitions (Jiang et al., 2020). Dunkler et al. showed 
that albuminuria and eGFR were the key predictors and addition of demographic, clinical, or labora-
tory variables did not improve predictive performance beyond 69% (Dunkler et al., 2015). Current 
CKD risk prediction models developed using traditional regression models (e.g., logistic regression 
[LR] or linear regression) perform well when there are only small or moderate numbers of variables or 
predictors but tend to overfit if there is a large number of variables. Machine learning (ML) methods 
using ‘Big data,’ or multidimensional data, may improve prediction as they have fewer restrictive 
statistical assumptions compared to traditional regression models that assume linear relationships 
between risk factors and the logit of the outcomes and absence of multicollinearity among explana-
tory variables (Sundström and Schön, 2020; Doupe et al., 2019; Bi et al., 2019).

Diabetes is a metabolic disorder, and the metabolic changes associated with diabetes can lead to 
glomerular hypertrophy, glomerulosclerosis, tubulointerstitial inflammation, and fibrosis (Alicic et al., 
2017). Several blood metabolites have been shown to be associated with DKD (Colhoun and Marcov-
ecchio, 2018). Similarly, genetic abnormalities in diabetes have also been linked to an increased 
risk of DKD (Cole and Florez, 2020). We, and several others, have previously shown that retinal 
microvascular changes, including retinopathy, vessel narrowing, or dilation, and vessel tortuosity, were 
associated with CKD (Yau et  al., 2011; Yip et  al., 2017). Integrating high-dimensional data from 
multiple domains, including patient characteristics, clinical and ‘Omics’ data, has the potential to aid 
in risk stratification, prediction of future risk, and provide insights into the pathogenesis (Eddy et al., 
2020). These features may contribute to prediction in very complicated ways, and they may not fully 
satisfy the requirement for a simple linear logistic model. It is thus more appropriate to consider ML 
approaches for a comprehensive study.

In the current study, we aimed to evaluate the performance of a set of the most common ML 
models, including traditional LR, for predicting the 6-year risk of DKD and identifying important 
predictors of DKD in a large population-based cohort study in Singapore with multidimensional data, 
including imaging, metabolites, and genetic biomarkers.

https://doi.org/10.7554/eLife.81878
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Methods
Study population
Data for this study was derived from the Singapore Epidemiology of Eye Diseases (SEED) study, a 
population-based prospective study of eye diseases in 10,033 Asian adults aged 40–80 y in Singa-
pore. The follow-up study was conducted after a median duration of 6.08 y (interquartile range: [5.56, 
6.79]), with 6762 participants. The detailed methodology of SEED has been published elsewhere 
(Majithia et  al., 2021). Briefly, the name list of adults residing in the southwestern part of Singa-
pore was provided by the Ministry of Home Affairs, and then an age-stratified random sampling 
procedure was conducted. A total of 3280 Malays (2004–2007) (Foong et al., 2007), 3400 Indians 
(2007–2009), and 3353 Chinese (2009–2011) (Lavanya et al., 2009) participated in the baseline study 
with response rates of 78.7, 75.6 and 72.8%, respectively. As all three studies followed the same 
methodology and were conducted in the same study clinic, we combined the three populations for 
the present study. For the current analysis, we included only those with diabetes, defined as random 
glucose ≥11.1 mmol/L, HbA1c ≥ 6.5% (48 mmol/mol), self-reported antidiabetic medication use, or 
having been diagnosed with diabetes by a physician. Of the 6762 participants who attended both 
baseline and follow-up visit, after excluding those without diabetes (n = 5307), prevalent CKD (n 
= 315), missing information on eGFR (n = 90), the final sample size for analysis was 1365 (47.5% 
Indians, 27.8% Malays, and 24.7% Chinese). The sample size available for each dataset after removing 
participants missing >10% data was between 976 and 1364 (Supplementary file 1-Table 1a). SEED 
was conducted in accordance with the Declaration of Helsinki and was approved by the SingHealth 
Centralised Institutional Review Board (2018/2717, 2018/2921, 2012/487/A, 2015/2279, 2018/2006, 
2018/2594, 2018/2570). Informed consent was obtained from all participants.

