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Abstract During severe or chronic hepatic injury, biliary epithelial cells (BECs) undergo rapid 
activation into proliferating progenitors, a crucial step required to establish a regenerative process 
known as ductular reaction (DR). While DR is a hallmark of chronic liver diseases, including advanced 
stages of non-alcoholic fatty liver disease (NAFLD), the early events underlying BEC activation are 
largely unknown. Here, we demonstrate that BECs readily accumulate lipids during high-fat diet 
feeding in mice and upon fatty acid treatment in BEC-derived organoids. Lipid overload induces 
metabolic rewiring to support the conversion of adult cholangiocytes into reactive BECs. Mechanis-
tically, we found that lipid overload activates the E2F transcription factors in BECs, which drive cell 
cycle progression while promoting glycolytic metabolism. These findings demonstrate that fat over-
load is sufficient to reprogram BECs into progenitor cells in the early stages of NAFLD and provide 
new insights into the mechanistic basis of this process, revealing unexpected connections between 
lipid metabolism, stemness, and regeneration.

Editor's evaluation
This important study reports that a high-fat diet induces biliary epithelial cell proliferation and 
suggests this may account for the so-called ductular reaction in advanced fatty liver disease. 
Convincing data support the finding that E2f1 is required for BEC proliferation in mice fed with 
HFD, and organoid models indicate that lipid abundance promotes glycolysis in an E2F-dependent 
manner.

Introduction
Under physiological conditions, the hepatic epithelium, composed of hepatocytes and BECs (or chol-
angiocytes), is non-proliferative. Yet upon injury, these two cell types are capable of rapidly changing 
their phenotype from quiescent to proliferative, contributing to the prompt restoration of damaged 
tissue (Gadd et al., 2020; Michalopoulos, 2014; Miyajima et al., 2014; Yanger and Stanger, 2011). 
However, in chronic liver injury, characterized by impaired hepatocyte replication, BECs weigh-in and 
serve as the cell source for regenerative cellular expansion through the DR process (Choi et al., 2014; 
Deng et al., 2018; Español-Suñer et al., 2012; Huch et al., 2013; Lu et al., 2015; Raven et al., 2017; 
Rodrigo-Torres et al., 2014; Russell et al., 2019).

The molecular basis by which BECs expand during the DR has been extensively studied in models 
of chemical biliary damage and portal fibrosis using the chemical 3,5-diethoxycarbonyl-1,4-dihydroc
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ollidine (DDC). Several signaling pathways involving YAP (Meyer et al., 2020; Pepe-Mooney et al., 
2019; Planas-Paz et al., 2019), mTORC1 (Planas-Paz et al., 2019), TET1-mediated hydroxymeth-
ylation (Aloia et  al., 2019) and NCAM1 (Tsuchiya et  al., 2014) have been reported to drive this 
process. Importantly, DR has also been observed in late-stage NAFLD patients with fibrosis and portal 
inflammation (Gadd et al., 2014; Sato et al., 2019; Sorrentino et al., 2005). NAFLD, one of the 
most common chronic diseases, initiates with increased lipid accumulation, a stage called steatosis 
(Paschos and Paletas, 2009). This pathology progresses into inflammation and fibrosis that can cause 
cirrhosis and hepatocellular carcinoma, which are the most frequent liver transplantation indications 
(Byrne and Targher, 2015). YAP has been found to be activated in BECs in fibrotic livers but not in 
steatosis (Machado et al., 2015), suggesting that YAP activation is necessary to support DR in the 
late fibrotic NAFLD stages, and thus, leaving the early molecular mechanisms of BEC activation, which 
precede the onset of the DR, unexplored.

BEC-derived organoids (BEC-organoids) can be established from intrahepatic bile duct progenitors 
and can proliferate, representing a promising in vitro approach to study regenerative mechanisms and 
therapies (Huch et al., 2015; Huch et al., 2013; Li et al., 2017; Okabe et al., 2009; Shin et al., 2011; 
Sorrentino et al., 2020). These self-renewing bi-potent organoids express biliary progenitor markers 
and are capable of differentiating into functional cholangiocyte- and hepatocyte-like lineages in 
specific differentiation media, which can engraft and repair bile ducts (Hallett et al., 2022; Sampazi-
otis et al., 2021) and improve liver function when transplanted into a mouse with liver disease (Huch 
et al., 2015; Huch et al., 2013; Li et al., 2017).

Here, we used BEC-organoids and BECs isolated from chow diet (CD)- or high-fat diet (HFD)-fed 
mice and reported that they are affected by acute and chronic lipid overload, one of the initial steps of 
NAFLD. Lipid accumulation turns BECs from quiescent to proliferative cells, the earliest step of a DR, 
and promotes their expansion through the E2F transcription factors and the concomitant induction 
of glycolysis. These observations hence attribute a pivotal role to E2Fs, regulators of cell cycle and 
metabolism, in priming BEC activation during the early stages of NAFLD.

Results
BECs and BEC-organoids efficiently accumulate lipids in vivo and in 
vitro
To gain insight into how chronic lipid exposure, which induces liver steatosis, affects biliary progen-
itor function in vitro, we incubated single BECs with a mixture of oleic acid (OA) and palmitic acid 
(PA) (the fatty acid (FA) mix) – the two most abundant FAs found in livers of NAFLD patients (Araya 
et al., 2004), for 7 days and allowed BEC-organoid formation (Figure 1A). Surprisingly, we observed 
that BEC-organoids efficiently accumulated lipid droplets in a dose-dependent manner (Figure 1B), 
and this process did not affect organoid viability (Figure 1C–D). To investigate how cells adapt their 
metabolism to lipid overload, we monitored the expression of several genes involved in lipid metab-
olism, including Scd1 (de novo lipogenesis) (Figure 1E), Hmgcs2 (ketogenesis), Pdk4 (inhibition of 
pyruvate oxidation), and Aldh1a1 (prevention against lipid peroxidation products) (Figure 1F) and 
found it to be affected by FA addition. These results suggest that BEC organoids actively reprogram 
their metabolism to cope with aberrant lipid overload.

To determine whether the observed phenotype was preserved in fully formed organoids, we 
treated already established BEC-organoids with the FA mix for 4 days (Figure 1—figure supplement 
1A). In line with our previous observations, BODIPY staining (Figure 1—figure supplement 1B), and 
triglyceride (TG) quantification (Figure 1—figure supplement 1C) showed a pronounced increase 
in lipid accumulation after 4 days, without affecting cell viability (Figure 1—figure supplement 1D).

