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Abstract Neuroscience has recently made much progress, expanding the complexity of both 
neural activity measurements and brain- computational models. However, we lack robust methods for 
connecting theory and experiment by evaluating our new big models with our new big data. Here, 
we introduce new inference methods enabling researchers to evaluate and compare models based 
on the accuracy of their predictions of representational geometries: A good model should accurately 
predict the distances among the neural population representations (e.g. of a set of stimuli). Our 
inference methods combine novel 2- factor extensions of crossvalidation (to prevent overfitting to 
either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to 
enable inferential model comparison with simultaneous generalization to both new subjects and new 
conditions). We validate the inference methods on data where the ground- truth model is known, by 
simulating data with deep neural networks and by resampling of calcium- imaging and functional MRI 
data. Results demonstrate that the methods are valid and conclusions generalize correctly. These 
data analysis methods are available in an open- source Python toolbox (rsatoolbox.readthedocs.io).

Editor's evaluation
Schütt and colleagues introduce a new method for statistical inference on representational geom-
etries based on a cross- validated two- factor bootstrap that allows for generalization across both 
participants and stimuli while allowing the fitting of flexible models. In a series of elegant simulations 
and empirical analyses on existing datasets, the authors validate the method statistically. The work 
provides a fundamental and compelling advance for the analysis of representational geometries.

Introduction
Experimental neuroscience has recently made rapid progress with technologies for measuring neural 
population activity. Spatial and temporal resolution, as well as the coverage of measurements across 
the brains of animals and humans have all improved considerably (Parvizi and Kastner, 2018; Abbott 
et al., 2020; Wang and Xu, 2020; Allen et al., 2021; Guo et al., 2021; Uğurbil, 2021; Bandettini 
et al., 2021). Activity is measured using a wide range of techniques, including electrode recordings 
(Jun et al., 2017; Steinmetz et al., 2018; Parvizi and Kastner, 2018), calcium imaging (Wang and 
Xu, 2020), functional magnetic resonance imaging (fMRI; Allen et al., 2021; Uğurbil, 2021; Bandet-
tini et al., 2021), and scalp electro- and magnetoencephalography (EEG and MEG; Baillet, 2017; 
Craik et al., 2019). In parallel to the advances in measuring brain activity, theoretical neuroscience 
has substantially scaled up brain- computational models that implement computational theories (e.g. 
Kriegeskorte, 2015; Kell et al., 2018; Kubilius et al., 2019; Zhuang et al., 2021). The engineering 
advances associated with deep learning (e.g. Paszke et al., 2019; Abadi et al., 2015) provide powerful 
tools for modeling brain information processing for complex, naturalistic tasks (LeCun et al., 2015). 
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How to leverage the new big data to evaluate the new big models, however, is an open problem 
(Stevenson and Kording, 2011; Sejnowski et al., 2014; Smith and Nichols, 2018; Kriegeskorte 
and Douglas, 2018).

An important concept for understanding neural population codes is the concept of representa-
tional geometry (Shepard and Chipman, 1970; Edelman et  al., 1998; Edelman, 1998; Norman 
et al., 2006; Diedrichsen and Kriegeskorte, 2017; Kriegeskorte et al., 2008a; Kriegeskorte et al., 
2008b; Connolly et al., 2012; Xue et al., 2010; Khaligh- Razavi and Kriegeskorte, 2014; Yamins 
et al., 2014; Cichy et al., 2014; Haxby et al., 2014; Freeman et al., 2018; Kietzmann et al., 2019; 
Stringer et al., 2019; Chung et al., 2018; Chung and Abbott, 2021; Kriegeskorte and Wei, 2021). 
Neural activity patterns that represent particular pieces of mental content, such as the stimuli presented 
in a neurophysiological experiment, can be viewed as points in the multivariate neural population 
response space of a brain region. The representational geometry is the geometry of these points. The 
geometry is characterized by the matrix of distances among the points. This distance matrix abstracts 
from the roles of individual neurons and provides a summary characterization of the neural population 
code that can be directly compared among animals and between brain and model representations 
(e.g. a cortical area and a layer of a neural network model). The representational geometry provides 
a multivariate characterization of a neural population code that can be motivated as a generalization 
of linear decoding analyses. A linear decoder reveals a single projection of the geometry. The full 
distance matrix (when measured after a transform that renders the noise isotropic) captures what 
information is available in any linear projection (Kriegeskorte and Diedrichsen, 2019a).

A popular method for analyzing representational geometries (Kriegeskorte and Kievit, 2013) 
on which we build here is representational similarity analysis (RSA; Kriegeskorte et al., 2008a; Nili 
et al., 2014). RSA is a three- step process (Figure 1): In the first step, RSA characterizes the represen-
tational geometry of the brain region of interest (ROI) by estimating the representational distance for 
each pair of experimental conditions (e.g. different stimuli). The distance estimates are assembled 
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Figure 1. Overview of model- comparative inference. (a) Multiple conditions are presented to observers and to models (here different stimulus images). 
The brain measurements during the presentation produce a set of measurements for each stimulus and subject, potentially with repetitions; a model 
yields a feature vector per stimulus. Importantly, no mapping between brain measurement channels and model features is required. (b) To compare 
the two representations, we compute a representational dissimilarity matrix (RDM) measuring the pairwise dissimilarities between conditions for each 
subject and each model. For model comparison, we perform 2- factor crossvalidation within a 2- factor bootstrap loop to estimate our uncertainty about 
the model performances. On each fold of crossvalidation, flexible models are fitted to the representational dissimilarities for a set of fitting stimuli 
estimated in a set of fitting subjects (blue fitting dissimilarities). The fitted models must then predict the representational dissimilarities among held- out 
test stimuli for held- out test subjects (red test dissimilarities). The resulting performance estimates are not biased by overfitting to either subjects or 
stimuli. (c) Based on our uncertainty about model performances (error bars indicate estimated standard errors of measurement), we can perform various 
statistical tests, which are marked in the graphical display. Dew drops (gray) clinging to the lower bound of the noise ceiling mark models performing 
significantly below the noise ceiling. White dew drops on the horizontal axis mark models whose performance significantly exceeds 0 or chance 
performance. Pairwise differences are summarized by arrows. Each arrow indicates that the model marked with the dot performed significantly better 
than the model the arrow points at and all models further away in the direction of the arrow.

Image credit: Ecoset (Mehrer et al., 2017) and Wiki Commons.
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in a representational dissimilarity matrix (RDM). We use the more general term ‘dissimilarity’ here 
to include dissimilarity measures that are not distances or metrics in the mathematical sense, such 
as crossvalidated distance estimators that can return negative values. This relaxation enables inclu-
sion of measures that are not biased by the noise in the data (Kriegeskorte et al., 2007; Nili et al., 
2014; Walther et  al., 2016; Kriegeskorte and Diedrichsen, 2019a), returning values distributed 
symmetrically about 0, when the true distance is 0, but patterns are noisy estimates. In the second 
step, each model is evaluated by the accuracy of its prediction of the data RDM. To this end, an RDM 
is computed for each model representation. Each model’s prediction of the data RDM is evaluated 
using an RDM comparator, such as a correlation coefficient. In the third step, models are inferentially 
compared to each other in terms of their RDM prediction accuracy to guide computational theory.

RSA is widely used (Kriegeskorte and Kievit, 2013; Haxby et  al., 2014; Kriegeskorte and 
Diedrichsen, 2019a) and has gained additional popularity with the rise of image- computable repre-
sentational models like deep neural networks (e.g. Krizhevsky et al., 2012; Yamins et al., 2014; 
Khaligh- Razavi and Kriegeskorte, 2014; Mehrer et  al., 2017; Kriegeskorte, 2015; Yamins and 
DiCarlo, 2016; Xu and Vaziri- Pashkam, 2021; Konkle and Alvarez, 2022; Cichy et al., 2016). There 
has been important recent progress with methods for estimating representational distances (step 1) 
as well as measures of RDM prediction accuracy (step 2). For RDM estimation, biased and unbiased 
distance estimators with improved reliability have been proposed (Nili et al., 2014; Cai et al., 2019; 
Walther et al., 2016). For quantification of the RDM prediction accuracy, the sampling distribution 
of distance estimators has been derived and measures of RDM prediction accuracy that take the 
dependencies between dissimilarity estimates into account have been proposed (Diedrichsen et al., 
2020). However, existing statistical inference methods for RSA (step 3) have important limitations. 
Established RSA inference methods (Nili et al., 2014) provide a noise ceiling and enable comparisons 
of fixed models with generalization to new subjects and conditions. However, they cannot handle flex-
ible models, can be severely suboptimal in terms of statistical power, and have not been thoroughly 
validated using simulated or real data where ground truth is known. Addressing these shortcomings 
poses three substantial challenges. (1) Model- comparative inference with generalization to new condi-
tions is not trivial because new conditions extend an RDM and the evaluation depends on pairwise 
dissimilarities, thus violating independence assumptions. (2) Standard methods for statistical infer-
ence do not handle multiple random factors — subjects and conditions in RSA. (3) Flexible models, 
that is models that have parameters enabling them to predict different RDMs, are essential for RSA 
(Diedrichsen et al., 2018; Kriegeskorte and Diedrichsen, 2016). Evaluation of such models requires 
methods that are unaffected by overfitting to either subjects or conditions to avoid a bias in favor of 
more flexible models.

