
Lobanov, Dyckman et al. eLife 2023;12:e82504. DOI: https://​doi.​org/​10.​7554/​eLife.​82504 � 1 of 15

Spatial structure favors microbial 
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Abstract Microbes often exist in spatially structured environments and many of their interactions 
are mediated through diffusible metabolites. How does such a context affect microbial coexistence? 
To address this question, we use a model in which the spatial distributions of species and diffusible 
interaction mediators are explicitly included. We simulate the enrichment process, examining how 
microbial species spatially reorganize and how eventually a subset of them coexist. In our model, 
we find that slower motility of cells promotes coexistence by allowing species to co-localize with 
their facilitators and avoid their inhibitors. We additionally find that a spatially structured environ-
ment is more influential when species mostly facilitate each other, rather than when they are mostly 
competing. More coexistence is observed when species produce many mediators and consume 
some (not many or few) mediators, and when overall consumption and production rates are 
balanced. Interestingly, coexistence appears to be disfavored when mediators are diffusing slowly 
because that leads to weaker interaction strengths. Overall, our results offer new insights into how 
production, consumption, motility, and diffusion intersect to determine microbial coexistence in a 
spatially structured environment.

Editor's evaluation
This important study uses computational simulations to explore when spatial structure can promote 
the coexistence between different microbial species and when not, ultimately helping to explain 
diversity in microbial communities. The evidence supporting the conclusions is convincing, based 
on extensive parameter sweeps. The conclusion that spatial structure only promotes coexistence 
under certain conditions is a testable hypothesis that is very interesting to microbial ecologists quite 
broadly.

Introduction
Microbes are rarely found in isolation in nature. Instead, they are found coexisting with one another 
in complex networks of interactions (Ma et al., 2020). Given the differences among taxa and the 
competitive forces that act between them, a fundamental question in microbial community ecology 
is how this coexistence is maintained (Chesson, 2000b; Solé and Bascompte, 2006; Widder et al., 
2016). And because many important industrial, environmental, and health-related processes rely 
on microbial communities to function (e.g. anaerobic granules, microbial mats, and gut microbiota, 
respectively), understanding the conditions that favor microbial coexistence is critical to sustaining 
these systems.
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Spatial structure and organization may shape coexistence via numerous mechanisms (Tilman, 1994; 
Durrett and Levin, 1994; Tilman and Kareiva, 1998; Durrett and Levin, 1998; Kerr et al., 2002; 
Brockhurst et al., 2006; Amarasekare, 2003), often by modulating the interactions among individ-
uals. For example, in a spatially structured environment where progeny is more likely to be in the 
vicinity of parents, intensified intrapopulation competition can give less competitive species a chance 
to survive (Chesson, 2000a). In other conditions, spatial isolation can allow organisms with conflicting 
abiotic needs to flourish in appropriate environments (Kim et al., 2011; Satoh et al., 2007). The inter-
play between dispersal and competition can also allow coexistence between species that are more 
competitive growers and species that are better at dispersing and colonizing (Tilman, 1990).

Spatial heterogeneity has been invoked as a mechanism for microbial coexistence since the 
pioneering work by Gause, 1934. And although general concepts of coexistence are expected to 
apply equally to microbes, microbial communities may be affected by spatial structure in unique ways 
because of the scale and multiplicity of microbial interactions. An important and ubiquitous example 
of this are microbial interactions that are mediated via diffusible metabolites—including resources and 
metabolic byproducts. Spatial structure can stabilize these interactions and support coexistence, for 
example, by allowing cheaters to be excluded from beneficial interactions (Momeni et al., 2013b; 
Pande et al., 2016), or by permitting facilitative chemical interactions while preventing the inhibitory 
effects of an interacting organism’s physical presence (Kim et al., 2008). And while it is clear that the 
outcomes of interactions via diffusible mediators in structured environments may depend on medi-
ator diffusion rates (Kümmerli et al., 2014; Allison, 2005) and the larger network of antagonistic 
and cooperative interactions (Nadell et al., 2016), how such factors translate into community-level 
consequences is not well understood.

Prior reports that address coexistence of metabolically interacting microbes in a spatially struc-
tured environment are scarce. In an implicit model, Murrell and Law, 2003 have shown in a modified 
Lotka–Volterra model that when interspecific competition operates over shorter distances than intra-
specific competition a spatially structured environment can lead to species coexistence by allowing 
for aggregation. And in recent work with explicit modeling of space, Weiner et al., 2019 examined 
coexistence in territorial populations interacting through diffusible mediators and found that meta-
bolic tradeoffs allow for the coexistence of more species than the number of nutrients.