To assess whether chronic lipid exposure affects BECs in vivo, we fed C57BL/6 J mice for 15 weeks 
with CD or HFD (Figure 1G) and analyzed their bile ducts. As expected, HFD-fed mice gained weight 
and developed liver steatosis, but no apparent fibrosis (Figure 1—figure supplement 1E). Of note, 
HFD-feeding led to an accumulation of lipid droplets in the periportal zone (Figure 1—figure supple-
ment 1F) and within bile ducts, as reflected by the localization of BODIPY signal in PANCK (BEC 
marker) positive cells (Figure 1H), without inducing epithelial damage (Figure 1—figure supplement 
1G–I). Moreover, flow cytometry analysis of BECs stained with EPCAM, a pan-BEC marker (Aloia 
et al., 2019; Pepe-Mooney et al., 2019; Planas-Paz et al., 2019) and BODIPY confirmed that these 

https://doi.org/10.7554/eLife.81926
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Figure 1. Biliary epithelial cells (BECs) accumulate lipids. (A) Schematic depicting fatty acid (FA) treatment of BEC-organoids in vitro. (B) Representative 
bright field and immunofluorescence (IF) images of lipids (BODIPY) in control (BSA) and FA-treated organoids. Close-up IF images were digitally 
zoomed in four times. n=3. (C) Cell-titer Glo and Caspase 3/7 activity measurement for viability and apoptosis detection relative to panel A. n=3. (D) 
Representative Nucgreen Dead 488 staining as composite images from bright field and fluorescent microscopy. n=3. (E–F) Quantification of Scd1 
(E) and Hmgcs2, Pdk4, and Aldh1a1 (F) mRNA in control (BSA) and FA-treated organoids. n=3. (G) Schematic depicting chow diet (CD) and high-fat diet 
(HFD) feeding in vivo. (H) Representative images for co-staining of BODIPY and PANCK, relative to panel G. Close-up IF images were digitally zoomed 
in four times. n=3. (I) Representative quantitative plots of the percentage (left) and quantification (right) of BODIPY staining in EPCAM+ BECs isolated 
from the liver of C57BL/6 J mice fed CD or HFD for 15 weeks. n=5. Data are shown as mean ± SEM. Absence of stars or ns, not significant (p>0.05); 
*p<0.05; **p<0.01, ****p<0.0001; one-way ANOVA with Dunnett’s test (C), Fisher’s LSD test (E, F), and unpaired, two-tailed Student’s t-test (I) were used. 
PV, portal vein. Scale bars, 200 μm (B - bright field), 100 μm (B - IF, D), and 10 μm (H).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Further characterization of lipid accumulation in biliary epithelial cells (BECs).

https://doi.org/10.7554/eLife.81926
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cells are able to store lipids upon HFD feeding (Figure 1I and Figure 1—figure supplement 1L). 
Together, these in vitro and in vivo results demonstrate that BECs accumulate lipids upon chronic FA 
exposure, raising the question of the functional consequences of this previously unrecognized event 
on BEC behavior.

HFD feeding promotes BEC activation and increases organoid 
formation capacity
To characterize in vivo the impact of chronic lipid overload on BECs at the molecular level, we 
isolated EPCAM+ BECs from livers of CD/HFD-fed mice by fluorescence-activated cell sorting (FACS) 
(Figure 2A and Figure 2—figure supplement 1A) and performed RNA sequencing (RNA-seq). Anal-
ysis of these data revealed a diet-dependent clustering in Principal Component Analysis (Figure 2—
figure supplement 1B), indicating that HFD feeding induces considerable transcriptional changes 
in BECs in vivo. Differential expression analysis further revealed a total of 495 significantly changed 
genes, 121 upregulated and 374 downregulated (Figure 2—figure supplement 1C and Supplemen-
tary file 1). At the same time, HFD promoted the upregulation of Ncam1 (Figure 2—figure supple-
ment 1D), a well-established mediator of BEC activation. Consistent with the absence of fibrosis and 
biliary epithelial damage, canonical makers of the DR (Manco et al., 2019; Sato et al., 2019; Tsuchiya 
et al., 2014) were not changed in EPCAM+ BECs isolated from livers of HFD-fed mice (Figure 2—
figure supplement 1E).

To further explore the transcriptional changes, we performed gene set enrichment analysis (GSEA) 
on Gene Ontology (GO) terms (Figure 2B) and KEGG (Figure 2—figure supplement 1F) pathways 
and identified cell proliferation, the most prevalent early feature of BEC activation (Sato et al., 2019) 
as the major process induced in these cells upon HFD feeding. Expansion of the reactive BECs requires 
detachment from their niche and invasion of the parenchyma toward the damaged hepatic area. This 
process is made possible by reorganizing the extracellular matrix (ECM) and reducing focal adhesion, 
effectively downregulated in EPCAM+ BECs upon HFD (Figure 2B and Figure 2—figure supplement 
1F).

To validate the RNA-seq data, we monitored the activation of BECs in vivo by measuring the number 
of proliferating BECs in the portal region of the livers of mice fed either CD or HFD (Figure 2C–D). Of 
note, we found that HFD feeding was sufficient to induce a marked increase in the number of active 
BECs (i.e. Ki67+/OPN+ cells- Figure 2C–D). Similar results were observed in two independent cohorts 
of mice challenged with HFD and injected with EdU either to track proliferating cells by immunoflu-
orescence (Figure 2E–F) or to quantify by flow cytometry the amount of EPCAM+/EdU+ BECs in the 
liver (Figure 2G), confirming that chronic lipid exposure stimulates the appearance of reactive BECs 
within the bile ducts.

The efficiency of BECs to generate organoids in vitro has been shown to mirror their activation 
status (Aloia et al., 2019). To functionally assess the impact of lipid overload on this process, we 
measured the organoid-forming capacity of isolated BECs, as a read-out of their regenerative poten-
tial. To this aim, we quantified the organoid formation efficiency of BECs isolated from CD- and HFD-
fed mouse livers (Figure 2H). Strikingly, we observed that HFD-derived BECs were significantly more 
efficient in generating organoids than their CD counterparts (Figure  2I). Altogether, these results 
demonstrate that HFD feeding is sufficient to induce, in vivo, the exit of BECs from a quiescent state 
and the acquisition of both proliferative and pro-regenerative features.

HFD feeding initiates BEC activation via E2Fs
To understand whether the mechanisms underlying BEC activation upon HFD in vivo involve canonical 
processes by which BECs expand during the DR in chronically damaged livers, we compared the tran-
scriptional profile of BECs upon HFD with those of DDC-activated BECs (Pepe-Mooney et al., 2019; 
GSE125688). We identified the most pronounced changes shared between HFD and DDC samples by 
overlapping separate over-representation enrichment analyses (Supplementary file 2). Cell division, 
mitosis, and chromosome segregation were the shared enriched pathways for upregulated genes in 
HFD and DDC samples (Figure 3A), while ECM organization was the shared enriched pathway for the 
downregulated genes in HFD and DDC conditions (Figure 3—figure supplement 1A). We concluded 
that the mechanisms of BEC activation induced by lipid overload partially overlap with those by which 
BECs expand during the DR with biliary epithelial damage.

https://doi.org/10.7554/eLife.81926
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Figure 2. High-fat diet (HFD) feeding induces EPCAM+ biliary epithelial cell (BEC) proliferation. (A) Scheme depicting the isolation of EPCAM+ BECs 
from CD- and HFD-fed mice by f﻿﻿luorescence-activated cell sorting (FACS). (B) Gene set enrichment analysis (GSEA) of Gene Ontology (GO) terms. 
Top 15 upregulated biological processes (BP), ordered by normalized enrichment score (NES). q-value: false discovery rate adjusted p-values. (C–F) 
Representative co-staining images (C, E) and quantification (D, F) of BECs stained for OPN and Ki67 (C–D), or OPN and EdU (E–F) in livers of CD/

Figure 2 continued on next page
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Of note, a more detailed analysis of DDC- and HFD-derived BECs, revealed the concomitant 
enrichment of four overlapping transcription factor (TF) gene sets, E2F1-4 (Figure  3B), and their 
target genes (Figure 3—figure supplement 1B), which have not been linked to BEC activation or DR 
previously. Moreover, we identified an enrichment of E2Fs (Figure 3C and Supplementary file 2) and 
cell division pathway (Figure 3—figure supplement 1C) as the most upregulated genes in prolifer-
ating BEC-organoids, further corroborating the role of E2Fs in these two in vitro (Aloia et al., 2019) 
and in vivo (Pepe-Mooney et al., 2019) DR models.

