
Fan et al. eLife 2023;12:e82537. DOI: https://doi.org/10.7554/eLife.82537 � 1 of 23

Creating an atlas of the bone 
microenvironment during oral 
inflammatory-related bone disease using 
single-cell profiling
Yi Fan1, Ping Lyu1, Ruiye Bi2, Chen Cui3, Ruoshi Xu1, Clifford J Rosen4, 
Quan Yuan5*, Chenchen Zhou6*

1State Key Laboratory of Oral Diseases, National Clinical Research Center for 
Oral Diseases, Department of Cariology and Endodontics, West China Hospital 
of Stomatology, Sichuan University, Chengdu, China; 2State Key Laboratory of 
Oral Diseases, National Clinical Research Center for Oral Diseases, Department 
of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan 
University, Chengdu, China; 3Hospital of Stomatology, Guanghua School of 
Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of 
Stomatology, Guangzhou, China; 4Maine Medical Center Research Institute, 
Scarborough, United States; 5State Key Laboratory of Oral Diseases, National Clinical 
Research Center for Oral Diseases, Department of Oral Implantology, West China 
Hospital of Stomatology, Sichuan University, Chengdu, China; 6State Key Laboratory 
of Oral Diseases, National Clinical Research Center for Oral Diseases, Department 
of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 
China

Abstract Oral inflammatory diseases such as apical periodontitis are common bacterial infectious 
diseases that may affect the periapical alveolar bone tissues. A protective process occurs simulta-
neously with the inflammatory tissue destruction, in which mesenchymal stem cells (MSCs) play a 
primary role. However, a systematic and precise description of the cellular and molecular composi-
tion of the microenvironment of bone affected by inflammation is lacking. In this study, we created a 
single-cell atlas of cell populations that compose alveolar bone in healthy and inflammatory disease 
states. We investigated changes in expression frequency and patterns related to apical periodontitis, 
as well as the interactions between MSCs and immunocytes. Our results highlight an enhanced self-
supporting network and osteogenic potential within MSCs during apical periodontitis-associated 
inflammation. MSCs not only differentiated toward osteoblast lineage cells but also expressed 
higher levels of osteogenic-related markers, including Sparc and Col1a1. This was confirmed by 
lineage tracing in transgenic mouse models and human samples from oral inflammatory-related 
alveolar bone lesions. In summary, the current study provides an in-depth description of the micro-
environment of MSCs and immunocytes in both healthy and disease states. We also identified key 
apical periodontitis-associated MSC subclusters and their biomarkers, which could further our under-
standing of the protective process and the underlying mechanisms of oral inflammatory-related 
bone disease. Taken together, these results enhance our understanding of heterogeneity and cellular 
interactions of alveolar bone cells under pathogenic and inflammatory conditions. We provide these 
data as a tool for investigators not only to better appreciate the repertoire of progenitors that are 
stress responsive but importantly to help design new therapeutic targets to restore bone lesions 
caused by apical periodontitis and other inflammatory-related bone diseases.
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Editor's evaluation
Data from scRNA-Seq analysis demonstrated that acute inflammation stimulates periodontal stem 
cells to differentiate into osteoblast lineage cells to protect the alveolar bone. In murine models 
and patients with apical periodontitis, the genes and proteins associated with osteogenesis were 
enriched. The studies help us understand how MSCs respond to inflammation during apical peri-
odontitis disease progression.

Introduction
Oral diseases, particularly dental caries and periodontal diseases, affect 3.5  billion people world-
wide (Disease et  al., 2018). Untreated dental caries can directly lead to pulp necrosis and peri-
apical lesions, resulting in apical periodontitis (AP). Individuals with at least one tooth affected by 
AP comprise up to 52% of cases, indicating that AP is a highly prevalent disease (Tibúrcio-Machado 
et al., 2021). Inflammation in the oral cavity can lead to destruction of surrounding periapical tissues 
and resorption of hard tissues, a consequence of the unbalanced interaction between infection and 
the immune response (Gazivoda et al., 2009; Márton and Kiss, 2014). Restoring and regenerating 
the destroyed periapical alveolar bone structures have always been a challenging task in clinical prac-
tice. Active inflammation, the tissue injury and the protective process all occur simultaneously in the 
setting of chronic AP (Márton and Kiss, 2014). Importantly, there is a complex assemblage of immune 
cell types involved in the pathogenesis, highlighting the importance of polymorphonuclear leuko-
cytes, lymphocytes, and monocyte/macrophages in periapical defense (Braz-Silva et al., 2019; Nair, 
2004). Notably, an increasing number of studies report the involvement of mesenchymal stem cells 
(MSCs) in the protective action that occurs during oral inflammatory diseases, whereby MSCs exert 
immunomodulatory effects and have regenerative potential (Li et al., 2014; Márton and Kiss, 2000; 
Nair, 2004). MSC markers such as CD44, CD73, CD90, CD106, and STRO-1 have been observed in 
human periapical inflammatory tissues (Estrela et al., 2019; Liao et al., 2011). Cells isolated from the 
inflamed periapical region were able to produce colony-forming unit-fibroblasts (CFU-Fs) with high-
osteogenic capacity. It is also reported that interference with MSC mobilization toward the periapex 
region in an AP mouse model led to enlargement of lesions, accompanied by decreased wound 
healing markers and increased inflammatory cytokines (Araujo-Pires et  al., 2014). These findings 
indicate the involvement of MSCs in the repair and regeneration of oral inflammatory-related bone 
lesions. They also suggest that MSCs present promising targets for treating bone lesions, with great 
potential for modulating inflammation and promoting tissue regeneration. However, most studies 
have surveyed whole tissues to understand the transcriptomic and cellular profile of these diseases. 
Specific cell populations and their regulatory molecules, as well as the interaction among different 
cell populations, remain far from clear. The advances in single-cell technologies offer an unbiased 
approach for identifying heterogeneous cell subsets, tracking the trajectories of distinct cell clusters 
and uncovering regulatory relationships between genes (Hwang et al., 2018; Tang et al., 2009). In 
this study, we collected mandibular alveolar bone samples from control and AP in mice and subjected 
them to single-cell RNA sequencing (scRNA-seq). The atlas of the mandibular alveolar bone explored 
the distinct cell subsets and their expression profiles relevant to AP. We also investigated the relation-
ship between MSCs and immune cell subsets. The results reveal the role of a subset of MSCs in inflam-
mation, which showed increased frequency and which formed a self-supporting network. Moreover, 
MSCs exhibited upregulated osteogenic potential, which was confirmed in transgenic mouse models 
and human patients with chronic AP. These results advance our understanding of heterogeneity and 
interactions of alveolar bone cells in the pathogenesis of inflammatory-related bone diseases. Defining 
key cellular subsets such as MSCs and their biomarkers in inflamed tissue will be important for identi-
fying new therapeutic targets for oral inflammatory-related bone diseases.