Our model is distinct from previous work in that we allow overlap and dispersal of populations 
through the shared space. Our motivation is to capture situations in which microbes can disperse 
inside a matrix that defines the spatial structure. An example of this is the mucosal layer of the diges-
tive or respiratory tract, in which stratification is possible, yet the distribution of different species 
populations can overlap. Another example is in yogurt or cheese, where spatial structure exists, but 
populations are not territorial. We modify a previously developed mediator-explicit model (Niehaus 
et al., 2019) to account for spatial structure and the dispersion of species in the same space. Here, we 
limit our study to one-dimensional (1D) spatial structure as a starting point. We examine in our model 
conditions under which coexistence is favored. We should emphasize that even though we choose our 
parameters within the range of typical values observed among microbial communities, the purpose of 
this work is not to recapture a specific community. Instead, by examining a range of values for param-
eters such as metabolite diffusion and species dispersal, we hope to gain a better understanding of 
how rates of these processes can affect species coexistence.

Results
A spatial mediator-explicit model of microbial communities
In our mediator-explicit model, species interact through metabolites that they produce and/or 
consume (Figure 1A, B; Niehaus et al., 2019). Each species can produce a subset of metabolites 
and consume a subset of metabolites. Each of the metabolites in the shared environment can in turn 
influence any of the species by increasing or decreasing their growth rate (i.e. facilitation or inhibition, 
respectively) compared to how each species grows in the absence of interactions (Niehaus et al., 
2019). We also assume that different interaction mediators additively influence the overall growth rate 
of each species (see Model description in Methods).

We assume a 1D spatial structure which preserves the spatial context but allows the diffusion of 
metabolites and dispersal of species. Multiple metabolites and species can be present in a single 

https://doi.org/10.7554/eLife.82504
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location. Both metabolite diffusion and species dispersal are modeled as random walk processes, 
characterized with a diffusion coefficient and a dispersal coefficient, respectively. In a typical simu-
lation, we start from an initial distribution in which populations occupy adjacent, non-overlapping 
spatial locations at low initial density. This choice is made to impose a reproducible initial condition 
that emphasizes the role of space. Each simulation starts with a network of interactions in which 
interaction strengths, production and consumption links, and production and consumption rates 
are assigned randomly. The initial pool typically contains 10 species and 5 interaction mediators. 
We simulate community enrichment through rounds of growth and dilution (Niehaus et al., 2019; 
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Figure 1. A spatial environment favors coexistence more when interspecies facilitation is prevalent in the initial species pool. (A) Species are engaged 
in metabolite-mediated interactions with other species. Each species produces a subset of mediators and consumes a subset. Each mediator can 
positively or negatively modulate the growth rate of the species it influences. In our model, consumption is present whenever there is an influence 
from a mediator on a species, regardless of whether the influence is facilitative or inhibitory. Production and consumption of mediators are indicated 
by open arrows. (B) In a one-dimensional (1D) spatial context, species and mediators are defined as functions of space that change over time because 
of population growth and dispersal as well as mediator production, consumption, and diffusion. A cartoon representation of the distributions of four 
species and three mediators are shown here over the spatial context (z). (C) Simulations were run at different ratios of facilitative to inhibitory interactions 
(fac:inh) for spatial (open blue squares) and well-mixed (filled blue circles) communities. Each ratio was run 500 times with the richness (number of 
species stably surviving at the end of a simulation) averaged over all the simulations. Each simulation started with 10 species and 5 mediators and ran 
for 100 generations. The error bars are 95% confidence intervals generated by bootstrapping 100 samples. Here, the species dispersal coefficient is 
‍5 × 10−9‍ cm2/hr. Boxes mark fac:inh ratios used in later simulations.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. There is little change in community composition after 100 generations of growth.

Figure supplement 2. Shannon index shows the same overall trend as richness when comparing spatial versus well-mixed communities.

Figure supplement 3. Comparing the spatial distribution of species at different dispersal rates illustrates the impact of dispersal on coexistence.

Figure supplement 4. Species interactions and dynamics are different in spatial versus well-mixed environments, leading to different coexistence 
outcomes.