E2Fs are a large family of TFs with complex functions in cell cycle progression, DNA replication, 
repair, and G2/M checkpoints (Dimova and Dyson, 2005; Dyson, 1998; Dyson, 2016; Ren et al., 
2002). Therefore, we hypothesized that the activation of E2Fs might represent an early event in the 
process of BEC activation, which is necessary for exiting the quiescent state and promoting BEC 
expansion. To test this hypothesis, we focused on E2F1, as it was the most enriched TF in our analysis, 
and assessed its role in BECs by feeding E2f1+/+ and E2f1-/- mice with HFD (Figure 3D). Remarkably, 
E2f1-/- mice were refractory to BEC activation induced by lipid overload upon HFD, as opposed to 
E2f1+/+ mice (Figure 3E–F). In addition, silencing of E2F1 in EPCAM+ BECs from livers of C57BL/6 J 
HFD-fed mice (Figure 3—figure supplement 1D) reduced the capacity to form organoids in vitro 
(Figure 3—figure supplement 1E). These results demonstrate a previously unrecognized role of E2F1 
in controlling BEC activation during HFD-induced hepatic steatosis in vivo and support a pivotal role 
of this transcription factor in controlling BEC expansion.

E2Fs promote BEC expansion by upregulating glycolysis
The exit of terminally-differentiated cells from their quiescent state requires both energy and building 
block availability to support cell proliferation. Proliferative cells, therefore, reprogram their glucose 
metabolism to meet their increased need for biomass and energy (Vander Heiden et  al., 2009). 
Supporting this notion, our interrogation of in vitro BEC-organoid formation dataset (Aloia et al., 
2019) revealed the enrichment of purine and pyrimidine metabolism, as well as the pentose-phosphate 
pathway, which is tightly connected to glycolysis (Figure 4—figure supplement 1A). In line with these 
findings, a substrate oxidation test in BEC-organoids revealed a preference for glucose, as reflected 
by the decrease in maximal respiration, when UK5099, a mitochondrial pyruvate carrier inhibitor, was 
used (Figure 4A–B), while no changes were observed with inhibitors of glutamine (BPTES) and FA 
(Etomoxir) metabolism (Figure 4—figure supplement 1B–C).

To investigate the metabolic changes in BEC-organoids upon HFD, we treated CD/HFD BEC-
organoids with FA mix to mimic steatotic conditions in vitro (Figure 4C). We hypothesized that the 
presence of glucose and FA in culture media would reveal a metabolic shift of BEC-organoids. Consis-
tent with our hypothesis, HFD-FA BEC-organoids demonstrated increased compensatory glycolytic 
rates (Figure 4D–E and Figure 4—figure supplement 1D). Of note, there was a reduction in oxida-
tive phosphorylation in HFD-FA BEC-organoids, as evidenced by the decrease in maximal respiration 
(Figure 4—figure supplement 1E–G), which might reflect their preference for the glycolytic pathway 
to generate biomass.

Besides their prominent role in cell cycle progression, E2Fs coordinate several aspects of cellular 
metabolism (Denechaud et al., 2017; Nicolay and Dyson, 2013), and promote glycolysis in different 
contexts (Blanchet et  al., 2011; Denechaud et  al., 2016; Huber et  al., 2021). These findings 
prompted us to postulate that E2F might control glycolysis and, thus, the glucose preference observed 
in BEC-organoids. To investigate this hypothesis, we treated BEC organoids with an E2F inhibitor, 
HLM006474 (Figure 4F). As expected, HLM006474 treatment reduced the transcriptional levels of 
several genes involved in cell cycle progression and glycolytic metabolism (Figure 4G) and decreased 

HFD-fed mice. n=10 for Ki67 and n=5 for EdU. (G) Representative quantitative plots of the percentage (left) and quantification (right) of EdU+ EPCAM+ 
BECs, relative to panel A. n=5. (H) Schematic depicting BEC-organoid formation in vitro from CD/HFD-fed mouse livers. (I) Images of organoid colonies 
formed 6 days after seeding and quantification of organoids per well. n=5. Violin graphs depict the distribution of data points i.e the width of the 
shaded area represents the proportion of data located there. Other data are shown as mean ± SEM. **p<0.01; ****p<0.0001; unpaired, two-tailed 
Student’s t-test was used. PV, portal vein. Arrowheads mark bile ducts. Scale bars, 20 μm (C, E), 200 μm (I).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. RNA-seq analysis of EPCAM+ biliary epithelial cells (BECs) upon high-fat diet (HFD).

Figure 2 continued

https://doi.org/10.7554/eLife.81926
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treatment. q-value: false discovery rate adjusted p-values, counts: number of found genes within a given gene set. (B–C) Enriched transcription factors 
(TFs) of upregulated genes identified by over-representation analysis in HFD (own data) and DDC (GSE125688) treatment (B), and during the process 

Figure 3 continued on next page
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the glycolytic flux, as evidenced by the blunted proton efflux rate (PER) (Figure 4H–I). Moreover, E2F 
inhibition was able to reverse the metabolic phenotype only in HFD-FA BEC-organoids (Figure 4J–K).

In conclusion, these results demonstrate that HFD-induced E2F activation controls the conversion 
of BECs from quiescent to active progenitors by promoting the expression of cell cycle genes while 
simultaneously driving a shift toward glycolysis.

Discussion
Through DR activation, BECs represent an essential reservoir of progenitors that are crucial for coordi-
nating hepatic epithelial regeneration in the context of chronic liver diseases (Choi et al., 2014; Deng 
et al., 2018; Español-Suñer et al., 2012; Huch et al., 2013; Lu et al., 2015; Raven et al., 2017; 
Rodrigo-Torres et al., 2014; Russell et al., 2019). BEC functions are tightly controlled by YAP meta-
bolic pathways (Meyer et al., 2020; Pepe-Mooney et al., 2019; Planas-Paz et al., 2019), and recent 
studies from different tissues have provided evidence that specific metabolic states play instructive 
roles in controlling cell fate and tissue regeneration (Beyaz et al., 2016; Capolupo et al., 2022; Miao 
et  al., 2020; Zhang et  al., 2016). Aberrant lipid accumulation is a hallmark of early NAFLD, and 
imbalances in lipid metabolism are known to affect hepatocyte homeostasis, including induction of 
lipo-toxicity and cell death (Wang et al., 2016b; Sano et al., 2021; De Gottardi et al., 2007; Wobser 
et al., 2009; Ipsen et al., 2018). However, the role of lipid dysregulation in BECs and whether it has 
an impact on BEC activation remains unexplored in the setting of NAFLD.

Here, using HFD- fed mouse models, we studied BEC metabolism in steatosis, the first stage of 
NAFLD, and demonstrated lipid accumulation in BECs during chronic HFD in vivo and their resistance 
to lipid-induced toxicity. By using BEC-organoids, we observed that FAs directly target BECs, without 
any involvement of hepatocytes and that BECs functionally respond to lipid overload. Importantly, 
BEC-organoids derived from CD- and HFD-fed mouse livers were shown to shift their cellular metab-
olism toward more glycolysis in the presence of lipids. Furthermore, we found that the HFD-induced 
metabolic shift was sufficient to reprogram BEC identity in vivo, allowing their exit from a quiescent 
state and the simultaneous acquisition of progenitor functions, such as proliferation and organoid-
initiating capacity. These results highlight the metabolic plasticity of BECs and shed light on an unpre-
dicted mechanism of BEC activation in HFD-induced hepatic steatosis. Importantly, we observed that 
lipid overload is sufficient to induce BEC activation in steatotic livers and that this process precedes 
parenchymal damage. While the functional contribution of lipid-activated BECs in liver regeneration 
during the late stages of NAFLD will require further studies, our data clearly point out the role of BECs 
as sensors and possibly effectors of early liver diseases such as steatosis.