Assessment of DKD
Incident DKD was defined as an eGFR <60 mL/min/1.73 m2 with at least a 25% decrease in eGFR 
at follow-up in participants who had eGFR ≥ 60 mL/min/1.73 m2 at baseline. Combining change in 
eGFR category together with a minimal percent change ensures that small changes in eGFR, for 
example, from 61 to 59 mL/min/1.73 m2, are not misinterpreted as incident CKD as the eGFR is < 
60 mL/min/1.73 m2 (Yip et al., 2017; Stevens et al., 2013). The reduction in eGFR at follow-up was 
calculated as a percentage of the baseline eGFR as (eGFR at baseline – eGFR at follow-up)/eGFR at 
baseline * 100%. GFR was estimated from plasma creatinine using the Chronic Kidney Disease Epide-
miology Collaboration (CKD-EPI) equation (Levey et al., 2009). Blood creatinine was measured by the 
Jaffe method on the Beckman DXC800 analyzer calibrated to the Isotope Dilution Mass Spectrometry 
(IDMS) method using the National Institute of Standards and Technology (NIST) Reference material.

Variables for prediction
We evaluated 339 features such as demographic, lifestyle, socioeconomic, physical, laboratory, 
retinal imaging, genetic and blood metabolomics profile. The entire list of variables is presented in 
Supplementary file 1-Table 1b. We organized the variables into five different domains: traditional risk 
factors, extended risk factors, imaging parameters, genetic parameters, and blood metabolites. For 
ML analysis, based on different combinations of the five domains, we tested six models (A to F): A = 
traditional risk factors; B = A + extended risk factors; C = B + imaging parameters; D = B + genetic 
parameters; E = B + blood metabolites; F = B + imaging parameters + blood metabolites + genetic 
parameters.

Traditional risk factors (n = 7)
Age, sex, ethnicity (Chinese, Malays, and Indians), body mass index (BMI, kg/m2), systolic blood pres-
sure (BP, mm Hg), duration of diabetes (years), and HbA1c% were included as traditional risk factors.

Extended risk factors (n = 22)
Participant information was collected using an interviewer-administered questionnaire (demo-
graphic, socioeconomic, lifestyle factors, and personal history of diseases and medication use), phys-
ical examination (height, weight, BP), and laboratory examination (blood glucose, creatinine, lipid 
profile) (Majithia et  al., 2021). Marital status, educational level (primary/below [≤6  y], secondary/

https://doi.org/10.7554/eLife.81878
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above [7 y and above of education]), monthly income, smoking status (current smokers vs. former 
and nonsmokers), alcohol consumption (ever vs. nondrinkers), history of CVD (self-reported history 
of myocardial infarction, stroke or angina), hypertension status, diastolic BP, pulse pressure, blood 
glucose, total, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol levels, 
antidiabetic including oral hypoglycemia drugs and insulin, antihypertensive, and anticholesterol 
medication use were included as part of extended risk factors.

Blood metabolites (n = 223)
We quantified 228 metabolic measures from stored serum/plasma samples at baseline using a 
high-throughput NMR metabolomics platform (Nightingale Health, Helsinki, Finland). The metab-
olites included routine lipids, lipoprotein subclasses with lipid concentrations within 14 subclasses, 
fatty acids, amino acids, ketone bodies, and glycolysis-related metabolites. The 14 lipoprotein 
subclasses include six subclasses of VLDL (extremely large, very large, large, medium, small, very 
small), IDL, three subclasses of LDL (large, medium, small), and four subclasses of HDL (very large, 
large, medium, small). Lipid concentration within each lipoprotein particle included triacylglyc-
erol, total cholesterol, non-esterified cholesterol and cholesteryl ester levels, and phospholipid 
concentrations (Quek et al., 2021). Of the 228 metabolites, pyruvate, glycerol, and glycine were 
not available in Malays. In addition, creatinine and glucose were measured as part of the blood 
biochemistry. After excluding these five metabolites, 223 were included under the metabolites 
dataset.