Figure supplement 5. Species interactions and dynamics are different in spatial versus well-mixed environments, even when inhibition is prevalent.

Figure supplement 6. Spatial distance between species can modulate the strength of their interaction.

Figure supplement 7. Within the same order of magnitude, the community’s spatial extent does not have a large impact on spatial coexistence.

Figure supplement 8. Imposing a local carrying capacity favors species coexistence.

Figure supplement 9. Rearranging the order of species can modulate the strength of interspecies interactions and impact spatial coexistence 
outcomes.

https://doi.org/10.7554/eLife.82504
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Goldford et al., 2018) for 100 generations, and assess the richness of each resulting community 
(i.e., the number of species stably persisting in the community). We have chosen 100 generations 
of growth, because we have observed that often this is enough to reliably decide which species 
stably persist in the community (Figure 1—figure supplement 1). At each dilution step, we assume 
that the overall spatial distribution of the community is preserved and all populations at all loca-
tions are diluted with the same factor. We recognize that this assumption is not universally true; 
however, we adopt it as an approximation, in the absence of additional information about a partic-
ular community. Such a dilution preserves some of the spatial structure of the community in the 
next round of growth and could represent a biofilm getting partially washed away by rain or in a 
microfluidic device, gut microbiota after a defecation event, or a broken-off portion of a granule 
initiating a new granule. We use a well-mixed version (Niehaus et al., 2019)—devoid of any spatial 
context—with the same set of parameters for species properties and interactions (i.e. consumption 
and production rates, basal growth rates, mediator influences, etc.) for all comparisons. Figure 1—
figure supplement 2 shows an example of the population distributions and dynamics during the 
course of enrichment. In a simple example, we show that interactions and subsequently the popu-
lation dynamics are affected by growing in a well-mixed versus spatial environment (Figure 1—
figure supplement 3). We explored the impact of the overall spatial extent of the community and 
found that within an order of magnitude of change, the outcomes remained the same (Figure 1—
figure supplement 4).

The shift from interspecies competition to intraspecies competition can favor coexistence in a 
spatially structured environment. To assess this impact, we imposed a cap on total cell number at each 
location in space. As this cap became more restrictive, it suppressed the most competitive species and 
led to higher coexistence (Figure 1—figure supplement 5). Since our focus in this manuscript is the 
impact of interspecies interactions, in the rest of this manuscript we pick the total cell number cap at 
a level (kY = 109 cells/ml) that minimizes the impact of imposed intrapopulation competition.

A spatial environment favors coexistence more when facilitation among 
species is prevalent
We first examined how the prevalence of facilitative versus inhibitory interactions impacted coexis-
tence in spatial communities. In our simulations, we dictated the ratio of facilitative and inhibitory 
interactions in the initial pool of species. Our results show that, similar to a well-mixed environ-
ment, more facilitative interactions lead to higher richness in communities that emerge from enrich-
ment (Figure 1C, along the x-axis). Additionally, we observe that spatial communities show more 
coexistence than well-mixed communities when facilitation among species is prevalent (Figure 1C, 
spatial versus well-mixed). The same pattern, although less pronounced, was present when instead 
of richness we used the Shannon index to assess the diversity of resulting communities (Figure 1—
figure supplement 2). Our explanation is that species locally grow better when adjacent to a facil-
itative partner and grow worse when in the vicinity of an inhibitory partner. The resulting spatial 
self-organization in effect amplifies facilitative interactions and dampens inhibitory interactions, 
leading to more coexistence. This is supported by our data which shows that the position of specific 
species with respect to other species that facilitate or inhibit it can impact the population dynamics 
(Figure 1—figure supplement 8). Because of the marked impact of the fac:inh ratio (i.e. the ratio of 
the number of facilitative interactions to the number of inhibitory interactions), moving forward, we 
will examine three conditions, with equal fractions of facilitative and inhibitory influences (fac:inh = 
50:50), mostly inhibitory (fac:inh = 10:90), or mostly facilitative (fac:inh = 90:10) to scope the impact 
on coexistence.