Here, we introduce a comprehensive methodology for statistical inference on models that predict 
representational geometries (Figure  1). We introduce novel bootstrapping methods that support 
generalization of model- comparative statistical inferences to new subjects, new conditions, or both 
simultaneously, as required to support the theoretical claims researchers wish to make. We also 
introduce a novel crossvalidation method for estimation of the RDM prediction accuracy of flexible 
models, that is models with parameters fitted to the data (Khaligh- Razavi and Kriegeskorte, 2014; 
Kriegeskorte and Diedrichsen, 2016). This is important, because theories do not always make a 
specific prediction for the representational geometry. There may be unknown parameters, such as the 
relative prevalences of different tuning functions (Khaligh- Razavi and Kriegeskorte, 2014; Jozwik 
et al., 2016) in the neural population or properties of the measurement process (Kriegeskorte and 
Diedrichsen, 2016). The combination of our 2- factor bootstrap and 2- factor crossvalidation methods 
enables statistical comparisons among fixed and flexible models that generalize across subjects and 
conditions.

We thoroughly validate the new inference methods using simulations and neural activity data. 
Extensive simulations based on deep neural network models and models of the measurement process 
enable us to test model- comparative inference in a setting where the ground- truth model (the one 
that actually generated the data) is known. These simulations confirm the validity of the inference 
procedures and their ability to generalize to the populations of subjects and/or conditions. We also 
validated the methods on real data from calcium imaging (mouse) and functional MRI (human). For 
both datasets, we confirm that conclusions generalize from an experimental dataset (a subset of the 
real data) to the entire dataset (which serves as a stand- in for the population). The statistical inference 
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methodology described in this paper is available in a new open- source RSA toolbox written in Python 
(https://github.com/rsagroup/rsatoolbox, copy archived at Schütt, 2023).

Results
We now introduce the 2- factor bootstrap procedure for model- comparative inference and the 2- factor 
crossvalidation procedure for unbiased evaluation of flexible models. This paper also introduces a new 
representational dissimilarity estimator for electrophysiological recordings of patterns of firing rates 
across a population of neurons, based on the KL- divergence between Poisson distributions (Appendix 
2) and a faster alternative to the rank correlation  τa  as an RDM comparator (Nili et al., 2014), which 
we call  ρa  (Appendix 3). The proposed inferential methods work for any representational dissimilarity 
measure and any RDM comparator. We evaluate alternative RDM comparators in terms of their power 
in Appendix 6. A complete description of all steps of the new methodology can be found in the Mate-
rials and methods (Full description of the RSA method).

Methods for inference on representational geometries
A simple approach to inferential comparison of two models is to compute the difference between the 
models’ performance estimates for each subject and use Student’s  t - test (or a nonparametric alter-
native). However, inference then only takes the variability over subjects into account and thus does 
not justify generalization to different experimental conditions (e.g. different stimuli). Computational 
neuroscience usually pursues insights that generalize not only to a population of subjects but also 
to a population of conditions (Yarkoni, 2020). To support generalization to the population of condi-
tions statistically, we require uncertainty estimates that treat the experimental conditions as a random 
sample from a population (Kriegeskorte et al., 2008a), whether or not the subjects are treated as a 
random sample.

For frequentist inference, the challenge is to estimate how variable the model- performance esti-
mates would be if we repeated the experiment many times with new subjects and/or conditions. We 
would like to know (1) the variance of each model’s performance estimate and (2) the variance of the 
estimated performance difference for each pair of models. The variance of model- performance esti-
mates enables us to statistically compare each model to a fixed value such as an RDM correlation of 0. 
The variance of our estimate of model- performance difference enables us to statistically compare two 
models to each other (see Frequentist tests for model evaluation and model comparison for details).

Estimating the variance of model-performance estimates for generalization 
to new subjects and conditions
To estimate the variance of model- performance estimates across repetitions of the experiment with 
new conditions, we use a bootstrap method. Bootstrap methods estimate the variance of exper-
imental outcomes by sampling from the measured data with replacement, treating the measured 
data as an approximation to the population (Efron and Tibshirani, 1994). The population here is 
the set of experimental conditions of which the actual experimental conditions can be considered a 
random sample. Because the conditions do not have independent influences on the model evalua-
tions, we cannot compute a sample variance across conditions as we can across subjects to replace 
the bootstrap.

When we bootstrap- resample conditions, we obtain RDMs of the same size as the original RDMs, 
but some of the conditions will be repeated. Here, we exclude the entries that correspond to the 
dissimilarity of any condition with itself from the comparisons between RDMs. Simulations confirm 
that this procedure yields a good estimate of how variable the results are when we sample new condi-
tions with the same subjects (Figures 4a and 6g).

For simultaneous generalization to the populations of both conditions and subjects, we can employ 
a 2- factor bootstrap (Figure  1b) as introduced previously (Nili et  al., 2014; Storrs et  al., 2021). 
However, our simulations and theory here show that a naive 2- factor bootstrap approach triple- counts 
the variance contributed by the measurement noise (Methods, Estimating the uncertainty of our 
model- performance estimates, Figures 4c and 7c). This effect is not unique to RSA; a naive 2- factor 
bootstrap will triple- count variance related to the measurement noise for any type of experiment 
in which two factors (here subject and condition) jointly determine the experimental outcome. The 
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true variance  σ
2
both  of the experimental outcome when sampling both factors can be separated into a 

contribution from condition sampling ( σ
2
cond ), a contribution from subject sampling ( σ

2
subj ), and a contri-

bution of the interaction of subjects and conditions or measurement noise ( σ
2
noise ).

 σ2
both ≈ σ2

subj + σ2
cond + σ2

noise  (1)

This decomposition is for the actual variance  σ
2
both  across repeated experiments with new subjects and 

conditions. The variance  ̂σ
2
both  of the naive 2- factor bootstrap can likewise be decomposed into three 

additive terms (Online Methods, Estimating the uncertainty of our model- performance estimates), 
corresponding to subject sampling, condition sampling, and the interaction and/or noise. However, 
in the naive 2- factor bootstrap estimate  ̂σ

2
both , the independent noise contribution enters not only its 

own term, but also the two others. Thus, the original bootstrap estimate contains the noise variance 
component three times instead of once:

 

σ̂2
both ≈ (σ2

subj + σ2
noise) + (σ2

cond + σ2
noise) + σ2

noise

= σ2
subj + σ2

cond + 3σ2
noise   

(2)

This problem can be understood by considering the 1- factor bootstraps, which also contain the inde-
pendent noise component although it has not been added explicitly:

 σ̂2
subj ≈ σ2

subj + σ2
noise  (3)

 σ̂2
cond ≈ σ2

cond + σ2
noise  (4)

When we bootstrap two factors, this automatic inclusion of the noise component happens three times. 
We confirmed this by both theory and simulation. The overestimate of the variance renders the naive 
2- factor bootstrap conservative and not optimally powerful.

To correct the variance estimate, we introduce a novel corrected 2- factor bootstrap procedure 
to estimate the variance: We first compute the 1- factor bootstrap variance estimates  ̂σ

2
subj  and  ̂σ

2
cond . 

We also compute the naive 2- factor bootstrap estimate  ̂σ
2
both . We can then linearly combine the vari-

ances from these three bootstraps to cancel the surplus contribution from the measurement noise. 
This procedures yields a corrected 2- factor bootstrap estimate  ̂σ

2
c2f   that has approximately the right 

expected value:

 

σ̂2
c2f = 2(σ̂2

subj + σ̂2
cond) − σ̂2

both

≈ σ2
subj + σ2

cond + σ2
noise   

(5)

The approximations in these equations are due to  
N−1

N   factors that apply to the individual terms. We 
give the exact formulae including these factors in the methods section (Estimating the uncertainty of 
our model- performance estimates). We show in multiple simulations that this estimate approximates 
the correct variance better than the uncorrected 2- factor bootstrap (Figures 4c and 7c).