https://doi.org/10.7554/eLife.82537
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Results
Single-cell transcriptional profiling identified 15 discrete populations in 
homeostasis and chronic AP samples
Individual cells were isolated from alveolar bone of healthy mice and mice with AP. We modeled AP 
using a well-established AP mouse model in which the mandibular first molar pulp was exposed and 
subsequently developed chronic AP over a 3 wk period (Taira et al., 2019). Bar-coded cDNA libraries 
from individual cells were obtained using the 10× Genomics Chromium Controller platform (Zheng 
et al., 2017; Figure 1A). The combined libraries from healthy and AP alveolar bone contained 15,148 
individual cells. The median value of feature_RNA was between 1000 and 2000 (Figure 1—figure 
supplement 1B). After quality control filtering and removal of the batch effect between batches, the 
t-stochastic neighbor embedding (t-SNE) method was applied to reduce the dimensionality. Seurat’s 
unbiased cluster detection algorithm identified 15 distinct cell populations (Figure 1B and C). Cluster-
specific transcripts were utilized to annotate cell types with classic markers as described in a previous 
study (Lin et al., 2021). These included B cell (Cd79a), hematopoietic stem cell (HSC) (Cd34), MSC 
(Col1a1), natural killer (NK) cell (Klrd1), T cell (Cd3g), dendritic cell (Siglech), epithelial cell (Epcam), 
erythrocyte (Hbb-bt), macrophage (Adgre1), mast cell (Fcer1a), megakaryocyte (Gp1bb), monocyte 
(Ly6c2), myeloid progenitor (Mpo), neutrophil (S100a8), and pre-B cell (Vpreb1; Figure 1E and F). The 
top 20 enriched genes in each defined cluster were identified and compared (Figure 1G).

AP led to significant changes in frequency and transcriptional 
expression of cell populations
All the identified cell clusters were present in both AP and control samples, but there were signifi-
cant differences in the cellular compositions of particular clusters. T cell, B cell, NK cell, macrophage, 
epithelial cell, and MSC had significantly increased frequency in AP samples. Neutrophil, myeloid 
progenitor, monocyte, megakaryocyte, mast cell, HSC, and dendritic cell were markedly decreased 
(Figures 2A and 1D).

AP is a complex inflammatory process involving innate and adaptive immune responses (Cotti 
et al., 2014). A variety of inflammatory cells such as neutrophils, mast cells, monocytes, macrophages, 
and lymphocytes are involved in periapical lesions, highlighting the direct involvement of the immune 
response in the pathogenesis of AP (Nair, 2004). Neutrophils are important components in the acute 
phase of AP as a first line of defense. But they are also important in the progression of AP by interacting 
with microorganisms, leading to tissue damage and chemotaxis (Braz-Silva et al., 2019). Single-cell 
differential expression analysis revealed that the most significantly enriched genes in neutrophils were 
various proinflammatory chemokines and cytokines. These included C-X-C motif chemokine ligand 2 
(Cxcl2), C-C motif chemokine ligand 6 (Ccl6), NLR family pyrin domain containing 3 (Nlrp3), and Inter-
leukin-1β (Il1b). Notably, we found that C-C motif chemokine receptor like 2 (Ccrl2) was upregulated 
in neutrophils during AP (Figure 2D). It is responsible for the innate defense against pathogens and 
is also involved in the regulation of neutrophil migration (Del Prete et al., 2017; Kolaczkowska and 
Kubes, 2013; Mantovani et al., 2011).

Mast cells, monocytes, and macrophages have critical roles in the inflammatory infiltrate during 
chronic AP (Braz-Silva et al., 2019). The production of Interleukin-6 (Il6) was present in these cell 
populations with the highest expression level in mast cells. The pro-inflammatory cytokine IL-1β is 
a key mediator of host response to microbial infection and is associated with the persistence of AP 
(Morsani et  al., 2011; Ng et  al., 2008). We found Il1b transcripts in a series of cell types, such 
as monocyte, macrophage, mast cell, and neutrophil. Of these, macrophages had the highest Il1b 
expression. Another major cytokine, tumor necrosis factor (Tnf; Cotti et  al., 2014), was detected 
in immunoresponsive cell clusters, such as monocyte, macrophage, mast cell, myeloid progenitor, 
neutrophil, and HSC, with the highest expression observed in the monocyte population (Figure 2B).

Furthermore, gene signatures from monocytes showed that the interferon-induced transmem-
branes (IFITMs) protein 1 and 2 (Ifitm1 and Ifitm2; Figure 2E) were upregulated the most during AP. 
These factors have been associated with signal transduction of anti-inflammation activity in the immune 
system (Yánez et al., 2020). We also detected upregulated expression levels of Ccl9 in the monocyte 
population from AP. Ccl9 is an important cytokine and is involved in the survival of osteoclasts during 
the destruction of the periapical bone (Silva et al., 2007). Also, genes coding for pro-inflammatory 

https://doi.org/10.7554/eLife.82537
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Figure 1. Identification of the single-cell atlas of alveolar bone using scRNA-sequencing (scRNA-seq) and 
unbiased clustering. (A) Schematic diagram of the experimental design. (B–C) t-Stochastic neighbor embedding 
(t-SNE) representation of aligned gene expression data in single cells extracted from mandibles of control mice 
(n=8340) and apical periodontitis (AP) mice (n=6808) showing 15 distinct clusters and cellular origin. (D) Relative 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.82537
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calcium-binding S100 family proteins such as S100a9 and S100a11 had increased expression in the 
AP monocyte cluster (Figure 2E). Previous reports demonstrated that macrophages are capable of 
secreting pro- and anti-inflammatory substances which act on the development and repair of the 
AP lesions (Italiani and Boraschi, 2014; Shapouri-Moghaddam et al., 2018). Indeed, several genes 
encoding pro-inflammatory mediators, including Cxcl2, Cxcl16, Il1a, and Ptgs2, were upregulated in 
macrophages from AP samples (Figure 2C). Expression of anti-inflammatory-associated genes such as 
Ifitm1 and Ifitm2 was significantly increased in the AP macrophage cluster compared to control cells. 
Furthermore, Fcγ receptor IIB (Fcgr2b) was markedly upregulated in macrophages from AP samples. 
Fcgr2b is expressed in most tissue-resident macrophages (Gautier et  al., 2012) and functions to 
inhibit Fcγ-dependent phagocytosis. It also inhibits release of cytokines such as IL-6, TNF-α, IL-1α, 
as well as neutrophil chemotactants (Clatworthy and Smith, 2004; Espéli et al., 2016). In addition, 
expression of Apolipoprotein E (Apoe), which can suppress the pro-inflammatory response (Jofre-
Monseny et al., 2007), was significantly increased in the macrophage population (Figure 2C). These 
data indicated the activation of anti-inflammatory factors by macrophages during local inflammation 
by AP.

abundance of 15 cell populations composing alveolar bone under healthy and AP conditions. (E) Expression of 
gene markers in distinct cell types. (F) Gene expression patterns projected onto t-SNE plots of marker genes. 
Scale: log-transformed gene expression. (G) Heatmap showing the 20 most upregulated genes (ordered by 
decreasing Padj value) in each cluster defined in B. Scale: log2 fold change.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quality control results of the sequencing data.

