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Abstract Systems genetics holds the promise to decipher complex traits by interpreting their 
associated SNPs through gene regulatory networks derived from comprehensive multi-omics data of 
cell types, tissues, and organs. Here, we propose SpecVar to integrate paired chromatin accessibility 
and gene expression data into context-specific regulatory network atlas and regulatory categories, 
conduct heritability enrichment analysis with genome-wide association studies (GWAS) summary 
statistics, identify relevant tissues, and estimate relevance correlation to depict common genetic 
factors acting in the shared regulatory networks between traits. Our method improves power upon 
existing approaches by associating SNPs with context-specific regulatory elements to assess herita-
bility enrichments and by explicitly prioritizing gene regulations underlying relevant tissues. Ablation 
studies, independent data validation, and comparison experiments with existing methods on GWAS 
of six phenotypes show that SpecVar can improve heritability enrichment, accurately detect rele-
vant tissues, and reveal causal regulations. Furthermore, SpecVar correlates the relevance patterns 
for pairs of phenotypes and better reveals shared SNP-associated regulations of phenotypes than 
existing methods. Studying GWAS of 206 phenotypes in UK Biobank demonstrates that SpecVar 
leverages the context-specific regulatory network atlas to prioritize phenotypes’ relevant tissues and 
shared heritability for biological and therapeutic insights. SpecVar provides a powerful way to inter-
pret SNPs via context-specific regulatory networks and is available at https://github.com/AMSSwan-
glab/SpecVar, copy archived at swh:1:rev:cf27438d3f8245c34c357ec5f077528e6befe829.
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Introduction
Genome-wide association studies (GWAS) have gained a great success to identify thousands of 
genetic variants significantly associated with a variety of human complex phenotypes. Interpretation 
of those genetic variants holds the key to biological mechanism discovery and personalized medicine 
practice. However, this task is hindered by the genetic architecture that the heritability is distributed 
across SNPs of the whole genome with linkage disequilibrium, which cumulatively affect complex 
traits. By quantifying the contribution of true polygenic signal considering linkage disequilibrium, LD 
Score regression (LDSC) provides a widely appreciated method to estimate heritability (Bulik-Sullivan 
et al., 2015b) and genetic correlation (Bulik-Sullivan et al., 2015a) from GWAS summary statistics.

Another obstacle to genetic variant interpretation is that SNPs contribute to phenotype through 
gene regulatory networks in certain cellular contexts, that is, causal tissues or cell types. Those tissues 
are characterized by different types of epigenetic data, which give the active regions of the genome 
that interact with transcription factors (TFs) to regulate gene expression. Stratified LDSC extends 
LDSC and can estimate the partitioned heritability enrichment in the functional categories (Finucane 
et al., 2015). The categories can be nonspecific genome annotations (such as coding, UTR, promoter, 
and intronic regions) and context-specific regulatory regions called from chromatin data of different 
cell types, such as DNase-I hypersensitive sites from DNase-seq data, accessible peaks from ATAC-seq 
data, histone marker, or TF binding sites from ChIP-seq data (AAP and SAP). Using expression data, 
the functional categories can be alternatively constructed by the 100 kb windows around the tran-
scribed regions of specifically expressed genes (SEGs) (Finucane et  al., 2018). Essentially, these 
strategies summarize the high-dimensional SNP signals from the whole genome into partitioned heri-
tability enrichments of functional categories and successfully identify relevant cellular tissues for many 
phenotypes (Finucane et al., 2015).

The rapid increase of multi-modal data resources, especially matched gene expression, chromatin 
states, and TF binding sites (i.e., measured on the same sample), offers an exciting opportunity to 
construct better functional categories for estimating context-specific heritability enrichment. One effi-
cient way is to integrate large-scale epigenomic and transcriptomic data spanning diverse human 
contexts to infer regulatory networks (Duren et al., 2017). Those regulatory networks provide rich 
context-specific information and usually comprise TFs, regulatory elements (REs), and target genes 
(TGs). Recently, we developed the PECA2 model to infer regulatory network from paired expression 
and chromatin accessibility data (Duren et al., 2017; Duren et al., 2020). The inferred regulatory 
networks have been used to identify the master regulators in stem cell differentiation (Li et al., 2019) 
and interpret conserved regions for the nonmodel organisms (Xin et al., 2020). Noncoding genetic 
variants can be interpreted in the regulatory networks on how they cooperatively affect complex 
traits through gene regulation in certain tissues or cell types. For example, genetic variants in the 
regulatory network of cranial neural crest cells (CNCC) are elucidated on how they affect human 
facial morphology (Feng et al., 2021). Regulatory networks can help identify two kinds of relevant 
cell types to COVID19 severity (Feng et al., 2022b). RSS-NET utilizes gene regulatory networks of 
multiple contexts and shows better tissue enrichment estimation by decomposing the total effect 
of an SNP through TF-TG regulations (Zhu et al., 2021) and HiChIP RE-TG regulations (Ma et al., 
2022). The phenotype-associated SNPs are revealed to be functional in a tissue- or cell-type-specific 
manner (Westra and Franke, 2014). The advances in constructing regulatory networks and inter-
preting genetic variants with regulatory networks enlighten us to (1) assemble a more comprehensive 
context-specific regulatory network atlas by using paired expression and accessibility data across 
diverse cellular contexts; (2) build context-specific regulatory categories by focusing on RE’s specificity 
compared with other contexts; and (3) systematically identify enriched tissues or cell types, relevance 
correlation, and the underlying SN-associated regulations.

Specifically, we propose SpecVar to first leverage the publicly available paired expression and 
chromatin accessibility data in ENCODE and ROADMAP to systematically construct context-specific 
regulatory networks of 77 human contexts, which cover major cell types and germ layer lineages. This 
atlas serves as a valuable resource for genetic variants interpretation in multicellular contexts. SpecVar 
then constructs regulatory categories in the genome with this atlas, which can significantly improve 
the heritability enrichment. Based on the heritability enrichment and p-value in our regulatory catego-
ries, SpecVar defines the relevance score to give the context-specific representation of the GWAS. In 
this article, we use six well-studied phenotypes, large-scale facial morphology, and UKBB phenotypes 
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to show that, for a single phenotype, the relevance score of SpecVar can identify relevant tissues more 
efficiently; and for multiple phenotypes, SpecVar can reveal relevance correlation by common rele-
vant tissues, and underlying shared SNP-associated regulations. Compared to the existing methods, 
SpecVar shows novelty in three aspects: (1) SpecVar integrates paired gene expression data and chro-
matin, which are two types of easily accessible data with rich information, into regulatory networks. 
The gene expression and chromatin accessibility in the regulatory network are complementary to each 
other to reveal the high-quality active regulatory elements and genes for certain tissues or cell types 
to interpret genetic variants; (2) SpecVar highlights the comparison with other contexts by specificity 
to narrow down the regulatory molecules; and (3) SpecVar is more interpretable because it can explain 
the relevance to tissues by SNP-associated regulatory networks and interpret phenotype correlation 
through common relevant tissues and shared SNP-associated regulatory network. These results show 
that SpecVar serves as a promising tool for post-GWAS analysis.

Results
Overview of the SpecVar method
SpecVar assembled a context-specific regulatory network atlas and built the context-specific repre-
sentation (relevance score and SNP-associated regulatory network) of GWAS summary statistics 
based on heritability enrichment. Figure 1 summarizes the major steps of SpecVar to construct the 
context-specific regulatory network atlas and regulatory categories, calculate heritability enrichment 
and SNP-associated regulatory network, and investigate interpretable relevant tissues and relevance 
correlation.

We first constructed regulatory networks of M (M = 77 in this work) contexts. Each network is repre-
sented by a set of relations between TF and RE and between RE and TG. The M contexts included 
samples from all three germ layers, such as ‘frontal cortex’ (ectoderm), ‘fetal thymus’ (mesoderm), 
and ‘body of pancreas’ (endoderm), which ensured the wide coverage and system-level enrichment 
(Figure 1—figure supplement 1). The context-specific regulatory networks were extracted based on 
the specificity of REs compared with other contexts, considering the hierarchical relationship of M 
contexts (Materials and methods, Supplementary file 1a). The REs in the ‍i‍th context-specific regula-
tory network were pooled to form a regulatory category ‍Ci‍ in the genome, which restricted the annota-
tion to context-specific REs associated with active binding TFs and nearby regulated TGs (Figure 1a). 
Our atlas led to M regulatory categories, ‍C1, C2, . . . , CM‍ of SpecVar. Given GWAS summary statistics, 
the M regulatory categories allowed partitioned heritability enrichment analysis by stratified LDSC. 
For a phenotype, stratified LDSC modeled genome-wide polygenic signals, partitioned SNPs into 
categories with different contributions for heritability, and considered SNP’s linkage disequilibrium 
with the following polygenic model:
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 is the LD score of SNP ‍j‍ in the ‍i‍th regulatory category ‍Ci‍ , where ‍rjk‍ is the genotype 

correlation between SNP ‍j‍ and SNP ‍k‍ in population; ‍a‍ measures the contribution of confounding 
biases; and ‍τi‍ represents the heritability enrichment of SNPs in ‍Ci‍ . Stratified LDSC estimated the p 
value ‍pi‍ for the heritability enrichment ‍τi‍ by block Jackknife (Finucane et al., 2015).