Genetic parameters (n = 76)
We included 76 type 2 diabetes-associated single-nucleotide polymorphisms (SNPs) identified in the 
largest meta-analysis of type 2 diabetes genome-wide association studies by the DIAbetes Genetics 
Replication and Meta-analysis consortium (Chong et al., 2017).

Figure 1. Comparison of nine machine learning models for diabetic kidney disease (DKD) incidence prediction using different sets of features (Panel A-
F). Abbreviations: CART, classification and regression tree; EN, elastic net; GBDT, gradient boosting decision tree; LASSO, least absolute shrinkage and 
selection operator; LR, logistic regression; NB, naïve Bayes; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting.

https://doi.org/10.7554/eLife.81878
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Imaging parameters (n = 11)
Using a semi-automated computer program (Singapore I Vessel Assessment, SIVA), we quantified 
retinal imaging parameters from digital retinal photographs. The parameters included retinal arte-
riolar and venular diameters, vessel tortuosity, branching angle, fractal dimension, etc. (Yip et al., 
2017). Diabetic retinopathy (DR) was assessed by trained graders using a standard protocol (Saban-
ayagam et al., 2019).

Machine learning algorithms
We tested nine different ML algorithms, including LR, least absolute shrinkage and selection oper-
ator (LASSO), elastic net (EN), classification and regression tree (CART), random forest (RF), gradient 
boosting decision tree (GBDT), extreme gradient boosting (XGB), support vector machine (SVM), and 
naïve Bayes (NB) (Hastie et al., 2009).

Model development
We split the study samples randomly into training (80%) and test sets (20%) of equal CKD case rate by 
stratified sampling, with 40 random repeats of 5-fold cross-validation to evaluate the model perfor-
mance. Predictive accuracy was assessed using metrics such as area under the receiver operating char-
acteristic curve (AUC) with 95% confidence interval (CI) , sensitivity and specificity calculated at the 
optimal cut-point (determined by Youden’s index). In preliminary analyses, testing different combina-
tions of features (Figure 1A–F), performance of all ML models was below 0.80 in dataset D including 
genetic features (best AUC = 0.785 by RF) and dataset F including all 339 features (best AUC = 0.788 
by XGB). Hence, we dropped these two datasets (D and F) from further analyses. The performance of 
all ML models based on AUC (IQR) in datasets 1A–F is shown in Supplementary file 1-Table 1c and 
based on sensitivity and specificity is shown in Supplementary file 1-Table 1d.

Of the ML models, performances of CART, SVM, and NB were lower compared to other models, 
hence these models were also dropped. Consequently, ML models EN, GBDT, LASSO, XGB, and RF 
were considered for subsequent analyses using datasets A, B, C, and E including 252 features.

Feature selection
All algorithms included in the current study can perform feature selection but using different selection 
criteria. In LR, stepwise selection according to the Akaike information criterion (AIC) is widely used 
but it lacks stability. LASSO is an extension of LR with L1 regularization to drop the less important vari-
ables. EN is like LASSO but with a milder regularization, resulting in a larger number of retained vari-
ables. In order to select only the most predictive features, we recursively apply EN until the retained 
variable subset is optimized, that is, recursive feature selection (RFE). In RF, GBDT, and XGB, the most 
predictive variables were identified based on their relative importance to model performance. Feature 
selection was also performed according to their selection frequency during repeated cross-validation. 
We identified the top 15 predictors by each of the best-performing ML models, then compared the 
performance of the ML models based on the top variables with that of LR based on seven traditional 
risk factors (age, sex, ethnicity, BMI, HbA1c, duration of diabetes, and systolic BP) in another 40 
random repeats of 5-fold cross-validation. Subgroup analyses were conducted for the three ethnic 
groups separately.