Figure 1 continued

Figure 2. Changes in frequency and transcriptional expression pattern in each cell population from control and apical periodontitis (AP) groups. (A) Bar 
plot of cells per cluster (AP versus control). Normalization to overall number of inputs per condition. Fisher’s exact test with Bonferroni correction was 
used. *p<0.05, **p<0.01, and ****p<0.0001. All data were exhibited as mean ± SEM. (B) Violin plots of cluster-specific expression of representative 
genes. (C–G) Violin plots showing genes that significantly changed in each cluster from control and AP.

https://doi.org/10.7554/eLife.82537
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The major classes of lymphocytes are T lymphocytes, B lymphocytes, and the NK cells. T and B 
lymphocytes comprise the majority of the inflammatory infiltrate in AP (Graunaite et al., 2012). A 
significant increase in the expression of inflammatory-associated genes, such as Srgn, Emb, Ctla4, 
and Il7r could be observed in the AP T cell population (Figure 2F). In the AP B lymphocytes cluster, 
inflammation-responsive genes (Fth1, Ftl1, Ebf1, and mt-Nd5) were upregulated (Figure 2G). Inter-
estingly, Lars2, the gene encoding a mitochondrial leucyl tRNA synthase (Carminho-Rodrigues et al., 
2020; ’t Hart et al., 2005), was significantly upregulated in T and B lymphocytes, indicating changes 
in mitochondrial metabolism in both clusters.

Inflammation induces osteoclasts differentiation leading to periapical 
alveolar bone destruction
Bone destruction is a major pathological factor in chronic inflammatory diseases such as AP. Various 
cytokines including TNF-α, IL-1α, and IL-6 were released by immunocytes to recruit the osteoclast 
precursors and induce the maturation of osteoclasts (Lyu et al., 2022). We have detected osteoclast 
markers including Ctsk, Acp5, Mmp9, and Nfatc1 by scRNA-seq. Moreover, Csfr1, Cx3cr1, Itgam, and 
Tnfrs11a were used to identify osteoclast precursors. Markers of osteoclast and osteoclast precursors 
were highly expressed in the clusters of monocyte and macrophage (Figure 3A and B). Gene Ontology 
(GO) analysis showed that inflammation related immune reactions and bone resorption activity were 
significantly enriched in macrophage cluster (Figure 3C). To further study the differential trajectory 
of osteoclasts, pseudotime analysis was performed for the clusters of macrophage and monocyte. 
Two independent branch points were determined, and five monocyte/macrophage subclusters were 
scattered at different branches in the developmental tree (Figure 3D and G). The results showed 
that the monocyte cluster differentiated into the macrophage cluster (Figure 3E). During this trajec-
tory, the gene expression pattern across pseudotime showed that osteoclastic genes, such as Ctsk, 
Acp5, Mmp9, Atp6v0d2, and Dcstamp, were progressively elevated (Figure 3F). Of note, we have 
observed a branch which was highly positive for Ctsk and Acp5 (Figure 3H), indicating the mature 
osteoclasts were differentiated from monocyte/macrophage lineage and contributed to inflammatory 
bone resorption during AP. We have also analyzed the expression of osteoclast related genes using 
the bulk RNA-seq library built on mandibular samples extracted from mice with AP. Markers of osteo-
clast and osteoclast precursors were significantly upregulated, confirming the osteoclasts activity in 
the inflammatory-related bone lesion (Figure 3I).

AP leads to reduced transcriptionally inferred cellular interactions with 
an increased self-supporting network in MSCs
We next sought to characterize the cell-cell communication related to the perturbation of signaling 
pathways detected in the AP samples by employing CellphoneDB (Efremova et al., 2020; Nagai 
et al., 2021). We identified a close interaction among MSC, macrophage, and dendritic cells under 
homeostasis conditions (Figure 4A). A similarly close communication was found among MSC, macro-
phage, and dendritic cells under inflammatory conditions (Figure 4B). Next, we compared the differ-
ential cell-cell interaction (CCI) network between AP and control samples using CrossTalkeR (Nagai 
et al., 2021). The results suggested that AP is associated with an overall decrease in cellular inter-
actions. However, MSC intercellular communication with mast cells and monocytes is upregulated 
and accompanied by the highest number of interactions within MSCs themselves (Figure 4C). These 
results indicate that, although cell populations lose their normal physiological interactions, MSCs were 
able to establish a self-interacting network and coordinate with certain types of cells during chronic 
AP. Next, we ranked the individual ligands by the number of their interactions. Inflammatory-related 
proteins (Lgals9, Tnf, and Ccl4), extracellular matrix protein (Fn1), and protein involved in biomineral-
ization (Spp1) were among the highest interactions. Also, Tgfb1, Vegfb, and Vegfa were in the top 10 
most abundant ligands (Figure 4D). Bar plots were also generated to display the top 10 upregulated 
gene/cell pairs, showing that inflammation associated genes (Tnf/neutrophil, Ccl3/mast cell, Ccl3/
monocyte, and Il1b/macrophage) and matrix related genes (Sele/MSC, Fn1/MSC, and Fn1/monocyte) 
were the most influential ligands during AP when compared to control state (Figure 4E). We used a 
Sankey plot to further focus on MSC-related interactions (Figure 4F). The results indicated that Sele 
was primarily directed by MSC toward the MSC cluster via multiple receptors including Glg1, Selplg, 
and Cd44. Moreover, Fn1 was secreted by MSC, monocyte, macrophage, and mast cells toward MSCs 

https://doi.org/10.7554/eLife.82537
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Figure 3. Inflammatory-related bone resorption under apical periodontitis (AP) situation. (A) The expression levels 
of markers of osteoclasts and osteoclast precursors. (B) Violin plots of the expression of osteoclastogenesis genes. 
(C) Gene Ontology (GO) enrichment analysis of the biological functions of macrophage cluster. (D) Trajectory order 
of the monocyte/macrophage populations by pseudotime value. (E) The differentiation trajectory of monocyte and 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.82537
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macrophage clusters presented on a t-stochastic neighbor embedding (t-SNE) visualization. (F) The expression 
patterns of osteoclast markers during the trajectory of monocyte/macrophage populations. (G) Distribution of 
monocytes/macrophages on the developmental tree by clusters. (H) Heatmap of differential genes of three states. 
(I) Heatmap of genes associated with osteoclastogenesis in bulk RNA-seq analysis.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The expression pattern of markers of M1-like macrophages and M2-like macrophages in 
macrophage cluster.