At low species dispersal, self-organization is one of the mechanisms that can lead to a difference 
between spatial and well-mixed communities (Figure 1—figure supplement 3). In a simplified inter-
pretation, self-organization can be in the form of co-localization driven by facilitation or segregation 
driven by inhibition. In our simulations, we observed that co-localization had a stronger effect on coex-
istence. The positive influence was reinforced by more growth in the vicinity of the partner, leading 
to a stronger representation of facilitation in spatial communities. In contrast, segregation only had 
a modest effect on weakening the impact of inhibition. As a result, there is more similarity between 
well-mixed and spatial communities in the absence of strong facilitative interactions (Figure 1C).

https://doi.org/10.7554/eLife.82504
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Coexistence is favored when many metabolites are produced and 
influence an intermediate number of species
Because metabolites are at the center of interspecies interactions in our model, we examined their 
impact on spatial coexistence of the average number of metabolites produced by each species and 
the average number of species influenced by each mediator. We found that coexistence is favored 
when the number of metabolites produced is larger (Figure  2, along the y-axis). This effect was 
stronger when the metabolite influences were mostly facilitative (fac:inh = 90:10, versus 50:50 or 
10:90). In contrast, coexistence achieved its maximum values at intermediate ranges of mediator 
influence (Figure 2, x-axis), that is lower coexistence was observed when each mediator influenced 
too many or too few species on average. We note that these trends were largely the same between 
spatial and well-mixed communities.
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Figure 2. The number of metabolites produced and number of species influenced affect coexistence in spatial and well-mixed communities. Different 
ranges of production and mediator influence values were analyzed for both well-mixed and spatial communities at three different fractions of fac:inh 
influences in the initial pool of species (10:90, 50:50, and 90:10). Mean richness (i.e. average number of species stably present at the end of a simulation) 
was calculated for 500 simulated instances and marked on the color bar. Each simulation started with 10 species and 5 mediators and ran for 100 
generations. The x-axis represents the average number of species influenced by a mediator and the y-axis represents the average number of mediators 
produced by each species. Other simulation parameters are listed in Table 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The number of metabolites produced and number of species influenced affect coexistence in spatial and well-mixed 
communities.

Figure supplement 2. Coexistence is favored when many metabolites are produced and influence an intermediate number of species, even with 
weaker interactions.

Figure supplement 3. Coexistence is favored when many metabolites are produced and influence an intermediate number of species, even with 
stronger interactions.

Figure supplement 4. Self-facilitation is prominent among low-diversity outcomes.

https://doi.org/10.7554/eLife.82504
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Our explanation is that a larger range of production offers more opportunities for interaction, which 
through the enrichment process lead to the selection of facilitative subsets that coexist (Niehaus 
et al., 2019). A low mediator influence range works in the opposite direction, reduces opportuni-
ties for interactions and results in lower coexistence. Very high mediator influence range potentially 
leads to more self-facilitation (i.e. producing a metabolite that is beneficial to the producer species), 
which our data suggest can lead to take-over by a single species and a lower coexistence as a result 
(Figure 2—figure supplement 1).

Coexistence is higher when there is balance between production and 
consumption of mediators
We next asked how the rates of production and consumption of mediators would influence coexis-
tence. To address this question, we surveyed a range of average rates of production and consump-
tion. We observed that the highest levels of coexistence occurred when there was a balance between 
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Figure 3. Coexistence is higher where there is a balance between production and consumption of mediators. Different average production and 
consumption rates were analyzed for both well-mixed and spatial communities at three different fractions of fac:inh influences in the initial pool of 
species (10:90, 50:50, and 90:10). Mean richness (i.e. average number of species stably present at the end of a simulation) is calculated for 500 simulated 
instances. Each simulation started with 10 species and 5 mediators and ran for 100 generations. Color bar represents the average richness. The x-axis 
represents the average production rate of mediators and the y-axis represents the average consumption rate of mediators. Other simulation parameters 
are listed in Table 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. In spatial communities with many facilitation interactions among species, coexistence is favored at lower consumption rates of 
mediators.

Figure supplement 2. Coexistence is higher where there is a balance between production and consumption of mediators independent of the 
interaction strength (here, with weaker interactions).

Figure supplement 3. Coexistence is higher where there is a balance between production and consumption of mediators, independent of the 
interaction strength (here, with stronger interactions).

https://doi.org/10.7554/eLife.82504
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consumption and production rates among species, with slightly higher production than consumption 
(Figure 3).