Statistical analyses
We compared the baseline characteristics of participants with diabetes by incident DKD status using 
χ2 test or Mann–Whitney U test as appropriate for the variable and compared the socioeconomic 
status by ethnicity using χ2 test and Kruskal–Wallis test as appropriate for the variable. Statistical 
significance was defined as a p-value<0.05. Subgroup numbers such as DR status may not add up 
due to the presence of missing data. For modeling, we used mean values/modes for missing value 
imputation as appropriate for each variable because the missing proportions were all below 10%. 
Improvement in prediction accuracy by ML over the traditional risk factor model was calculated as 
(ML AUC – traditional model AUC)/traditional model AUC * 100%. All analyses were conducted using 
R software version 4.0.2. To assess whether the features selected by ML models were meaningful, we 
visualized the association of top 15 variables with incident DKD in forest plots or a variable importance 
plot as appropriate for the algorithm.

https://doi.org/10.7554/eLife.81878
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Results
The 6-year incidence of DKD was 11.9% in the study population. The incidence of DKD was the 
highest in Malays (18.4%), followed by Chinese (12.8%). Although Indians represent nearly half of the 
total diabetic population (648 of the 1365 diabetic participants, 47.5%), DKD incidence was the lowest 
in Indians (7.6%).

As shown in Table 1, compared to those without incident DKD, those with were significantly older, 
more likely to be Malays, primary/below educated, had higher prevalence of hypertension, DR, CVD, 
antidiabetic medication use; had longer duration of diabetes, and higher levels of systolic BP and 
HbA1c%.

Table 1. Baseline characteristics of SEED diabetic participants by incident DKD status.

Characteristics
No DKD

(n = 1203)
DKD

(n = 162) p-value
Overall

(n = 1365)

Age (years) 57.95 (8.78) 64.63 (7.98) <0.001 58.74 (8.95)

Sex, female 580 (48.2) 87 (53.7) 0.219 667 (48.9)

Ethnicity <0.001

 � Indians (ref) 599 (49.8) 49 (30.2) 648 (47.5)

 � Malays 310 (25.8) 70 (43.2) 380 (27.8)

 � Chinese 294 (24.4) 43 (26.5) 337 (24.7)

Primary/below education (%) 706 (58.7) 121 (74.7) <0.001 827 (60.6)

Current smoker (%) 173 (14.4) 16 (9.9) 0.15 189 (13.9)

Alcohol consumption (%) 111 (9.2) 11 (6.8) 0.389 122 (9.0)

Hypertension (%) 845 (70.4) 155 (95.7) <0.001 1000 (73.4)

Diabetic retinopathy (%) 228 (19.2) 56 (35.4) <0.001 284 (21.1)

Cardiovascular disease (%) 153 (12.7) 32 (19.8) 0.02 185 (13.6)

Duration of diabetes (years) 2.68 [0.00, 8.56] 6.08 [1.44, 11.63] <0.001 3.20 [0.00, 9.37]

Antidiabetic medication (%) 681 (56.6) 122 (75.3) <0.001 803 (58.8)

Insulin use (%) 39 (3.3) 11 (7.1) 0.036 50 (3.8)

Body mass index (kg/m2) 26.96 (4.62) 27.05 (4.36) 0.764 26.97 (4.59)

Systolic blood pressure (mm Hg) 139.42 (18.95) 155.24 (20.01) <0.001 141.29 (19.74)

Diastolic blood pressure (mm Hg) 78.25 (9.74) 79.14 (10.70) 0.278 78.35 (9.85)

Random blood glucose (mmol/L) 9.53 (4.26) 10.44 (5.01) 0.052 9.64 (4.36)

HbA1c (%) 7.61 (1.58) 8.04 (1.83) 0.003 7.66 (1.62)

Blood total cholesterol (mmol/L) 5.14 (1.14) 4.98 (1.15) 0.124 5.12 (1.15)

Blood HDL cholesterol (mmol/L) 1.12 (0.31) 1.16 (0.35) 0.178 1.12 (0.32)

eGFR (mL/min/1.73 m2) 89.98 (14.34) 79.40 (11.69) <0.001 88.72 (14.46)

