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Abstract Spontaneous activity is a hallmark of developing neural systems. In the retina, spon-
taneous activity comes in the form of retinal waves, comprised of three stages persisting from 
embryonic day 16 (E16) to eye opening at postnatal day 14 (P14). Though postnatal retinal waves 
have been well characterized, little is known about the spatiotemporal properties or the mecha-
nisms mediating embryonic retinal waves, designated stage 1 waves. Using a custom-built macro-
scope to record spontaneous calcium transients from whole embryonic retinas, we show that stage 
1 waves are initiated at several locations across the retina and propagate across a broad range of 
areas. Blocking gap junctions reduced the frequency and size of stage 1 waves, nearly abolishing 
them. Global blockade of nAChRs similarly nearly abolished stage 1 waves. Thus, stage 1 waves are 
mediated by a complex circuitry involving subtypes of nAChRs and gap junctions. Stage 1 waves 
in mice lacking the β2 subunit of the nAChRs (β2-nAChR-KO) persisted with altered propagation 
properties and were abolished by a gap junction blocker. To assay the impact of stage 1 waves on 
retinal development, we compared the spatial distribution of a subtype of retinal ganglion cells, 
intrinsically photosensitive retinal ganglion cells (ipRGCs), which undergo a significant amount of cell 
death, in WT and β2-nAChR-KO mice. We found that the developmental decrease in ipRGC density 
is preserved between WT and β2-nAChR-KO mice, indicating that processes regulating ipRGC 
numbers and distributions are not influenced by spontaneous activity.

Editor's evaluation
This paper investigates waves in embryonic mouse retinas. These stage 1 waves have been studied 
less than the post-natal (stage 2) waves. The paper uses elegant imaging and analysis approaches 
to monitor calcium signals across the entire retina and to determine the properties of the waves and 
their dependence on cholinergic and electrical synapses. This contributes substantially to the under-
standing of how these waves are generated.

Introduction
Throughout the developing nervous system, spontaneous activity is observed before neural circuits 
are fully formed and sensory transduction begins (Akin and Zipursky, 2020; Blankenship and Feller, 
2010; Luhmann and Khazipov, 2018; Martini et  al., 2021). This activity is implicated in several 
development events, including cell death, maturation of functional circuits, and refinement of axonal 
projections (Blanquie et al., 2017a; Fujimoto et al., 2019; Kirkby et al., 2013). This is well studied 
in the developing visual system, where prior to the maturation of vision, laterally propagating spon-
taneous depolarizations sweep across retinal ganglion cells (RGCs), a pattern referred to as retinal 
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waves (Wong, 1999). Retinal waves drive eye-specific segregation and retinotopic refinement of 
retinal projections to the dorsal lateral geniculate nucleus and superior colliculus (Ackman and Crair, 
2014; Arroyo and Feller, 2016). Retinal waves also play a role in the maturation of direction-selectivity 
within the retina (Tiriac et al., 2022) and superior colliculus (Ge et al., 2021; Wang et al., 2009), as 
well as the development of retinal vasculature (Biswas et al., 2020; Weiner et al., 2019).

Retinal waves are present throughout mouse retinal development, starting as early as embryonic 
day 16 and persisting until postnatal day 14, which is around the time of eye opening (Blankenship 
and Feller, 2010; Choi et al., 2021; Feller and Kerschensteiner, 2013). As the retina develops, the 
circuits that mediate waves change. Stage 2 retinal waves, observed between postnatal day 1 and 
10 (P1–10), are mediated via activation of nicotinic acetylcholine receptors (nAChRs) by acetylcholine 
(ACh) released from starburst amacrine cells (SACs). Stage 3 retinal waves, observed between P10 
and 14, are mediated via activation of ionotropic glutamate receptors by glutamate released from 
bipolar cells.

Stage 1 waves are perhaps the least well understood, yet they are concurrent with many important 
events in retinal development as well as with retinal projections reaching their targets in the brain 
(Martini et al., 2021). Stage 1 waves are present in mice between embryonic day 16 and 18 (E16–18) 
(Bansal et al., 2000) and in rabbit starting at E22 (Syed et al., 2004). In rabbit, stage 1 waves persist 
in the presence of pharmacological antagonists of fast neurotransmitters and are blocked by gap 
junction antagonists (Syed et al., 2004). In mice, stage 1 waves consist of large propagating waves 
and small non-propagating events (Bansal et al., 2000). The application of nAChR antagonist inhibits 
larger propagating waves (Bansal et al., 2000). Though there is no anatomical evidence of synapses 
as early as E16–18, recent work has shown that SACs are present embryonically, begin to migrate to 
the inner nuclear layer (INL), and send projections to the inner plexiform layer (IPL) guided by homo-
typic contacts (Ray et al., 2018). Hence, cholinergic signaling is likely occurring via the volumetric 
release of ACh (Ford et al., 2012). The relative contribution of gap junction coupling and cholinergic 
signaling to the spatiotemporal properties of stage 1 waves remains to be understood.

Here we describe the spatiotemporal properties of stage 1 waves across the whole retina using a 
novel macroscope. We then identify the role of gap junction and cholinergic circuits on the generation 
and propagation of stage 1 waves. Next, we explore stage 1 waves in the β2-nAChR-KO mouse, which 
is the canonical mouse model for studying the role of stage 2 waves in developmental processes, and 
report that this mouse also exhibits altered stage 1 activity. Finally, we use β2-nAChR-KO mice to 
demonstrate that the regulation of ipRGC density is a wave-independent process.

Results
Macroscope imaging reveals the spatiotemporal properties of stage 1 
retinal waves
The mouse retina at E16–18 exhibits spontaneous correlated transients (Bansal et al., 2000; Syed 
et al., 2004), termed stage 1 retinal waves, despite the immature state of retinal circuits. At E16–18, 
several postmitotic cell types are present in the retina, including broad classes of retinal ganglion cells 
(RGCs) and amacrine cells (ACs), as well as proliferating progenitors which will go on to produce cells 
such as rods, bipolar cells, and Muller glia postnatally (Figure 1A; Cepko, 2014). By E17, there are no 
chemical synaptic structures (Hoon et al., 2014), though migrating SACs release ACh (Wong, 1995), 
and they, along with RGCs, express nicotinic acetylcholine receptors. One potential mode of cell–cell 
communication is via gap junction coupling between RGCs as well as between progenitor cells (Cook 
and Becker, 2009), which have been proposed to be the primary substrate mediating stage 1 waves 
(Catsicas et al., 1998; Syed et al., 2004; Wong et al., 1998).

To begin to understand how cholinergic signaling and gap junction coupling govern stage 1 waves, 
we first used calcium imaging to characterize their spatiotemporal properties. Retinas were isolated 
from E16–18 mice that were either bath loaded with the organic calcium dye Cal 520 or from mice 
expressing the genetically encoded calcium indicator GCaMP6s under the Vglut2 promoter (Vglut2;G-
CaMP6s). The earliest age at which we could detect reliable waves was E16 (Video 1). Stage 1 retinal 
waves were recorded on retinal whole mounts using a custom-built epifluorescent macroscope.