We defined the relevance score (‍Ri‍) of this phenotype to ‍i‍th context (Figure 1a) as follows by 
combining the heritability enrichment and statistical significance (p-value):

	﻿‍ Ri = τi ·
(
− log pi

)
‍� (2)

The relevance score (R score) provided a decision trade-off between the heritability enrichment 
and p-value resulting from a hypothesis test. It offered a robust means to rank and select relevant 
tissues for a given phenotype (Xiao et al., 2014).

Meanwhile, SpecVar associated SNPs with context-specific regulatory networks for biological inter-
pretation. We defined the association score (A score) to prioritize the REs by combining its regulatory 
strength and association significance with the phenotype (averaged -log(p-value) of SNPs located 
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Figure 1. Overview of SpecVar. (a) SpecVar constructs an atlas of context-specific regulatory networks and regulatory categories. Then SpecVar 
represents genome-wide association studies (GWAS) summary statistics into relevance scores and SNP-associated regulatory subnetworks. (b) For a 
single phenotype, SpecVar can use relevance score and SNP-associated regulatory subnetworks to identify and interpret relevant tissues. (c) For multiple 
phenotypes, based on relevance score, SpecVar can reveal relevance correlation, common relevant tissues, and shared regulations.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Principal component analysis (PCA) plot of regulatory network atlas of 77 human tissues.
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near the RE and downweighted by their LD scores and distances to this RE). We extracted the REs 
with significant A scores (‍FDR ≤ 0.05‍), as well as their directly linked upstream TFs, downstream TGs, 
and associated SNPs, to form the SNP-associated regulatory subnetwork (Figure 1a, Materials and 
methods). Given GWAS summary statistics of a phenotype, SpecVar obtained M SNP-associated 
regulatory subnetworks, ‍G1, G2, . . . , GM‍ , allowing us to interpret relevant tissues by SNP’s regulation 
mechanism.

The relevance score to diverse human contexts and SNP-associated regulatory networks allowed 
SpecVar to perform post-GWAS analysis. For a single phenotype, the R scores indicated the rele-
vance of this phenotype to M contexts, which can be used to identify relevant tissues. Then in the 
relevant tissues, we can investigate the SNP-associated regulatory subnetwork to interpret the rele-
vance (Figure 1b, Materials and methods). For multiple phenotypes, we can correlate the R score 
vectors in multiple contexts to define relevance correlation (Finucane et al., 2018). The relevance 
correlation might give insights into the association of phenotypes since SpecVar can further interpret 
the relevance correlation between two phenotypes by common relevant tissues and the shared SNP-
associated regulatory subnetwork (Figure 1c, Materials and methods).

Context-specific regulatory networks improve heritability enrichment
We first designed experiments to show that context-specific regulatory networks could improve heri-
tability enrichment. We collected GWAS summary statistics of six phenotypes, including two lipid 
phenotypes (Willer et al., 2013): low-density lipoprotein (LDL) and total cholesterol; two human intel-
ligential phenotypes (Lee et al., 2018): educational attainment and cognitive performance; and two 
craniofacial bone phenotypes: brain shape (Naqvi et al., 2021) and facial morphology (Xiong et al., 
2019). We used these six phenotypes as a benchmark since their relevant tissues have been previ-
ously studied and partially known: lipid phenotypes are associated with the liver for its key role in lipid 
metabolism (Nguyen et al., 2008); human intelligential phenotypes are associated with brain tissues 
(Goriounova and Mansvelder, 2019); facial morphology and brain shape have shared heritability in 
cranial neural crest cells (Naqvi et al., 2021). We compared our context-specific regulatory networks 
with four alternative methods of functional categories: all regulatory elements (ARE), all accessible 
peaks (AAP), specifically accessible peaks (SAP) (Finucane et al., 2015), and specifically expressed 
genes (Finucane et al., 2018) (SEG) (Materials and methods).

First, we showed that SpecVar could achieve higher heritability enrichment in the relevant tissues 
than other methods (Supplementary file 1b). For LDL, SpecVar obtained a heritability enrichment 
of 678.91 in the ‘right lobe of liver’, while ARE, SAP, AAP, and SEG gave heritability enrichment of 
113.34, –42.09, 50.95, and 4.47, respectively. We conducted Welch’s t-test to assess the significance 
of the difference between SpecVar and other methods and found that the heritability enrichment of 
SpecVar was significantly higher than ARE (‍p = 6.9 × 10−4

‍), SAP (‍p = 1.4 × 10−4
‍), AAP (‍p = 3.4 × 10−4

‍), 
and SEG (‍p = 2.1 × 10−4

‍) (Figure  2a). For total cholesterol, SpecVar also gave significantly higher 
heritability enrichment in ‘right lobe of liver’ than ARE (‍p = 5.7 × 10−4

‍), SAP (‍p = 4.4 × 10−5
‍), AAP 

(‍p = 1.6 × 10−4
‍), and SEG (‍p = 7.7 × 10−5

‍) (Figure 2b). For educational attainment and cognitive perfor-
mance, they were relevant to brain tissues: ‘frontal cortex’, ‘cerebellum’, ‘caudate nucleus’, ‘Ammon’s 
horn’, and ‘putamen’. SpecVar obtained the highest averaged heritability enrichment in brain tissues 
among these methods (Figure  2—figure supplement 1a and b). In the ‘frontal cortex’, SpecVar 
had significantly higher heritability enrichment than ARE (‍p = 1.2 × 10−5

‍), SAP (‍p = 2.0 × 10−6
‍), AAP 

(‍p = 3.0 × 10−6
‍), and SEG (‍p = 3.0 × 10−6

‍) for educational attainment (Figure 2c). And for cognitive 
performance in ‘frontal cortex’, SpecVar also had significantly higher heritability enrichment than ARE 
(‍p = 9.0 × 10−6

‍), SAP (‍p = 2.0 × 10−6
‍), AAP (‍p = 1.0 × 10−6

‍), and SEG (‍p = 1.0 × 10−6
‍) (Figure 2d). 

For brain shape, SpecVar obtained a significantly higher heritability enrichment in its relevant context 
‘CNCC’ than the other four methods (ARE ‍p = 5.9 × 10−4

‍ , SAP ‍p = 6.7 × 10−4
‍ , AAP ‍p = 7.5 × 10−4

‍ 
, and SEG ‍p = 8.1 × 10−5

‍ , Figure 2e). For facial morphology, SpecVar also gave a much higher heri-
tability enrichment in ‘CNCC’ than the other four methods (ARE ‍p = 9.0 × 10−6

‍ , SAP ‍p = 1.0 × 10−6
‍ 

, AAP ‍p = 7.0 × 10−6
‍ , and SEG ‍p = 1.0 × 10−6

‍ , Figure 2e). Second, except for the known relevant 
tissues, these complex traits may be relevant to other contexts. So, for every method, we ranked the 
heritability enrichment to get the top 10 contexts and used these top contexts’ heritability enrichment 
to compare the ability of these five methods to explain heritability. SpecVar also showed the best 
performance of heritability enrichment among the five methods (Figure 2g). Taking brain shapeas an 

https://doi.org/10.7554/eLife.82535
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example, SpecVar achieved significantly higher heritability enrichment (averaged heritability enrich-
ment 96.13) than ARE (averaged heritability enrichment 26.77, t-test ‍p = 3.4 × 10−3

‍), SAP (42.92, 

‍p = 1.9 × 10−2
‍), AAP (20.34, ‍p = 1.8 × 10−3

‍), and SEG (2.25, ‍p = 3.1 × 10−4
‍). We found that speci-

ficity could significantly improve the heritability enrichment. Among the five methods we compared, 
SpecVar and SAP are based on the specificity of ARE and AAP, respectively. SpecVar showed signifi-
cantly higher heritability enrichment than ARE and SAP showed significantly higher heritability enrich-
ment than AAP (Figure 2g). For brain shape, SpecVar obtained averaged heritability enrichment of 
96.31 of the top 10 contexts, which was significantly higher than ARE (averaged heritability enrich-
ment 26.77, ‍p = 3.4 × 10−3

‍); SAP obtained average heritability enrichment of 42.92, and AAP’s aver-
aged heritability enrichment was 20.34 (‍p = 2.7 × 10−3

‍). The other five phenotypes showed a similar 
improvement (Figure 2g).