Values for categorical variables are presented as number (percentages); values for continuous variables are given 
as mean (SD) or median [IQR]. p-values are given by χ2 test or Mann–Whitney U test as appropriate for the 
variable.
DKD, diabetic kidney disease; HDL, high-density lipoprotein cholesterol; IQR, interquartile range; SD, standard 
deviation; SEED, Singapore Epidemiology of Eye Diseases.

https://doi.org/10.7554/eLife.81878
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Performance of LR using traditional risk factors (reference) and other 
domain features
The LR using the seven traditional risk factors (age, sex, ethnicity, BMI, HbA1c, duration of diabetes, 
and systolic BP) had an AUC of 0.796. The performance of LR improved to 0.821 using the tradi-
tional + extended risk factors. With additional features, the performance of LR dropped significantly 
(AUC of 0.622 in E and 0.811 in C).

Performance of ML models using multidimensional data
Using datasets, A, B, C, and E, the performances of the five ML models (Figure 1A–C and E) were as 
follows:

1.	 EN ranked first in performance in all four datasets with AUCs ranging from 0.797 in A to 0.843 
in E

2.	 LASSO ranged from 0.781 in A to 0.814 in E
3.	 GBDT ranged from 0.789 in A to 0.809 in E
4.	 RF ranged from 0.772 in E to 0.817 in C
5.	 XGB ranged from 0.764 in A to 0.804 in C

Figure 2 shows the AUCs of the top 3 performing models. Using the top 15 predictors generated 
by feature selection, the performance of EN improved further with an AUC (95% CI) of 0.851 (0.847–
0.856), sensitivity and specificity of 88.2 and 65.9% compared to LR using seven established features 
with AUC of 0.795 (0.790–0.801), and sensitivity and specificity of 73.0 and 72.8%.

Figure 2. Performance of the top 3 machine learning (ML) models based on selected variables in dataset E (risk 
factors + blood metabolites) compared to LR using seven established features. Abbreviations: EN, Elastic net; 
GBDT, gradient boosting decision tree; LASSO; least absolute shrinkage and selection operator; LR, logistic 
regression.

https://doi.org/10.7554/eLife.81878
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The corresponding estimates for LASSO were 0.820 (0.816–0.825), 84.4% and 67.0%; 0.819 
(0.814–0.824), 80.6% and 70.1% for GBDT. The AUCs of EN, LASSO, and GBDT were 7.0, 3.1, and 
3.0% relatively higher than that of LR.

Top 15 predictors
Figure 3 shows the top 15 predictors visualized using forest plots for EN and LASSO and a variable 
importance plot for GBDT. We found low collinearity in EN-selected features (Spearman’s correlation 
coefficients: –0.49 to 0.43), while LASSO and GBDT selected some variables of higher correlation 
(e.g., systolic BP and pulse pressure).

Among the traditional and extended risk factors, all three models chose age, SBP, DR, and lower 
levels of eGFR as the top 15 predictors. In addition, antidiabetic medication use, HbA1c, hyperten-
sion, and ethnicity (Malays and Chinese compared to Indians) were chosen as risk factors by EN and 
LASSO; antihypertensive medication and low housing type by LASSO; and duration of diabetes, BMI, 
and HDL cholesterol by GBDT. Among the metabolites, phospholipids to total lipids ratio in MHDL 
and DHA were selected by all three models. Free cholesterol to total lipids ratio in small HDL/XSVLDL, 
and cholesterol esters to total lipids ratio in IDL/LLDL/XLHDL were also found to be of high frequency. 
Additionally, higher levels of acetate were shown to be protective by LR based on EN-selected vari-
ables, while tyrosine and lactate were identified as important factors by GBDT. Source data for the 
forest plots are shown in Supplementary file 1-Table 1e. Using the same approach, we also identi-
fied the top variables by each ethnicity in Supplementary file 1-Table 1f, and found baseline eGFR 
linked to incident DKD in all three subgroups, whereas acetate, SBP, antidiabetic medication use, and 
housing type were important in two ethnic subgroups.