To assess the spatiotemporal properties of stage 1 waves, we divided the retinal surface into small 
square ROIs (roughly 10 µm × 10 µm), about 7 µm apart. ΔF/F traces for each ROI were rasterized 

https://doi.org/10.7554/eLife.81983
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Figure 1. Spatiotemporal characteristics of embryonic waves. (A) Schematized cross section of an E16 retina when stage 1 waves begin. Green cells 
represent post-mitotic retinal ganglion cells (pRGCs). Magenta cells represent post-mitotic amacrine cells (pACs). Gray cells represent progenitor cells 
(PCs). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; NBCL, neuroblastic cell layer. (B) Top left: macroscope image of 
the baseline fluorescence of an E17 GCaMP6s retina. For subsequent analysis, the retina was divided into 11,750 10 µm × 10 µm (not drawn to scale) 
squares. Number of ROIs changed depending on retina size. Top: ∆F/F traces of calcium transients from four example 10 µm × 10 µm ROIs. Middle: 
rasterized calcium transients for all ROIs raster plot of calcium transients >50% ∆F/F. Bottom: percentage of ROIs active throughout the time course of 
the recording (1 hr). (C) Histogram showing the distribution of the percent of ROIs with inter-transient-intervals (ITIs) ranging from 0 to 200 s. (D) Left: 
heatmap showing the temporal progression and spread of four example waves. Scale depicts timescale of propagation; dark gray = start of propagation 
and white = end of propagation. Right: histogram showing the distribution of waves with an area ranging from 0 to 100% of the retina. (E) Summary plot 
of wave speeds. Red dot and line = mean and standard deviation, respectively. n = 30 waves, three retinas, three mice.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Inter-transient-interval, wave area, and wave speed.

Figure supplement 1. Distribution of stage 1 wave sizes.

Figure supplement 2. Average wave speed measurement.

Figure supplement 3. Distribution of stage 1 wave initiation sites.

https://doi.org/10.7554/eLife.81983
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based on a detection algorithm that identified the 
timing of peak changes in fluorescence, which we 
call transients (Figure 1B). These rasterized transients were used for subsequent analysis. We first 
computed the time between spontaneous transients by measuring the inter-transient interval (ITI) for 
each ROI and found that the distribution peaked at around 80 s (Figure 1C). We also described the 
size of individual waves by computing the sum of transients that occurred simultaneously (i.e., percent 
of ROIs that participated in each wave). The distribution of wave sizes was broad, ranging from 6 to 
90% of the retina, with a mean and standard deviation of 46 ± 21% (Figure 1D).

In addition to propagating waves, we also observed small non-propagating calcium events 
(defined by transients present in a few neighboring ROIs that never propagated beyond 160 × 160 
μm2; Video 2 and Figure 1—figure supplement 1). These events were like those described previously 
in Bansal et al., 2000. Note that these small non-propagating transients were included in the ITI but 
not in the analysis of propagating wave sizes.

Finally, we calculated the average propagation speed of stage 1 waves to range from 145 μm/s to 
237 μm/s (average ± SD: 181 ± 24 μm/s; Figure 1E, Figure 1—figure supplement 2), similar to stage 
2 waves we observed with an average speed of 177 μm/s ± 62 μm/s (see Table 1 for wave speed 
summary data). We also measured the distribution of stage 1 wave initiation sites in WT retinas and 
saw no evidence of an initiation site bias (Figure 1—figure supplement 3).

nAChRs and gap junctions are important for setting the frequency and 
area of stage 1 waves
Previous work based on epifluorescent calcium imaging experiments performed in embryonic mice has 
shown that retinal waves, as defined by correlated changes in fluorescence, are reduced in frequency 
and size by curare, a competitive antagonist for nAChRs (Bansal et al., 2000). However, in roughly the 
equivalent developmental period in rabbit, blockade of all fast neurotransmitter receptor, including 
nAChRs, had no impact on wave frequency (Syed et al., 2004). Rather, waves in rabbit are blocked 
after the application of 18β-glycyrrhetinic acid, a gap junction antagonist (Syed et al., 2004).

To determine the relative role of gap junctions and nAChRs on the frequency and area of stage 
1 waves in mice, we used two-photon calcium imaging and pharmacology in retinas isolated from 
E16–18 mice bath loaded with Cal 520. To block gap junctions, we bath applied the gap junction 
antagonist meclofenamic acid (MFA, 50  μM), which reversibly blocks electrical coupling between 
retinal interneurons (Veruki and Hartveit, 2009) and developing ipRGCs (Caval-Holme et al., 2019). 

Video 1. Stage 1 waves. Calcium imaging of stage 1 
waves using the macroscope. Total field of view is 4.7 
mm × 4.7 mm. Frame rate 10 Hz. Total length of movie 
represents 1 min of recording.

https://elifesciences.org/articles/81983/figures#video1

Video 2. Example of small non-propagating 
events. Calcium imaging of stage 1 waves using the 
macroscope. Total field of view is 4.7 mm × 4.7 mm. 
Frame rate 10 Hz. Total length of movie represents 
15 s of recording. Yellow triangles depict small non-
propagating events.

https://elifesciences.org/articles/81983/figures#video2

https://doi.org/10.7554/eLife.81983
https://elifesciences.org/articles/81983/figures#video1
https://elifesciences.org/articles/81983/figures#video2
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Application of the gap junction blocker MFA (50 μM) nearly abolished stage 1 waves, causing a signifi-
cant reduction in frequency of waves and cell participation during waves (Figure 2A-C). We also found 
a small but significant reduction in wave amplitude, quantified as the average maximum response 
amplitude of all cells participating in individual waves (Figure 2D).

MFA has notable off-target effects including overall cell health after long exposures (Kuo et al., 
2016). Previous studies from our lab show that at P6 MFA does not reduce light-induced calcium 
transients in M1-iRGCs, the ability of M4-ipRGCs to fire action potentials, nor the amplitude of 
depolarization-induced calcium transients (Caval-Holme et  al., 2019). Note this is in contrast to 
another gap junction antagonist, carbenoxolone, which inhibits light responses in cultured ipRGCs 
(Bramley et al., 2011). Using whole-cell voltage-clamp recordings, we observed that MFA induced a 
significant decrease in voltage-activated potassium conductance (Figure 2—figure supplement 1). 
Note that a reduction in K+ conductance would increase excitability of cells and is therefore unlikely to 
be the reason for the observed decrease in wave activity in the presence of MFA. Hence, we conclude 
that MFA’s block on retinal waves is via their impact on gap junctions.