To fully understand the underlying basis of the observed phenotype, we characterized the tran-
scriptome of primary BECs derived from steatotic livers of HFD-fed mice and demonstrated that 
long-term feeding of a lipid-enriched diet strongly promotes BEC proliferation, suggesting a strong 
link between metabolic adaptation and progenitor function. By combining our transcriptomic analysis 
with data mining of publicly available DR datasets (Aloia et al., 2019; Pepe-Mooney et al., 2019), 
we identified the E2F transcription factors as master regulators of BEC activation in the context of 
NAFLD. Moreover, the expression of Pdk4, an E2F1 target (Hsieh et al., 2008; Wang et al., 2016a), 
was upregulated in FA-treated BEC-organoids and upon HFD. PDK4 limits the utilization of pyru-
vate for oxidative metabolism while enhancing glycolysis, which reinforces our data demonstrating 
that E2Fs rewire BEC metabolism toward glycolysis to fuel progenitor proliferation. These observa-
tions feature E2Fs as the molecular rheostat integrating the metabolic cell state with the cell cycle 

of organoid formation from single BECs (Organoids vs. T0) (GSE123133) (C). Asterisk (*) marks TFs of the ‘TF_ZHAO’ gene set. (D) Schematic depicting 
in vivo E2F1 analysis. (E–F) Representative images of PANCK/Ki67 co-staining in livers of E2f1+/+ and E2f1-/- mice fed with chow diet (CD) or HFD (E) and 
quantification of proliferative BECs in the livers of the indicated mice (F). For CD, n=5 for E2f1+/+ and E2f1-/-. For HFD, n=7 for E2f1+/+, and n=8 for E2f1-/-. 
Violin graphs depict the distribution of data points i.e., the width of the shaded area represents the proportion of data located there. ns, not significant; 
**p<0.01; two-way ANOVA with Tukey’s test was used. PV, portal vein. Arrowheads mark bile ducts. Scale bars, 20 μm (E).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Extended analysis of biliary epithelial cells (BECs) upon high-fat diet (HFD), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), 
during BEC-organoid formation and E2F1 silencing.

Figure 3 continued
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Figure 4. E2Fs promote glycolysis in biliary epithelial cell (BEC)-organoids. (A–B) Seahorse Substrate Oxidation Assay using UK5099, a mitochondrial 
pyruvate carrier inhibitor (A), and assessment of the glucose dependency (B) in CD-derived BEC-organoids. n=7 for control (Ctrl), n=8 for UK5099. (C) 
Scheme depicting the treatment of chow diet (CD)/high-fat diet (HFD)-derived BEC-organoids with fatty acid (FA) mix. (D–E) Proton efflux rate (PER) (D), 
and basal and compensatory (Compens.) glycolysis (E) were measured using Seahorse XF Glycolytic Rate Assay. Relative to panel C. n=14. (F) Scheme 

Figure 4 continued on next page
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machinery to coordinate BEC activation. However, how E2Fs are regulated upon HFD and whether 
they are interconnected with the already known YAP, mTORC1, and TET1 pathways remain unknown 
and will require further investigation.

While our data are derived from obese mice, a recent report showed increased numbers of cholan-
giocytes in steatotic human livers (Hallett et al., 2022), and E2F1 has been found to be upregulated in 
the livers of obese patients (Denechaud et al., 2016). Moreover, human subjects with elevated visceral 
fat demonstrated increased glucose metabolism (Broadfield et al., 2021). These observations, while 
correlative, set the ground for future research in understanding the role and the therapeutic potential 
of lipid metabolism and E2Fs in controlling BEC activation and, thus, hepatic regeneration in humans.

Materials and methods
Mouse studies and ethical approval
All the animal experiments were authorized by the Veterinary Office of the Canton of Vaud, Swit-
zerland, under license authorizations VD3721 and VD2627.b. C57BL/6JRj (in the text referred to as 
C57BL/6 J) mice were obtained from Janvier Labs and E2f1+/+ and E2f1–/– (B6;129S4-E2f1tm1 Meg/J) 
mice were purchased from The Jackson Laboratory. 8-week-old C57BL/6 J male mice were fed with 
Chow Diet (CD - SAFE Diets, SAFE 150) or High Fat Diet (HFD - Research Diets Inc, D12492i) for 
15 weeks. 7-week-old E2f1+/+ and E2f1–/– male mice were fed with Chow Diet (CD – Kliba Nafag 3336) 
or High Fat Diet (HFD - Envigo, TD93075) for 29 weeks. The well-being of the animals was monitored 
daily, and body weight was monitored once per week until the end of the experiment. All mice had 
unrestricted access to water and food, and liver tissues were harvested at the end of the experiment.

Data reporting
Mice were randomized into different groups according to their genotype. A previous HFD experiment 
was used to calculate the sample size for C57BL/6 J mouse experiments. Mice showing any sign of 
severity, predefined by the Veterinary Office of the Canton of Vaud, Switzerland, were sacrificed and 
excluded from the data analyses. In vitro experiments were repeated with at least three biological 
replicates (BEC-organoids from different mice) or were repeated at least twice by pooling four mice 
per condition (for Seahorse analysis).

Proliferation assay
Cell proliferation was assessed by EdU assay (Click-iT EdU Alexa Fluor 647, ThermoFisher, C10340) 
following the manufacturer’s instructions. For in vivo studies, EdU was resuspended in phosphate-
buffered saline (PBS- ThermoFisher, 10010002), and 200 μl of the solution was injected intraperitone-
ally (50 μg per g of mouse weight) 16 hr before the sacrifice.

EPCAM+ BEC isolation, FACS, and flow cytometry analysis
23-week-old CD/HFD-fed C57BL/6 J male mice were used for this experiment and sacrificed in the 
fed state. To isolate the BECs, mouse livers were harvested and digested enzymatically, as previ-
ously reported (Broutier et al., 2016). Briefly, livers were minced and incubated at 37 °C for up to 
2 hr in a digestion solution (1% fetal bovine serum [FBS; Merck/Sigma, F7524] in DMEM/Glutamax 
[ThermoFisher, 31966–021] supplemented with HEPES [ThermoFisher, 15630–056] and Penicillin/
Streptomycin [ThermoFisher, 15140–122] containing 0.0125% [mg/ml] collagenase [Merck/Sigma, 

depicting the treatment of CD-derived BEC-organoids with E2F inhibitor, HLM006474. (G) RT-qPCR of selected cell cycle and glycolytic genes, relative 
to panel F. n=4. (H–I) PER during the Seahorse XF Glycolytic Rate Assay (H), and basal and compensatory (Compens.) glycolysis (I), relative to panel F. 
n=10 for control (Ctrl), n=11 for HLM006474. (J–K) PER during the Seahorse XF Glycolytic Rate Assay (J), and basal and compensatory glycolysis (K), 
relative to panel C and treatment with HLM006474. n=12 for CD-FA and HFD-FA, n=11 for HLM006474. Data are shown as mean ± SEM. Absence of 
stars or ns, not significant (p>0.05); *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; unpaired, two-tailed Student’s t-test (G), and two-way ANOVA with 
Sidak’s test (B, E, I, K) were used.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. E2F activation correlates with increased glycolysis.