To explore the heritability enrichment improvement of SpecVar, we conducted ablation analysis to 
study the contribution of two important parts of SpecVar: (1) regulatory network by integrating gene 
expression and chromatin accessibility data, and (2) specificity by comparing with other contexts. 
Figure 2—figure supplement 1c shows the relationship and difference of the five methods: SEG is 
the combination of gene expression and specificity; AAP is only from chromatin accessibility; SAP is 
the combination of chromatin accessibility and specificity; ARE integrates gene expression and chro-
matin accessibility; and SpecVar considers integration of gene expression, chromatin accessibility, and 
specificity. To analyze the effect of the regulatory network in heritability enrichment, we compared 
SpecVar with SAP and showed the effect of gene expression data. We compared SpecVar with SEG 
and showed the effect of chromatin accessibility data. We compared SpecVar with ARE and showed 
the contribution of specificity (Figure  2—figure supplement 1d). To quantify the effect of each 
component, we caculated the fold change of different methods’ heritability enrichments. We found 
that chromatin accessibility, which was part of the regulatory network, showed the highest effect in 
improving heritability enrichments for all six phenotypes. This is consistent with the fact that most 
genetic variants are located in the noncoding regulatory regions (Claussnitzer et al., 2015; Kumar 
et al., 2012; Smemo et al., 2014) and chromatin accessibility gives the direct functional evidence for 
genetic variants. The specificity in SpecVar also contributed at least four-fold improvement in herita-
bility enrichment (Figure 2—figure supplement 1e).

In summary, the experiment on six phenotypes’ GWAS summary statistics proved that SpecVar 
achieved the best performance in explaining the heritability of phenotypes. These results demon-
strated the power of integrating expression and chromatin accessibility data and considering contexts’ 
specificity.

SpecVar can accurately reveal relevant tissues for phenotypes
After establishing that SpecVar could use the context-specific regulatory networks to improve herita-
bility enrichment, we next showed that for a given phenotype, SpecVar could use R scores to identify 
relevant tissues more accurately than other methods. In this experiment, we also used the above six 
phenotypes with their known relevant tissues as a benchmark and first compared SpecVar with the 
other two specificity-based methods: SAP and SEG (Materials and methods).

For two lipid phenotypes, SpecVar revealed that both LDL and total cholesterol were most relevant 
to the ‘right lobe of liver’ (Figure 3a and b, Table 1), which was consistent with the existing reports 
that the liver plays a central role in lipid metabolism, serving as the center for lipoprotein uptake, 
formation, and export to the circulation (Jha et al., 2018; Nguyen et al., 2008). SpecVar found that 
LDL and the total cholesterol were also significantly relevant to the ‘fetal adrenal gland’ and the 
adrenal cortex has been revealed to play an important role in lipid mentalism (Boyd et al., 1983). 
However, SAP and SEG failed to prioritize liver tissue as the significant relevant tissue. For LDL, SAP 

neural crest cell (CNCC). (f) The heritability enrichment of facial morphology in ‘CNCC’. The sample size of error bars for (a-f) is 200. (g) Boxplot of top 
10 contexts’ heritability enrichment of six phenotypes for five methods.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. SpecVar achieves higher heritability than other methods through regulatory network and specificity.

Figure supplement 2. The heritability enrichment estimated by ‘pooled genome partition’.

Figure 2 continued

https://doi.org/10.7554/eLife.82535
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Figure 3. Comparison of identifying proper relevant tissues between SpecVar and two other LD Score regression (LDSC)-based method: specifically 
accessible peaks (SAP) and specifically expressed genes (SEG). The top five relevant tissues ranked by the relevant score of SpecVar, SAP, and SEG for 
(a) low-density lipoprotein (LDL), (b) total cholesterol, (c) educational attainment, (d) cognitive performance, (e) brain shape, and (f) facial morphology. 
The sample size of error bars for (a-f) is 100.

Figure 3 continued on next page
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identified the ‘frontal cortex’ to be the most relevant tissue. SEG identified the most relevant tissue 
to be ‘HepG2’, which was human hepatoma cell lines, but the relevance score was relatively lower 
(Figure 3a, Supplementary file 1c). For total cholesterol, SAP identified the ‘fetal adrenal gland’ and 
SEG obtained ‘HepG2’ as the most relevant tissues (Figure 3b, Supplementary file 1c).

For two human intelligential phenotypes, SpecVar prioritized the ‘frontal cortex’ to be the most 
relevant tissue for both educational attainment and cognitive performance (Figure 3c and d, Table 1). 
‘Frontal cortex’ is the cerebral cortex covering the front part of the frontal lobe and is implicated 
in planning complex cognitive behavior, personality expression, decision-making, and moderating 
social behavior (Gabrieli et  al., 1998; Yang and Raine, 2009). There were five tissues (‘frontal 
cortex’, ‘Ammon’s horn’, ‘cerebellum’, ‘putamen’, and ‘caudate nucleus’) from the brain in our atlas 
and they were significantly higher ranked by SpecVar’s relevance score than nonbrain tissues for 
educational attainment (Wilcoxon rank-sum test, ‍p = 6.1 × 10−7

‍ , Figure 3c) and cognitive perfor-
mance (‍p = 8.0 × 10−6

‍, Figure 3d). In comparison, for educational attainment, SAP prioritized brain 
tissues to be higher ranked than nonbrain tissues, but with a less significant p-value (‍p = 2.3 × 10−3

‍, 
Figure 3c, Supplementary file 1c). SEG could not rank brain tissues to be higher than nonbrain tissues 
(‍p = 6.4 × 10−1

‍, Figure 3c, Supplementary file 1c). For cognitive performance, SAP failed to rank 
brain tissues as the more relevant tissues (‍p = 6.0 × 10−2

‍, Figure 3d, Supplementary file 1c), and 
SEG identified brain tissues to be more relevant than nonbrain tissues but with a less significant 
p-value (‍P = 3.2 × 10−3‍, Figure 3d, Supplementary file 1c).

For both facial morphology and brain shape, SpecVar identified CNCC as the most relevant 
context (Figure 3e and f, Table 1). CNCC is a migratory cell population in early human craniofacial 

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The top five relevant tissues ranked by the log-likelihood estimated by CoCoNet for (a) low-density lipoprotein (LDL), (b) total 
cholesterol, (c) educational attainment, (d) cognitive performance, (e) brain shape, and (f) facial morphology.

Figure supplement 2. The top five relevant tissues ranked by -log(p-value) estimated by RolyPoly for (a) low-density lipoprotein (LDL), (b) total 
cholesterol, (c) educational attainment, (d) cognitive performance, and (e) facial morphology.

Figure supplement 3. Top 10 contexts ranked by heritability enrichment in context-specific regulatory elements of (a) low-density lipoprotein (LDL), 
(b) total cholesterol, (c) educational attainment, (d) cognitive performance, (e) brain shape, and (f) facial morphology.

Figure supplement 4. Top 10 contexts ranked by p-values of heritability enrichment in context-specific regulatory elements of (a) low-density 
lipoprotein (LDL), (b) total cholesterol, (c) educational attainment, (d) cognitive performance, (e) brain shape, and (f) facial morphology.

Figure supplement 5. The top five relevant tissues ranked by the relevant score estimated by the group-based SpecVar.

Figure 3 continued

Table 1. The total sample size, number of significant SNP associations, and SpecVar-identified 
relevant tissues of six phenotypes.
For each relevant tissue, we have two numbers in the bracket: the first is the R score and the second 
is its false discovery rate (FDR) q-value.

Trait
Sample 
size

SNP 
association Relevant tissues (R score and its FDR q-value)

Low-density 
lipoprotein 173,082 3077

Right lobe of liver (722.74, 1.2e-3), frontal cortex (146.54, 3.3e-4), 
gastrocnemius medialis (128.02, 4.7e-4), fetal adrenal gland (123.52, 
9.5e-4)

Total 
cholesterol 187,365 4169

Right lobe of liver (714.75, 1.0e-2), fetal adrenal gland (216.74, 4.3e-17), 
H7-hESC (130.73, 2.1e-3)

Educational 
attainment 1070,751 30,519 Frontal cortex (167.23, 3.7e-7)

Cognitive 
performance 257,841 13,732

Frontal cortex (216.62, 7.0e-28),
Ammon’s horn (107.25, 2.3e-10)

Brain shape 19,644 38,630 CNCC (512.56, 2.7e-44), trophoblast (144.15, 3.8e-9)

Facial 
morphology 10,115 495 CNCC (134.95, 8.0e-10), fibroblast (128.81, 3.8e-26)

CNCC, cranial neural crest cell.

https://doi.org/10.7554/eLife.82535
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development that gives rise to the peripheral nervous system and many non-neural tissues such as 
smooth muscle cells, pigment cells of the skin, and craniofacial bones, which make it much more 
related to facial morphology and brain shape than the other 76 contexts (Cordero et  al., 2011; 
Barlow et al., 2008). Facial morphology and brain shape were also revealed to share heritability in 
CNCC (Naqvi et al., 2021). But the other two methods failed to identify CNCC as the most relevant 
context. For brain shape, SAP identified ‘H1-hESC’ and SEG identified ‘tibial nerve’ to be the most 
relevant tissue (Figure 3e, Supplementary file 1c). For facial morphology, SAP and SEG identified 
‘foreskin’ and ‘sigmoid colon’ to be the most relevant tissues, respectively (Figure 3f, Supplementary 
file 1c).