To stabilize the estimator and eliminate the possibility of a negative variance estimate, we bound 
the estimate from above and below. We use both  ̂σ

2
subj  and  ̂σ

2
stim  as lower bounds for the estimate as 

the variances they estimate are always smaller than the true variance. As an upper bound, we use 

 ̂σ
2
both , the naive, conservative estimate. Bounding slightly biases the variance estimate, but reduces its 

variability and ensures that it is strictly positive.

Evaluating the performance of flexible models
We often want to test flexible models, that is models that have parameters to be fitted to the brain- 
activity data. Two elements that often require fitting are weights for the model features and parame-
ters of a measurement model. Feature weighting is required when a model is not meant to specify a 
priori how prevalent different tuning profiles are in the neural population or in the measured signals. 
For example, for deep neural network representations to match brain responses well, it is usually 
necessary to weight the features (e.g. Yamins et al., 2014; Khaligh- Razavi and Kriegeskorte, 2014; 
Khaligh- Razavi et al., 2017; Storrs et al., 2021). A flexible measurement model may be necessary to 
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account for the process of measurement, which may subsample, average, or distort neural responses. 
For example, fMRI voxels average the neural activity locally, which can be modeled with a parameter 
for the local averaging range, and electrophysiological recordings may preferentially sample certain 
classes of neurons (Kriegeskorte and Diedrichsen, 2016).

To avoid the bias in the model- performance estimates that can result from overfitting of flexible 
models, we use crossvalidation. Crossvalidation means that we partition the dataset into separate 
test sets. In each fold of crossvalidation, we then fit the models to all but one set and evaluate on the 
held- out set. Taking the average over the folds yields a single performance estimate. As for bootstrap-
ping, crossvalidation is performed over both conditions and subjects so as to avoid overestimating 
the generalization performance of flexible models when tested on new subjects and new conditions 
drawn from the populations of subjects and conditions sampled in the actual experiment (Figure 1b).

Because the RDM for the test set must contain multiple values to allow a sensible comparison, 
the smallest possible number of conditions to perform crossvalidation is 6, which would yield three 
test conditions for twofold crossvalidation. For small numbers of conditions, we use twofolds. We use 
threefolds for ≥12 conditions, fourfolds for ≥24 conditions, and fivefolds for ≥40 conditions. These 
numbers seem to work reasonably well, but were chosen ad hoc.

To estimate our uncertainty about the crossvalidated model performances, we use the same boot-
strap methods as for fixed models. To do so, we need to perform crossvalidation on each bootstrap 
sample. We call this procedure bootstrap- wrapped crossvalidation.

In any crossvalidation, different ways to partition the data into test sets lead to different overall 
evaluations of the models. When we partition the conditions set into disjoint test sets in RSA, this 
effect is particularly strong, because dissimilarities between conditions in separate test sets do not 
contribute to the evaluation in any fold. The variance in the evaluations created by this random assign-
ment is generated by our analysis and would vanish if we performed repeated cycles of crossvalida-
tion with all possible partitionings of the conditions set into test sets. Unfortunately, such exhaustive 
crossvalidation will usually be prohibitively expensive in terms of computation time, especially in 
bootstrap- wrapped crossvalidation.

We can estimate the variance without this surplus by sampling  ncv > 1  different randomly chosen 
partitionings of the conditions set into crossvalidation test sets for each bootstrap sample. Each of 
the  ncv  partitionings into  k  subsets defines a complete cycle of  k - fold crossvalidation. The bootstrap- 
wrapped crossvalidation estimate of the variance of the model- performance estimates with  ncv  
crossvalidation cycles will be larger than the variance  σ

2
boot  of the exact mean performance over all 

possible partitionings of a dataset. When we assume that the variance  σ
2
cv  of randomly chosen parti-

tionings around the mean is equal for each bootstrap sample, the overall variance  σ
2
bootcv,ncv  is:

 
σ2

bootcv,ncv = σ2
boot + σ2

cv
ncv   

(6)

When we have more than one cycle of crossvalidation for each bootstrap sample, it is straightfor-
ward to compute an estimate for the variance we would have gotten if we had drawn only a single 
partitioning  σ

2
bootcv,1 . We can simply use only the  i  th partitioning for each bootstrap to estimate the 

variance and average these estimates. Using these two variance estimates for 1 and  ncv  partitionings, 
we can simply solve for the variance contributions of the random partitioning and of the bootstrap:

 
σ̂2

cv = ncv
ncv − 1

(
σ̂2

bootcv,1 − σ̂2
bootcv,ncv

)
  

(7)

 

σ̂2
boot = σ̂2

bootcv,ncv −
σ̂2

cv
ncv

= σ̂2
bootcv,ncv −

σ̂2
bootcv,1 − σ̂2

bootcv,ncv

ncv − 1   

(8)

Thus, we can directly compute an estimate of the variance we expect for exhaustive crossvalidation 
from two or more crossvalidation cycles using random partitionings for each bootstrap sample. The 
repetition across bootstrap samples enables a stable estimate even for  ncv = 2 . The average estimate 
is independent of  ncv  (Figure 2a). We could invest computation in increasing either the number of 
bootstrap samples or the number of crossvalidation cycles per bootstrap sample. Our simulations 
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show that the reliability of the bootstrap estimate of the variance of the model- performance esti-
mate improves more when we increase the number of bootstrap samples than when we increase the 
number of crossvalidation cycles per bootstrap sample (Figure 2b). Thus, we recommend using only 
two crossvalidation cycles per bootstrap sample.

This crossvalidation approach provides model- performance estimates that are not biased by over-
fitting of flexible models to either subjects or conditions. Fixed and flexible models with different 
numbers of parameters can be robustly compared with generalization over conditions and/or subjects. 
The method can handle any model that can be fitted efficiently enough (for the types of flexible 
models we actually implemented, see Methods, Flexible models).

Validation of the statistical inference methods
We validate the inference methods using simulations, functional MRI data, and neural data. First, we 
establish that the statistical tests for model comparison are valid, controlling the false- positive rate 
at the nominal level. This requires simulating data under the null hypothesis, where two models that 
predict distinct RDMs are exactly equal in their RDM prediction accuracy. We use a matrix- normal 
model to simulate this null scenario for model comparison. Second, we show that the estimates of our 
uncertainty about model performance correctly capture the true variability for different generalization 
schemes in more realistic simulated scenarios based on neural network models. In these simulations, 
we cannot simulate the null hypothesis of two models that predict the representational geometry 
equally accurately. We also use these more realistic simulations to evaluate the power afforded by 
different RDM comparators. Third, we validate the inference procedure for flexible models, confirming 
that our bootstrap- wrapped crossvalidation scheme correctly accounts for the overfitting of flexible 
models. Fourth, we validate the methods using real data, acquired with functional MRI in humans and 
calcium imaging in mice.

Validity of inferential model comparisons
A frequentist test is valid when the rate of false positives (i.e. the rate of positive results when the null 
hypothesis is true) does not exceed the specified error rate α (e.g. 5%). Here, we check the validity of 
model- comparative inference, where the null hypothesis is that the two models perform equally well 
at explaining the representational geometry. We simulate scenarios where two models predict distinct 
geometries, but perform equally well on average at predicting the true representational geometry.

To simulate situations where two different models perform equally well, we generated condition- 
response matrices (containing an activity level for each combination of condition and response 
channel) by sampling from matrix- normal density models. A matrix- normal distribution over matrices 
yields matrices with normally distributed cells whose covariance is separable into a covariance matrix 
across rows and one across columns. In our case, rows correspond to the experimental conditions 
(e.g. stimuli) and the columns correspond to measurement channels (e.g. neurons or voxels). For 
matrix- normal data, the covariance across conditions captures the similarity among condition- related 
response patterns and determines the expected squared Euclidean- distance RDM (Diedrichsen and 
Kriegeskorte, 2017). The covariance among channels only scales the covariance of the distance 
estimates. This relationship enables us to generate matrix- normal data for arbitrary choices of the 
expected squared Euclidean- distance RDM. To model the null hypothesis, we choose two models 
that predict distinct RDMs and generate data, such that the expected data RDM has equal Pearson 
correlation to both model RDMs (results in Appendix 1—figure 1; details in Appendix 1).