We next assayed the impact on nAChR-antagonists on stage 1 waves. For stage 2 waves, both 
spontaneous calcium transients and compound excitatory synaptic events are completely blocked 
by bath application of dihydro-ß-erythroidine hydrobromide (DHβE, 8 μM) (Ford et al., 2012), which 
preferentially targets nAChRs containing α4 and β2-subunits (Harvey and Luetje, 1996; Harvey et al., 
1996). We found that DHβE also dramatically reduced activity associated with stage 1 retinal waves 
(Figure 2E-H). However, in contrast to stage 2, some waves persisted in the presence of DHβE, but 
recruited fewer neurons and therefore had smaller areas (Figure 2G). Stage 1 waves were blocked by 
general nAChR antagonists: both hexamethonium (Figure 2I-J; Hex, 100 μM), a non-selective nAChR 
antagonist, and epibatidine (Figure 2K-L; EPB, 10 nM), an nAChR agonist that potently desensitizes 
all nAChRs (Corrie et al., 2020; Spang et al., 2000), blocked stage 1 wave events. Hence, both gap 
junctions and multiple subunit combinations of nAChRs mediate the initiation and propagation of 
stage 1 waves .

β2-nAChR knock-out mice exhibit perturbed stage 1 waves
Our results thus far indicate that both the frequency and area of stage 1 retinal waves are modulated 
by the activation of different subtypes of nAChRs as well as gap junction coupling. To further differen-
tiate the role of different nAChRs, we characterized mice where the β2 subunit of the nicotinic acetyl-
choline receptor is genetically ablated (β2-nAChR-KO). β2-nAChR-KO mice have severely disrupted 
stage 2 retinal waves (Bansal et al., 2000; Rossi et al., 2001) and have served as a model system for 

Table 1. Stage 1 wave speeds in WT and β2-nAChR-KO, plus stage 2 wave speeds.
Speeds recorded from individual waves. Summary data (µm/s) reported in Figure 3 with additional 
data to compare with speeds of stage 2 waves. Each row is an individual wave.

WT stage 1 waves B2-nAChR-KO stage 1 waves Stage 2 waves

174.17 77.91 205.68

183.94 92.40 124.44

192.19 98.19 153.25

162.26 117.34 120.47

189.84 128.52 158.59

237.34 87.97 176.49

179.24 92.40 263.86

165.68 92.06 156.09

144.52 103.25 108.62

182.07 103.90 299.29

Avg 181.12 99.39 176.68

Stdev 24.39 14.72 62.62

https://doi.org/10.7554/eLife.81983
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assessing the role of stage 2 waves in driving different developmental events (Ackman et al., 2012; 
Burbridge et al., 2014).

We observed that β2-nAChR-KO retinas exhibited stage 1 waves with different spatiotemporal 
properties than those of WT retinas (Figure 3A and B, see also Video 3). Specifically, β2-nAChR-KO 
retinas exhibited longer IEIs (Figure 3C and D), and individual waves propagated over smaller areas 
β2-nAChR-KO (Figure 3E and Figure 1—figure supplement 1). In sharp contrast to WT retina, waves 
in the β2-nAChR-KO retina were unaffected by the addition of Hex but showed a significant reduction 
in both area and frequency with the application of MFA (Figure 3D and E). These results suggest that 
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Figure 2. Embryonic waves are mediated by gap junction and cholinergic circuits. (A) ∆F/F time course of spontaneous activity observed in the field of 
view (FOV) and raster plot of neuronal calcium transients in ACSF (control condition, top) and in the presence of meclofenamic acid (MFA) (bottom). (B) 
Summary plot showing frequency of waves in control and MFA. Red dots and lines = mean and standard deviation, respectively. Asterisks represents 
significant effects. n = 8 retinas (six mice); p=4.81e–4. (C) Percent cells that participate in retinal waves in control and MFA (50 µM) (p=3e–3). (D). Mean 
calcium response of the neurons that participate in waves in control and MFA (p=0.02). (E–H) Same as (A–D) for dihydro-β-erythroidine (DHβE, 8 μM). 
(F–H) (n = 6 retinas; six mice); (F) p=0.05; (G) p=4.58e–4; (H) p=0.09. (I, J) Same as (A, B) but with hexamethonium (Hex, 100 µM) following a baseline 
recording. n = 14 retinas (nine mice); p=1.48–2. (K–L) Same as (A, B) but with epibatidine (EPB, 10 nM) following a baseline recording. n = 5 retinas 
(five mice); p=4.8e–3. All statistical tests here are paired t-tests.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Event frequency.

Figure supplement 1. Controls for off-target effects of meclofenamic acid (MFA) on E16–18 retinal ganglion cells (RGCs).

https://doi.org/10.7554/eLife.81983
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Figure 3. β2-nAChR-KO mice have reduced stage 1 wave activity. (A) Top: area plot summarizing the percentage of ROIs active throughout the time 
course of the recording; bottom: raster plots of ROI calcium transients across conditions. Black: WT control; magenta: β2-nAChR-KO control; teal: β2-
nAChR-KO in Hex; yellow: β2-nAChR-KO in meclofenamic acid (MFA). (B) Heatmap showing the temporal progression of a propagating event observed 
using epifluorescent calcium imaging on the macroscope across experimental conditions. Scale depicts timescale of propagation; dark colors = start of 
propagation; white = end of propagation. (C) Histogram showing the distribution of the percent of ROIs with inter-transient-intervals (ITIs) ranging from 
0 to 200 s. Bars represent summary data across all retinas. Black bars are same data as Figure 1C. Dots represent distributions for individual retinas. 
mean IEI/ROI in WT and β2-nAChR-KO retinas in control conditions. (D-E) Violin plots summarizing the distribution of mean IEI/ROI (D) and event area 
(E) across experimental conditions. n = 4 retinas, four mice (WT), n = 5 retinas, five mice (β2-nAChR-KO). Black bar = mean; red bar = median. **p<0.01, 
*p<0.05. One-way ANOVA, followed by Tukey–Kramer post hoc test . (F) Summary plot of wave speeds. WT are the same data as Figure 1E. Red dot 
and line = mean and standard deviation, respectively. n = 30 waves, three retinas, three mice per condition p=1.19e–6. Unpaired t-test.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Inter-transient-interval, wave area, and wave speed: WT vs. β2-nAChRKO.

Figure supplement 1. Frequency of stage 1 waves in WT and β2-nAChR-KO retinas recorded on the macroscope vs. the two-photon microscope.

https://doi.org/10.7554/eLife.81983
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in the absence of β2-nAChRs, gap junctions are 
the primary remaining component of the stage 
1 wave generation mechanism. Furthermore, we 
found that stage 1 waves in the β2-nAChR-KO 
propagated at a significantly slower speed than 
those observed in WT mice (average  ± SD: 
99 ± 15  µm/s compared to 181 ± 24  µm/s for 
WT, n = 10 waves per condition, p=3.9073e–8) 
(Figure 3F), consistent with a distinct mechanism 
of propagation.