We next compared with other relevant tissue identification methods that were not based on LDSC. 
First, we compared SpecVar to CoCoNet, which was based on gene co-expression networks. CoCoNet 
is built with 38 tissues’ co-expression networks from GTEx, and we applied it to our six phenotypes. 
We could see CoCoNet identified ‘Breast’ as the most relevant tissue for LDL (Figure  3—figure 
supplement 1a) and ‘Brain_other’ as the most relevant tissue for total cholesterol (Figure 3—figure 
supplement 1b). ‘Breast’ was the most relevant tissue for educational attainment (Figure 3—figure 
supplement 1c), and ‘Stomach’ was the most relevant tissue for cognitive performance (Figure 3—
figure supplement 1d). Since there is no CNCC sample in GTEx, CoCoNet revealed ‘Prostate’ as the 
most relevant tissue for brain shape and facial morphology. These results seemed less reasonable 
than SpecVar because CoCoNet did not identify liver tissues for LDL and total cholesterol and did not 
reveal brain tissues for educational attainment and cognitive performance. We also compared with 
RolyPoly, which was a non-network-based method for discovering relevant tissues. We fitted the Roly-
Poly model with gene expression profiles of our 77 human contexts and applied it to GWAS of LDL, 
total cholesterol, educational attainment, cognitive performance, and facial morphology. RolyPoly 
prioritized the ‘HepG2’ cell line as the most relevant tissue for LDL and total cholesterol (Figure 3—
figure supplement 2a and b). ‘HepG2’ is also reasonable to be relevant to lipid phenotypes because 
it is the nontumorigenic cell with high proliferation rates and epithelial-like morphology that performs 
many differentiated hepatic functions. For educational attainment, RolyPoly did not identify the five 
brain tissues as the top-ranked tissue and only include ‘fetal spinal cord’ in the top five relevant tissues 
(Figure 3—figure supplement 2c). For cognitive performance, there were no brain tissues in the top 
five tissues (Figure 3—figure supplement 2d). And for facial morphology, RolyPoly failed to identify 
‘CNCC’ as relevant tissues (Figure 3—figure supplement 2e). The comparison with two non-LDSC-
based methods again showed the superiority of SpecVar to identify proper relevant tissues.

After identifying the relevant tissues, SpecVar could further interpret the relevance by extracting 
SNP-associated regulatory subnetwork (Materials and methods). For example, we obtained the brain 
shape’s SNP-associated regulatory subnetwork in CNCC (Figure  4a). There were 62 SNPs associ-
ated with 24 REs, 73 TFs, and 52 TGs. The TGs were tightly involved with brain development. For 
example, POU3F3 is a well-known TF involved in the development of the central nervous system and 
is related to many neurodevelopmental disorders (Snijders Blok et al., 2019). EMX2 is expressed 
in the developing cerebral cortex and is involved in the patterning of the rostral brain (Cecchi and 
Boncinelli, 2000). FOXC2 is a member of the FOX family, which are modular competency factors for 
facial cartilage (Xu et al., 2018), and its mutation is linked to the cleft palate (Bahuau et al., 2002). By 
GWAS study, FOXC2 was previously found to be associated with brain shape by its nearest significant 
SNP ‘16:86714715’ (Naqvi et al., 2021). However, in CNCC, we did not find any accessible peaks 
that overlapped with this SNP. Instead, we found a CNCC-specific RE that regulated FOXC2 in a 
locus of the 650k downstream (Figure 4b). GWAS revealed that the SNPs in this region had a strong 
association with brain shape and had high LD with each other. Our CNCC-specific regulations further 
prioritized only two SNPs (‘16:87237097’, ‘16:87236947’) located in this CNCC-specific RE, which may 
influence the expression of FOXC2 and the brain shape phenotypes. We checked the chromatin loops 
in the database of HiChIP (Zeng et al., 2022) and found that this SNP-associated regulation of FOXC2 
was supported by a HiChIP loop in brain tissues to link this SNP locus and FOXC2 promoter. This 
example showed the power of SpecVar to interpret the genetic variants’ association with phenotypes 
by detailed regulatory networks in relevant tissues.

The SNP-associated regulatory networks can facilitate the fine mapping of GWAS signals. Since 
there are eQTL data of the liver and brain tissues in the GTEx database, we collected the signifi-
cant SNP-gene pairs of liver and brain tissues from GTEx to validate the identified SNP-associated 

https://doi.org/10.7554/eLife.82535
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Figure 4. SpecVar uses SNP-associated regulation to interpret relevance to tissues. (a) The brain shape’s SNP-associated regulatory subnetwork in 
cranial neural crest cell (CNCC). The dash arrows indicate significant SNPs that are not located in regulatory elements (RE) but near this RE. (b) SNP-
associated regulation of FOXC2. There is a group of significant SNPs of brain shape that is located in the 650k downstream of FOXC2, and they are 
with high linkage disequilibrium. SpecVar prioritizes SNPs located in a CNCC-specific RE as causal genetic variants affecting brain shape through the 
regulation of FOXC2. The SNP locus and promoter of FOXC2 are linked by a HiChIP loop of the brain tissues.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page
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regulations. For educational attainment, SpecVar revealed 7611 SNP-TG pairs in its SNP-associated 
regulatory network of ‘frontal cortex’, and we found that 3693 SNPs (40.1%) of these SNP-TG pairs 
were also SNPs of eQTL in brain tissues. Among the 2862 SNPs, 788 SNPs (10.4%) had the same TGs 
with the eGenes in the eQTL database (hypergeometry test, ‍p = 7.0 × 10−121

‍). For cognitive perfor-
mance, there were 7494 SNP-TG pairs in its SNP-associated regulatory network of ‘frontal cortex’. 
And 3569 of them (47.6%) were also SNPs of eQTL in brain tissues. SpecVar further revealed that 988 
SNPs (13.2%) had the same TGs with the eGenes in the eQTL database (‍p = 3.2 × 10−224

‍). For LDL, 
there were 556 SNP-TGs pairs in its SNP-associated regulatory network of ‘right lobe of liver’, and we 
found that 45 of the SNP-TG pairs (8.1%) were also SNPs of eQTL. Two of the SNPs had the same TGs 
with the eGenes in the eQTL database (‍p = 5.0 × 10−2

‍). For total cholesterol, there were 461 SNP-TGs 
pairs in its SNP associated regulatory network of ‘right lobe of liver’. We found that 16 of the SNP-TG 
pairs (3.5%) were also SNPs of eQTL. There were two of the SNPs that had the same TGs with the 
eGenes in the eQTL database (‍p = 3.0 × 10−2

‍).
In summary, we evaluated SpecVar’s ability to identify relevant tissues using six well-studied pheno-

types as the gold standard by comparison with SAP, SEG, CoCoNet, and RolyPoly. The results showed 
that SpecVar could identify relevant tissues more accurately and stably. Meanwhile, SpecVar provided 
detailed regulations to interpret the relevance to tissues and help the fine mapping of GWAS signals.

SpecVar reveals the association of multiple phenotypes by relevance 
correlation
SpecVar’s ability to accurately and robustly identify relevant tissues enlightens us to define the 
relevance correlation of two phenotypes by Spearman correlation of their R scores (Materials and 
methods). The relevance correlation may approximate phenotypic correlation since if two phenotypes 
are correlated, their relevance to human contexts will also be correlated. We used two GWAS data-
sets with phenotypic correlation computed from individual phenotypic data as the gold standard and 
compared SpecVar with two other methods SAP and SEG.