Discussion
The results of the current study suggest that prediction using ML models with selected features 
provided improved prediction compared to LR model based on seven established features in this 

Figure 3. Association of the top 15 machine learning (ML)-selected predictors with incident diabetic kidney disease (DKD). Abbreviations: LASSO, 
least absolute shrinkage and selection operator; GBDT, Gradient boosting decision tree. Variables: anti-HTN Meds, anti hypertensive medications; 
DM, diabetes mellitus; GFR-EPI, glomerular filtration rate estimated using CKD-EPI equation; HDL, high-density lipoprotein. Metabolites: DHA: 22:6, 
docosahexaenoic acid; DHAFA, Ratio of 22:6 docosahexaenoic acid to total fatty acids; IDL-CE%, Cholesterol esters to total lipids ratio in IDL; M-HDL-
PL%, Phospholipids to total lipids ratio in medium HDL; M-VLDL-PL%, Phospholipids to total lipids ratio in medium VLDL; S-HDL-FC% Free cholesterol 
to total lipids ratio in small HDL; XL-HDL-CE%, Cholesterol esters to total lipids ratio in very large HDL; L-LDL-CE%, Cholesterol esters to total lipids 
ratio in large LDL; M-HDL-PL%, Phospholipids to total lipids ratio in medium HDL; IDL-C% Total cholesterol to total lipids ratio in IDL; M-HDL-PL% 
Phospholipids to total lipids ratio in medium HDL. 

https://doi.org/10.7554/eLife.81878
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extensively phenotyped large-scale epidemiological study. The best performance was obtained by 
the EN model based on dataset E including risk factors and metabolites with an AUC of 0.851, which 
was 7.0% higher than that of LR using seven established risk factors. Sensitivity was also higher by EN 
(88.2 and 65.9%) compared to LR (73.0 and 72.8%). The top 15 predictors by EN using RFE identi-
fied several metabolites related to lipid concentration, lipoprotein subclasses, fatty acids, and ketone 
bodies as novel predictors besides confirming traditional predictors, including age, ethnicity, antidi-
abetic medication use, presence of hypertension, DR, higher levels of systolic BP, HbA1c, and lower 
levels of eGFR. Contrary to conventional risk factors, sex, BMI, and duration of diabetes did not come 
in the top 15-predictors.

Our results showed that ML models combined with feature selection improved the accuracy for 
predicting incident DKD in high-dimensional datasets. The AUC of MLs based on dataset E including 
metabolites (+risk factors) scored the highest, while the one based on dataset D including genetic 
features scored the lowest compared to other domain features. This finding suggests that modifiable 
risk factors and metabolites predict DKD risk better than genetic features. The predictive performance 
was the best by EN, followed by LASSO and GBDT. The top 15 predictors selected by LASSO and 
GBDT were largely consistent to that by EN.

Few previous studies have evaluated the performance of ML models for predicting the risk of 
incident DKD (Table 2). Ravizza et al. identified seven key features (age, BMI, eGFR, concentration of 
creatinine, glucose, albumin, and HbA1c%) by a data-driven feature selection strategy for predicting 
DKD using electronic health records (EHR) data from 417,912 people with diabetes retrieved from 
the IBM Explorys Database and developed a random forest model in 82,912 people with diabetes 
retrieved from the Indiana Network for Patient Care (INPC). The RF algorithm using seven prioritized 
key features achieved an AUC of 0.833 compared to 0.827 by LR (Ravizza et al., 2019).

Song et al. predicted 1-year risk of DKD based on electronic health records (EHR) data using 
gradient boosting machine (GBM) algorithm with an AUC of 83% (Song et al., 2020). As the median 
duration of development of DKD was ~10 y since the onset of diabetes, predicting 1-year risk may 
not be sufficient. Huang et al. predicted DKD risk in 1838 adults with diabetes and prediabetes who 
participated in the KORA study in Germany. The authors used ML models SVM, RF, and Ada Boost 
based on 14 clinical factors and 125 metabolites. The best achieved AUC was 0.857, which is similar 
to that of our model using EN (AUC = 0.851) (Huang et al., 2020a).