We first evaluated the bootstrap in the scenario, where the goal is to generalize across subjects 
only. All model- comparative subject- only bootstrap tests were found to be valid (Appendix 1—figure 
1). Inflated false- positive rates were observed for subject- only bootstrap tests only when using a small 
sample of subjects (<20). For a small number of samples, bootstrapping is known to produce under-
estimates of the variance by a factor  

n
n−1  for  n  samples (e.g. Efron and Tibshirani, 1994, chapter 5.3). 

In this scenario, we recommend using a  t - test across subjects, which is more computationally efficient 
and more accurate than bootstrap methods for small numbers of subjects.

Next, we tested bootstrapping for generalization to new conditions. In this scenario, the bootstrap 
methods were all conservative, showing false- positive rates substantially below 5% (Appendix 1—
figure 1). This is expected, because we did not include any random selection of conditions in our data 
simulation, but enforced the H0 exactly for the measured conditions.
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To assess how problematic it is to choose an inference method that ignores the variance due to 
condition sampling, we ran a simulation in which we sampled the conditions from a large pool. We 
generated two models that perform equally well on 1000 conditions using matrix- normal sampling 
and then sampled a smaller set of these conditions for the simulated experiment. In these simu-
lations, all techniques that only take subjects into account as a random factor fail catastrophically 
(Appendix  1—figure 1), with false- positive rates growing with the number of simulated subjects 
and reaching 60% at 40 simulated subjects. In contrast, our bootstrap tests that include condition 
sampling all remain valid, including the uncorrected 2- factor bootstrap and our new corrected 2- factor 
bootstrap with false- positive rates below the nominal 5%. However, the uncorrected 2- factor boot-
strap was extremely conservative.

We also validated the tests against chance performance, where a single model is tested and the 
null hypothesis is that its performance is at chance level. To do so, we performed similar matrix- 
normal data simulations, evaluating a model that predicts a specific randomly sampled RDM on 
matrix- normal data consistent with an independently sampled random expected data RDM. Results 
show that a  t - test across subjects as well as the bootstrap  t - test approaches provide valid inference 
(Appendix 1—figure 1, top row). The subject  t - test and the corrected 2- factor bootstrap  t - test avoid 
overly conservative false- positive rates.

We conclude that the tests are valid in these simple simulated H0 scenarios, where we are able to 
estimate the false- positive rate. In more realistic simulations using neural network models and real 
data, we can no longer simulate distinct models that predict the data RDM equally well. We there-
fore restrict ourselves to evaluating our bootstrap estimate of the variance of model- performance 
estimates, assuming that the false- positive rates are adequately controlled when we use an accurate 
variance estimate.

Criteria for evaluation of inference procedures
To evaluate alternative inference procedures, we perform simulations that reveal (1) whether the 
estimates of the uncertainty of the model- performance estimates are accurate (ensuring the validity 
of the inferences), and (2) how sensitive different model comparison methods are to subtle differ-
ences between models (determining the power of the inferences). To measure whether our boot-
strap methods correctly estimate the uncertainty of the model- performance estimates, we compute 
the relative uncertainty (RU). The RU is the standard deviation of the bootstrap distribution of 
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cloud in this plot, corresponding to the average estimated variance across 100 repeated analyses. All variance 
estimates of a model are divisively normalized by the average corrected variance estimate for this model 
over all numbers of crossvalidation cycles for the dataset. For many crossvalidation cycles, the uncorrected 
and corrected estimates converge, but the correction formula yields this value even when we use only two 
crossvalidation cycles. (b) Reliability of the corrected bootstrap variance estimate across multiple estimations on 
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Figure 2 continued on next page
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model- performance estimates  σboot  divided by the true standard deviation of model- performance 
estimates  σtrue  as observed over repeated simulations:

 
RU = σboot

σtrue
=

������
1
N

N∑
i=1

σ2
i

σ2
true

,
  

(9)

where  σ
2
i   is the variance estimator of the bootstrap in simulated dataset  i  of the  N   simulations. Ideally, 

we would like the bootstrap- estimated variance to match the true variance such that the RU is 1.
To measure how sensitive our analysis is to differences in model performance (e.g. comparing 

layers of a deep neural network), we define the model discriminability as a signal- to- noise ratio (SNR). 
The signal is the magnitude of model- performance differences, which is measured as the variance 
across models of their average of performance estimates across simulations. The noise is the nuisance 
variation, which includes subject and condition sample variation along with measurement noise. The 
noise is measured as the average across models of the variance of performance estimates across 
simulations. This results in the following formula, in which  Perfi,m  is the performance of model  m  of  M   
in repetition  i  of  N   repetitions of the simulation:

 

SNR =
Varm

(
1
N

N∑
i=1

Perfi,m

)

1
M

M∑
i=1

Vari(Perfi,m)
.

  

(10)

A higher SNR indicates greater sensitivity to differences in model performance: differences between 
models are larger relative to the variation of model- performance estimates over repeated simulations. 

crossvalidation cycles (number of cycles per bootstrap × number of bootstraps). More bootstrap samples are 
more efficient at stabilizing our bootstrap estimates of the variance of model- performance estimates. Increasing 

the number of bootstraps decreases the variance roughly at the  N− 1
2  rate expected for sampling approximations 

indicated by the dashed line.
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(c) To generate a simulated voxel timecourse we generate the undistorted timecourses of voxel activities, convolve them with a standard hemodynamic- 
response function and add temporally correlated normal noise. (d) To estimate the response of a voxel to a stimulus we estimate a standard general 
linear model (GLM) to arrive at a noisy estimate of the true channel responses we started with in C. (e) From the estimated channel responses we 
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Note that this measure does not depend on the accuracy of the bootstrap because the bootstrap esti-
mates of the variances do not enter this statistic. The SNR exclusively measures how large differences 
between models are compared to the level of nuisance variation we simulate, which may include 
random sampling of conditions, subjects, or both (in addition to measurement noise).

Validity of generalization to new subjects and conditions
To test whether our inference methods correctly generalize to new subjects and conditions, we 
performed a simulation that includes random sampling of both subjects and conditions (Figure 3). 
We used the internal representations of the deep convolutional neural network model AlexNet 
(Krizhevsky et al., 2012) to generate fMRI- like simulated data. In each simulated scenario, one of 
the layers of AlexNet served as the true (data- generating) model, while all layers were considered as 
candidate models in the inferential model comparisons. We simulated true voxel responses as local 
averages of the activities of close- by units in the feature maps of layers of the model. The response 
of each simulated voxel was a local average of unit responses, weighted according to a 2D Gaussian 
kernel over the locations of the feature map multiplied by a vector of nonnegative random weights 
(drawn uniformly from the unit interval) across the features. We then simulated hemodynamic- response 
timecourses and added measurement noise. The covariance structure of the noise was determined 
by the overlap of the simulated voxels’ averaging regions over space and a first- order autoregres-
sive model over time. The simulated data were subjected to a standard general linear model (GLM) 
analysis to estimate the condition- response matrix. Variation over conditions was generated by using 
randomly sampled natural images from ecoset (Mehrer et al., 2017) as input to the AlexNet model. 
Variation over subjects was generated by randomly choosing a new location and a new vector of 
feature weights for each voxel of a new simulated subject.

We simulated N = 100 datasets for each parameter setting to estimate how variable the model- 
performance estimates truly are. In analysis, we must estimate our uncertainty about model perfor-
mance from a single dataset. To estimate how accurate these estimates were, we compared the 
uncertainty estimates used by different inference procedures (including different bootstrap methods) 
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to the true variability. This comparison is a enables us to validate our inference despite the fact that 
we cannot compute false- positive rates of the model comparison tests. Our neural- network- based 
simulations do not contain situations that correspond to the H0 of two different models with equal 
performance, which would require that the data- generating neural network layer predicts an RDM 
equally similar to those predicted by two other model layers. As expected, the rate of erroneously 
finding an alternative model outperforming the true data- generating model was very low (not shown) 
whenever the type of bootstrap matches the simulated level of generalization because the true layer 
has a higher average performance than the other models. At the 5% uncorrected significance level, 
the proportion of cases where any other layer performed significantly better than the true (data- 
generating) layer was only 1.524%. This rate reflects the differences between the layers of AlexNet, 
the simulated variability due to subject, stimulus, and voxel sampling, the simulated noise level, and 
the number of layers. Tests against the best other layer (chosen based on all data) significantly favor 
this other layer in only 0.694% of cases. Multiple- comparison correction would reduce these model- 
selection error rates even further.