The first dataset was GWAS of 78 distances on the human face (Xiong et al., 2019). Based on 
summary statistics, we computed the relevance correlations of 3003 pairs of distances with SpecVar, 
SAP, and SEG. We compared the relevance correlation to phenotypic correlation from individual 
phenotypic data and computed the Pearson correlation coefficient (PCC, Materials and methods) to 
evaluate the performance of these three methods. SpecVar’s relevance correlation showed the best 
performance in approximating phenotypic correlation (Figure 5a and b, PCC = 0.522), which outper-
formed the other two methods: SAP PCC = 0.467 (Figure 5b) and SEG PCC = 0.405 (Figure 5b). We 
also evaluated the ability to approximate the phenotypic correlation of highly correlated phenotypes. 
By setting the threshold of phenotypic correlation to 0.4, we obtained the 363 highly correlated 
phenotype pairs of facial landmark distances and compared the three methods based on their perfor-
mance on these 363 pairs of phenotypes. We found that SpecVar also performed best with PCC 0.467, 
which was the largest among the three methods: SAP PCC = 0.454 and SEG PCC = 0.245 (Figure 5c). 
We also used the mean square error (Figure 5—figure supplement 1a and b) and mutual informa-
tion (Figure 5—figure supplement 1c and d) as metrics to evaluate the performance (Materials and 
methods) and SpecVar was the best among these three methods.

The second GWAS dataset is from UK Biobank. There were 4313 GWAS in UK Biobank, from which 
we selected 206 high-quality GWAS summary statistics of 12 classes (Supplementary file 1d, Mate-
rials and methods). We applied SpecVar and the other two methods to obtain the relevance correla-
tions among these 206 phenotypes and used the phenotypic correlations computed from individual 
data as validation. First, SpecVar performed best in the approximation of phenotypic correlation (PCC 
= 0.360), followed by SAP (PCC = 0.315) and SEG (PCC = 0.285) (Figure 5d). For highly correlated 
phenotypes, SpecVar’s relevance correlation was also closest to phenotypic correlation (Figure 5e). 
SpecVar’s outperformance of estimating phenotypic correlation was reproduced by using mean square 
error (Figure 5—figure supplement 2a and b) and mutual information (Figure 5—figure supplement 

Figure supplement 1. Distribution of A scores of (a) low-density lipoprotein (LDL) in 'right lobe of liver’, (b) total cholesterol in the 'right lobe of liver’, 
(c) educational attainment in the 'frontal cortex’, (d) cognitive performance in the 'frontal cortex’, (e) brain shape in cranial neural crest cell ('CNCC'), and 
(f) facial morphology in 'CNCC'.

Figure 4 continued
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Figure 5. SpecVar defines relevance correlation to reveal association of phenotypes. (a) The scatter plot of true phenotypic correlation and relevance 
correlation by SpecVar. Each point means a pair of facial distances. (b) For all phenotype pairs of facial distances, the Pearson correlation coefficient 
(PCC) between phenotypic correlation and relevance correlation of three methods. (c) For highly correlated phenotype pairs of facial distances, the 
PCC between phenotypic correlation and relevance correlation of three methods. (d) For all pairs of UKBB phenotypes, the PCC between phenotypic 
correlation and relevance correlation of three methods. (e) For highly correlated pairs of UKBB phenotypes, the PCC between phenotypic correlation 
and relevance correlation of three methods. (f) For UKBB phenotype pairs with 25 different heritability thresholds, the PCC between phenotypic 
correlation and relevance correlation of four methods.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure 5 continued on next page
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2c and d) as metrics. We found that the heritability of these 206 phenotypes was quite variable. For 
example, ‘rose wine intake’ had a heritability of ‍6.5 × 10−3‍ and ‘corneal resistance factor right’ had a 
heritability of 0.336. So, we checked whether the heritability would influence the quality of relevance 
correlation. To do this, we set different thresholds of heritability and obtained a subset of phenotypes 
for each threshold. Then for the phenotype subset of each heritability threshold, we computed the 
PCC between relevance correlation and phenotypic correlation. For almost all the thresholds of heri-
tability, SpecVar showed the best performance of PCC and mean square error (Figure 5f, Figure 5—
figure supplement 2e). SpecVar also had the smallest variance regarded heritability among these 
three methods (Figure 5—figure supplement 2f and g). This means that the relevance correlation of 
SpecVar could estimate phenotypic correlation more accurately and robustly.

SpecVar can interpret the relevance correlation by the common relevant tissues and shared SNP-
associated regulations of two phenotypes (Supplementary file 1e). For example, ‘body mass index’ 
and ‘leg fat-free mass (right)’ were correlated with a phenotypic correlation of 0.697. SpecVar obtained 
a relevance correlation of 0.602, while SAP obtained a relevance correlation of 0.342 and SEG gave a 
relevance correlation of 0.437. SpecVar further revealed that these two phenotypes were correlated 
because they were both most relevant to the ‘frontal cortex’ (Figure 6a). Body mass index has been 
reported to be related to frontal cortex development (Laurent et  al., 2020) and relevant to the 
reduced and thin frontal cortex (Islam et al., 2018; Shaw et al., 2018). Obesity and fat accumulation 
are also revealed to be associated with the frontal cortex (Gluck et al., 2017; Kakoschke et al., 2019). 
SpecVar then extracted these two phenotypes’ SNP-associated regulatory networks in the ‘frontal 
cortex’ and found that their SNP-associated networks were significantly shared. The significant over-
lapping was observed at SNP, RE, TG, and TF levels: ‍p = 8.2 × 10−63

‍ for SNPs, ‍p = 1.4 × 10−47
‍ for REs, 

‍p = 6.0 × 10−25
‍ for TGs, and ‍p = 8.2 × 10−25

‍ for TFs (Figure 6b). The shared regulatory network was 
involved with body weight and obesity. For example, in the brain, SH2B1 enhances leptin signaling 
and leptin’s antiobesity action, which is associated with the regulation of energy balance, body weight, 
and glucose metabolism (Rui, 2014). We found that one common significant SNP ‘16:2896143’of 
these two phenotypes was located in the specific REs of the ‘frontal cortex’ at the 90k downstream of 
SH2B1. Even though this RE was near the promoter of NFATC2IP, SpecVar revealed that it regulated 
the expression of SH2B1, which was supported by a HiChIP loop in brain tissues to associate the SNP-
associated RE and promoter of SH2B1 (Figure 6c). These results indicated that one shared SNP was 
located in the ‘frontal cortex’-specific RE and might regulate the expression of SH2B1 to influence two 
phenotypes: ‘body mass index’ and ‘leg fat-free mass (right)’.

Through the application of relevance correlation to two datasets with the gold standard of pheno-
typic correlation, we concluded that SpecVar can use the accurate relevance score to define rele-
vance correlation, which could better estimate phenotypic correlation. SpecVar could further reveal 
common relevant tissues and shared SNP-associated regulatory networks to interpret correlation of 
phenotypes.

Discussion
In this article, we introduce the context-specific regulatory network, which integrate paired gene 
expression and chromatin accessibility data, to construct context-specific regulatory categories for 
better interpretation of GWAS data. SpecVar is developed as a tool to interpret genetic variants 
based on GWAS summary statistics. The key message is that integrating chromatin accessibility and 
gene expression data into context-specific regulatory networks can provide better regulatory catego-
ries for heritability enrichment (Gazal et al., 2019). SpecVar is based on the popular model stratified 

Figure supplement 1. Mean square error (MSE) and mutual information (MI) metrics show SpecVar achieve better approximation for phenotypic 
correlation on facial distance dataset.

Figure supplement 2. SpecVar achieve better and more robust approximation for phenotypic correlation on UKBB dataset.

Figure supplement 3. SpecVar achieve better approximation for phenotypic correlation than heritability enrichment and p-value on facial distance 
dataset.

Figure supplement 4. Combination of SpecVar’s relevance correlation and LDSC-GC’s genetic correlation gives a more accurate estimation of 
phenotypic correlation.

Figure 5 continued

https://doi.org/10.7554/eLife.82535
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Figure 6. SpecVar uses common relevant tissues and shared SNP-associated regulatory network to interpret relevance correlation. (a) Scatter plot of R 
scores across 77 human contexts of ‘body mass index’ and ‘leg fat-free mass (right)’. (b) The SNP-associated regulatory network of ‘body mass index’ 
and ‘leg fat-free mass (right)’ are significantly shared. (c) SNP-associated regulation of SH2B1. There is a shared significant SNP of ‘body mass index’ 
and ‘leg fat-free mass (right)’ that is located at the 90k downstream of SH2B1, and there is a HiChIP loop linking this locus to the promoter of SH2B1. 
SpecVar prioritizes SNP located in a ‘frontal cortex’-specific regulatory elements (RE) as potential causal genetic variant affecting both ‘body mass index’ 
and ‘leg fat-free mass (right)’ through regulation of SH2B1.
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LDSC (Finucane et al., 2015), which includes 52 function categories as the baseline model. In addi-
tion, we show that extending the functional categories from noncontext-specific regions to context-
specific regions can improve the heritability enrichment, which is consistent with other studies based 
on gene expression (Finucane et al., 2018) and ChIP-seq (van de Geijn et al., 2020) data.