Figure 3 continued

Figure 4. Apical periodontitis (AP) suppressed transcriptionally inferred cellular interactions and increased a self-supporting network within the 
mesenchymal stem cell (MSC) cluster. (A–C) Network plot of ligand-receptor activity in control (A), AP (B), and AP versus control (C). (D) Bar plot of top 
10 most abundant ligands in all inferred ligand-receptor interactions. (E) Ranking of ligand/source regarding communication gains in AP state. (F and 
G) Sankey plot listing all predicted source, receptor, and receiver interactions associated with Fn1 and Sele.

https://doi.org/10.7554/eLife.82537
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(Figure 4G). Of note, Sele and Fn1 are important cell adhesion molecules that mediate cell homing 
and migration (Frenette et  al., 1998; To and Midwood, 2011). This was in accordance with the 
increased frequency of the MSC cluster (Figure 2A) as well as the upregulated cellular interaction 
among MSCs and other cell populations.

scRNA-seq based identification of AP-associated MSC population
MSCs represented the non-immune cell population in alveolar bone, constituting 1.76% of total 
identified cells. This cell population could be decomposed into four subclusters (Figure  5A). The 
most dominant subcluster was characterized by high expression of Prrx1, platelet-derived growth 
factor receptor β (Pdgfrb), and hematopoiesis supporting factors such as C-X-C motif chemokine 12 
(Cxcl12) and angiopoietin (Angpt1). It was also characterized by osteogenic-related markers, such 
as Runt-related transcription factor 2 (Runx2), Sp7, and was thus classified as the MSC_osteolineage 
cells (OLCs). The other subclusters were identified as MSC_endothelial (Cdh5+), MSC_neurological 
(Plp1+), and MSC_inflammatory (S100a8/S100a9+; Figure  5A and B). The cell composition of the 
MSC cluster indicated an expansion of MSC_inflammatory subcluster during AP, whereas the MSC_
neurological subcluster was reduced (Figure 5C). Of note, we performed lineage tracing experiments 
using Prrx1Cre, Sp7Cre, LeprCre, and Gli1CreER transgenic mouse models to identify stem cells in alveolar 
bone and the surrounding periodontal tissues (Cui et al., 2020; Fan et al., 2022; Men et al., 2020; 
Zhang et al., 2020). The results suggested increased numbers of Prrx1+ and Sp7+ MSC_OLCs as well 
as upregulated Gli1+ and Lepr+ periodontal ligament stem cells (PDLSCs) in AP lesions (Figure 5—
figure supplement 1A). We compared the MSC marker genes, identified above, among the four 
subpopulations. Their respective GO enrichment analysis confirmed that there are four specific MSC 
populations. MSC_OLCs were enriched for ossification, connective tissue development, skeletal 
system development, and osteoblast differentiation. MSC_endothelial cells displayed enrichment for 
angiogenesis, blood vessel morphogenesis, and endothelium development. MSC_neurological cells 
were enriched for myelination, ensheathment of neurons, and axon ensheathment. GO term analyses 
suggested highly specialized functional features of MSC_inflammatory cells, including regulation of 
protein export from nucleus, electron transport chain, mitochondrial ATP synthesis coupled electron 
transport, and oxidative phosphorylation (Figure 5—figure supplement 2A).

AP stimulates MSC differentiation toward osteoblast lineage cells
We next compared the transcriptome data from the MSC cluster between AP and control groups. 
Among the top upregulated genes, we observed a significant difference in the single cell expression 
levels of OLC-associated transcripts, such as secreted protein that is acidic and rich in cysteine (Sparc), 
Col1a1, Col1a2, Bglap, Bglap2, and Postn, accompanied by a trend toward increased Runx2 expres-
sion (Figure 5D). We verified their expressions by real-time quantitative PCR and bulk RNA sequence 
analysis. The results revealed that Sparc, Col1a1, Col1a2, and Runx2 were significantly upregulated, 
and Bglap tended to increase during AP (Figure 5—figure supplement 3A, B). In vivo experiments 
confirmed the upregulated expression of osteogenic-related markers, such as Sparc and Col1a1 in the 
AP group. There were increased numbers of Sparc+/Sp7+ or Col1+/Sp7+ cells embedded in the bone 
matrix, implying the protective function of MSC to differentiate into osteoprogenitors and osteo-
blasts under AP conditions (Figure 5E and F). Lineage tracing analysis further revealed that Gli1+ 
PDLSCs migrated to AP lesions and differentiated into Runx2+-osteoblasts (Figure 5G). Moreover, 
using LeprCre;Rosa26Ai14;Col2.3-GFP mouse model, we identified more Lepr+/Col2.3+ cells in the alve-
olar bone, confirming that inflammation could stimulate the progenitor cells in the adjacent bone and 
periodontium differentiating toward osteoblasts, thus contributing to the protective actions during 
AP (Figure 5H).

We investigated the heterogeneity of MSCs by applying branch expression analysis modeling 
(BEAM) and corresponding pseudotime analysis implemented in Monocle 2 (Qiu et al., 2017a). The 
results revealed three distinct states. Of these, state 2 and state 3 represented two diverse differ-
entiated cell populations (terminal branch; Figure 6A). We then examined the characteristics of the 
MSCs with respect to their specific states. We plotted the estimated pseudotime of each cluster cell 
in the state space, and the results indicate that starting with MSC_endothelial cells, MSCs were able 
to differentiate into MSC_OLCs and MSC_neurological cells. MSC_inflammatory cells may correspond 
to an intermediate state (Figure 6B). Interestingly, MSC_OLCs in state 3, as osteogenic primed MSCs, 

https://doi.org/10.7554/eLife.82537
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Figure 5. Identification and characterization of apical periodontitis (AP)-associated mesenchymal stem cell (MSC) population and its subclusters. 
(A) t-Stochastic neighbor embedding (t-SNE) representation an unsupervised clustering of single cells within the MSC cluster. (B) Violin plots of MSC 
subcluster-specific expression of representative genes. (C) The percentages of four subclusters of MSC population were quantified in control and AP 
groups. (D) Violin plots depict the changes in the expression of top upregulated genes in the MSC cluster. (E and F) Immunofluorescence double 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.82537
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exhibited the highest tendency toward osteoblastic differentiation with upregulated expressions of 
Col1a1, Col1a2, Bglap, Spp1, and Postn (Figure 6C). Notably, this MSC population increased signifi-
cantly in the AP group (Figure 6D). A comparison of the dynamics of the gene expression pattern 
across pseudotime revealed upregulation of osteogenic genes such as Sparc, Col1a1, Col1a2, and 
Bglap during inflammation when compared to the homeostatic state (Figure  6E). Thus, the MSC 

staining of Sparc (E) and Col1 (F) in Sp7-expressing osteoprogenitors. Scale bar, 50 μm. (G) Immunofluorescence double staining of Runx2 in Gli1+ 
periodontal stem cells (PDLSCs). Scale bar, 50 μm. (H) Lineage tracing analysis of Lepr+ PDLSCs and Col2.3+ osteoblasts. Scale bar, 50 μm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Red fluorescent protein expression in Prrx1Cre;Rosa26Ai14, Sp7Cre;Rosa26Ai14, Gli1CreER;Rosa26Ai14, and LeprCre;Rosa26Ai14;Col2.3-GFP 
mouse models.