Our justification for the observed pattern is that in one extreme where production is too high 
(lower right corner of each plot), mediators will build up in the environment. This will put the commu-
nity in a regime in which consumption is not enough to create a feedback, that is ‘reusable mediators’ 
as discussed in Niehaus et al., 2019, which leads to lower coexistence. In the other extreme, when 
consumption is too high (upper left corner of each plot), metabolites that mediate the interactions 
will be depleted from the environment, leading to an effectively weaker interaction and thus lower 
coexistence. However, when production is slightly higher than consumption, metabolite quantities are 
sufficient to create strong interactions and facilitation feedbacks, leading to higher coexistence. While 
coexistence is slightly higher in the spatial communities compared to well-mixed ones, the produc-
tion–consumption trends apply equally to spatial and well-mixed communities, as expected.

Limited species dispersal in a spatial environment allows more 
coexistence, especially when facilitation is common
Because species dispersal is a major factor in preserving community spatial structure, we examined 
how the dispersal coefficient affected coexistence outcomes. For this, we kept the diffusion coef-
ficient of the mediators fixed and surveyed mean richness among many instances of communities 
randomly assembled (n = 500). When the diffusion coefficient for species approaches zero and cells 
remain in their original spatial location, we observe higher levels of coexistence (Figure 4). We also 
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Figure 4. Lower dispersal rates allow more microbial coexistence. Communities in spatially structured environments were simulated with different 
dispersal coefficients at three different fractions of fac:inh influences (10:90, 50:50, and 90:10). Mean richness (i.e. average number of species stably 
present at the end of a simulation) was calculated for 500 simulated instances. Each simulation started with 10 species and 5 mediators and ran for 100 
generations. Other simulation parameters are listed in Table 1. The error bars are 95% confidence intervals generated by bootstrapping 100 samples.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Lower dispersal rates allow more microbial coexistence.

Figure supplement 2. Self-facilitation contributes to lower richness at intermediate levels of dispersal.

Figure supplement 3. Rearranging the order of species affects spatial coexistence.

Figure supplement 4. Rearranging the order of species affects spatial coexistence more in communities in which facilitation is prevalent.

https://doi.org/10.7554/eLife.82504


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Ecology

Lobanov, Dyckman et al. eLife 2023;12:e82504. DOI: https://​doi.​org/​10.​7554/​eLife.​82504 � 8 of 15

observed that the impact of lower dispersal is stronger in communities in which most interactions 
are facilitative rather than inhibitory. Our explanation is that lower dispersal rates mean that species 
grow best in spatial locations that are more supportive for their growth, which is in the vicinity of 
their beneficial partners and away from competitors or inhibitors. As discussed in Figure 1, such self-
organization effectively amplifies facilitative interactions and de-emphasizes inhibitory interactions, 
leading to a higher coexistence. This is also consistent with the observation that the effect of dispersal 
rate is strongest when the proportion of facilitative interactions is highest. As the dispersal coefficient 
increases, the self-organization gets washed away by dispersal of cells to less than ideal locations for 
their growth and its benefit for coexistence diminishes.

At intermediate levels of dispersal, the trend reversed and well-mixed communities showed more 
coexistence compared to spatial communities. This is interesting because at the limit of extremely 
rapid diffusion (shown with a ‘∞’ sign in Figure 4) when we kept the species distribution uniform 
across the spatial extent, coexistence outcomes matched the well-mixed case, as expected. We found 
two factors that contributed to this trend. The first contribution came from longer-term changes in 
dynamics at intermediate levels of dispersal. Even after 100 generations, which is the typical extent 
of our studies, at intermediate levels of dispersal (e.g. DCell = 5 × 10−6 cm2/hr), the spatial distri-
bution of populations is still changing considerably. As a result, our strict criteria for stable coex-
istence removes some of the populations that are still temporally not stable enough, leading to a 
lower overall assessment of coexistence in these cases. To show this, we examined the range of 
dispersal coefficients again, but kept all the species that were present after 100 generations, rather 
than those with stable population fractions at that point (see Model implementation in Methods). 
The results show that higher dispersal coefficients using this measure lowers the richness of resulting 
communities (based on presence, rather than stable presence), but not below the levels expected 
from well-mixed communities (Figure 4—figure supplement 1). As a second factor, we hypothesized 
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Figure 5. At higher diffusion coefficients of mediators more coexistence is possible. A range of metabolite diffusion coefficients were simulated 
in spatial communities (squares) at three different fractions of fac:inh influences (10:90, 50:50, and 90:10). We simulated corresponding well-mixed 
communities (circles) for comparison. Each condition was run 500 times with the richness (number of species stably surviving at the end of a simulation) 
averaged over all the simulations. Each simulation started with 10 species and 5 mediators and ran for 100 generations. Other simulation parameters are 
listed in Table 1. The error bars are 95% confidence intervals generated by bootstrapping 100 samples.