Figure 4 continued
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C9407], 0.0125% [mg/ml] dispase II [ThermoFisher, 17105–041] and 0.1 mg/ml of DNAase [Merck/
Sigma, DN25]). Digested livers were then dissociated into single cells with TrypLE [GIBCO, 12605028] 
and washed with washing buffer (1% FBS [Merck/Sigma, F7524] in Advanced DMEM/F-12 [GIBCO, 
12634010] supplemented with Glutamax [ThermoFisher, 35050061], HEPES [ThermoFisher, 15630–
056] and Penicillin/Streptomycin [ThermoFisher, 15140–122]).

For FACS analysis, single cells were filtered with a 40 µm cell strainer (Falcon, 352340) and incubated 
with fluorophore-conjugated antibodies CD45–PE/Cy7 (BD Biosciences, 552848), CD11b–PE/Cy7 (BD 
Biosciences, 552850), CD31–PE/Cy7 (Abcam, ab46733), CD31-PE/Cy7 (BD Biosciences, 561410) and 
EPCAM–APC (eBioscience, 17-5791-82) for 30 min on ice. BECs were sorted using FACSAria Fusion 
(BD Biosciences) as previously described (Aloia et al., 2019). Briefly, individual cells were sequentially 
gated based on cell size (forward scatter (FSC) versus side scatter (SSC)) and singlets. BECs were then 
selected based on EPCAM positivity after excluding leukocytes (CD45+), myeloid cells (CD11b+), and 
endothelial cells (CD31+), yielding a population of single CD45-/CD11b-/ CD31-/EPCAM+ cells.

For flow cytometry analysis, livers were dissociated as described above, and single cells were 
stained for 20 min with BODIPY 558/568 (Invitrogen, D38D35) on ice, followed by incubation with 
fluorophore-conjugated antibodies CD45–PE/Cy7 (BD Biosciences, 552848), CD11b–PE/Cy7 (BD 
Biosciences, 552850), CD31–PE/Cy7 (BD Biosciences, 561410), EPCAM–VioBlue (Miltenyi Biotec, 130-
123-871), and EdU Alexa Fluor 488 (ThermoFisher, C10425) for 30 min on ice. After washing with 1% 
BSA in PBS, the Click-IT EdU reaction (ThermoFisher, C10425) was performed according to the manu-
facturer’s instructions. Finally, BEC suspension was resuspended in 1% BSA in PBS, and analyzed using 
BD LSRFortessa (BD Biosciences). All flow cytometry data were analyzed with FlowJo v10.8 software 
(BD Life Sciences).

Silencing of E2F1 in EPCAM+ BECs and organoid formation
To silence E2F1, 2 × 104 EPCAM+ BECs isolated from the livers of HFD-fed mice were transfected 
with a pool of four ON-TARGETplus siRNAs for E2f1 (Horizon, L-044993-00-0005) or with scrambled 
siRNAs (Horizon, D-001810-10-05), using TransIT-X2 (Mirus, MIR6000) according to the manufacturer’s 
instructions. Briefly, the cells and the TransIT-X2 mix were centrifuged at 600 g for 45  min at 32  °C 
and then incubated for 4  hr at 37  °C. The cell suspension was harvested and seeded in Matrigel in the 
isolation medium. Growth of BEC-organoids was followed with a luminescent MT Cell Viability Assay 
(Promega, G9711).

RNA preparation from EPCAM+ BECs and bulk RNA-seq data analysis
RNA was isolated from sorted BECs using the RNeasy micro kit (QIAGEN, 74104), and the amount and 
quality of RNA were measured with the Agilent Tapestation 4200 (Agilent Technologies, 5067–1511). 
As a result, RNA-seq of five CD and seven HFD samples was performed by BGI with the BGISEQ-500 
platform. FastQC was used to verify the quality of the reads (Andrews, 2010). No low-quality reads 
were present, and no trimming was needed. Alignment was performed against the mouse genome 
(GRCm38) following the STAR (version 2.6.0 a) manual guidelines (Dobin et al., 2013). The obtained 
STAR gene counts for each alignment were analyzed for differentially expressed genes using the R 
package DESeq2 (version 1.34.0) (Love et al., 2014). A threshold of 1 log2 fold change and adjusted 
p-value smaller than 0.05 were considered when identifying the differentially expressed genes. A 
principal component analysis (PCA) (Lê et al., 2008) was used to explore the variability between the 
different samples.

Gene set enrichment analysis (GSEA)
We used the clusterProfiler R package (Yu et al., 2012) to conduct GSEA analysis on various gene 
sets. Gene sets were retrieved from http://ge-lab.org/gskb/ for M. musculus. We ordered the differen-
tially expressed gene list by log2 (Fold-changes) for the analysis with default parameters.

Over-representation enrichment analysis
All significantly changing genes (adjusted p-value <0.05 and an absolute fold change >1) were split 
into 2 groups based on the direction of the fold change (genes significantly up- & down-regulated). 
An over-representation analysis using the clusterProfiler R package was performed on each of the two 
groups to identify biologically overrepresented terms.

https://doi.org/10.7554/eLife.81926
http://ge-lab.org/gskb/
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Figure generation with R
The R packages ggplot2 (Wickham, 2016) retrieved from https://ggplot2.tidyverse.org and ggpubr 
were used to generate figures.

Culture of mouse liver BEC-organoids from single bile duct cells of 
digested livers
BEC-organoids were established from bile ducts of C57BL/6  J male mice as previously described 
(Broutier et  al., 2016; Sorrentino et  al., 2020). Thus, the liver was digested as detailed above 
(EPCAM+ BEC isolation), and bile ducts were isolated and were pelleted by centrifugation at 200 rpm 
for 5 min at 4 °C and washed with PBS twice. The digested liver solution, including single bile duct 
cells, was then dissociated into single cells with TrypLE (GIBCO, 12605028). Isolated cells were resus-
pended in Matrigel (Corning, 356231) and cast in 10 µl droplets in 48-well plates. When gels were 
formed, 250  µl of isolation medium (IM- Advanced DMEM/F-12- Gibco,12634010) supplemented 
with Glutamax (ThermoFisher, 35050061), HEPES (ThermoFisher, 15630–056), Penicillin/Strepto-
mycin (ThermoFisher, 15140–122), 1 X B27 (Gibco, 17504044), 1 mM N-acetylcysteine (Sigma-Aldrich, 
A9165), 10   nM gastrin (Sigma-Aldrich, G9145), 50   ng/ml EGF (Peprotech, AF-100–15), 1   µg/ml 
Rspo1 (produced in-house), 100   ng/ml FGF10 (Peprotech, 100–26), 10   mM nicotinamide (Sigma-
Aldrich, N0636), 50  ng/ml HGF (Peprotech, 100–39), Noggin (100  ng/ml produced in-house), 1 µg/
ml Wnt3a (Peprotech, 315–20), and 10 μM Y-27632 (Sigma, Y0503) was added to each well. Plasmids 
for Rspo1 and Noggin production were a kind gift from Joerg Huelsken. After the first 4 days, IM was 
replaced with the expansion medium (EM), which was the IM without Noggin, Wnt3a, and Y-27632. 
For passaging, organoids were removed from Matrigel for a maximum of one week after seeding and 
dissociated into single cells using TrypLE Express (Gibco, 12604013). Single cells were then trans-
ferred to fresh Matrigel. Passaging was performed in a 1:3 split ratio.

For the FA treatment of BEC-organoids, palmitic acid (Sigma, P0500) and oleic acid (Sigma, O1008) 
were dissolved in 100% ethanol into 500 and 800 μM stock solutions, respectively, and kept at –20  °C. 
For each experiment, palmitic acid and oleic acid were conjugated to 1% fatty acid-free bovine serum 
albumin (BSA) (Sigma, A7030) in EM through 1:2000 dilution each (Malhi et al., 2006). The concen-
tration of vehicle, ethanol, was 0.1% ethanol in final incubations, and 1% fatty acid-free BSA in EM was 
used as the control for FA treatment.