Our main contribution in SpecVar is from (1) integrating paired gene expression data and chro-
matin, which are two types of most easily accessible data, into regulatory networks; (2) highlighting 
the comparison with other contexts by the specificity of the regulatory network to narrow down the 
genes and REs, which will help us explain how the phenotype-associated SNPs influence the tissue 
or cell types in a specific way; and (3) more interpretability than existing methods because SpecVar 
gives more biological insights in explaining the relevance to tissues by SNP-associated regulatory 
networks and interpreting phenotype correlation through common relevant tissues and shared SNP-
associated regulatory network. To study the contribution of two important parts of SpecVar to the 
improvement of heritability enrichment: (1) regulatory network by integrating gene expression and 
chromatin accessibility data, and (2) specificity by comparing with other contexts, we conducted abla-
tion analysis. First, we sorted out the main components of SpecVar (Figure 2—figure supplement 
1c) and illustrated the relationship and differences of the five methods. Then we compared SpecVar 
with ARE, SAP, and SEG to show the effect of specificity, gene expression annotations, and chromatin 
accessibility (Figure 2—figure supplement 1d), respectively. We conducted these comparisons for 
six phenotypes and computed fold change of heritability enrichment to measure the effect to improve 
heritability enrichment. We found that the annotation from chromatin accessibility contributed most 
to improve heritability enrichment (Figure 2—figure supplement 1e). This meant that the regulatory 
networks of SpecVar, which integrated chromatin accessibility with gene expression data, played a 
more important role in improving heritability enrichment. And specificity also improved heritability 
enrichment by four-fold.

SpecVar outperformed the existing methods in three points. First, SpecVar defined the relevance 
score based on both heritability enrichment and p-value. Because of the variability in the number of 
REs in the regulatory categories (Supplementary file 1f), using only heritability enrichment or p-value 
will not give a stable estimation of the relevance of phenotype to tissues. For example, in the experi-
ment of identifying six phenotypes’ relevant tissues, heritability enrichment could select the most rele-
vant tissues for LDL and total cholesterol to be the ‘right lobe of liver’ but failed to get proper tissues 
for other four phenotypes (Figure 3—figure supplement 3). P value could obtain proper tissues for 
cognitive performance (‘frontal cortex’) and brain shape (CNCC) but failed to get relevant tissues for 
LDL, total cholesterol, educational attainment, and facial morphology (Figure 3—figure supplement 
4). By combining heritability enrichment and p-value into R score, SpecVar could prioritize proper 
relevant tissues for all the six phenotypes (Figure 3). Like the R score-based relevance correlation, 
we could use the heritability enrichment and p-value to compute relevance correlation (Figure 5—
figure supplement 3a and b). We found relevance correlation based on heritability enrichment and 
p-value would give larger MSE (Figure 5—figure supplement 3c and e) and lower PCC (Figure 5—
figure supplement 3d and f) than the R score, which showed that SpecVar’s R score can achieve a 
better approximation of phenotypic correlation. Those comparisons showed that the R score was a 
good metric to evaluate tissue’s relevance to the phenotype. Second, SpecVar’s regulatory categories 
had advantages over the existing functional categories to explain heritability. The context-specific 
regulatory networks formed regulatory categories that enable better heritability enrichment than 
other methods (Figure 2). The improved heritability enrichment was also observed when we pooled 
regulatory categories of all the methods together to fit stratified LDSC and re-estimated the herita-
bility enrichment of each context for each method (Figure 2—figure supplement 2). The regulatory 
categories of SpecVar can be used to calculate R scores to identify relevant tissues more accurately 
than other methods (Figure 3). And the R score of SpecVar can also be used to compute relevance 
correlation to better approximate phenotypic correlation than other methods when we do not have 
comprehensive phenotype measurement in each individual (Figure 5). Third, with the constructed 
context-specific regulatory network atlas, SpecVar could further interpret the relevant tissue by SNP-
associated regulatory networks (Figure 4) and interpret relevance correlation by common relevant 
tissues and shared SNP-associated regulations in relevant tissues (Figure 6). These three aspects made 
SpecVar an interpretable tool for heritability enrichment, identifying relevant tissues, and accessing 
associations of phenotypes.

https://doi.org/10.7554/eLife.82535
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Identification of relevant contexts can be conducted at different resolutions. First, in this article, 
SpecVar identified relevant contexts at the tissue level because most of the 77 contexts were tissues 
or cell lines. Second, we could identify relevant organs or groups of tissues. For example, our 77 
human contexts can be hieratically clustered into 36 groups. We pooled the REs in the same groups 
together to form 36 group-level RE sets. Then we defined an RE to be a group-specific RE if it was 
not overlapped with REs in other groups. This procedure would form 36 sets of group-specific REs. 
Finally, we fitted the stratified LDSC model with these 36 sets of group-specific regulatory categories 
and obtained heritability enrichment, p-value, and R score for each group by SpecVar. We tested 
the group-based SpecVar on our six phenotypes. For LDL and total cholesterol, SpecVar identified 
‘Liver’ tissues to be the most relevant tissue (Figure 3—figure supplement 5a and b). For educa-
tional attainment and cognitive performance, SpecVar revealed ‘brain’ tissues to be the most relevant 
tissues (Figure 3—figure supplement 5c and d). And for brain shape and facial morphology, SpecVar 
found ‘CNCC’ to be the most relevant tissue (Figure 3—figure supplement 5e and f). Third, we can 
identify relevant contexts at the cell-type level since the amount of single-cell multimodal data, such 
as single-cell RNA-seq and single-cell ATAC-seq data, are increasing in recent years (Han et al., 2020). 
The paired single-cell multi-omics data, which means single-cell data profiled from the same context, 
enable us to identify cell types and infer regulatory networks for these cell types (Duren et al., 2018; 
Zeng et al., 2019). It will be promising to construct an atlas of context-specific regulatory networks 
at cell-type level and build SpecVar model based on these cell-type-specific regulatory networks. This 
extension of SpecVar to single-cell level holds the promise to identify more detailed relevant cell types 
for given phenotypes.

Based on the accurate and highly interpretable relevant tissue identification, the relevance correla-
tion of SpecVar provides us with another perspective of associations between two phenotypes: if two 
phenotypes are correlated, their relevance to human contexts will also be correlated. This rationale is 
independent of genetic correlation, which is the proportion of variance that two phenotypes share due 
to genetic causes and can be estimated with GWAS summary statistics by LDSC-GC (Bulik-Sullivan 
et al., 2015a). When using measured phenotype value correlation as the gold standard of phenotype 
correlation, we found that SpecVar performed better when the heritability of phenotype was low while 
LDSC-GC performed better when the heritability was high (Figure 5—figure supplement 4a and b). 
This indicated that the integration of relevance correlation and genetic correlation might give a better 
estimation of phenotypic correlation. We validated this idea by regressing phenotypic correlation on 
relevance correlation and genetic correlation in two GWAS datasets. For the phenotypes of facial 
distances, if we only used relevance correlation to regress phenotypic correlation, the coefficient of 
determination (R2) was 0.2720; if we only used genetic correlation, the R2 was 0.0002; if we used the 
linear combination of relevance correlation and genetic correlation to regress phenotypic correlation, 
the R2 was 0.2765, which was significantly higher than that only with SpecVar (F-test of R2 increase, 

‍p ≤ 1.8 × 10−5
‍) or only with LDSC-GC (‍p ≤ 5.3 × 10−213

‍); and if we used a product (nonlinear combi-
nation) of relevance correlation and genetic correlation, the R2 was much higher: 0.2911 (Figure 5—
figure supplement 4c and d). And for 206 phenotypes of UK Biobank, if we only used relevance 
correlation, the R2 was 0.1289; if we only used genetic correlation, the R2 was 0.5614; if we used the 
linear combination of relevance correlation and genetic correlation to regress phenotypic correlation, 
the R2 was 0.5927, which was significantly higher than that only with SpecVar (‍p ≤ 2.2 × 10−16

‍) or 
only with LDSC-GC (‍p ≤ 2.2 × 10−16

‍); and if we used a product of relevance correlation and genetic 
correlation, the R2 was 0.7375, which was much more improved (Figure 5—figure supplement 4e 
and f). These results showed that relevance correlation and genetic correlation revealed the associa-
tion of phenotypes in a complementary way.