Table 2. Machine learning model for predicting incident CKD in literature.

Author, journal
Study cohort,
country

Study population
Follow-up

CKD definition 
and incidence

Number of 
predictors ML performance

Ravizza et al., 2019, 
Nature Medicine

EHR data from the 
IBM Explorys and 
INPC datasets, the 
United States

Development cohort (IBM): 
>500,000 adults with diabetes. 
Validation (INPC) = 82,912 
adults with T2DM; FU = 3 y. ICD 9/10 codes 300 features

Based on seven prioritized 
features, AUC by RF = 
0.833 and the Roche/IBM 
supervised algorithm by LR = 
0.827

Song et al., 2020., 
JMIR

EHR data, the United 
States (2007–2017)

14,039 adults with T2DM.
FU = 1 y.

eGFR < 60 or 
UACR ≥30 mg/g;
34.1% >3000

GBM
AUC = 0.83

Huang et al., 2020a., 
Diabetes

KORA cohort, 
Germany

1838 adults with prediabetes 
and T2DM.
FU = 6.5 y.

eGFR < 60 or 
UACR ≥30 mg/g 
at FU;
10.9%

125 mets + 14 
clinical factors

SVM, RF, Ada Boost
Best set: Mets-SM and PC + 
age, TC, FPG, eGFR, UACR, 
AUC = 0.857
Traditional LR using 14 
variables, AUC = 0.809

Sabanayagam et al., 
2023, current study SEED population data, 

Singapore
1365 adults with diabetes.
FU = 6 y.

eGFR < 60 + 25% 
decline in eGFR 
from baseline 339 features

EN + RFE selected 15 features, 
AUC = 0.851 vs. 0.795 using 
seven features by traditional LR

AUC, area under the receiver operating characteristic curve; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; EHR, electronic 
health records; EN, Elastic Net; FPG, Fasting plasma glucose; FU, follow-up; GBM, Gradient Boosting Machine; ICD, International Classification of 
Diseases; INPC, Indiana Network for Patient Care; LR, logistic regression; ML, machine learning; RF, random forest; RFE, recursive feature selection; 
SEED, Singapore Epidemiology of Eye Diseases; SVM, support vector machine; T2DM, type 2 diabetes mellitus; TC, total cholesterol; UACR, urine 
albumin-creatinine ratio.

https://doi.org/10.7554/eLife.81878
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In the current study, we observed that when the features were limited to the traditional risk factors, 
the performance of LR was similar to that of the best ML model EN. However, when the number 
of features was large, LR’s performance dropped significantly compared to the top-performing ML 
models, including EN, LASSO, and GBDT. While ML models are capable of addressing complex vari-
able effects and nonlinearity issues, herein we found regularized regression models (EN and LASSO) 
outperforming other more sophisticated models. This suggests that the pathophysiological progres-
sion from diabetes to CKD may not be as nonlinear as previously assumed. At CKD stage 4, heteroge-
neity in terms of disease trajectory is primarily low, and nonadditive effects are likely to be negligible, 
which could explain the superior performance of EN and LASSO in our study. In a previous study 
based on the same dataset as the current study, Nusinovici et al. tested the performance of several 
ML models utilizing 20 risk factors alone and found that the performance of LR (AUC = 0.905) was 
similar to that of the best ML model, GBDT (AUC = 0.903), for predicting incident CKD in those with 
and without diabetes (Nusinovici et al., 2020). When a large number of features are present, more 
advanced ML methods may capture the complex functional dependency of the incident CKD outcome 
much better than the linear approach used in LR.