Liver immunohistochemistry (IHC) and immunofluorescence (IF)
For paraffin histology, livers were washed in PBS (Gibco, 10010023), diced with a razor blade, and 
fixed overnight in 10% formalin (ThermoFisher, 9990244) while shaking at 4 °C. The next day fixed 
livers were washed twice with PBS, dehydrated in ascending ethanol steps, followed by xylene, and 
embedded in paraffin blocks. 4 μm thick sections were cut from paraffin blocks, dewaxed, rehydrated, 
and quenched with 3% H2O2 for 10 min to block the endogenous peroxidase activity (for IHC). Antigen 
retrieval was performed by incubating the sections in 10 mM citrate buffer (pH 6.0) for 20   min at 
95   °C. After the sections were cooled to room temperature, they were washed and blocked with 
blocking buffer (1% BSA (Sigma, A7906) and 0.5% Triton X-100 (Sigma, X100) in PBS) for 1  hr at room 
temperature. The primary antibodies anti-Ki67 (ThermoFisher, MA5-14520), anti-PANCK (Novusbio, 
NBP600-579), anti-OPN (R&D Systems, AF808), anti-Cleaved caspase-3 (Cell Signaling, 9661) were 
diluted in a 1:100 dilution of the blocking buffer and incubated overnight at 4  °C. For IHC, ImmpRESS 
HRP conjugated secondary (VectorLabs MP-74-01-15 and MP-74-02-15) were incubated for 30 min, 
and detection was performed by using a 3.3’-diaminobenzidine (DAB) reaction. Sections were coun-
terstained with Harris and mounted. For IF, sections were washed and incubated for 1 hr with Alexa 
Fluor conjugated secondary antibodies (1:1000 in blocking solution; Invitrogen). Following extensive 
washing, sections were counterstained with DAPI (ThermoFisher, 62248) and mounted in ProLong 
Gold Antifade Mountant (Thermo Fischer, P36930).

For IF of liver cryosections, the livers were frozen in O.C.T. compound (VWR chemicals) on dry ice 
filled with isopentane. 10 μm liver sections were cut from O.C.T embedded samples, hydrated, and 
washed twice in PBS. The sections were blocked in a blocking buffer for 1 hr at room temperature and 
incubated with BODIPY for 20 min. After fixation with 4% paraformaldehyde (PFA) solution (Sigma, 
1004960700) for 15 min, sections were washed with PBS. Then, sections were permeabilized using 5% 
BSA in TBS-T and stained with primary antibody anti-PANCK diluted in blocking buffer for 16  hr at 

https://doi.org/10.7554/eLife.81926
https://ggplot2.tidyverse.org
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4  °C. The next day, the sections were washed three times with PBS, and the appropriate Alexa Fluor 
secondary antibodies were diluted in blocking buffer (1:1000) and incubated with the sections for 
1  hr at room temperature. The sections were washed in PBS and incubated with DAPI diluted 1:1000 
in PBS for 1  hr at room temperature. Finally, the sections were mounted in ProLong Gold Antifade 
Mountant.

Stained sections were imaged by a virtual slide microscope (VS120, Olympus) and a confocal micro-
scope (SP8, Leica). The image analysis was performed using QuPath (Bankhead et al., 2017) and Fiji 
software.

BEC-organoid whole-mount immunofluorescence
BEC-organoids were incubated with BODIPY 558/568 for 20  min and then washed with PBS and 
extracted from Matrigel using Cell Recovery Solution (Corning, 354253). After fixing with 4% PFA in 
PBS (30 min, on ice), they were pelleted by gravity to remove the PFA and were washed with PBS and 
ultra-pure water. BEC-organoids were then spread on glass slides and allowed to attach by drying. The 
attached BEC-organoids were rehydrated with PBS and permeabilized with 0.5% Triton X-100 in PBS 
(1 hr, room temperature) and blocked for 1 hr in a blocking buffer. After washing with PBS, samples 
were incubated for 1 hr at room temperature with Alexa Fluor Phalloidin 488 (Invitrogen, A12379). 
Following extensive washing, samples were counterstained with DAPI and were imaged by a confocal 
microscope (LSM 710, Zeiss). Signal intensity was adjusted on each channel using Fiji software (Schin-
delin et al., 2012).

Quantitative real-time qPCR for mRNA quantification
BEC-organoids were extracted from Matrigel using Cell Recovery Solution (Corning, 354253). 
RNA was extracted from organoid pellets using the RNAqueous total RNA isolation kit (Invitrogen, 
AM1931) and the RNeasy Micro Kit (Qiagen, 74004) following the manufacturer’s instructions. RNA 
was transcribed to complementary DNA using QuantiTect Reverse Transcription Kit (Qiagen, 205314) 
following the manufacturer’s instructions. PCR reactions were run on the LightCycler 480 System 
(Roche) using SYBR Green (Roche, 4887352001) chemistry. Real-time quantitative polymerase chain 
reaction (RT-qPCR) results were presented relative to the mean of 36b4 (comparative ΔCt method). 
Primers for RT-qPCR are listed in Supplementary file 3.

E2F inhibition
For the E2F inhibition experiment, single BECs were grown for 7 days and allowed to form organoids. 
For the Seahorse experiment, BEC-organoids were treated with E2F inhibitor, HLM006474 (10 μM, 
Merck, 324461), overnight before the metabolic assay. For RT-qPCR analysis, BEC-organoids were 
treated with HLM006474 chronically for 4 days.

Bioenergetics with Seahorse extracellular flux analyzer
The oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and proton-efflux rate 
(PER) of the BEC-organoids were analyzed by an XFe96 extracellular flux analyzer (Agilent) following 
the manufacturer’s instructions according to assay type.

For Mito Stress Test on CD/HFD-derived BEC-organoids, the organoids were grown with FA mix for 
7 days. On day 7, 10 μM HLM006474 or DMSO as vehicle were added overnight. The next morning, 
BEC-organoids were dissociated, and 20,000 cells were seeded with Seahorse Assay Medium in XFe96 
Cell Culture Microplates (Agilent, 101085–004), which were previously coated with 10% Matrigel in 
Advanced DMEM/F-12. Seahorse Assay Medium was unbuffered, serum-free pH 7.4 DMEM supple-
mented with 10 mM glucose (Agilent, 103577–100), 10 mM pyruvate (Gibco, 11360070), and 2 mM 
glutamine (Agilent, 103579–100), and 10 μM HLM006474 or DMSO (vehicle) were added when indi-
cated. After 2 hr incubation for cell attachment, plates were transferred to a non-CO2 incubator at 
37 °C for 45 min. Mitochondrial OCR was measured in a time course before and after the injection 
of 1.5 μM Oligomycin (Millipore, 495455), 2.5 μM FCCP (Sigma, C2920), and 1 μM Rotenone (Sigma, 
R8875)/Antimycin A (Sigma, A8674).

For Glycolytic Rate Assay, CD BEC-organoids were grown without FA mix, and CD/HFD- derived 
BEC-organoids were grown with FA mix for 7 days. The Seahorse assay preparations, including the 
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E2F inhibitor were the same as mentioned above. GlycoPER was measured in a time course before 
and after the injection of 1 μM Rotenone/Antimycin A and 50 mM 2-DG (Sigma, D8375).