Our work can be improved in several aspects. The usage of context-specific regulatory networks 
contributed most to the improvement of SpecVar. But the context-specific regulatory networks 
can only cover part of the regulatory elements and genetic variants, which are highly essential and 
representative. Higher-quality and more comprehensive regulatory networks will help obtain better 
representation. Currently, we built the atlas of regulatory networks of 77 human contexts and only 
included CNCC in the early developmental stage, which was far from complete. We expect more 
developmental stages will be included with multi-omics data from ENCODE (Snyder et al., 2020) 
and GTEx (Consortium, 2020). On the other hand, SpecVar is based on stratified LDSC, which may 
not perform well on admixed populations. Thus, considering the effect of mixed ancestries will help 

https://doi.org/10.7554/eLife.82535
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SpecVar handle more circumstances. For example, Luo. et al. have developed cov-LDSC to adjust the 
LDSC model to be suitable for admixed populations (Luo et al., 2021). Building SpecVar model based 
on cov-LDSC will be promising to perform well on GWAS with mixed populations. Lastly, it will be 
useful to extend the current approach using a model based on individual whole-genome sequencing 
data (Li et al., 2020).

Materials and methods
Regulatory network inference with paired expression and chromatin 
accessibility data by PECA2
The regulatory networks were inferred by the PECA2 (Duren et al., 2020) model with paired expres-
sion and chromatin accessibility data. First, we collected paired expression and chromatin accessibility 
data of 76 human tissue or cell lines from ENCODE and ROADMAP (Supplementary file 1a). Then 
with paired expression and accessibility data of each context, PECA2 calculated two scores. One was 
the trans-regulatory score. Specifically, PECA2 hypothesized that TF regulated the downstream TG by 
binding at REs. The trans-regulatory score was calculated by integrating multiple REs bound by a TF 
to regulate TG to quantify the regulatory strength of this TF on the TG. And PECA2 also considered 
a prior TF-TG correlation across external public data from ENCODE database. In detail, the trans-
regulatory score ‍TRSij‍ of ‍i‍th TF and ‍j‍th TG was quantified as

	﻿‍ TRSij =
(∑

k BikOkIkj
)
× 2

∣∣Rij
∣∣ ×

√
TFiTGj ‍� (3)

Here, ‍TFi‍ and ‍TGj‍ are the expressions of the ith TF and jth TG. ‍Bik‍ is the motif binding strength of 
ith TF on kth RE, which was defined as the sum of the binding strength of all the binding sites of ith TF 
on kth RE. ‍Ok‍ is the measure of accessibility for kth RE. ‍Ikj‍ represents the interaction strength between 
kth RE and jth TG, which was learned from the PECA model on diverse ENCODE cellular contexts 
(Duren et al., 2017; Duren et al., 2018). ‍Rij‍ is the expression correlation of ith TF and jth TG across 
diverse ENCODE samples. The significance of the TRS was obtained by a background of randomly 
selected TF-TG pairs and the threshold of the TRS was decided by controlling the false discovery rate 
(FDR) at 0.001.

The other one was the cis-regulatory score to measure the regulatory strength of RE on a TG. The 
cis-regulatory score ‍CRSkj‍ of kth RE on jth TG was quantified as

	﻿‍
CRSkj =

(∑
i

BikTRSij

)
× Ikj × Ok

‍�
(4)

We approximated the distribution of ‍log2
(
1 + CRSkj

)
‍ by a normal distribution and predicted RE-TG 

associations by selecting the RE-TG pairs that had p-value≤0.05.
The output of PECA2 was a regulatory network with TFs, REs, and TGs as nodes and the regula-

tions among them as edges. This procedure was applied to 76 human contexts with paired expression 
and chromatin accessibility data and obtained 76 regulatory networks. We noted that the regulatory 
network of the early development stage CNCC was reconstructed recently (Feng et al., 2021), and we 
included the regulatory network of CNCC to form our regulatory network atlas of 77 human contexts.

Construction of context-specific regulatory network atlas and 
regulatory categories
The context-specific regulatory network was obtained based on the specificity of REs. In detail, we 
had 77 regulatory networks, and each regulatory network had a set of REs ‍REi, 1 ≤ i ≤ 77‍. Firstly, we 
hierarchically clustered 77 contexts’ regulatory networks into 36 groups by trans-regulatory scores 
(Supplementary file 1a). Then for a given context, a RE was defined as a context-specific RE if it was 
not overlapped with REs of other contexts. Formally, the context-specific RE set of ‍i‍th context ‍Ci‍ was 
defined as

	﻿‍ Ci =
{

REik ∈ REi|REik /∈ REj, j ̸= i
}
‍� (5)

https://doi.org/10.7554/eLife.82535
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Here, ‍REik /∈ REj‍ means ‍REik‍ was not overlapped with any REs in ‍REj‍:

	﻿‍ REik /∈ REj ⇐⇒ REik is not overlapped with any REjl in REj‍� (6)

And we defined ‘overlapped’ (1) for REs from contexts of the different groups, two REs were 
overlapped if their overlapping base ratio was over 50%; (2) for REs from contexts of the same group, 
two REs were overlapped if their overlapping base ratio was over 60%. The reason we used different 
‘overlapped’ criteria for REs from the same group and different groups was to retain group-specific 
REs. For example, we had five cell types for the brain tissues: ‘Ammon’s horn’, ‘caudate nucleus’, 
‘cerebellum’, ‘frontal cortex’, and ‘putamen’. If we defined RE’s specificity with stringent conditions 
among these five brain cell types, many REs of brain lineage would be lost.

Finally, the context-specific regulatory network was formed by specific REs and their directly linked 
upstream TFs and downstream TGs. And the context-specific RE sets ‍Ci, 1 ≤ i ≤ 77‍ gave the regula-
tory categories of SpecVar.

Heritability enrichment and R score of GWAS summary statistics by 
SpecVar
SpecVar used stratified LDSC (Finucane et al., 2015) to compute partitioned heritability enrichment. 
Under the linear additive model, stratified LDSC models the causal SNP effect on phenotype as drawn 
from a distribution with mean zero and variance

	﻿‍ Var
(
βj
)

=
∑

i τi1{j∈Ci
}
‍� (7)

And with the assumption that the LD of a category that is enriched for heritability will increase 
the ‍χ

2
‍ statistic of an SNP more than the LD of a category that does not contribute to heritability, the 

expected ‍χ
2
‍ statistic is modeled as follows:

	﻿‍
E
(
χ2

j

)
= N

∑
Ci

τil
(
j, i
)

+ Na + 1
‍�

(8)

where ‍N ‍ is the sample size; ‍Ci‍ denotes the regulatory category formed by the ‍i‍th context-specific 
regulatory network; ‍χ

2
j ‍ is the marginal association of SNP ‍j‍ from GWAS summary statistics; ‍r

2
jk‍ is the 

LD score of SNP ‍j‍ in the ‍i‍th category, where ‍r
2
jk‍ was the genotype correlation between SNP ‍j‍ and 

SNP ‍k‍; ‍a‍ measures the contribution of confounding biases; and ‍τi‍ represents heritability enrichment 
of SNPs in ‍Ci‍ . Stratified LDSC estimates standard error with a block jackknife and uses the standard 
error to calculate the p-value ‍pi‍ for the heritability enrichment ‍τi‍ (Finucane et al., 2015).

To make a trade-off between the heritability enrichment score and p-value resulting from a hypoth-
esis test, we combined heritability enrichment and statistical significance (p-value) to define the rele-
vance score (‍Ri‍) of this phenotype to ‍i‍th context as follows:

	﻿‍ Ri = τi ·
(
− log pi

)
‍� (9)

The relevance score (R score) offered a new robust means to rank and select relevant tissue for a 
given phenotype (Xiao et al., 2014; Figure 3—figure supplements 3 and 4, and Figure 5—figure 
supplement 3).

Significance testing of R score and identification of relevant contexts
We used block jackknife to estimate the standard error, p-value, and FDR for the R score. Specifically, 
we computed the R score ‍Ri‍ of a phenotype to ‍i‍th context. Then we estimated the standard error, p 
value, and FDR of ‍Ri‍ following the procedures:

1.	 For the ‍i‍th context, we divided its specific RE into 100 folds.
2.	 One subsample was generated by removing one of the 100 folds, and we generated 100 

subsamples of ‍i‍th context.
3.	 These 100 subsamples of specific REs would form new regulatory categories for fitting strati-

fied LDSC. For each subsample, we obtained heritability enrichment, p-value, and R score by 
SpecVar.

https://doi.org/10.7554/eLife.82535
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4.	 With the 100 background R scores of the 100 subsamples, we could estimate the standard error 
(‍SDi‍) of ‍Ri‍ for ‍i‍th context.

5.	 We computed the z scores of ‍i‍th context: ‍Zi = Ri/SDi ∼ N
(
0, 1

)
‍ , and estimated the p-value and 

FDR q-value.

The R scores and their FDR q-values could be used to select relevant tissues. We used R score 
≥100 and FDR ≤0.01 as the threshold to pick up relevant tissues for a phenotype. For six well-studied 
phenotypes in this article, their relevant tissues, R scores, and FDR are summarized in Table 1.