Figure supplement 2. Gene Ontology (GO) enrichment analysis of the biological functions of mesenchymal stem cell (MSC) subclusters.

Figure supplement 3. Real-time quantitative PCR (qPCR) and bulk RNA-seq analysis of osteogenic markers during apical periodontitis (AP) situation.

Figure 5 continued

Figure 6. Apical periodontitis (AP) stimulates mesenchymal stem cell (MSC) differentiation toward osteoblast lineage cells. (A) Pseudotime analysis of 
the MSC population. (B) Reconstructed cell differentiation trajectory of MSC populations in control and AP groups. (C) Heatmap of differential genes of 
three states. (D) Bar plot of numerical changes between AP and control in respective states as identified in pseudotime analysis. Fisher’s exact test with 
Bonferroni correction was used. ****p<0.0001. All data were exhibited as mean ± SEM. (E) Comparison between the pseudotime gene trajectories of 
MSC subpopulations showed upregulation of Sparc, Col1a1, Col1a2, and Bglap. Black line indicates AP, and dotted lines indicate control.

https://doi.org/10.7554/eLife.82537
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subcluster exhibited gene expression levels of osteogenic markers that increased during AP. These 
results were in accordance with our previous single-cell analysis of gene expression in the AP group 
(Figure 5D–H).

Higher OLC-associated marker levels were identified in alveolar bone 
from patients with AP
We next determined whether osteogenesis within the MSC population was altered in human patients 
with AP. The expressions of SPARC, COL3A1, and RUNX2 were significantly enhanced in alveolar bone 
from patients with AP, accompanied by increases in SPP1 and BGLAP (Figure 7A). Moreover, immu-
nostaining detected a more extensive distribution of SPARC, BGLAP, and RUNX2 in AP alveolar bone 
marrow, confirming higher osteogenic potential under AP conditions (Figure 7B–D). Upregulation of 
OLC-associated markers in AP lesions from patients is consistent with our previous results, verifying 
an augmentation of osteogenic characteristics within the MSC subcluster in alveolar bone marrow 
under AP conditions.

In summary, the current study elucidated the characterization of MSCs and immunoresponsive 
cells under healthy and chronic AP conditions, including unforeseen heterogeneity in their states of 
activation. We believe that this analysis presents a comprehensive transcriptomic view of the alve-
olar bone microenvironment during AP. These results could pave the way for designing new thera-
peutic approaches by targeting MSCs to restore the alveolar bone lesions caused by AP and other 
inflammatory-related bone diseases.

Discussion
In this study, we employed scRNA-seq technology for an unbiased assessment of cell populations in 
alveolar bone marrow from mice with induced chronic AP. We identified 15 discrete cell clusters, each 
with unique transcriptional signatures and putative functions during AP progression. Immune cells 
accounted for the majority of the cell components in the mandibular microenvironment. Cell-to-cell 
communication analysis revealed that among the multiple cell types, the MSC population had the most 
interaction with itself and other immune cells under inflammatory conditions. Furthermore, we iden-
tified four main subclusters within the MSC population. The transcriptional profiles of each subcluster 
from both the homeostatic and disease states were significantly different. We used the expression 
profile and the pseudotime analysis to demonstrate that MSCs were stimulated by inflammation and 

Figure 7. Human alveolar bone in apical periodontitis (AP) is associated with higher osteolineage subcluster (OLC)-associated transcripts. (A) Gene 
expression of SPARC, COL3A1, RUNX2, SPP1, and BGLAP in samples of healthy individuals and AP patients showed an upregulated expression in 
AP group. n=4 in healthy individuals and n=10 in AP patients. *p<0.05. All data are shown as the mean ± SEM. (B–C) Immunofluorescence staining of 
SPARC, BGLAP, and RUNX2 in bone marrow of human alveolar bone exhibited high osteogenic protein levels in AP. n=4. Scale bar, 10 μm.

https://doi.org/10.7554/eLife.82537


 Tools and resources﻿﻿﻿﻿﻿﻿ Cell Biology | Microbiology and Infectious Disease

Fan et al. eLife 2023;12:e82537. DOI: https://doi.org/10.7554/eLife.82537 � 13 of 23

differentiated toward osteogenic lineage cells in order to protect the alveolar bone. We confirmed the 
enriched genes and proteins associated with osteogenesis in AP-associated alveolar bone from both 
the murine models and human patients. Our results define the bone marrow microenvironment in a 
homeostatic state and under chronic AP, highlighting the protective action of MSCs in regeneration 
of alveolar bone lesions.

The oral cavity is one of the most complex microenvironments where host and microbes interacts 
closely (Hasturk et  al., 2012). Oral inflammatory diseases such as AP is a complex disease char-
acterized by the simultaneous presence of inflammation, destructive immunoreactions, and healing 
processes (Márton and Kiss, 2000; Márton and Kiss, 2014). A dense infiltration of immunocompe-
tent cells is present in periradicular lesions. Extensive studies have examined these cells by immunos-
taining and gene expression techniques to determine their specific properties in terms of numbers, 
morphology, and function (Graunaite et al., 2012). These results provide a deeper understanding of 
immune cells and their inflammatory mediators. Yet the extent of their heterogeneity and the distinct 
markers of cell subsets have remained unexplored.