For the Substrate Oxidation Assay, CD BEC-organoids were grown without FA mix for 7 days. 
On day 8, they were dissociated and prepared for Seahorse assay without E2F inhibitor. Mitochon-
drial OCR was measured in a time course before and after the injection of Oligomycin (1.5  μM), 
FCCP (2.5 μM), and Rotenone/Antimycin A (1 μM) with or without UK5099 (Sigma, PZ0160), Etomoxir 
(Sigma, E1905) and BPTES (Sigma, SML0601), inhibitors of glucose oxidation, fatty acid oxidation and 
glutamine oxidation, respectively, in separate experiments.

All Seahorse experiments were normalized by cell number through injection of 10 μM of Hoechst 
(ThermoFisher, 62249) in the last Seahorse injection. Hoechst signal (361/486 nm) was quantified by 
SpectraMax iD3 microplate reader (Molecular Devices).

BEC-organoid growth assay
BEC-organoid formation efficiency was quantified by counting the total number of cystic/single layer 
(lumen-containing) CD/HFD-derived BEC-organoids 6 days after seeding and normalizing it to the 
total number of cells seeded initially (15,000 cells). Organoids were imaged by DM IL LED inverted 
microscope (Leica), selected as regions of interest (ROI) using widefield 4 x magnification, and counted 
manually.

BEC-organoid functional analysis
Grown BEC-organoids were treated with the FA mix for 4 days, and triglyceride levels were measured 
with a Triglyceride kit (Abcam, ab65336) following the manufacturer’s instructions. Cell-titer Glo 
(Promega, G7570) was used to investigate cell viability. For functional assays involving single BECs, 
grown organoids were dissociated into single cells. 10,000 BECs were seeded, and organoid forma-
tion was allowed for 7 days. Cell viability, apoptosis, and cell death were investigated using Cell-titer 
Glo, Caspase 3/7 activity (Promega, G8091), and Nucgreen Dead 488 staining (Invitrogen, R37109), 
respectively, according to the protocol of manufacturers. For cell death staining, organoids were 
imaged using ECLIPSE Ts2 inverted microscope (Nikon).

Quantification and statistical analysis
Data were presented as mean ± standard error of the mean (mean ± SEM). n refers to biological 
replicates and is represented by the number of dots in the plot or stated in the figure legends. For 
the Seahorse experiments, n refers to technical replicates pooled from 4 biological replicates and is 
represented by the number of dots in the plot or stated in the figure legends. The statistical analysis 
of the data from bench experiments was performed using Prism (Prism 9, GraphPad). The differences 
with p<0.05 were considered statistically significant. No samples (except outliers) or animals were 
excluded from the analysis. Data are expected to have a normal distribution.

For two groups comparison, data significance was analyzed using a two-tailed, unpaired Student’s 
t-test. In case of comparisons between more than two groups, one- or two-way ANOVA was used. 
Dunnet’s, Tukey’s, or Sidak’s tests were used to correct for multiple comparisons. Statistical details of 
each experiment can be found in the respective figure legends.
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numbers GSE123133 (Aloia et al., 2019) and GSE125688 (Pepe-Mooney et al., 2019) were down-
loaded from the GEO and used for GSEA and over-representation enrichment analysis as mentioned 
previously. Source code is available at https://github.com/auwerxlab/Yildiz_eLife_2023 (copy archived 
at Alam, 2023).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Schoonjans K 2023 Hepatic lipid overload 
triggers biliary epithelial 
cell activation via E2Fs

http://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE217739

NCBI Gene Expression 
Omnibus, GSE217739

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Aloia L, Vernaz G, 
Huch M

2019 Transcriptonal and 
epigenetic changes of 
adult liver cells in vivo and 
in vitro

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE123133

NCBI Gene Expression 
Omnibus, GSE123133

Pepe-Mooney BJ, 
Dill MT, Alemany A, 
Ordovas-Montanes 
J, Matsushita Y, Rao 
A, Sen A, Miyazaki 
M, Anakk S, Dawson 
P, Ono N, Shalek AK, 
van Oudenaarden A, 
Camargo FD

2019 Single-Cell Analysis of the 
Liver Epithelium Reveals 
Dynamic Heterogeneity 
and an Essential Role for 
YAP in Homeostasis and 
Regeneration

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE125688

NCBI Gene Expression 
Omnibus, GSE125688
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Appendix 1

Appendix 1—key resources table 

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody
Anti-mouse CD45–PE/
Cy7 (Rat monoclonal) BD Biosciences 552848

FACS, Flow cytometry 
(1:100)

Antibody
Anti-mouse CD11b–PE/
Cy7 (Rat monoclonal) BD Biosciences 552850

FACS, Flow cytometry 
(1:100)

Antibody

Anti-mouse/human 
CD31–PE/Cy7
(Rat monoclonal) Abcam ab46733 FACS (1:100)

Antibody

Anti-mouse CD31–PE/
Cy7
(Rat monoclonal) BD Biosciences 561410

FACS, Flow cytometry 
(1:100)

Antibody
Anti-mouse EPCAM–
APC (Rat monoclonal) eBioscience 17-5791-82 FACS (1:100)

Antibody

Anti-mouse
EPCAM–VioBlue
(Rat monoclonal) Miltenyi Biotec 130-123-871 Flow cytometry (1:100)

Antibody
Anti-Ki67
(Rabbit monoclonal) ThermoFisher MA5-14520 IF (1:100)

Antibody
Anti-PANCK
(Rabbit polyclonal) Novusbio NBP600-579 IF (1:100)

Antibody
Anti-OPN
(Goat polyclonal) R&D Systems AF808 IF (1:100)

Antibody
Anti-Cleaved caspase 3
(Rabbit polyclonal) Cell Signaling 9661 IF (1:100)

Chemical 
compound, 
drug

Alexa Fluor Phalloidin 
488 Invitrogen A12379 IF (1:1000)

Chemical 
compound, 
drug BODIPY 558/568 Invitrogen D38D35

IF (5 µM)
FACS (40 nM)

Chemical 
compound, 
drug N-acetylcysteine Sigma-Aldrich A9165 (1 mM)

Chemical 
compound, 
drug Nicotinamide Sigma-Aldrich N0636 (10  mM)

Chemical 
compound, 
drug Y-27632 Sigma-Aldrich Y0503 (10 μM)

Chemical 
compound, 
drug HLM006474 Merck 324461 (10 μM)

Chemical 
compound, 
drug Oligomycin Millipore 495455 (5 μM)

Chemical 
compound, 
drug FCCP Sigma-Aldrich C2920 (2.5 μM)

Appendix 1 Continued on next page
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Chemical 
compound, 
drug Rotenone Sigma-Aldrich R8875 (1 μM)

Chemical 
compound, 
drug Antimycin A Sigma-Aldrich A8674 (1 μM)

Chemical 
compound, 
drug 2-DG Sigma-Aldrich D8375 (50 mM)

Chemical 
compound, 
drug UK5099 Sigma-Aldrich PZ0160 (2 μM)

Chemical 
compound, 
drug Etomoxir Sigma-Aldrich E1905 (4 μM)

Chemical 
compound, 
drug BPTES Sigma-Aldrich SML0601 (3 μM)

Commercial 
assay or kit

Anti-rabbit IgG 
Polymer Detection Kit 
(ImmpRESS Horse HRP 
conjugated secondary) VectorLabs MP-74-01-15 IF (100 µl) per tissue section

Commercial 
assay or kit

Anti-mouse IgG 
Polymer Detection Kit 
(ImmpRESS Horse HRP 
conjugated secondary) VectorLabs MP-74-02-15 IF (100 µl) per tissue section