To test generalization to either new conditions or new subjects (but not both simultaneously), we 
kept the other dimension constant. When simulating condition sampling, the true variance across 
conditions is accurately estimated for 40 or more conditions (Figure  4a) and is overestimated by 
1- factor bootstrap resampling of conditions (rendering the inference conservative) when we have 
less than about 40 conditions (Figure  4a). When simulating subject sampling, the true variance 
across subjects is accurately estimated for 20 or more subjects (Figure 4b) and is underestimated by 
1- factor bootstrap resampling of subjects (invalidating the inference) when we have very few subjects 
(Figure 4b). This downward bias corresponds to the  

n
n−1  factor between the sample variance and 

the unbiased estimate for the population variance. Our implementation in the RSA toolbox uses this 
factor to correct the variance estimate.

To test our corrected 2- factor bootstrap method’s ability to generalize to new subjects and new 
conditions simultaneously, we simulated sampling of both conditions (stimuli) and subjects in our simu-
lations. The corrected 2- factor bootstrap estimates the overall variation caused by random sampling 
of subjects and conditions and by measurement noise much more accurately than the naive 2- factor 
bootstrap (Figure 4c). Cases where an incorrect model (not the data- generating model) significantly 
outperformed the true model occurred in only 0.3% of simulations with the corrected 2- factor boot-
strap, even without any multiple- comparison correction. This proportion would be larger if the alterna-
tive models performed more similar to the true model than simulated here. The RSA toolbox adjusts 
for multiple comparisons, controlling either the familywise error rate or the false- discovery rate across 
all pairwise model comparisons.

Overall, we found that the new more powerful corrected 2- factor bootstrap method yields accu-
rate estimates of the variance across the simulated populations of subjects and conditions when the 
dataset is large enough (≥20 subjects, ≥40 conditions) and the type of bootstrap matches the popula-
tion sampling simulated (subject, condition, or both).

The model discriminability (SNR) increases monotonically with the number of measurements, 
affording greater power for model- comparative inference. Model discriminability increases with the 
amount of data according to a power law (straight line in log–log plot; Figure 4d–f). Such a relation-
ship holds whether we increase the number of conditions, the number of subjects, or the number 
of repetitions per condition. This result is expected and validates the SNR as an indicator of model- 
comparison power. In general, increasing the number of measurements helps most for the factor that 
causes most variability of the performance estimates, rendering generalization harder. For example, in 
our deep- neural- network- based simulations, the variability over subjects is smaller than the variability 
across conditions (Figure 4g). In this simulation, it thus increases statistical power more to collect data 
for more conditions. When there is more variability across subjects, the opposite is expected to hold. 
An intermediate voxel size (Gaussian kernel width) yielded the highest model- performance discrimin-
ability as measured by the SNR (Figure 4h, see Appendix 5 for more discussion on this topic).

Validity of inference on flexible models
To validate inferential model comparisons involving flexible models, we made a variant of the deep 
neural network simulation in which we do not assume to know how voxels average local neural 
responses. As the simulated ground truth, we set the spatial weights for each voxel to a Gaussian 
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with a standard deviation of 5% of the image size (full width at half maximum FWHM ≈ 11.77%) and 
randomly weighted the feature maps (with weights drawn independently for each voxel and feature 
map uniformly at random from the unit interval; details in Methods, Neural- network- based simulation).

We then used models that a researcher could generate without knowing the ground truth of how 
voxels average local features. As building blocks for the models, we computed RDMs for different 
voxel averaging pool sizes and for different methods to deal with averaging across feature maps. To 
capture voxel averaging across retinotopic locations, we smoothed the feature maps with Gaussians 
of different sizes. To capture voxel averaging across feature maps, we (1) generated RDMs computed 
after taking the average across feature maps at each location (avg), (2) computed the expected RDM 
for the weight sampling implemented in the simulation (weighted), or (3) computed RDMs without 
any feature- map averaging (full).

We combined these building blocks into two types of flexible model: selection models and nonneg-
ative linear- combination models. In a selection model, fitting is implemented as selection of the best 
among a finite set of RDMs. Here we defined one selection model for each method of combining 
the feature maps. Each selection model contained RDMs computed for different sizes of the local 
averaging pool. In linear- combination models, fitting consists in finding nonnegative weights for a 
set of basis RDMs, so as to maximize RDM prediction accuracy. The RDMs contain estimates of the 
squared Mahalanobis distances, which sum across sets of tuned neurons that jointly form a population 
code. As component RDMs, we chose the four extreme cases of RDM generation: no pooling across 
space or averaging across the whole image, each paired with either ‘full’ or ‘avg’ treatment of the 
feature maps. The resulting four- RDM- component linear model approximates the effect of computing 
the RDM from voxels that reflect the average activity over retinotopic patches of different sizes 
(Kriegeskorte and Diedrichsen, 2016). For the averaging across feature maps, which uses random 
weights, there is a strong motivation for using a linear model: When the voxel activities are nonneg-
atively weighted averages of the underlying neurons with the weights drawn independently from the 
same distribution, the expected squared Euclidean RDM is exactly a linear combination of the RDM 
computed based on the univariate population- average responses and the RDM based on all neurons 
(Appendix 4; see also Carlin and Kriegeskorte, 2017). For comparison, we also included fixed RDM 
models, corresponding to component RDMs of the fitted models.

We found that our bootstrap- wrapped crossvalidation (corrected 2- factor bootstrap with adjust-
ment for excess crossvaldation variance) yielded accurate estimates of the uncertainty. The relative 
uncertainties were close to 1 (Figure 5b). The model- performance discriminability (SNR) was primarily 
determined by how accurately the different models were able to recreate the true measurement 
model (Figure  5c). The highest SNRs were achieved when the assumed model matched exactly 
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(weighted feature treatment and voxel size 0.05), but the model variants which allowed for some 
fitting still yield high SNRs. Analyses that take the averaging across space and features into account 
yielded the highest average model performance for the true model. In contrast, analyses that ignore 
averaging over space or features (the full feature set selection model and some of the fixed models) 
not only lead to lower SNRs (as seen in Figure 5c), but also systematically selected the wrong layer, 
because a higher average performance was achieved by a different layer than the one we used for 
generating the data (not shown).

We conclude that when the true voxel sampling is unknown, flexible models are needed to account 
for voxel sampling, so as to enable us recover the underlying data- generating computational model 
with our model- comparative inference. Fixed models based on incorrect assumptions about the voxel 
sampling can lead to low model- performance discriminability (SNR) and even to incorrect inferences 
as to which model is the true model.

Validation with functional MRI data
The simulations presented so far validated all statistical inference procedures, but may not capture 
all aspects of the structure of real measurements of brain activity. To test our methods under realistic 
conditions, we used real human fMRI (this section) and mouse calcium- imaging data (next section). 
We resampled data from a large openly available fMRI experiment in which humans viewed pictures 
from ImageNet (Horikawa and Kamitani, 2017). These data contain various noise sources, indi-
vidual differences, signal shapes, and distributions that are difficult to simulate accurately without 
using measured data. We therefore implemented a data- based simulation to create realistic synthetic 
data, whose ground- truth RDM we knew (Figure 6). By subsampling from this dataset, we generated 
smaller datasets to test inference with bootstrapping over conditions. We used the entire dataset 
as a stand- in for the population a researcher might wish to generalize to. For each cortical area, we 
computed the mean RDM using all data (all runs and subjects). Each area’s mean RDM served as a 
ground- truth RDM for datasets sampled from that area and as a model RDM for datasets sampled 
from all areas. The model comparison we attempted aims to recover which cortical area a dataset was 
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subsampled from. The simulation enables us to check whether our uncertainty estimates are correct 
for model- performance estimates based on real data.

We varied the strength of noise, the number of runs, and the number of conditions (i.e. viewed 
images). We did not vary the number of subjects because the original dataset contains only five 
subjects, which precludes informative resampling of subjects. To increase the variability of the resa-
mpled datasets beyond sampling from the 35 measurement runs and to vary the noise strength, we 
created new voxel timecourses for each sampled run while preserving the spatial structure and serial 
autocorrelation of the noise. To achieve this, we estimated a second- order autoregressive model 
( AR(2) ) separately for each run’s GLM residuals, permuted the AR- model’s residuals and added the 
results to the GLM’s predicted timecourse (see Figure 6a–e and Methods, fMRI- data- based simula-
tion for details). We repeated each simulated experiment 24 times and used the RU and the model- 
performance discriminability (SNR) as our evaluation criteria.