Our scRNA-seq analysis supplements knowledge of the landscape of bone marrow immunore-
actions during oral inflammatory diseases. For example, the pro-inflammatory cytokines (IL-1β, IL-6, 
and TNF-α) have been recognized as key mediators associated with the persistence of the disease 
(Morsani et  al., 2011). We found high expression of Il1b and Il6 in the mast cell cluster and Tnf 
in the monocyte population. The release of these substances is directly related to both inflamma-
tory events and bone resorption (Bracks et al., 2014). Moreover, other inflammatory cells, including 
neutrophils, macrophages, and lymphocytes, present specific expression patterns of various cyto-
kines and chemokines. In particular, a significant upregulation of Cxcl2 expression was identified in 
neutrophil and macrophage populations. Cxcl2 was detected in endodontic infections (de Gomes 
and Herrera, 2018) and is one of the most critical chemokines for neutrophil recruitment at a site 
of inflammation (Kobayashi, 2008; Silva et al., 2007). Increased levels of Cxcl2 have been reported 
to be associated with bone-resorptive activity in periapical lesions (AlShwaimi et al., 2013), high-
lighting the pro-inflammatory role of Cxcl2 in the progression of AP. Furthermore, we detected several 
new anti-inflammatory factors such as Ifitm1 and Ifitm2 in monocyte/macrophage subsets. Ifitm1 and 
Ifitm2 encode for a family of small transmembrane proteins localized in the plasma and endolyso-
somal membranes. Although the function of Ifitm has not been assessed in the context of AP, there 
is considerable evidence suggesting that Ifitm1 and Ifitm2 can be stimulated by interferons and exert 
an anti-inflammatory function in innate and adaptive immunity (Liao et al., 2019; Yánez et al., 2020). 
It is notable that the frequencies of macrophage, T cell, B cell, NK cell, epithelial cell, and MSCs 
were significantly increased in AP samples. Being one of the most significant components of the 
innate immune system, macrophages function to remove the pathogenic substances and dead cells 
by phagocytosis (Lu et al., 2021). They can be divided into two subsets, M1-like macrophages and 
M2-like macrophages. The M1 type is termed as the proinflammatory one, which is Cd86, Cd80, Il1b, 
and Tnf positive. M1-like macrophages also work as antigen presenting cells to interact with T helper 
1 (Th1) cells (Song et al., 2022). Moreover, they release TNF-α, IL-1α, IL-6, and prostaglandins to 
increase the resorptive intensity in AP (Paula-Silva et al., 2020). By contrast, M2-like macrophages 
display immunoregulatory functions. They are positive for Cd163, Cd206, Msr1, and Il10. The analysis 
of macrophage subsets showed the M1-like macrophage accounted for the vast majority in AP lesions. 
The expression pattern of M2 markers were also presented in macrophage cluster (Figure 3—figure 
supplement 1A, B). Lymphocytes including T cells and B cells are crucial in the adaptive immune 
response of AP (Wang et al., 2022). Th1 cells are believed to be pro-inflammatory, while Th2 cells 
usually function as the immunosuppressive subcluster. Tregs are another important type of T cells 
related to the regenerative process of AP. They can release IL-10 and tissue growth factor (TGF)-β to 
ameliorate the local inflammation. Tregs also function as the suppressor of T cell response and restrict 
the progression of AP. Different types of B cells act conversely during AP process. It was reported 
that antigen-activated B cells and switched memory B cells increased RANKL expression then stimu-
lated osteoclast generation and alveolar bone resorption (Han et al., 2018; Settem et al., 2021). In 
contrast, the plasma cells play a fundamental role in tissue repair by producing antibodies (Han et al., 
2018; Polanco et al., 2021). NK cells exert a crucial function in host defense by rapidly producing 
cytokines and upregulating the expression of cell death-inducing molecules to eliminate infected cells 
(Kratzmeier et al., 2023). CD57+ NK cells were presented in chronic AP lesions, and upregulated NK 
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cells were observed in periapical granulomas compared with radicular cysts (Silva et al., 2017). Prolif-
erating epithelium is frequently present in inflamed apical lesions, which is usually developed from 
epithelial rests of Malassez (Langeland et al., 1977; Lin et al., 2007). It is an important protective 
bioactivity since these epithelial tissues aim to build a barrier to prevent the diffusion of microorgan-
isms. Increased number of epithelial cells is highly connected with the progression toward periapical 
cyst, the connective tissue capsule of which is lined by a non-keratinized stratified squamous epithe-
lium (Schulz et al., 2009). Our scRNA-seq analysis has revealed novel transcriptional signatures of 
specific cell populations which were not visible with bulk analysis. Further studies will be required to 
investigate the contribution of these factors to the immune response and inflammation.

Cell-cell communications mediated by ligand-receptor complexes are crucial to control diverse 
biological processes, including development, differentiation, and inflammation (Efremova et  al., 
2020). We employed CellPhoneDB to demonstrate previously unrecognized intercellular communi-
cation among all cell subsets, including close crosstalk among MSCs, macrophages, and dendritic 
cells. More importantly, CrossTalkeR enabled us to identify cell communication differences between 
two biological states: disease versus homeostasis (Nagai et al., 2021). Our results suggest that most 
ligand-receptor interactions were markedly reduced during AP. Alterations in cell-cell communication 
have also been described for multiple tissues and organs under other disease, injury, and infection 
conditions (Armingol et al., 2021). The shifts in the pattern of CCIs in the alveolar bone microenvi-
ronment may imply reorganization of the network in response to inflammation. It is worth noting that 
MSCs possessed the highest number of interactions with themselves and other cell types under both 
homeostasis and AP conditions, indicating MSCs act as a hub in CCIs. Thus, alterations of MSCs may 
substantially affect the biological behaviors of other cell types in both healthy and diseased states, 
further underscoring the importance of MSCs in alveolar bone marrow during inflammation.

In most cases of chronic AP, periapical bone destruction is self-limiting in which a new equilibrium 
has been established between root canal pathogens and anti-infective defense mechanisms (Wang 
et al., 2011). The mechanisms that underly the protective actions of immune cells in apical inflamma-
tory tissues have been extensively studied (Márton and Kiss, 2000; Márton and Kiss, 2014; Nair, 
2004; Stashenko, 1990). Yet, the kinetics for the healing of these lesions by regenerating alveolar 
bone is less well understood.

MSCs are recognized as a promising resource for periapical bone healing in the treatment of oral 
inflammatory diseases. Several lines of evidence support this tenet. The evoked-bleeding step in 
revascularization procedures for regenerative endodontic treatment leads to a substantial influx of 
MSCs, confirming the existence and regenerative properties of MSCs in the periapical region. Indeed, 
several dental MSCs are present in the periapical tissues, including MSCs derived from alveolar bone, 
periodontal ligament, and apical papilla (Zhao and Chai, 2015). More importantly, MSCs were found 
to be present in inflamed periapical tissues in adult patients with AP. Evidence showed that human 
apical papilla and its resident cells from teeth with pulp necrosis and AP could survive and retain their 
stemness in an inflammatory environment (Chrepa et al., 2017). MSCs found in the periapical region 
were positive for typical stem cell markers, such as STRO-1, CD90, CD73, CD105, CD146, and SOX2 
(Chrepa et al., 2015; Estrela et al., 2017; Liao et al., 2011). These progenitors were able to form 
CFU-Fs, illustrating a typical MSC feature. However, our understanding of the characteristics of MSCs 
in inflamed periapical tissues remains at an early stage. In this study, we explored the heterogeneity 
and expression signature of MSCs in the presence of inflammation. Several key observations were 
only possible by study at the single-cell level. First, we identified four main subclusters in the MSC 
population: MSC_OLCs, MSC_endothelial cells, MSC_neurological cells, and MSC_inflammatory cells. 
The first three clusters were consistent with previously described MSC populations in alveolar bone 
marrow (Lin et al., 2021). These MSC subclusters have distinct differentiation potentials and may be 
associated with the pathogenesis of AP. Importantly, we noted that the proportion of MSC_inflamma-
tory cells in AP was higher and accompanied by significantly increased expression of S100a8/a9. These 
factors are involved with Ca2+ binding which is significantly increased during inflammatory processes 
(Wang et al., 2018). Recent studies have found that although MSCs do not express S100a8/a9 under 
healthy conditions, they do upregulate its expression in disease states (Leimkühler et  al., 2021). 
The higher S100a8/a9 expression in the MSC_inflammatory cell subcluster suggests that S100a8/a9 
might be a candidate for detecting an inflammatory-associated MSC state in AP. Activated by inflam-
matory bone destruction, these MSCs with increased osteogenic potentials may rescue the bone 
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resorption process, which reach the equilibrium between bone formation and resorption then drive 
the progression of AP into stable states (Márton and Kiss, 2014). Since the pathological stimuli exists 
constantly, the protective actions can alleviate the bone loss to some extent. In clinical practice, root 
canal therapy (RCT) aims to disinfect and remove the pathogenic factors, which make the protective 
activities overweigh the destructive ones (Lin et al., 2009). The bone lesions of AP patients receiving 
RCT usually fully recovered with resolution of radiolucency after the inflammation is controlled in 
apical area (Soares et al., 2006). The healing of AP lesion is highly correlated with the osteogenic 
potential of inflamed MSCs (Lin et al., 2009). The differentiative traits of these cells and their role in 
inflamed periapical tissue remain to be explored. Deeper understanding of the features of MSCs in 
inflammatory microenvironment and the regulatory network underlying this situation will shed light on 
the MSC-based regenerative medicine for AP and other inflammatory bone diseases.