Commercial 
assay or kit

Click-iT EdU Alexa Fluor 
647 ThermoFisher Cat. # C10340

(50 μg per g of mouse 
weight)

Commercial 
assay or kit EdU Alexa Fluor 488 ThermoFisher C10425

Commercial 
assay or kit MT Cell Viability Assay Promega G9711

Commercial 
assay or kit RNeasy micro kit QIAGEN 74104

Commercial 
assay or kit

RNAqueous total RNA 
isolation kit Invitrogen AM1931

Commercial 
assay or kit

QuantiTect Reverse 
Transcription Kit Qiagen 205314

Commercial 
assay or kit SYBR Green Roche 4887352001

Commercial 
assay or kit Triglyceride kit Abcam ab65336

Commercial 
assay or kit Cell-titer Glo Promega G7570

Commercial 
assay or kit Caspase 3/7 activity Promega G8091

Commercial 
assay or kit Nucgreen Dead 488 Invitrogen R37109

Peptide, 
recombinant 
protein Gastrin Sigma-Aldrich G9145 (10 nM)

Appendix 1 Continued on next page
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Peptide, 
recombinant 
protein EGF Peprotech AF-100–15 (50  ng/ml)

Peptide, 
recombinant 
protein FGF10 Peprotech 100–26 (100  ng/ml)

Peptide, 
recombinant 
protein HGF Peprotech 100–39 (50  ng/ml)

Peptide, 
recombinant 
protein Wnt3a Peprotech 315–20 (1 µg/ml)

Strain, strain 
background
(Mus musculus) C57BL/6JRj Janvier Labs C57BL/6JRj Males, 8-week-old

Strain, strain 
background
(Mus musculus) E2f1+/+ and E2f1-/-

The Jackson 
Laboratory

(B6;129S4-E2f1tm1 
Meg/J) Males, 8-week-old

Software, 
algorithm FlowJo FlowJo v10.8

Software, 
algorithm Prism GraphPad Prism 9

Software, 
algorithm STAR

Dobin et al., 
2013 version 2.6.0 a

Software, 
algorithm DESeq2

Love et al., 
2014 version 1.34.0

Software, 
algorithm clusterProfiler Yu et al., 2012

Software, 
algorithm ggplot2 Wickham, 2016

Software, 
algorithm QuPath

Bankhead et al., 
2017

version
0.2.3

Software, 
algorithm Fiji

Schindelin et al., 
2012

version
2.3.0

Other Chow Diet SAFE SAFE 150

Section ‘Mouse studies 
and ethical approval’ For 
C57BL/6JRj

Other High Fat Diet
Research Diets 
Inc D12492i

Section ‘Mouse studies 
and ethical approval’ For 
C57BL/6JRj

Other Chow Diet Kliba Nafag 3336

Section ‘Mouse studies and 
ethical approval’ For E2f1+/+ 
and E2f1-/-

Other High Fat Diet Envigo TD93075

Section ‘Mouse studies and 
ethical approval’ For E2f1+/+ 
and E2f1-/-

Other
BEC-organoids from 
mouse This paper

Original protocol: 
Broutier et al., 2016

Section ‘Culture of mouse 
liver BEC-organoids from 
single bile duct cells of 
digested livers’

Appendix 1 Continued

Appendix 1 Continued on next page

https://doi.org/10.7554/eLife.81926


 Research article﻿﻿﻿﻿﻿﻿ Stem Cells and Regenerative Medicine

Yildiz et al. eLife 2023;12:e81926. DOI: https://​doi.​org/​10.​7554/​eLife.​81926 � 23 of 24

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Other DMEM/Glutamax ThermoFisher 31966–021

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other Collagenase Merck/Sigma C9407

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other Advanced DMEM/F-12 GIBCO 12634010

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other Glutamax ThermoFisher 35050061

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other HEPES ThermoFisher 15630–056

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other Penicillin/Streptomycin ThermoFisher 15140–122

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other Dispase II ThermoFisher 17105–041

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other DNAase Merck/Sigma DN25

Section ‘EPCAM+ BEC 
isolation, FACS, and flow 
cytometry analysis’

Other

E2f1
ON-TARGETplus 
siRNAs Horizon L-044993-00-0005

Section ‘Silencing of E2F1 
in EPCAM+ BECs and 
organoid formation’

Other

Scrambled
ON-TARGETplus 
siRNAs Horizon D-001810-10-05

Section ‘Silencing of E2F1 
in EPCAM+ BECs and 
organoid formation’

Other TransIT-X2 Mirus MIR6000

Section ‘Silencing of E2F1 
in EPCAM+ BECs and 
organoid formation’

Other Matrigel Corning 356231

Section ‘Culture of mouse 
liver BEC-organoids from 
single bile duct cells of 
digested livers’

Other 1 X B27 Gibco 17504044

Section ‘Culture of mouse 
liver BEC-organoids from 
single bile duct cells of 
digested livers’

Other TrypLE GIBCO 12605028

Section ‘Culture of mouse 
liver BEC-organoids from 
single bile duct cells of 
digested livers’

Other Palmitic acid Sigma P0500

Section ‘Culture of mouse 
liver BEC-organoids from 
single bile duct cells of 
digested livers’

Other Oleic acid Sigma O1008

Section ‘Culture of mouse 
liver BEC-organoids from 
single bile duct cells of 
digested livers’
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Other DAPI ThermoFisher 62248

Section ‘Liver 
immunohistochemistry (IHC) 
and immunofluorescence 
(IF)’

Other Cell Recovery Solution Corning 354253

Section ‘BEC-
organoid whole-mount 
immunofluorescence’

Other Glucose Agilent 103577–100

Section ‘Bioenergetics with 
Seahorse extracellular flux 
analyzer’

Other Pyruvate Gibco 11360070

Section ‘Bioenergetics with 
Seahorse extracellular flux 
analyzer’

Other Glutamine Agilent 103579–100

Section ‘Bioenergetics with 
Seahorse extracellular flux 
analyzer’

Other Hoechst ThermoFisher 62249

Section ‘Bioenergetics with 
Seahorse extracellular flux 
analyzer’

Appendix 1 Continued

https://doi.org/10.7554/eLife.81926

	Hepatic lipid overload triggers biliary epithelial cell activation via E2Fs
	Editor's evaluation
	Introduction
	Results
	BECs and BEC-organoids efficiently accumulate lipids in vivo and in vitro
	HFD feeding promotes BEC activation and increases organoid formation capacity
	HFD feeding initiates BEC activation via E2Fs
	E2Fs promote BEC expansion by upregulating glycolysis

	Discussion
	Materials and methods
	Mouse studies and ethical approval
	Data reporting
	Proliferation assay
	EPCAM﻿+﻿ BEC isolation, FACS, and flow cytometry analysis
	Silencing of E2F1 in EPCAM﻿+﻿ BECs and organoid formation
	RNA preparation from EPCAM﻿+﻿ BECs and bulk RNA-seq data analysis
	Gene set enrichment analysis (GSEA)
	Over-representation enrichment analysis
	Figure generation with R
	Culture of mouse liver BEC-organoids from single bile duct cells of digested livers
	Liver immunohistochemistry (IHC) and immunofluorescence (IF)
	BEC-organoid whole-mount immunofluorescence
	Quantitative real-time qPCR for mRNA quantification
	E2F inhibition
	Bioenergetics with Seahorse extracellular flux analyzer
	BEC-organoid growth assay
	BEC-organoid functional analysis
	Quantification and statistical analysis

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	﻿Appendix 1﻿