Four alternative methods to construct representations of GWAS 
summary statistics
Based on expression and chromatin accessibility data, there were four alternative methods for 
constructing regulatory categories: AAP, SAP, SEG, and ARE.

The AAP method used all the chromatin-accessible peaks of each context to form a genome func-
tional category, which was used for partitioned heritability enrichment analysis. The SAP method 
used the same rules of SpecVar above to obtain specifically accessible peaks of each context, and the 
context-specific peaks sets of M contexts formed functional categories of SAP. The SEG method was 
constructed by following the procedure in Finucane et al., 2018. First, the t-statistics for differential 
expression of each gene in each of the M contexts were calculated. Then for each context, the top 
10% genes ranked by t-statistic were selected, and the 100 kb windows around those top 10% genes 
were used to form a functional category. For the ARE method, we obtained all REs in the regulatory 
network of a context to be a functional category, and the RE sets of M contexts formed regulatory 
categories of ARE.

We could conclude the difference and relationship between the five methods (Figure 2—figure 
supplement 1c): SEG was the combination of gene expression and specificity; AAP was only from 
chromatin accessibility; SAP was the combination of chromatin accessibility and specificity; ARE inte-
grated gene expression and chromatin accessibility; and SpecVar considered gene expression, chro-
matin accessibility, and specificity. Supplementary file 1f shows the number and size of genomic 
regions of each method and the overlapping among these methods.

After obtaining functional categories with these four alternate methods, we could also use strati-
fied LDSC to obtain heritability enrichment and define the R score representation of GWAS summary 
statistics with Equations 8 and 9. We called them AAP, SAP, SEG, and ARE, respectively. We compared 
these four alternate methods with SpecVar.

Relevance correlation analysis of SpecVar
SpecVar defined relevance correlation based on R scores. The R scores to ‍M ‍ contexts could be aggre-
gated into a context-specific vector representation of GWAS summary statistics:

	﻿‍ R =
(
R1, R2, · · · , RM

)
‍� (10)

For two phenotypes, such as phenotype ‍p‍ and phenotype ‍q‍, we obtained their R score 
representations:

	﻿‍ Rp =
(
Rp

1, Rp
2, · · · , Rp

M
)
‍�

	﻿‍ Rq =
(
Rq

1, Rq
2, · · · , Rq

M
)
‍� (11)

Then the Spearman correlation of their R score representation was used to define the relevance 
correlation:

	﻿‍
ρg = ρ

(
Rp, Rq) = 1 − 6

∑
i
[
r
(

Rp
i
)
−r

(
Rq

i
)]2

M∗
(

M2−1
)

‍�
(12)

Here, ‍r
(
Rp

i
)
‍ and ‍r

(
Rq

i
)
‍ are the ranks of ‍i‍th context by the R score for the two phenotypes.

For two other specificity-based regulatory categories SAP and SEG, we also used their functional 
categories to compute heritability enrichment and p-value and defined the R score with Equations 
7–9. The R scores of SAP and SEG were used to compute relevance correlation.

https://doi.org/10.7554/eLife.82535
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Evaluation of relevant tissue identification and relevance correlation
To evaluate the performance of the SpecVar and other methods, we used different datasets as the 
gold standard.

For the application to identify relevant tissues, we used six well-studied phenotypes that we had 
knowledge of the relevant tissues: two lipid phenotypes (LDL and total cholesterol) were relevant to 
the liver; two human intelligential phenotypes (educational attainment and cognitive performance) 
were relevant to the brain; two craniofacial bone phenotypes (facial morphology and brain shape) 
were relevant to CNCC. We used different methods to identify relevant tissues of these six pheno-
types and checked whether they obtained the proper relevant tissues.

For relevance correlation, we used the phenotypic correlation computed with individual pheno-
typic data as the gold standard. First, we computed the PCC between relevance correlation and 
phenotypic correlation:

	﻿‍

PCC =
∑

i,j∈P
(

pij−p̄
)(

p
′
ij−p̄

′)
√∑

i,j∈P
(

pij−p̄
)2 ∑

i,j∈P

(
p′ij−p̄′

)2

‍�
(13)

Here, ‍P‍ is the set of phenotypes, and ‍N ‍ is the number of phenotype pairs; ‍pij‍ is the phenotypic 
correlation computed with individual phenotypic data, and ‍p

′

ij‍ is the relevance correlation; ‍̄p‍ is the 
average of ‍pij‍ , and ‍̄p

′

‍ is the average of ‍p
′

ij‍ . A larger PCC indicated better performance in approxi-
mating phenotypic correlation.

We also used the mean square error (MSE) between relevance correlation and phenotypic 
correlation:

	﻿‍ MSE =
∑

i,j∈P

(
pij−p

′
ij

)2

N ‍�
(14)

A smaller MSE indicated better performance in approximating phenotypic correlation.
The last metric we used to evaluate the performance of approximating phenotypic correlation 

was mutual information, which was a nonlinear metric. We used the ‘k-nearest neighbor’ stratagem 
proposed by Kraskov et al. to estimate the mutual information of two vectors (Kraskov et al., 2004).

Extracting SNP-associated regulatory subnetworks in relevant tissues
Given a phenotype’s GWAS summary statistics and a context, SpecVar identified SNPs-associated 
regulatory subnetwork by considering the following two factors: (1) the cis-regulatory score of SNP-
associated RE should be large enough to indicate its importance in the regulatory network; (2) the risk 
signal of SNPs (i.e., p-value) on or near this RE should be large to indicate its association with pheno-
type. We combined these two factors to define the association score (A score) of SNP-associated REs.

First, the regulatory strength of kth RE was measured by the maximum cis-regulatory score of this 
RE. Formally,

	﻿‍
Ck = max

j
CRSkj

‍� (15)

Here, ‍CRSkj‍ is the cis-regulatory score of kth RE on jth TG. For the ‍k‍th RE, the larger ‍Ck‍ was, the 
more important role this RE played in the regulatory network. Second, the risk score of GWAS ‍Sk‍ for 
‍k‍th RE was defined as the average of the -log(p-value) of SNPs located on or near this RE, which were 
downweighted by their LD scores and distances to RE:

	﻿‍
Sk = 1∣∣Pk

∣∣
∑

l∈Pk
−ωl · log

(
pl
)
· e−

dlk
d0

‍�
(16)

Here, ‍Pk‍ is the set of SNPs whose distances were less than 50 kb to the ‍k‍th RE, and ‍
∣∣Pk

∣∣
‍ is the total 

number of this SNP set; ‍ωl‍ (the reciprocal of LD score, downloaded at https://data.broadinstitute.org/​
alkesgroup/LDSCORE/) is the weight of the ‍l‍th SNP; ‍pl‍ is the p-value of the ‍l‍th SNP in summary statis-
tics; ‍dlk‍ is the base pair distance of the lth SNP to kth RE and ‍d0‍ is a constant, which was set to 5000 as 
default. For the ‍k‍th RE, a larger value of ‍Sk‍ indicated a stronger association with the given phenotype.

Finally, we obtained the association score (A score) of kth RE by combining these two factors:

https://doi.org/10.7554/eLife.82535
https://data.broadinstitute.org/alkesgroup/LDSCORE/
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	﻿‍ Ak =
√

Ck ∗ Sk ‍� (17)

Every RE in the context-specific regulatory network was qualified by the A score. We used the 
GWAS of six phenotypes to analyze the distribution of A scores and found that the A scores followed 
a Gaussian distribution (Figure 4—figure supplement 1). So, we hypothesized the distribution of 
A scores was Gaussian distribution and selected the REs associated with the given phenotype by A 
scores’ FDR threshold of 0.05. The prioritized REs, as well as their directly linked upstream TFs, down-
stream TGs, and the associated SNPs, formed the SNP-associated regulatory subnetwork.

GWAS summary statistics of UK Biobank
The GWAS summary statistics of UK Biobank were downloaded at http://www.nealelab.is/uk-biobank. 
There were 4176 phenotypes and 11,372 GWAS summary statistics. We selected 206 GWAS summary 
statistics (Supplementary file 1d) based on the following conditions.

1.	 Excluding sex-specific and ‘raw’-type GWAS.
2.	 Sample size condition: ‍N ≥ 50, 000‍ and ‍Ncontrol‍ , ‍Ncase ≥ 10, 000‍ for binary and categorical 

phenotypes.
3.	 Significant SNP number condition: the number of SNPs that pass the threshold of ‍5 × 10−8‍ was 

not less than 500.
4.	 Manually curation: removing duplicated phenotypes, ‘job’, ‘parent’, and ‘sibling’-associated 

phenotypes.
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