https://doi.org/10.7554/eLife.82504
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that self-facilitation interactions contribute to the decrease in coexistence at intermediate dispersal 
levels. Our rationale was that self-facilitation interactions are amplified in communities in which the 
spatial context is preserved, because the distribution of producers matches the distribution of self, but 
not other recipients in such a case. This can lead to community overtake by a self-facilitating species. 
This effect will be weaker in communities at intermediate dispersal rates: at low dispersal rates self-
facilitating species will be more confined in space and some of the metabolite will leak out to other 
species; in the other extreme, in the very high dispersal rates all distributions will become uniform and 
the distinction between self and others diminishes. To test this, we tested weaker self-facilitation links 
in our simulations and observed that this change led to higher coexistence in communities with inter-
mediate dispersal coefficients but not in well-mixed communities or communities with low dispersal 
coefficients (Figure 4—figure supplement 2). It is a matter of debate how prevalent self-facilitation 
interactions are within microbial communities. Self-facilitation interactions do exist, for example when 
a species breaks down a recalcitrant substrate such as cellulose into smaller molecules that can be 
beneficial. However, if they are not as prevalent as what our model assumes, some of our predictions 
might be affected.

Coexistence is disrupted when the diffusion of mediators is too slow
The rate of diffusion of metabolites also has the potential to affect coexistence. We investigated 
coexistence over a range of mediator diffusion coefficients. We still typically observe a higher mean 
richness for spatial communities compared with the well-mixed communities (Figure 5). However, 
unlike the conventional wisdom, as the diffusion of mediators becomes slower, coexistence in spatial 
communities decreases. At low diffusion coefficients, coexistence drops even below that of corre-
sponding well-mixed communities. We associate this trend to weaker effective interactions among 
species at lower diffusion coefficients. Mediators that are involved in facilitation play a major part in 
allowing coexistence of species (Niehaus et al., 2019); if these mediators get consumed by nearby 
species and do not travel long enough to reach other members of the community, the interaction-
driven mechanism of coexistence is disrupted.

Discussion
Our results dispel the common presumption that a spatially structured environment will universally 
lead to more coexistence. We find that, compared to a well-mixed environment, a spatial environ-
ment can favor or disfavor coexistence depending on the balance between species dispersal and 
the diffusion of interaction mediators. Interestingly, a lower species dispersal rate favors coexistence, 
but this effect can be diminished or even reversed if accompanied by low mediator diffusion rates. 
Coexistence is favored when species have a broad range of consumption and an intermediate range 
of production of interaction mediators. Additionally, we predict more coexistence when there is a 
balance between overall production and consumption rates for mediators.

The spatial structure of microbial communities has been extensively studied for example in simu-
lating the development of biofilms (Wang and Zhang, 2010; Kreft et al., 2001; Xavier and Foster, 
2007; von der Schulenburg et al., 2009), for specific interactions among species (Momeni et al., 
2013b; Momeni et al., 2013a; Kang et al., 2014), or for modeling game-theory dynamics (Nakamaru 
et al., 1997; Brauchli et al., 1999; Saxer et al., 2009; Hauert and Doebeli, 2004). However, as there 
is often a tradeoff between the incorporation of detailed mechanisms and generality of conclusions 
(Levins, 1966; Momeni et  al., 2011), we chose in this work to explore a simple, general model 
of chemically mediated microbial interactions. We assumed, for example, that mediators affected 
species by additively influencing their growth rates. Although it is possible (and even probable) that 
mediator effects could be multiplicative, nonlinear, or otherwise context dependent and that they 
may impact other model parameters, we chose here to present what we felt to be the simplest case. 
Exploration of alternative implementations of mediator effects would make a fascinating follow-up to 
this work.