The top-performing ML models (EN, LASSO, GBDT) identified established risk factors for DKD, such 
as age, ethnicity, antidiabetic medication use, presence of hypertension, DR, higher levels of systolic 
BP, HbA1c, and lower levels of eGFR. Additionally, antihypertensive medication use and low housing 
type were identified by LASSO while BMI and duration of diabetes by GBDT. Increasing age, longer 
duration of diabetes, higher levels of HbA1c, systolic BP/hypertension are well-known risk factors of 
DKD. A meta-analysis conducted by Nelson et al., including 15 multinational cohorts with diabetes as 
part of the CKD Prognosis Consortium (Nelson et al., 2019), also identified older age, hypertension, 
lower eGFR, higher levels of BMI, HbA1c, and antidiabetic medication use as significant risk factors 
for incident CKD in those with diabetes. While black ethnicity was a risk factor for CKD in the meta-
analysis, in our study, we found Chinese and Malay ethnicity to be at higher risk of developing incident 
DKD compared to Indian ethnicity. Compared to the Indian population, the Chinese population was 
generally older, while Malay participants had lower education levels and higher prevalence of smoking 
(Supplementary file 1 -Table 1g). Both Chinese and Malays had a higher prevalence of hypertension 
and lower levels of antidiabetic medication use, which may contribute to the ethnic difference in DKD 
incidence. Another reason for the lower risk of developing DKD in the Indian ethnicity could be that 
as a high-risk group for diabetes they may be more aware of the risk and comply with screening, medi-
cation, and other measures that can reduce their risk of developing DKD. Malay ethnicity has been 
identified to be a high-risk group for CKD by several studies conducted in Singapore (Sabanayagam 
et al., 2010; Lim et al., 2021; National Registry of Diseases Office, 2020). Surprisingly, sex was not 
identified to be a risk factor by any of the three ML models, which is consistent with the findings of the 
Ravizza et al. algorithm based on data-driven feature selection that did not pick up sex as one of the 
priority features (Ravizza et al., 2019).

In the current study, several new predictors from the metabolites domain were identified. Specifi-
cally, lipid metabolites, including phospholipids in HDL and VLDL subclasses, cholesterol esters, and 
free cholesterol in HDL subclasses, were found to be associated with an increased risk of DKD, while 
cholesterol esters in IDL were found to be protective against DKD. Furthermore, higher levels of DHA, 
acetate, and tyrosine also showed a protective association (odds ratios not shown). These findings 
are consistent with previous studies. For example, in the ADVANCE trial, higher tyrosine levels were 
associated with an increased risk of microvascular complications in diabetic participants. DHA, a n-3 
polyunsaturated fatty acid (PUFA), has been shown to reduce renal inflammation and fibrosis and slow 
down the progression of CKD in animal models with type 2 diabetes (Mathi Thumilan et al., 2016). 
PUFA supplementation has also been shown to reduce hyperglycemia-induced pathogenic mech-
anisms by its anti-inflammatory and antioxidant properties, and improve renal function in diabetic 
nephropathy patients . Furthermore, higher levels of the short-chain fatty acid acetate have been 
shown to be inversely associated with diabetic nephropathy in type 2 diabetic patients (Huang et al., 
2020b), and have beneficial effects in mice models with type 2 diabetes by reducing oxidative stress 
and inflammation.

The strengths of our study include a multiethnic Asian population with a long follow-up and the 
availability of a wealth of information. The use of RFE for dimension reduction and feature selection 
reduced overfitting of data. ML models identified the relative importance of one domain over the 

https://doi.org/10.7554/eLife.81878
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other domains (like metabolite features in our study compared to genetic features) and the best 
predictors within one domain. However, our study results should be interpreted in light of a few 
limitations. First, our definition of DKD was based on the measurement of a single blood creatinine 
both at baseline and follow-up. This could have resulted in some misclassification, but the bias would 
be nondifferential and similar across both outcomes. Second, albuminuria, an important predictor of 
DKD, was not included as it was missing in a substantial number of participants. Third, external vali-
dation was not performed. Fourth, ML models are computationally intensive compared to traditional 
regression models.

In conclusion, in a population-based sample of multiethnic Asian adults, we found that EN with 
specific metabolites outperformed the current DKD risk prediction models using demographic and 
clinical variables. Our results provide evidence that combining metabolites and ML models could 
improve the prediction accuracy for DKD and that increasing the use of ML techniques may discover 
new risk factors for DKD. Further testing in external populations would support the validity of the 
model.
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