Results were largely similar to those of the neural- network- based simulations (Figure 6f, g). For the 
RU, which measures the accuracy of our bootstrap variance estimates, we see a convergence toward 
the expected ratio (dashed line at 1), validating the bootstrap procedure for real fMRI data. For the 
model- performance discriminability (SNR), we find the same power- law increase with the number of 
conditions and the number of runs used as data. These results suggest that the regions are discrim-
inable on the basis of their RDMs estimated from fMRI given five subjects’ data when a sufficient 
number of stimuli (≥30) and runs (≥16) is used.
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Figure 7. Results in mice with calcium- imaging data. (a) Mouse visual cortex areas used for analyses and resampling simulations. (b) Overall similarities 
of the representations in different cortical areas in terms of their representational dissimilarity matrix (RDM) correlations. For each mouse and cortical 
area (‘data RDM’, vertical), the RDM was correlated with the average RDM across all other mice (‘model RDM’, horizontal), for each other cortical 
area. We plot the average across mice of the crossvalidated RDM correlation (leave- one- mouse- out crossvalidation). The prominent diagonal shows 
the replicability across mice and the distinctness between cortical areas of the representational geometries. (c) Relative uncertainty for the 2- factor 
bootstrap methods. The gray box indicates the range of results expected from simulation variability if the bootstrap estimates were perfectly accurate. 
The correction is clearly advantageous here although the method is still slightly conservative (overestimating the true standard deviation  σtrue  of 
model- performance evaluations) for small numbers of stimuli. For 40 or more stimuli, the corrected 2- factor bootstrap correctly estimates the variance of 
model- performance evaluations. (d) Signal- to- noise ratio validation: The signal- to- noise ratio (SNR) grows with the number of cells per subject and the 
number of repeats per stimulus. (e) Signal- to- noise ratio for different noise covariance estimates. Taking a diagonal covariance estimate into account, 
that is normalizing cell responses by their standard deviation is clearly advantageous. The shrinkage estimates provide a marginal improvement over 
that. (f) Signal- to- noise ratio for data sampled from different areas. (g) Which measure is optimal for discriminating the models depends on the data- 
generating area. On average there is an advantage of the cosine similarity over the RDM correlation and of the whitened measures over the unwhitened 
ones. Error bars indicate standard deviations across different simulation types.

Image credit: Allen Institute.
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Validation with calcium-imaging data
We can also adjudicate among models of the representational geometry on the basis of direct neural 
measurements, such as electrophysiological recordings or calcium- imaging data. These measurement 
modalities have very different statistical properties than fMRI. To test our methods for this kind of 
data, we performed a resampling simulation based on a large calcium- imaging dataset of responses 
of mouse visual cortex to natural images (de Vries et al., 2020). This dataset contains recordings 
from six visual cortical areas: primary visual cortex (V1), laterointermediate (LM), posteromedial (PM), 
rostrolateral (RL), anteromedial (AM), and anterolateral (AL) visual area (Figure 7a).

As in the previous section, we used the overall mean RDM for each area as a ground- truth model 
and subsampled the data to create simulated datasets for which we know the ground- truth RDM. 
We used different numbers of stimulus repetitions, neurons, mice, and stimuli to vary the amount of 
information afforded by each simulated dataset. We used the crossnobis estimator of representational 
dissimilarity for all analyses here. We repeated each simulated experiment 100 times and computed 
the RU to assess the correctness of our bootstrap uncertainty estimates and the model- discriminability 
SNR to determine which noise covariance estimators and RDM comparators afford most sensitivity to 
model differences.

We analyzed the overall discriminability of the brain areas (Figure 7b). Although cortical areas vary 
in the reliability of the estimated RDMs, they can be discriminated reliably when using all data. We 
used the RU to assess whether our bootstrap variance estimates are correct for these data (Figure 7c). 
We resampled all factors (subjects, stimuli, runs, and cells) to generate simulted datasets. Correspond-
ingly, the analysis used bootstrapping over both subjects and stimuli. We observed correct variance 
estimates for the corrected 2- factor bootstrap. The uncorrected 2- factor bootstrap was conservative, 
substantially overestimating the true variance.

To understand how the model- comparative power depends on experimental parameters and anal-
ysis choices, we analyzed the model- discriminability SNR. We found that more subjects, more stimuli, 
more runs, and more cells all increased the SNR just as in our fMRI and neural- network- based simula-
tions (Figure 7d). Furthermore, we find that taking the noise covariance into account for computing 
the crossnobis RDMs in the first- level analysis improves the SNR (Figure 7e). Univariate noise normal-
ization (implemented by using a diagonal noise covariance matrix) is better than no noise normaliza-
tion. Multivariate noise normalization is slightly better than univariate noise normalization (Walther 
et al., 2016). For multivariate noise normalization, we tested two different shrinkage estimators with 
different targets: a multiple of the identity and the diagonal matrix of variances. These two variants 
perform similarly. In addition, we find that different RDM comparators yield the best model discrim-
inability for different cortical areas (Figure 7g). For some, cosine RDM similarity performs better, for 
others, Pearson RDM correlation performs better. The whitened RDM comparators are better on 
average, but there are cases where the unwhitened RDM comparators perform slightly better. Thus, it 
remains dependent on the concrete experiment (with a particular choice of conditions, tested models 
and underlying representational geometry), which RDM comparator affords the best power for model 
comparison (Diedrichsen et al., 2020).

Discussion
We present new methods for inferential evaluation and comparison of models that predict brain 
representational geometries. The inference procedures enable generalization to new measurements, 
new subjects, and new conditions, treat flexible models correctly using crossvalidation, and work for 
any representational dissimilarity estimator and RDM comparator. For fixed as well as flexible models, 
our inference methods support all combinations of generalization: to new measurements using the 
same subjects and conditions, to new subjects, to new conditions, and to both new subjects and new 
conditions simultaneously. We validated the methods using simulated data as well as calcium- imaging 
and fMRI data, showing that the inferences are correct. The methods are available as part of an open- 
source Python toolbox (rsatoolbox.readthedocs.io).

https://doi.org/10.7554/eLife.82566
https://rsatoolbox.readthedocs.io/en/stable/
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Generalizing to new measurements, new subjects, and/or new 
conditions
Inferential statistics is about generalization from the experimental random samples to the underlying 
populations. We must carefully consider the level of generalization, both at the stage of designing 
our experiments and analyses and at the stage of interpreting the results. The lowest level of infer-
ential generalization is to new measurements. Our conclusions in this scenario are expected to hold 
only for replications of the experiment in the same animals using the same conditions. Inferential 
generalization to new subjects may not be possible, for example, in case studies or when the number 
of animals (e.g. two macaques) is insufficient. Generalization to new conditions is not needed when 
all conditions relevant to our claims have been sampled. For example, Ejaz et al., 2015 studied the 
representational similarity of finger movements in primary motor cortex. All five fingers were sampled 
in the experiments and there are no other fingers to generalize to. When generalizing to replications 
with the same subjects and conditions, we need separate data partitions to estimate the variability 
of the model- performance estimates. We can then use a  t - test or rank- sum test to test for significant 
differences between models.

If generalization to the population of subjects is desired, we need a sufficiently large sample of 
subjects. We can then evaluate each model for each subject and use a  t - test or rank- sum test, treating 
the subjects as a random sample from a population. We showed that this method is valid, controlling 
false- positive rates at their nominal values in our matrix- normal simulations (Methods, Frequentist 
tests for model evaluation and model comparison). The variance across subjects here is a good esti-
mate of the variance across the population of subjects. However, the interpretation of the results must 
be restricted to the exact set of experimental conditions used in the experiment.

We often would like our inferences to generalize to a population of conditions. For example, 
when evaluating computational models of vision, we are not usually interested in determining which 
models dominate just for the particular visual stimuli presented in our experiment. We are inter-
ested in models that dominate for a population of visual stimuli. Model- comparative inference can 
generalize to the population of conditions that the experimental conditions were randomly sampled 
from. The inference requires bootstrapping, because RDM prediction accuracy cannot be assessed for 
single conditions. We bootstrap- resample the conditions set and evaluate all models on each sample. 
This procedure correctly estimates our uncertainty about model- performance differences, and  t - tests 
based on the estimated bootstrap variances provide valid frequentist inference.