We have made assumptions in our model to simplify the configuration and make the analyses and 
interpretations easier. We asked if making these assumptions more realistic would affect our conclu-
sions. For example, we have assumed no carrying capacity limit for the growth of our populations. We 
explored the effect of imposing a total population limit, enforced at each spatial location, and found 

https://doi.org/10.7554/eLife.82504
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that it did alter our conclusions (Figure 1—figure supplement 5). However, because the relation-
ship between carrying capacity and coexistence has been explored extensively elsewhere, we chose 
parameters to minimize this impact, allowing us to focus on other interspecies interactions (beyond 
competition) and relative rates of diffusion and dispersal. We also tested the impact of the spatial 
extent of the community (Z), and observed that our results were largely unaffected if the community’s 
spatial extent was changed by an order of magnitude (Figure 1—figure supplement 4). The effect of 
larger changes in the spatial extent can be examined by scaling the diffusion and dispersal coefficients 
accordingly.

Beyond the details of our assumptions, there are also alternative representations of interactions 
among species, including a simplified Lotka–Volterra model and its variations (Wangersky, 1978), 
a consumer-resource model (Goldford et  al., 2018; Marsland et  al., 2019), or a reduced meta-
bolic model (Liao et al., 2020). There are trade-offs in tractability and complexity in choosing which 
model to use. Our reasoning for adopting the mediator-explicit model was to (1) explicitly include 
metabolites that mediate the interactions in the model (Momeni et al., 2017); (2) incorporate both 
metabolites that support the growth of other species as well as those that are inhibitory, such as 
waste products and toxins (Momeni et al., 2017); and (3) keep the model simple to allow a clear 
interpretation of mechanisms and processes when analyzing the results. We think it will be worthwhile 
to compare the predictions of other models to clarify what assumptions are necessary to generate the 
trends we have obtained and how general the conclusions are.

If spatial organization of cells matters, we also expect that the initial spatial position of species in 
the community impacts coexistence. To test this, we started from 100 simulations instances and in 
each case, we tried 100 rearrangements, each obtained by shuffling the spatial position of species, 
while keeping the species properties and interactions intact. Interestingly, in many cases coexis-
tence was affected (Figure 4—figure supplement 3), indicating that the adjacency to partners is an 
important determinant of spatial coexistence (as also suggested by Figure 1—figure supplement 
3 and Figure 1—figure supplement 7). When we examined the effect of the fac:inh ratio on these 
outcomes, we observed that larger changes in richness when facilitation interactions were more prev-
alent in the community (Figure 4—figure supplement 4), which aligns with many of our other results 
showing that facilitation amplifies the positive effect of spatial structure on coexistence. Although 
these results are tantalizing, a detailed examination of the spatial organization of populations and 
metabolites within the community requires a dedicated investigation and is beyond the scope of this 
work.

Finally, our model assumes that dispersal and diffusion rates are uniform across species and metab-
olites, respectively. However, dispersal ability can vary widely across microbial taxa, depending on 
cell size, motility type, chemotaxis, quorum sensing, and other factors. And how the dispersal rates 
of individuals scale up to affect population- and community-level dynamics is not well understood. 
Likewise, the diffusion rates of metabolites have the potential to vary greatly with molecule size and 
shape. Although outside the scope of this work, we are exploring heterogeneity in these rates of 
movement as an interesting follow-up.

Overall, we believe this work revisits how spatial structure—and spatial self-organization—
affects community assembly and coexistence. In our model, which emphasizes the contributions 
of interspecies interactions, we find that the impact of spatial structure on coexistence largely 
arises from two processes: (1) spatial self-organization, which can improve coexistence by favoring 
facilitation over inhibition, and (2) localization of interactions, which can promote coexistence in 
association with self-organization or hamper coexistence by slowing down and weakening species 
interactions.

Methods
Model description
Our model is an extension of a model introduced earlier (Niehaus et al., 2019) in which a set of 
species interact with each other through diffusible mediators. Each mediator is produced by a subset 
of species, consumed by a subset of species, and has a positive or negative influence on the growth 
rate of some species (Figure 1).

https://doi.org/10.7554/eLife.82504
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‍ksat‍ is the interaction strength saturation level. ‍βji‍ and ‍αji‍ are average production rate and consump-
tion rates, respectively, between species i and mediator j. Similar to Niehaus et al., 2019, each species 

Table 1. Parameters used in our simulations are listed.