An important finding in the present study is the increased osteogenic potential in the MSC popu-
lation during inflammatory-associated bone lesions. Several lines of evidence support this conclusion. 
The overall size of the MSC population was significantly increased and was accompanied by upregu-
lated expression of key osteogenic-related genes. Moreover, pseudotime analysis detected a specific 
state progression toward osteogenesis in the MSC cluster. The numerical changes in this state were 
statistically higher in AP samples when compared to control. MSCs in this state harbored the highest 
osteoblastic differentiation potential, along with upregulated expressions of Sparc, Col1a1, Col1a2, 
Runx2, and Bglap. More importantly, we confirmed this observation in animal models and human 
patients with AP. By using a lineage tracing strategy, we identified increased percentages of Prrx1+, 
Gli1+, Lepr+ MSC, and Sp7+ progenitor cells with higher expression of Sparc, Col1a1, and Runx2 in the 
alveolar bone region surrounding periapical lesions. We show, for the first time, upregulated SPARC, 
RUNX2, COL3A1, and BGLAP in alveolar bone from human patients with AP. It is notable that Sparc 
was the most upregulated marker in the MSC population from AP samples. Sparc is one of the most 
abundant non-collagenous proteins expressed in bone. It has a critical role in osteoblast differentiation, 
procollagen processing, and assembly as well as mineralization (Rosset and Bradshaw, 2016). SPARC 
mutations have been identified in patients with osteogenesis imperfecta and idiopathic osteoporosis 
(Delany et al., 2008; Mendoza-Londono et al., 2015). Sparc null mice exhibit decreased osteoblast 
number and activity along with reduced bone formation rate (Delany et al., 2003). Recent research 
using scRNA-seq revealed high levels of SPARC expression in human periodontal MSCs, highlighting 
the potential role of SPARC in oral MSC populations (Pagella et al., 2021). Notably, Sparc is also a 
molecule closely related to inflammation. Overexpressed Sparc is observed in inflammatory pulp cells, 
experimental glomerulonephritis, and ovarian cancer associated inflammation (Dimitrova-Nakov 
et al., 2014; Pichler et al., 1996; Said et al., 2008). Both pro-inflammatory and anti-inflammatory 
properties of Sparc have been reported (Said et al., 2008; Sangaletti et al., 2011; Tanaka et al., 
2018; Toba et al., 2015). Sparc may act in two ways by activating different pathways depending on 
context. It therefore creates a microenvironment suitable for tissue remodeling and repair at different 
stages (Ghanemi et al., 2020). Given the upregulation of Sparc observed in AP mouse models and 
human patients, we believe that the MSC population was stimulated by inflammation and underwent 
osteogenesis with a significant function in bone matrix assembly and mineralization, thus serving as an 
important protective component in healing the bone lesions in inflammation.

In summary, we profiled the transcriptome of alveolar bone marrow single cells from control and AP 
samples, providing novel insights into the inflammatory biomarkers associated with the pathogenesis 
of oral inflammatory diseases. The interplay among various cell populations highlights the role of MSC 
subsets and the therapeutic potential of MSCs in healing bone lesions. These results demonstrate 
marked heterogeneity in the alveolar bone marrow microenvironment and provide a basis for consid-
ering MSC-based treatment for inflammatory-related bone diseases.

Materials and methods
Animal experiments
Gt(ROSA)26Sortm14(CAG-tdTomato)Hze mice (Rosa26Ai14; Cat# JAX:007914), Sp7Cre (Cat# JAX:006361), Prrx1Cre 
(Cat# JAX:005584), and Gli1CreER (Cat# JAX:007913) mice were purchased from Jackson Laboratory. 
Col2.3-GFP and LeprCre mice were kindly provided by Dr. Bo O. Zhou (Institute of Biochemistry and 
Cell Biology). Hybrid mice were generated to mark Sp7-, Prrx1-, Lepr-, and Gli1-expressing cells by 
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crossing Sp7Cre, Prrx1Cre, LeprCre, and Gli1CreER with Rosa26Ai14 respectively. LeprCre;Rosa26Ai14;Col2.3-GFP 
mice were generated by crossing LeprCre;Rosa26Ai14 mice with Col2.3-GFP mice. Gli1CreER;Rosa26Ai14 
mice (at postnatal day 50) were injected intraperitoneally with tamoxifen (Sigma-Aldrich) at dosage 
of 2.5 mg/10 g body weight every 2 d for three times. Wild-type mice were purchased from Chengdu 
Dossy Biological Technology Co., Ltd. All animal experiments were carried out in accordance with the 
guidelines of the Institutional Animal Care and Use Committee at the State Key Laboratory of Oral 
Diseases, Sichuan University (WCHSIRB-D-2021–339).

AP mouse model
The AP model was generated using 8-wk-old mice as described previously (Taira et al., 2019). In brief, 
the pulp chambers of the mandibular first molars were opened by a high-speed handpiece with #1/4 
carbide round bur under direct visualization by a stereoscopic microscope (Leica). A #10 endodontic 
K file was then used to probe the root canals. The teeth were then exposed to the oral environment 
for 3 wk.

Single-cell sample preparation and sequencing
20 C57/B6 male mice with AP or control mice were used to acquire single-cell suspensions. Mandi-
bles were dissected under a stereo microscope (Leica). Specifically, soft tissues, molars, incisors, and 
bone from behind the condyle were removed. Then, mandibular alveolar bone tissue was cut into 
small pieces (<1 mm3) and digested with 3 mg/mL collagenase type I (Gibco) and 4 mg/mL dispase 
II (Sigma) for 60 min at 37°C as previously described (Cui et al., 2020; Yamaza et al., 2011). Red 
blood cells were lysed with 1 mL Red Cell Lysis Solution (Biosharp). Cells were centrifuged and resus-
pended in 1% BSA solution. The final concentration of cells was 1 × 106 cells/mL. Cellular suspen-
sions were loaded into Chromium microfluidic chips and barcoded with a 10× Chromium Controller 
(10× Genomics). RNA from the barcoded cells was subsequently reverse-transcribed and sequencing 
libraries constructed with reagents from a Chromium Single Cell 3’ v3 reagent kit (10× Genomics) and 
sequenced with the NovaSeq system (Illumina).