If we want to generalize simultaneously across conditions and subjects, then the corrected 2- factor 
bootstrap approach provides accurate estimates of our uncertainty about model performances. These 
uncertainty estimates support valid inferential model comparisons, comparisons to the lower bound 
of the noise ceiling, and tests against chance performance. We expect the results to generalize to new 
subjects and conditions drawn from the respective populations sampled randomly in the experiment.

Inference on fixed and flexible models
Our performance estimates for flexible models must not be biased by overfitting to measurement 
noise, subjects, or conditions. To avoid this bias, we use a novel 2- factor crossvalidation scheme that 
enables us to evaluate models’ predictive accuracy when simultaneously generalizing to new subjects 
and/or new conditions. The 2- factor crossvalidation is nested in our 2- factor bootstrap procedure for 
estimating uncertainty. By using two crossvalidation cycles with different data partitionings for each 
bootstrap sample, we can accurately remove the excess variance introduced by crossvalidation. Our 
method provides a computationally efficient estimate of the variances and covariances of model- 
performance estimates for flexible models, which enables us to use a  t - test to inferentially compare 
models to each other, to the lower bound of the noise ceiling, and to chance performance.

Our methods are fully general in that inference can be performed on any model for which the user 
provides a fitting and an RDM prediction method. In practice, the complexity of the models is limited 
by the requirement that we need to fit each model thousands of times in our bootstrap- wrapped 
crossvalidation scheme. Thus, we need a sufficiently fast and reliable fitting method for the model.

If fitting the model so often is not feasible or if the data RDMs do not provide sufficient constraints, 
one solution is to fit all models using a separate set of neural data before the inferential analyses. This 
approach is appropriate when many parameters are to be fitted, as is the case in nonlinear systems 
identification approaches as well as linear encoding models (Wu et al., 2006), where a large set of 
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neural fitting data is required. All conclusions are then conditional on the fitting data: Inference will 
generalize to new test data assuming models are fitted on the same fitting data. Our methods support 
fitting of lower- parametric models as part of the model- comparative inference. When applicable, this 
approach obviates the need for separate neural data for fitting and supports stronger generalization 
(not conditional on the neural fitting data).

Supported tests and implications of test results
Our methods enable comparison of a model’s RDM prediction performance (1) against other models, 
(2) against the noise ceiling, and (3) against chance performance. The first two of these tests are 
central to the evaluation of models. The test against chance performance is often also reported, 
but represents a low bar that we should expect most models to pass. In practice, RDM correlations 
tend to be positive even for very different representations, because physically highly similar stimuli or 
conditions tend to be similar in all representations. Just like a significant Pearson correlation indicates 
a dependency, but does not demonstrate that the dependency is linear, a significant RDM prediction 
result indicates the presence of stimulus information, but does not lend strong support to the partic-
ular model. We should resist interpreting significant prediction performance per se as evidence for a 
particular model (the single- model- significance fallacy; Kriegeskorte and Douglas, 2019b). Theoret-
ical progress instead requires that each model be compared to alternative models and to the noise 
ceiling. An additional point to note is that the interpretation of chance performance, where the RDM 
comparator equals 0, depends on the chosen RDM comparator, differing, for example, between the 
Pearson correlation coefficient and the cosine similarity (Diedrichsen et al., 2020).

RDM comparators like the Pearson correlation and the cosine similarity are related to the distance 
correlation (Székely et al., 2007), a general indicator of mutual information. Like a significant distance 
correlation, a significant RDM correlation mainly demonstrates that there is some mutual information 
between the brain region in question and the model representation. For a visual representation, for 
example, all that is required is for the two representations to contain some shared information about 
the input images. In contrast to the distance correlation (and other nonnegative estimates of mutual 
information), however, negative RDM correlations can occur, indicating simply that pairs of stimuli 
close in one representation tend to be far in the other and vice versa. For any RDM, there is even a 
valid perfectly anti- correlated RDM (Pearson  r = −1 ), which can be found by flipping the sign of all 
dissimilarities and adding a large enough value to make the RDM conform to the triangle inequality 
(which ensures the existence of an embedding of points that is consistent with the anti- correlated 
RDM). The existence of valid negative RDM correlations is important to the inferential methods 
presented here because it is required for our assumption of symmetric ( t - )distributions around the 
true RDM correlation.

Omnibus tests for the presence of information about the experimental conditions in a brain region 
have been introduced in previous studies (e.g. Kriegeskorte et al., 2006; Allefeld et al., 2016; Nili 
et al., 2020). Whether stimulus information is present in a region is closely related to the question 
whether the noise ceiling is significantly larger than 0, indicating RDM replicability. Such tests can 
sensitively detect small amounts of information in the measured activity patterns and can be helpful 
to assess whether there is any signal for model comparisons. If we are uncertain whether there is a 
reliable representational geometry to be explained, we need not bother with model comparisons.

The question whether an individual dissimilarity is significantly larger than zero is equivalent to the 
question whether the distinction between the two conditions can be decoded from the brain activity. 
Decoding analyses can be used for this purpose (Naselaris et al., 2011; Hebart et al., 2014; Tong 
and Pratte, 2012; Kriegeskorte and Douglas, 2019b). Such tests require care because the discrim-
inability of two conditions cannot be systematically negative (Allefeld et al., 2016). This is in contrast 
to comparisons between RDMs, which can be systematically negative (although, as mentioned above, 
they tend to be positive in practice).

How many subjects, conditions, repetitions, and measurement 
channels?
Statistical inference gains power when more data are collected along any dimension. More indepen-
dent measurement channels, more subjects, more conditions, and more repetitions all help. How 
much data is needed along each of these dimensions depends on the experiment. The most helpful 
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dimension to extend is the one that currently limits generalization. When crossvalidation across 
repeated measurements is used to eliminate the bias of the distance estimates (as in the crossnobis 
estimator), using more repetitions brings an additional performance bonus because it reduces the 
variance increase associated with unbiased estimates (Diedrichsen et al., 2020, Appendix 5).

Which distance estimator and RDM comparator?
The statistical inference procedures introduced here work for any choice of representational- distance 
estimator and RDM comparator. However, the choice of distance estimator and RDM comparator 
affects the power of model- comparative inference and the meaning of the inferential results.

For computing the RDM, we tested only variations of the crossnobis (crossvalidated Mahalanobis) 
distance estimator, as recommended based on earlier research (Walther et al., 2016). The crossnobis 
estimator can use different noise covariance estimates to normalize patterns, such that the noise distri-
bution becomes approximately isotropic. The noise covariance matrix can be the identity (no normal-
ization), diagonal (univariate normalization), or a full estimate (multivariate normalization). Consistent 
with previous findings (Walther et al., 2016; Ritchie et al., 2021), our results suggest that univariate 
noise normalization is always preferable to no normalization, and that multivariate noise normalization 
using a shrinkage estimate of the noise covariance (Ledoit and Wolf, 2004; Schäfer and Strimmer, 
2005) helps in some circumstances and never hurts model discrimination.

For evaluating RDM predictions, we can distinguish RDM comparison methods by the scale they 
assume for the distance estimates: ordinal, interval, or ratio. For ordinal comparisons, the different 
rank correlation coefficients perform similarly. We recommend  ρa  for its computational efficiency and 
analytically derived noise ceiling. For interval- and ratio- scale comparisons, a more complex pattern 
emerges. In particular whether cosine similarities (ratio scale) or Pearson correlations (interval scale) 
work better depends on the structure of the model RDMs to be compared. We recently proposed 
whitened variants of the cosine similarity and Pearson correlation, which take into account that the 
distance estimates in an RDM are not independent (Diedrichsen et al., 2020). The whitened RDM 
comparators were more sensitive to subtle differences in model performance when evaluated on fixed 
models (Figure 5c). In the simulations based on the calcium- imaging data, whitened RDM compara-
tors still performed better on average, but there were some cortical areas that were easier to identify 
by using the unwhitened comparison measures.