Parameter Value (unit)

Number of instances examined (‍Ns‍) 500

Number of cell types in the initial pool (‍Nc‍) 10

Number of interaction mediators (‍Nm‍) 5

Total initial cell density (TID) 104 (cells/ml)

Interaction strength saturation level (‍ksat‍) 104 (cells/ml)

Population extinction threshold (ExtTh) 0.1 (cells/ml)

Population dilution threshold (DilTh) 107 (cells/ml)

Consumption rate (‍αij‍) 0.075–2.25 (fmol per cell per hour; avg. 0.15)
Stochastic with a uniform distribution

Production rate (‍βij‍)
0.1–0.2 (fmol per cell per hour; avg. 0.1)
Stochastic with a uniform distribution

Probability of production link per population (‍qp‍)
0.5

Probability of influence link per mediator (‍qc‍)
0.5

Maximum interaction strength magnitude (‍rint,0‍) 0.2 (1/hr)

Basal growth rate of species (‍r0‍) 0.1–0.2 (1/hr); stochastic with a uniform distribution

Number of generations for enrichment (nGen) 100

Dispersal coefficient for cells (DCell) 5 × 10−9 (cm2/hr)

Diffusion coefficient for mediators (DMed) 1.8 × 10−2 (cm2/hr)

Local carrying capacity per dz (kY) 109 cells/ml

Total community spatial extent (Z) 0.5 cm

Spatial resolution for species distributions (dz) 0.005 cm

Cell growth update and uptake timescale (dtau) 0.01 hr

Mediator diffusion time-step (dt) 0.1dz2/DMed

Cell dispersal simulation time-step (dc) 0.1dz2/DCell

https://doi.org/10.7554/eLife.82504
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has a basal growth rate (in the absence of interactions with other species), and influential mediators 
additively modulate this growth rate. At z = 0 and z = Z, no-flow boundary conditions are enforced 
for both species and mediators by setting the local spatial derivatives of these parameters to zero at 
the boundaries.

Typical parameters used in our simulations (unless otherwise stated) are listed in Table 1. These 
parameters are chosen in the expected realistic range of values; for example, the typical diffusion 
coefficient of small molecules in water is in the range of 100–1000 µm2/s, and we have used 500 µm2/s 
as a generic value. When comparing spatial communities with their well-mixed counterparts, exactly 
the same parameters for basal growth rates, production and consumption rates, mediator influences, 
and networks of production and consumption are used. This choice is made to reduce the stochas-
ticity caused by other parameters and to focus only on the impact of spatial structure.

To sample different possibilities, the interaction terms as well as production and consumption rates 
are randomly assigned in each instance of the simulation. Similar to our previous work (Niehaus et al., 
2019), the production/consumption matrices are random, that is each element of the matrix has a 
binomial distribution with a fixed probability of being present (‍qp‍ and ‍qc‍ for production and consump-
tion/influence links, respectively). The production and consumption rates have a uniform distribution 
between 0.5 and 1.5 times a set value each (‍βij‍ and ‍αij‍ for production and consumption rates, respec-
tively). The interaction matrix which represents the influence of mediators on species has the same 
structure as the consumption matrix. The magnitude of the influence in this matrix has a uniform 
distribution between 0 and a maximum value, ‍rint,0‍ . The sign of the influence is chosen from a binomial 
distribution based on the ratio of fac:inh.

Model implementation
We solve the equations in ‘Model description’ numerically in Matlab using a finite difference discrete 
version of the equations. Mediator diffusion and cell dispersal take place often at very different time 
scales. To simulate these processes, we use different numerical time-steps to update the mediator and 
cell distributions. To allow flexibility in modeling different diffusion and dispersal coefficients, we used 
asynchronous updates with two independent time-steps: one for updating the diffusion of metabo-
lites and another one for growth and dispersal of cells. The source codes are shared for transparency 
and reproducibility (see Code availability).

To assess coexistence, we use a criterion similar to Niehaus et al., 2019. In short, any species 
whose density drops below a pre-specified extinction threshold (ExtTh) is considered extinct. Among 
species that persist throughout the simulation, only those are considered to coexist whose relative 
frequency does not decrease by more than 10% of its value in the last 20 generations of the simu-
lation. We consider these species to be ‘stably present’ in the community. Species whose relative 
frequency declines faster than this threshold are assumed to go extinct later and are not considered to 
be part of coexisting communities. The only exception to this criterion is the data in Figure 4—figure 
supplement 1, in which all present species (rather than stably present species) are included in the 
assessment of final richness.

Statistics
Mean richness values are calculated by averaging the richness values calculated over all simulated 
instances for a given condition. Confidence intervals for mean richness values are calculated by boot-
strapping over all simulated instances for a given condition. The standard routine in Matlab, bootci, is 
used in all cases for bootstrapping.
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