Finally, we wanted to test whether the proper-
ties of stage 1 waves in WT or β2-nAChR-KO were 
influenced by light activation of ipRGCs via the 
474 nm imaging light used to excite the calcium 
dye on the macroscope. ipRGCs have been 
shown to be responsive to 476  nm light during 
both embryonic and postnatal development 
(Emanuel and Do, 2015; Verweij et al., 2019). 
Previous studies have shown a light-dependent 
increase in the wave frequency of stage 2 waves in 
the β2-nAChR-KO during the first postnatal week 
(Kirkby and Feller, 2013). This light modulation 
of the spatiotemporal properties of β2-nAChR-KO 
during the first postnatal week depends on ipRGC 

melanopsin expression, as well as an increase in gap junction conductance between ipRGCs and 
other RGCs (Arroyo et al., 2016; Kirkby and Feller, 2013). However, we found no difference in the 
frequency of waves recorded using a two-photon microscope (based on 920 nm illumination) to those 
recorded on the macroscope and in either the WT or β2 nAChR-KO embryonic retinas (Figure  3 
and Figure 3—figure supplement 1). Hence, we conclude that light activation of ipRGCs does not 
significantly influence the spatiotemporal properties of stage 1 retinal waves in either WT or the β2 
nAChR-KO retinas. These results are consistent with the fact that light stimulation of the retina does 
not modulate the frequency of stage 2 waves and only begins to do so when conventional photore-
ceptors come online during stage 3 waves (Tiriac et al., 2018, Renna et al., 2011).

ipRGCs participate in stage 1 waves but their density and distribution 
are not altered in the β2-nAChRs-KO
RGCs undergo a period of dramatic cell death during the first two postnatal weeks of development, 
the majority occurring during the first postnatal week (Abed et al., 2022; Braunger et al., 2014). 
Whether this cell death process is regulated by retinal waves is unknown. We looked specifically at 
intrinsically photosensitive ganglion cells (ipRGCs) for several reasons. First, ipRGCs have completed 
proliferation (Lucas and Schmidt, 2019; McNeill et al., 2011) and appear to be fully differentiated 
by E16 (Shekhar et al., 2022; Whitney et al., 2022), the onset of stage 1 waves. ipRGCs undergo a 
period of dramatic cell death during the first two postnatal weeks of development, the majority occur-
ring during the first postnatal week. Prevention of cell death profoundly disrupts several important 
developmental processes in the retina – including spacing of ipRGC somas as well as rod- and cone-
mediated circadian entrainment through the activation of ipRGCs (Chen et al., 2013). However, the 
exact mechanism regulating ipRGC cell death is unknown. Here we assessed the impact of disrupting 
stage 1 and 2 waves on the density and distribution of ipRGCs.

We first set out to determine whether ipRGCs participate in stage 1 waves. To do this, we 
conducted two-photon calcium imaging of RGCs in the ganglion cell layer (GCL) of retinas isolated 
from Opn4Cre/+;Ai9 E16–18 mice (Ecker et al., 2010), which express tdTomato in ipRGCs (Figure 4A) 
enabling us to assess the differential participation of RGCs and ipRGCs during stage 1 waves 
(Figure 4B). On average, both RGCs and ipRGCs participated in most waves with no significant differ-
ences between the two groups (Figure 4C; average ± SD: RGCs 78.78 ± 21.48%; ipRGCs 84.64 ± 
16.86%). We also found no significant differences in the amplitude of the calcium response that RGCs 

Video 3. Stage 1 waves in β2-nAChR-Kos. Calcium 
imaging of stage 1 waves in retinas isolated from β2-
nAChR-KO mice using macroscope. Total field of view 
is 4.7 mm × 4.7 mm. Frame rate 10 Hz. Total length of 
movie represents 1 min of recording.

https://elifesciences.org/articles/81983/figures#video3

https://doi.org/10.7554/eLife.81983
https://elifesciences.org/articles/81983/figures#video3
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Figure 4. Stage 1 waves robustly recruit intrinsically photosensitive ganglion cells (ipRGCs) and the general retinal 
ganglion cell (RGC) population. (A) Top: example field of view (FOV) where pixel intensity was averaged across 
all frames (712) to get representative image of Cal 520 bath-loaded RGCs. Pink dots correspond to four example 
RGCs and blue dots correspond to four example ipRGCs Bottom: same example FOV from the top image, with 
tdTom signal averaged across all frames. Blue dots the same as those in the top image. (B) Top: traces of the four 
example RGCs marked by the pink circles in (A). Bottom: traces of four example ipRGCs marked by the blue circles 
in (A). (C) Violin plot of percentage of waves each cell participated in. n = 20 retinas (13 mice); p=0.09. Unpaired 
t-test. (D) Violin plot of mean event amplitude/cell/FOV. n = 20 retinas (13 mice); p=0.06. Unpaired t-test. Black bar 
= mean; red bar = median.

The online version of this article includes the following source data for figure 4:

Source data 1. Intrinsically photosensitive ganglion cell (ipRGC) participation and mean response amplitude.

https://doi.org/10.7554/eLife.81983
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and ipRGCs exhibit in response to stage 1 waves (Figure 4D). Hence, ipRGCs are depolarized by 
stage 1 waves similarly to stage 2 waves (Caval-Holme et al., 2019; Caval-Holme et al., 2022; Chew 
et al., 2017).

Since β2-nAChR-KO retinas exhibited reduced retinal activity during both embryonic and early 
postnatal development, we used this mouse as a model to determine whether normal stage 1 and 
2 wave activity is important for regulating the density and distribution of ipRGCs. To this end, we 
isolated retinas from Opn4Cre/+;Ai9 and Opn4Cre/+;Ai9;(β2-nAChR-/-) at P1 and P7. These retinas express 
tdTomato in all melanopsin-expressing cells regardless of subtype. Retinas were imaged using the 
macroscope (Figure 5A and B).

We observed a dramatic decrease in the density of ipRGCs in WT retinas from P1 to P7 (Figure 5B 
and C; p=1.17 × 10–7), consistent with previous studies of ipRGCs (Chen et  al., 2013) and which 
coincides with peak levels of RGC apoptosis, the primary cause of RGC death during development 
(Braunger et  al., 2014; Young, 1984). We found that β2-nAChR-KO retinas exhibited the same 
density of ipRGCs at P1 as WT retinas, suggesting that the decrease in activity in stage 1 waves does 
not regulate ipRGC cell density. Like WTs, β2-nAChR-KO retinas also exhibited a decrease in the 
density of ipRGCs from P1 to P7 (p=4.99 × 10–11). At P7, we observed a small but significant increase 
in ipRGC densities at P7 in β2-nAChR-KO mice than in WT mice (568 ± 33 ipRGCs/µm2 in WT vs. 654 
± 78 ipRGCs/µm2 in β2-nAChR-KO, n = 8 retinas in each genotype). We cannot determine whether 
this small difference is due to the smaller size of retinas in β2-nAChR-KO retinas (Xu et al., 1999) or 
reflects a true increase in cell number. Overall, these data indicate that the cell death processes that 
regulate ipRGC density during the first postnatal week persist despite a significant reduction in wave 
activity.