Preprocessing of scRNA-seq data
We used Cellranger (v3.1, 10× Genomics) to compare reads to the mouse genome mm10 and for 
detection of cells using default parameters. Next, we used the Seurat package (v3.1) for further anal-
ysis of the scRNA-seq. A gene with less than 3 cells, mitochondrial genes higher than 20%, cells with 
less than 200 expressed genes, and cells with erythrocyte gene expression higher than 5% were 
filtered out. The Seurat package was used for data normalization and dimensional reduction. Principal 
component analysis was based on the highly variable genes, and subclusters of cells were identified 
using specific gene expression in each group.

Pseudotime analysis
The cluster identified as MSC was loaded into R environment and then the R package Monocle 2 was 
used to infer the trajectory and reduce the dimensional space to discover the state transitions of MSCs 
(Qiu et al., 2017b). Each cell’s pseudotime was automatically calculated, and the branch was assigned 
on the principal graph. BEAM was run to analyze the hub genes in branches, and top 50 genes were 
visualized with the plot_genes_branched_heatmap function.

CCI analysis
CellPhoneDB v.2.0 was performed to predict enriched cellular interaction between different cell 
populations according to the expression of a receptor by one state and a ligand by another one 
(Efremova et al., 2020). Receptors and ligands were analyzed when they were expressed in at least 
10% cells of the corresponding cluster in mouse data. Subsequently, CrossTalkeR was used to visualize 
the ligand-receptor networks, which identified relevant ligands, receptors, and cell types contributing 
to changes in cellular crosstalk when contrasting AP and homeostasis states (Nagai et al., 2021). We 
then ranked the individual ligand by their number of interactions and normalized to the number of all 
possible CCIs to identify the most influential ligand. Interactions associated with Fn1 and Sele were 
visualized via Sankey plot.
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Bulk RNA-seq analysis
Healthy and AP mandibles were used to extract total RNA and analyzed with bulk RNA-seq. Power-
Lyzer 24 Homogenizer (Qiagen) was used for lysis and homogenization of alveolar bone samples, and 
Trizol (Invitrogen) was used for mRNA extraction according to the manufacturer’s protocol. NanoDrop 
ND-1000 (Thermo fisher Scientific) was used to quantify RNA concentration. Sequencing libraries 
were generated using the NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, USA), and index 
codes were added to correlate sequences to each sample. The library preparations were sequenced 
on an Illumina Novaseq 6000 (LC-Bio Technology Co., Ltd.).

Quantitative real-time PCR
PrimeScript RT reagent kit (Takara) was used to reverse transcribed RNA, and qRT-PCR was performed 
by SybrGreen Supermix (Bio-Rad Laboratories). Relative expression was calculated using a 2ΔΔCT 
method with Actb for normalization. All primers are listed in the Supplementary file 1.

Collection of human alveolar bone
This study was permitted by the Ethical Committees of the West China Hospital of Stomatology, 
Sichuan University (WCHSIRB-D-2021–292). Written informed consent was obtained from all patients. 
Patients who were characterized with periapical rarefaction in radiography, suffered with a failed root 
canal treatment, and needed endodontic surgery were recruited as subjects. Patients with periodon-
titis, vertical root fracture, suspected odontogenic tumor, systematic diseases, or a history of anti-
biotic, antiviral, or immunosuppressive therapy for 3  mo were excluded. 10 human alveolar bone 
samples were collected from discards during the apicoectomy surgery. Normal apical bone tissue was 
harvested from patients who required a bone repair procedure. There was no significant difference in 
age or gender between the control group and the patients with AP. The samples were rinsed by sterile 
PBS. Subsequently, part of the samples was quick-frozen with liquid nitrogen and stored at –80°C for 
mRNA extraction. Others were fixed by 4% paraformaldehyde (PFA) and decalcified by 20% EDTA for 
immunostaining.

Immunostaining
Immunofluorescent staining was performed to assess the expression of proteins in the region of the 
AP lesion. Mandibles from Sp7Cre;Rosa26Ai14, Prrx1Cre;Rosa26Ai14, LeprCre;Rosa26Ai14;Col2.3-GFP, and 
Gli1CreER;Rosa26Ai14 mice were dissected and fixed in 4% paraformaldehyde for 3 d. Subsequently, 
samples were decalcified in 20% EDTA (pH 7.5) and embedded in Tissue-Tek O.C.T Compound (Sakura) 
and cut into 8 μm sections using CryoStar NX50 (Thermo fisher Scientific). Slides were permeabilized 
with 0.3% Triton X-100 (Beyotime) for 15 min, blocked with 5% BSA for 1 hr, incubated with anti-
Sparc (1:100, R&D, AF942) or anti-Collagen I (1:200, Abcam, ab21286) or anti-Bglap (1:200, Abcam, 
ab93876) or anti-Runx2 (1:200, Abcam, ab23981) overnight at 4°C, and then incubated with Alexa 
fluor 488 (1:1000, Invitrogen, A11070) for 1 hr at room temperature. 4',6-diamidino-2-phenylindole 
dihydrochloride (DAPI) (Vector) was used as a nuclei counterstain. An Olympus confocal microscope 
FV3000 (Olympus) was used to capture images.

Statistical analysis
GraphPad Prism 9.0 (GraphPad Software Inc) was used for statistical analysis. Unpaired two-tailed 
Student’s t test was used in two-group comparisons. All data were exhibited as mean ± SEM. 
p-Values<0.05 were considered statistically significant for all analyses.
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Supplementary files
•  Supplementary file 1. Quantitative RT-PCR (qRT-PCR) primer sequences.

•  MDAR checklist 

•  Source data 1. Source data files for Figure 1D, Figure 1—figure supplement 1B, Figure 2A, 
Figure 3I, Figure 4D-E, Figure 5C, Figure 5—figure supplement 3A-B, Figure 6D and Figure 7A.

Data availability
All data generated or analysed during this study are included in the manuscript and supporting file; 
Source Data files have been provided for Figures 1, 2, 3, 4, 5, 6, 7, Figure1-figure supplement 1 and 
Figure5-figure supplement 3. Sequence data are deposited in the NCBI Gene Expression Omnibus 
under accession numbers GSE212975 and GSE221990.
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Fan Y, Lyu P, Yuan Q, 
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2022 Single-cell gene expression 
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bone marrow cells 
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GSE212975

NCBI Gene Expression 
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Fan Y, Lyu P, Yuan Q, 
Zhou C

2023 RNA-seq analysis of RNA 
extracted from control 
alveolar bone samples and 
alveolar bone under apical 
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https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE221990

NCBI Gene Expression 
Omnibus, GSE221990
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