To determine the impact of this developmental decrease in cell density on the mosaic organization 
of ipRGCs, we computed the regularity index, which is equal to the average nearest-neighbor distance 
divided by the standard deviation. A large regularity index is associated with a non-random distribu-
tion of somas. Despite the expected increase in nearest-neighbor distance in WT and β2-nAChR-KOs 
retina between P1 and P7 (Figure 5D, see Table 2), there was only a small decrease in the regu-
larity index. Interestingly, the measured mean regularity indices of 2.8 ± 0.12 (WT P1), 2.9 ± 0.16 
(β2-nAChR-KO P1), 2.3 ± 0.13 (WT P7) and 2.6 ± 0.2 (β2-nAChR-KO P1) fall within the range of what 
would be predicted by a random distribution of cells with soma diameters between 7–10 μm (Keeley 
et al., 2020). Hence, the decrease in cell density does not appear make the soma organization more 
ordered. This might be expected since our analysis does not differentiate between ipRGC subtypes, 
each of which likely forms an independent retinal mosaic. Together these data indicate that although 
retinal waves provide a robust source of depolarization for embryonic and early postnatal ipRGCs, 
reducing wave activity does not significantly influence the processes that regulate their density or 
organization. Whether elimination of all spontaneous activity affects these processes remains to be 
determined.

Discussion
We show that stage 1 retinal waves are a robust source of spontaneous activity in the embryonic 
retina. Stage 1 waves initiate throughout the retina, propagate over finite regions of varying size, 
and drive periodic depolarizations of neurons in the immature retinal GCL. In WT embryonic mice, 
stage 1 waves are abolished in the presence of general nAChR antagonists but persist, albeit with 
greatly reduced cell participation, in an nAChR antagonist that targets α4β2 containing nAChRs. In 
the presence of gap junction antagonists, the frequency and participation of cells within waves is also 
greatly diminished, though some waves still occur. We found that in retinas isolated from embryonic 
β2-nAChR-KO mice, which exhibit strongly reduced stage 2 wave frequency, waves persisted both in 
control conditions and in the presence of a general nAChR antagonist, though the area of waves is 
greatly diminished compared to WT. However, similar to what we observed in WT mice, the frequency 
of stage 1 waves in β2-nAChR-KO mice was greatly reduced in the presence of a gap junction antag-
onist. This more striking effect of the gap junction antagonist compared to the general nAChR antag-
onist indicates that the electrical synapses are sufficient to generate waves in β2-nAChR-KO mice. 
Finally, we showed that ipRGCs are depolarized by stage 1 waves, but that the decrease in density of 
ipRGCs across early postnatal development was unaffected in the β2-nAChR-KO mouse, indicating 

https://doi.org/10.7554/eLife.81983
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Figure 5. Stage 1 and 2 waves do not contribute to the developmental cell death of intrinsically photosensitive ganglion cells (ipRGCs). (A) Example 
epifluorescence images of Opn4Cre/+;Ai9 (WT) retinas at P1 and P7. Scale bars are 500 μm; each field of view is 4.7 × 4.7 mm. (B) Representative 200 
× 200 μm2 fields of view for P1 and P7 WT and ß2-nAChR-KO retina. (C) ipRGC densities across different ages and genotypes. P1 WT n = 9 retinas 
from six mice, P1 ß2-nAChR-KO, 9 retinas, seven mice; P7 WT n = 8 retinas from five mice; P7 ß2-nAChR-KO n = 8 retinas from eight mice. Means 
represented by blue bars. p=0.012. (D) Cumulative distribution function of nearest-neighbor distances (NND) and regularity index (mean NND/SD) from 
individual retinas, separated by genotype and age. Means represented by blue bars. p=0.020.

The online version of this article includes the following source data for figure 5:

Source data 1. Cell density analysis and regularity index.

https://doi.org/10.7554/eLife.81983
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that the proliferation and cell death processes that influence ipRGC density are not dependent on 
normal patterns of wave activity.

Distinctions and similarities between stage 1 and stage 2 waves
Our findings support a model in which there are both key differences and some similarities between 
stage 1 and 2 waves. The distribution of ITI is peaked at roughly 80 s for stage 1 waves that is a slightly 
longer interval than the peak interval reported for stage 2 (compare Figure 1C here to Figure 7D in 
Ford et al., 2012). Stage 1 and 2 waves also propagate at similar speeds. Key differences are that 
spontaneous activity between E16 and E18 included small non-propagating transients and propa-
gating waves of a broad range of sizes. In contrast, after P1, there are no small non-propagating tran-
sients, and stage 2 waves mostly propagate over large areas of the retina, as observed both in vitro 
(Feller et al., 1997; Hilgen et al., 2017) and in vivo (Ackman et al., 2012). Note the spatiotemporal 
properties of stage 2 waves also vary dramatically across the developmental period spanning P1–P10 
(Ge et al., 2021; Hilgen et al., 2017; Maccione et al., 2014) and therefore we are making these 
comparisons to the earlier stage 2 waves.

The similarity in frequency of waves and propagation speed indicates that the mechanisms respon-
sible for initiating and propagating large waves are similar for stage 1 and 2 waves. Indeed, stage 1 
and 2 waves share a dependence on nAChR signaling. Starburst amacrine cells (SACs) are the sole 
source of ACh in the retina. During the period of development concurrent with stage 1 waves, SACs 
begin to migrate toward the INL and send projections to the IPL via homotypic contacts (Ray et al., 
2018). Also during this period, SACs start to express choline acetyltransferase at E17 in the rat retina 
(Kim et al., 2000), equivalent to E15.5 in mice (Schneider and Norton, 1979), and show a response 
to nicotine in the fetal rabbit retina between E20 and 27 (Wong, 1995), corresponding to stage 1 and 
2 waves in rabbit (Syed et al., 2004). Together these studies support the idea that during embryonic 
development, SACs are not only releasing ACh but also forming a cholinergic network, similar to that 
of stage 2 wave propagation (Ford and Feller, 2012). Here, we have shown that stage 1 waves fail 
to initiate in the presence of the general nAChR antagonists, hexamethonium (Hex) and epibatidine 
(EPB). This suggests that spontaneous depolarization of SACs is important for wave initiation and that 
the cholinergic circuits that mediates waves start earlier than expected.

One key difference in ACh signaling between stage 1 and 2 waves is their sensitivity to the specific 
nAChR antagonist, DHβE. Though DHβE reduced the number of stage 1 waves, many smaller calcium 
transients persisted. In contrast, DHβE is a potent blocker of all activity during stage 2 waves (Ford 
et al., 2012). DHβE is an nAChR antagonist with a greater affinity for nAChRs containing α4 and β2 
subunits in heterologous systems (Ho et al., 2020; Papke et al., 2010). The fact that all stage 1 wave 
activity is blocked by Hex and EPB suggests that different subunit combinations of nAChRs, on both 
SACs and RGCs, are independently contributing to either the initiation or propagation of stage 1 
waves.

The different sensitivity to nAChR antagonists between stage 1 and 2 waves is highlighted in 
the patterns of retinal waves in β2-nAChR-KO mice. β2-nAChR-KO mice have significantly reduced 
stage 2 cholinergic waves (Bansal et al., 2000; Burbridge et al., 2014; Xu et al., 2015; Xu et al., 
2016) and as such have served as the canonical model for studying the role of stage 2 cholin-
ergic waves in eye-specific segregation, retinotopic maps, retinal and collicular direction selectivity, 
and in the optokinetic reflex (Arroyo and Feller, 2016; Grubb et  al., 2003; Thompson et  al., 
2017; Tiriac et al., 2022; Wang et al., 2009). In contrast, stage 1 waves in the β2-nAChR-KO mice 

Table 2. Nearest-neighbor distances (NND) and regularity indices for intrinsically photosensitive 
ganglion cells (ipRGCs) labeled in Opn4Cre/+;Ai9 mice.
Data represented as averages ± SD. This data complements quantification in Figure 5.

Median nearest-neighbor distance (µm) Regularity index (NND/SD) Number of retinas

WT P1 11.59 ± 0.93 2.83 ± 0.12 9

β2 P1 11.51 ± 0.55 2.89 ± 0.16 9

WT P7 22.32 ± 0.58 2.33 ± 0.13 8

β2 P7 20.96 ± 1.40 2.55 ± 0.20 8

https://doi.org/10.7554/eLife.81983
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persist, albeit they propagate with slower speed 
and cover smaller areas of the retina (Figure 3). 
Despite this difference in spatiotemporal proper-
ties, both stage 1 and 2 waves that persist in the 
β2-nAChR-KO mice are blocked by gap junction 
receptor antagonist rather than blockers of fast 
neurotransmitter receptors (Kirkby and Feller, 
2013). Recent evidence suggests that embryonic 
activity influences many aspects of visual system 
development including eye specific segregation 
and retinotopic mapping of retinal projections to 
the brain (Guillamón-Vivancos et al., 2022), as 
well as cortical innervation of the visual thalamic 
nucleus (Moreno-Juan et  al., 2023). Whether 
the various visual system phenotypes observed 
in β2-nAChR-KO mice can be attributed in 
part to reduced stage 1 waves remains to be 
determined.

In our hands, global blockade or desensiti-
zation of nAChRs completely abolished stage 1 
waves. This result appears to conflict with previous 
studies in mice showing that application of curare, 
a competitive antagonist for nAChRs, preserves 
small non-propagating transients (Bansal et al., 2000). One possibility is that in contrast to hexame-
thonium, curare has mixed affinity for neuronal nAChRs. A second is that curare was acting via other 
neurotransmitter receptors where it has some cross-reactivity not shared by the receptor antagonists 
that we used (Spirova et al., 2019; Wotring and Yoon, 1995).

In addition to the ACh signaling, gap junctions also play a role in mediating stage 1 retinal waves. 
Here, we use the gap junction antagonist meclofenamic acid (MFA), which was previously shown to 
reversibly block junctional conductance (Veruki and Hartveit, 2009), dye coupling (Pan et al., 2007), 
and spikelets between developing RGCs (Caval-Holme et al., 2019). Application of MFA led to a 
significant reduction in both the frequency and size of stage 1 waves. The results we observed in MFA 
are consistent with the pharmacological studies of stage 1 waves in other species: stage 1 waves in 
rabbit are insensitive to nAChR antagonists (Syed et al., 2004), as are early waves in developing chick 
retina (Catsicas et al., 1998). Note that waves in these species were also sensitive to antagonists of 
various metabotropic receptors, indicating that neurotransmitters are still important for propagating 
waves in these systems. However, there is the important caveat that MFA can also have some off-
target effects that might impact wave propagation (Kuo et al., 2016). Previously we showed that in 
P6-7 retina MFA did not alter depolarization-induced calcium transients and did not reduce the excit-
ability of RGCs. Here, we show that short applications (10 min) of MFA increased input resistance of 
RGCs and did not appear to block compound EPSCs associated with waves or voltage-gated sodium 
and potassium channels. Future experiments with independent measures of gap junction coupling – 
such as tracer coupling and potentially knockout of connexin proteins – are necessary to have a more 
complete understanding of how electrical synapses contribute to wave propagation properties.

We also observed a difference between stage 1 and 2 waves in β2-nAChR-KO retinas. Embryonic 
β2-nAChR-KO retinas still exhibited stage 1 waves but at reduced frequency and size when compared 
to WT retinas. Though the spatiotemporal properties of stage 2 waves recorded in vitro for P1-P8 
β2-nAChR-KO retinas are highly dependent on recording conditions with results ranging from sparse 
activity to high frequency (Bansal et al., 2000; Stafford et al., 2009; Xu et al., 2016), in vivo waves 
in β2-nAChR-KO are infrequent and weakly depolarizing (Burbridge et al., 2014). The activity that 
persists in β2-nAChR-KO retinas both embryonically and postnatally is resistant to nAChR antago-
nists, as was observed previously (Bansal et al., 2000). Rather the remaining activity in β2-nAChR-KO 
retinas is completely blocked by MFA, thereby suggesting that stage 1 and 2 waves in β2-nAChR-KO 
retinas rely solely on gap junctions (Kirkby and Feller, 2013).

GCL

INL

RGCs

SACs

ACh

Figure 6. Working model of stage 1 wave initiation 
and propagation. Wave initiation set by spontaneously 
depolarizing cholinergic amacrine cell/SAC, outlined in 
black, which release ACh and depolarizes neighboring 
cells, leading to the volumetric release of ACh. 
Retinal ganglion cells (RGCs) depolarized by nAChR 
activation (orange) via SAC-induced ACh release. 
Wave propagation set by RGC depolarization via 
gap junctional currents (orange) and volumetric ACh 
release.

https://doi.org/10.7554/eLife.81983
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We propose a model for stage 1 waves consistent with these observations (Figure 6). Stage 1 wave 
initiation is dependent on the spontaneous depolarization of SACs, but wave propagation is depen-
dent on both gap junction coupling and nAChR activation. Hence, stage 1 wave initiation is similar to 
stage 2 waves where the spontaneous depolarization of a SAC activates neighboring SACs, leading to 
the volumetric release of ACh responsible for wave propagation both in the INL and GCL (Ford et al., 
2012). The model for stage 1 wave propagation is also similar to stage 2 wave propagation, though a 
complete description of how gap junction coupling is mediating stage 2 wave propagation is needed. 
The pharmacological and genetic block/ablation of gap junctions have yet to reveal a phenotype 
(Blankenship et al., 2011; Caval-Holme et al., 2019; Kirkby and Feller, 2013; Singer et al., 2001; 
Torborg et al., 2005). Interestingly, pure gap junction-mediated waves, such as those we observed in 
the β2-nAChR KO mouse, are considerably slower than waves in WT retina. A recent computational 
model of gap junction-mediated stage 1 waves, where waves are initiated by RGCs undergoing rare 
and random depolarizations that propagate entirely via electrical synapses, argues that the speed 
of propagation is limited by the slow rate at which the junctional currents charge up the membrane 
capacitance of neighboring RGCs (Kähne et al., 2019). Hence, the faster speed of waves mediated 
by a combination of nAChRs and gap junctions indicates that diffuse release of ACh leads to faster 
propagation than electrical synapses alone.

Interactions between stage 1 waves and ipRGCs
Early intrinsic light responses of ipRGCs have been implicated in several developmental events 
(Aranda and Schmidt, 2021), including retinal vascularization (Rao et al., 2013), maturation of circa-
dian circuits (McNeill et al., 2011), and the maturation of the lens to prevent myopia (Chakraborty 
et al., 2022). Here, we report that ipRGCs are robustly activated by stage 1 waves, similar to our 
observations that ipRGCs participate in stage 2 waves (Arroyo et al., 2016; Caval-Holme et al., 2022; 
Kirkby and Feller, 2013). Thus, it is possible that depolarization via stage 1 waves may contribute to 
some of these ipRGC-dependent developmental processes.

To begin to explore to role of stage 1 and 2 waves in ipRGC development, we monitored the impact 
of chronically altered waves on the distribution and density of ipRGCs across the retina. Notably, 
ipRGCs undergo extensive apoptotic cell death, with the peak of apoptosis occurring between P2–P4 
(Chen et al., 2013). Prevention of apoptosis during this developmental period doubles the density 
of ipRGCs and dramatically increases the clumping of M1-ipRGC somas. In some systems, correlated 
network activity has been implicated in cell proliferation and cell death. For example, retinal wave 
activity promotes neurite outgrowth and potentially survival among RGCs (Goldberg et al., 2002). 
Additionally, in the developing primary somatosensory and motor cortices, higher levels of spon-
taneous electrical activity were shown to have a neuroprotective effect (Blanquie et  al., 2017b). 
However, here we show in the β2-nAChR-KO mouse, which has significantly diminished stage 1 and 
2 retinal waves, the normal developmental loss of ipRGCs between P1 and P7 is maintained. Thus, 
stage 1 and 2 retinal waves are not required for ipRGC apoptosis; however, it is possible that the 
residual wave activity in β2-nAChR-KO is sufficient to activate pro-survival pathways. A deeper under-
standing of how spontaneous activity modulates RGC survival pathways (e.g., Ahmed et al., 2022) is 
warranted.

Methods
Animals
All animal procedures were approved by the UC Berkeley Institutional Animal Care and Use Committee 
and conformed to the NIH Guide for the Care and Use of Laboratory Animals (AUP-2015-10-8080-2), 
the Public Health Service Policy, and the SFN Policy on the Use of Animals in Neuroscience Research. 
For our calcium dye-based calcium imaging, Opn4Cre/+;Ai9 mice were generated by crossing mice 
Opn4Cre/+ B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato) Hze/J mice (Ai9) mice (stock # 007909, Jackson Labora-
tory, Bar Harbor, ME) to the Opn4Cre/+ reporter mouse (T. Schmidt, Northwestern University, Evan-
ston, IL). For our GCaMP6s-based calcium imaging, we generated Vglut2;GCaMP6s mice by crossing 
B6J.129S6(FVB)-Slc17a6tm2(cre)Lowl/MwarJ mice (stock # 028866) to B6J.Cg-Gt (ROSA)26Sortm96(CAG-

GCaMP6s)Hze/MwarJ mice (stock # 028863). ipRGC density measurements were conducted on P1–P7 mice 
of either sex using Opn4Cre/+;Ai9.

https://doi.org/10.7554/eLife.81983
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To obtain mice that were precisely at the correct embryonic age, we set up timed pregnancies and 
checked vaginal plugs every morning for 4 days after the animals were paired. This approach led to 
an uncertainty of age of ± 1 day. Hence, we grouped data across E16–18. Since we observed more 
variance within litters than across litters, we assume age was not a determining factor in our findings. 
We used the β2-nAChR-KO mouse line in which the β subunit of the nicotinic acetylcholine receptor 
is knocked out as a genetic model in which cholinergic retinal spontaneous activity is disrupted. For 
experiments regarding the influence of spontaneous retinal activity on the distribution of ipRGCs 
across the retina, we used β2-/-::Opn4Cre/+;Ai9 (β2-nAChR-KO) mice, generated by crossing β2-/- (A. 
Beaudet, Baylor University, Waco, TX) mice to Opn4Cre/+;Ai9 mice to label all melanopsin-expressing 
cells. All mouse lines are maintained on a C57BL/6 genetic background. All animals used for two-
photon calcium imaging experiments and immunohistochemistry were housed in 12 hr day/night cycle 
rooms.

Retinal preparation
On the day of the experiment, pregnant dams were deeply anesthetized via isoflurane inhalation 
and fetuses were harvested via a cesarean section. tdTomato-positive fetuses were identified using 
miner goggles (Biological Laboratory Equipment Services and Maintenance Ltd., model: GFsP-5). 
Fetuses were kept alive in 50 ml Falcon tubes filled with oxygenated (95% O2 5% CO2) ACSF (in mM, 
119 NaCl, 2.5 KCl, 1.3 MgCl2, 1 K2HPO4, 26.2 NaHCO3, 11 D-glucose, and 2.5 CaCl2). Fetuses were 
then euthanized sequentially by decapitation. Eyes were immediately enucleated and retinas were 
dissected at room temperature in oxygenated ACSF under a dissecting microscope. Isolated retinas 
were mounted whole over a 1–2 mm2 hole in nitrocellulose filter paper (Millipore) with the photore-
ceptor layer side down and transferred to the recording chamber of a two-photon microscope for 
imaging. The whole-mount retinas were continuously perfused (3  ml/min) with oxygenated ACSF 
warmed to 32–34°C by a regulated inline heater (TC-344B, Warner Instruments) for the duration of 
the experiment. Additional retina pieces were kept in the dark at room temperature in ACSF bubbled 
with 95% O2, 5%CO2 until use (maximum 8 hr).

For the calcium imaging experiments, retinas were bath loaded with the calcium indicator Cal 520 
AM (AAT Bioquest) for 1–2 hr at 32°C.

Two-photon calcium imaging
Two-photon fluorescence measurements were obtained with a modified movable objective micro-
scope (MOM) (Sutter instruments, Novator, CA) and made using an Olympus ×60, 1.00 NA, LUMP-
lanFLN objective (Olympus America, Melville, NY) for single-cell resolution imaging (field of view, FOV: 
203 × 203 µm) or a Nikon ×16, 0.80 NA, N16XLWD-PF objective (Nikon, Tokyo, Japan) for large FOV 
(850 × 850 um) imaging. Two-photon excitation was evoked with an ultrafast pulsed laser (Chameleon 
Ultra II; Coherent) tuned to 920 nm to image Cal520, GCaMP6s, and tdTomato. Laser power was set 
between 6.5 and 12 mW for imaging of Cal520 and tdTomato expression. The microscope system was 
controlled by the ScanImage software (https://www.scanimage.org/). Scan parameters were [pixels/
line × lines/frame (frame rate in Hz)]: [256 × 256 (1.48 Hz)], at 2 ms/line. This MOM was equipped with 
a through-the-objective light stimulation and two detection channels for fluorescence imaging.

Epifluorescent macroscope calcium imaging
Epifluorescent calcium imaging were obtained on a custom-built macroscope with an Olympus 
XLFLUOR4X/340 4× 0.28 NA objective, a Teledyne Kinetix camera. Collectively, this macroscope has 
4.7 mm × 4.7 mm FOV, and 1.5 µm/pixel. All movies were taken at a 10 Hz frame rate and pixels 
were binned 4 × 4 bringing the resolution down to 5.9 µm/pixel, still maintaining single-cell resolu-
tion. Cal520 and GCaMP6s excitation was evoked with a 474 nm LED. A full description and building 
instructions can be found at https://github.com/Llamero/DIY_Epifluorescence_Macroscope, (Smith, 
2022).

Initiation site measurements
Macroscope recordings of stage 1 events were used for the manual detection of initiation sites. Small 
non-propagating events were identified as local regions of correlated calcium activity with fixed areas 
and no wave fronts. For this analysis only, we separated waves into small and large events to see 
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whether there were differences in initiation sites. Small propagating waves were identified as regions 
of correlated calcium activity with no fixed areas and with wave fronts covering up to 25% of the 
retina. Large propagating waves were identified as regions of correlated calcium activity with no fixed 
areas and with wave fronts covering up to 90% of the retina.

Pharmacology
We blocked gap junctions via application of the gap junction blocker MFA (50 µM, Sigma-Aldrich). 
We blocked the nicotinic acetylcholine signaling pathway via application of the broad nicotinic 
receptor antagonists hexamethonium (Hex, 100  µM, Sigma-Aldrich) and epibatidine (EPB, 10  nM, 
Sigma-Aldrich) as well as the specific antagonist dihydro-ß-erythroidine hydrobromide (DHßE, 8 µM, 
Sigma-Aldrich).

The following procedure was used for all pharmacology experiments: We recorded baseline 
activity in ACSF for 8 min before pharmacological agents were applied to the perfusion system. We 
then waited 15–30 min for the agents to take effect before acquiring another 8 min recording session.

To attempt to assay off-target effects of MFA, we used whole-cell voltage-clamp recordings 
to compare voltage-gated ion channels on RGCs in E16–18 retina but found inconsistent results 
(Figure 2—figure supplement 1). We associate this high variance with a rapid changing complement 
of ion channels during development and the quick washout of these conductances during whole-cell 
recordings.

Image analysis of population calcium imaging movies
Movies were preprocessed for motion correction using a MATLAB code from the Flat Iron Institute 
(https://github.com/flatironinstitute/NoRMCorre; Pnevmatikakis, 2019). The baseline movie frame 
(F0) was computed by taking the temporal median projection of all the movie frames. Each movie 
frame (F) was normalized by dividing its difference from the baseline frame (F-F0) by the baseline 
frame ((F-F0)/F0) to produce a ΔF/F0 movie. For movies taken on the two-photon microscope, circular 
ROIs were drawn on all cells within the FOV. Additional circular ROIs were drawn for tdTomato+ cells. 
For movies taken on the macroscope a grid of 10 µm × 10 µm squares, which were spaced 1.5 pixels 
apart, were drawn over the whole surface of the retina using a custom FIJI macro. The ROIs and the 
ΔF/F0 movie were then imported into MATLAB for further analysis using custom algorithms. Traces 
for each FOV and ROI were computed as the mean value of the pixels enclosed by the ROI in each 
frame of the ΔF/F0 movie.

For transient frequency analysis, event detection was done using the findpeaks function in MATLAB, 
with the minimum threshold set to greater than at least 10 times the standard deviation of the baseline 
fluorescence, which corresponds to at least 10% ΔF/F0. The ITI for each ROI was calculated by finding 
the difference between the frame of each detected transient. This difference was then converted to 
seconds by multiplying it to the movie’s frame rate.

The area of waves was calculated for all movies taken on the macroscope. To do this, we first 
z-scored the percent active ROI traces and used the findpeaks function to detect individual waves, 
with the threshold set to a z-score of 1. After determining the time of waves, we removed any waves 
that occurred within the first and last 6  s of the movie due to them being edge cases. We then 
summed the number of active ROIs within 12 s around the wave times. This number was then divided 
by the total number of ROIs to get the percentage of active ROIs.

To determine whether neurons participate in waves in the two-photon calcium imaging data, 
we employed the following bootstrapping strategy: we randomly sampled the activity of individual 
neurons outside of wave times a thousand times to build a baseline of neural activity. We then set a 
threshold of 95th percentile to statistically determine whether neurons exhibited a greater calcium 
response during a wave than at rest. We then calculated the percentage of waves each cell partici-
pated in and averaged this value for every FOV. Similarly, mean response amplitudes were calculated 
for each cell and then averaged for each FOV.

For a description of statistics used, please refer to the figure captions.

Analysis of ipRGC densities
To image the density of ipRGCs in fixed retinas, dissected retinas from P1 and P7 mice were fixed in 
4% PFA for 30 min. The fixed retinas were subsequently mounted on a slide with vectashield and a 
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cover slip, then imaged within an hour of mounting on the macroscope. For P1 retinas, Z-stacks were 
acquired by manually turning the focus knob.

We first identified the centroid of each ipRGC. For P7 retinas, where there is more space between 
cells, we employed the following automatic segmentation. Images were bandpass filtered and somata 
automatically segmented using the Morpholibj (Legland et al., 2016) classic watershed tool to obtain 
8-bit binarized masks. The masks were then processed in MATLAB in order to obtain the centroid loca-
tions and nearest-neighbor distances for each soma. For P1 retinas, where there is less space between 
cells and in fact cells seem to form clusters, automatic segmentation was not possible. Therefore, cells 
were manually marked using the ImageJ multipoint tool and soma locations exported as a CSV file. 
For all ages, the centroid data was imported to MATLAB for further analyses.

Density was quantified by dividing the microscope field of view up into 200 ×200 μm squares, 
manually excluding ones that did not cover the retina or covered partial or damaged parts of the 
retinas. Out of the resulting squares (~150 per P7 retina, ~100 per P1 retinas), 75 squares (for P7 
retinas) and 50 squares (for P1 retinas) were randomly selected and the average density of TdTom+ 
cells in those squares calculated.

To quantify the nearest-neighbor distances, we used a custom-written MATLAB code that, for each 
ipRGCs, identified the closest neighbor using the shortest Euclidean distance.

Statistical tests
Details of statistical tests, number of replicates, and p values are indicated in the figures and figure 
captions. p values < 0.05 were considered significant.
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