Alternative approaches
We present a frequentist inference methodology that uses crossvalidation to obtain point estimates of 
model performance and bootstrapping to estimate our uncertainty about them. Bayesian alternatives 
deserve consideration. For example, a Bayesian approach has been proposed to alleviate the bias 
of distance estimates (Cai et al., 2019). This Bayesian estimate makes more detailed assumptions 
about the trial dependencies than our crossvalidated distance estimators, which remove the bias. 
The Bayesian estimate might be preferable for its higher stability when its assumptions hold and 
could be used in combination with our model- comparative inference methods. For model compari-
sons, Bayesian inference is also an interesting alternative to the frequentist methods we discuss here 
(Kriegeskorte and Diedrichsen, 2016). Our whitened RDM comparison methods can be motivated as 
approximations to the likelihood for a model and we reported recently that they afford similar power 
as likelihood- based inference with normal assumptions (Diedrichsen et al., 2020). Thus, frequentist 
inference using the whitened RDM comparators is related to Bayesian inference with a uniform prior 
across models. In the Bayesian framework, generalization to the populations of subjects and condi-
tions would require a model of how RDMs vary across subjects and conditions. We currently do not 
have such a model. Until such models and Bayesian inference procedures for them are developed, the 
frequentist methods we present here remain the only method for generalization to the populations of 
subjects and conditions.

Another strongly related method for comparing models to data in terms of their geometry is pattern 
component modeling (Diedrichsen et al., 2018), which compares conditions in terms of their cova-
riance over measurement channels instead of their representational dissimilarities. This approach is 
deeply related to representational similarity analysis (Diedrichsen and Kriegeskorte, 2017). Pattern 
component modeling is somewhat more rigid than RSA as the theory is based on normal distributions, 
but it has advantages in terms of analytical solutions. In particular, the likelihood of models can be 
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directly evaluated, enabling tests based on the likelihood ratio. Due to the direct evaluation of likeli-
hoods, this framework can be combined with Bayesian inference more easily and recently a variational 
Bayesian analysis was presented for this model (Friston et al., 2019).

Another powerful approach to inference on brain- computational models is to fit encoding models 
that predict measured brain- activity data instead of representational geometries (e.g. Wu et al., 2006; 
Kay et  al., 2008; Dumoulin and Wandell, 2008; Naselaris et  al., 2011; Wandell and Winawer, 
2015; Diedrichsen and Kriegeskorte, 2017; Cadena et al., 2019a). This approach was originally 
developed in the context of low- dimensional models and measurements. When models and measure-
ments are both high dimensional, even a linear encoding model can be severely under- constrained 
(Cadena et al., 2019b; Kornblith et al., 2019). As a result, an encoding model requires a combination 
of substantial fitting data and strong priors on the weights. The predictive model that is being eval-
uated comprises the encoding model and the priors on its weights (Diedrichsen and Kriegeskorte, 
2017), which complicates the interpretation of the results (Cadena et al., 2019b; Kriegeskorte and 
Douglas, 2019b). Both model performances and the fitted weights can then be highly uncertain and/
or dependent on the details of the assumed encoding model. The additional data and assumptions 
needed to fit complex encoding models motivate the consideration of methods as proposed here that 
do not require fitting of a high- parametric mapping from model to measured brain activity.

The generalization challenges that we tackle here for RSA apply equally to encoding models and 
pattern component modeling. Inferences are often meant to generalize to new subjects and/or exper-
imental conditions. The alternative approaches, in their current implementations, do not yet enable 
simultaneous generalization to the populations of experimental conditions and subjects. By default 
pattern component modeling and its Bayesian variants assume a single geometry and thus do not 
take either subject or condition variability into account. Variability across subjects can be taken into 
account in a group- level analysis (see e.g. Diedrichsen et al., 2018, 2.7.3), but this approach does 
not account for uncertainty due to the sample of experimental conditions. Encoding models usually 
follow the machine learning approach with training, validation, and test sets (e.g. Naselaris et al., 
2011; Cichy et al., 2019; Cichy et al., 2021). Uncertainty about the model evaluations is either not 
estimated at all or estimated in a secondary analysis based on the variability across subjects, cells, or 
conditions. Because these secondary analysis is based solely on the test set, results are conditional on 
the training and validation sets, and so fall short of generalizing model- comparative inferences to the 
underlying populations. Note that the bootstrapping and crossvalidation approaches we introduce 
here are not inherently specific to RSA. These methods could be adapted for estimating the uncer-
tainties about other model evaluation measures such as those provided by pattern component and 
encoding models.

Conclusion
We present a comprehensive new methodology for inference on models of representational geometries 
that is more powerful than previous approaches, can handle flexible models, and enables neuroscien-
tists to draw conclusions that generalize to new subjects and conditions. The validity of the methods 
has been established through extensive simulations and using real neural data. These methods enable 
neuroscientists working with humans and animals to evaluate complex brain- computational models 
with measurements of neural population activity. As we enter the age of big models and big data, we 
hope these methods will help connect computational theory to neuroscientific experiment.

Materials and methods
The methods section for this paper is separated into two parts: First, we describe the RSA analysis 
pipeline we propose in full. In the second part, we describe the simulation methods we used to test 
our pipeline for this paper.

Full description of the RSA method
The inference method we describe here represents a new pipeline for representational similarity 
analysis. Nonetheless, some parts of the analysis appeared in earlier or concurrent publications 
(Kriegeskorte et al., 2008b; Nili et al., 2014; Walther et al., 2016; Storrs et al., 2014). In this 
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section, we describe the whole pipeline, including both new and established procedures, without 
requiring familiarity with previous papers.

Computing representational dissimilarity matrices
The first step of RSA is the computation of the representational dissimilarity matrices. The main ques-
tion for this step is which dissimilarity measure shall be computed between conditions.

In the formal mathematical sense, a distance or metric is a function that takes two points from the 
space as input and computes a real number from them conforming to the following three rules: (1) 
Nonnegativity: The result is larger than or equal to zero, with equality only if the two points are equal. 
(2) Symmetry: The result is the same if the two points are swapped. (3) Triangle inequality: The sum of 
distances from  a  to  b  and  b  to  c  is less than or equal to the distance from  a  to  c  for all choices of the 
three points. We use the term dissimilarity for symmetric measures that may violate (1) and (3). Drop-
ping requirement (3) admits symmetric divergences between probability distributions, for example. 
Dropping requirement (1) and allowing measures that may return negative values admits unbiased 
distance estimators (whose distribution is symmetric about 0 when the true distance is 0). We would 
still like the dissimilarity to be nonnegative in expectation.

In principle, any dissimilarity measure on the measured representation vectors can be used to quan-
tify the dissimilarities between conditions. Popular choices in the past were the Pearson correlation 
distance, squared and unsquared Euclidean distances, cosine distance, and linear- decoding- based 
measures such as the decoding accuracy, the linear- discriminant contrast (LDC, also known as the 
crossnobis estimator; Walther et al., 2016) and the linear- discriminant  t  value (LD- t ; Kriegeskorte 
et  al., 2007; Nili et  al., 2014). Earlier publications comparing different measures of dissimilarity 
found correlation distances to be less interpretable in terms of condition decodability and continuous 
crossvalidated decoding measures (LDC, LD- t ) to be more sensitive than decoding accuracy (Walther 
et al., 2016).

How representational dissimilarity is best quantified and inferred from raw data depends on the 
type of measurements taken. For fMRI for example, it is beneficial to take the noise covariance across 
voxels into account by computing Mahalanobis distances (Walther et al., 2016). For electrophysi-
ological recordings of individual neurons one should take the Poisson nature of the variability into 
account. One approach is to transform the measured spike rates so as to stabilize their variance 
(Kriegeskorte and Diedrichsen, 2019a). Here, we introduce a KL- divergence dissimilarity measure 
based on the Poisson distribution (Appendix 2). Representational dissimilarities can also be inferred 
from behavioral responses, such as speeded categorizations or explicit judgments of properties or 
pairwise dissimilarities (Kriegeskorte and Mur, 2012).

Two aspects of the computation of dissimilarities warrant further discussion: crossvalidation of 
dissimilarities and taking noise covariance into account.

Crossvalidated distance estimators
One important aspect of the first- level analysis is that naive estimates of representational similarity can 
be severely biased (Walther et al., 2016; Cai et al., 2019; Diedrichsen et al., 2020) toward a struc-
ture dictated by the structure of the experiment rather than the structure of the representations. This 
happens because noise in the underlying patterns biases distance estimates upward. When different 
conditions are measured with different amounts of noise or the measurements between some pairs of 
conditions are correlated, this bias will be different for different distances introducing other structure 
into the RDM.

To avoid this problem, one can use crossvalidated distances, which combine difference estimates 
from independent measurements like separate runs, such that the dissimilarity estimate is unbiased. 
Crossvalidation applies to all dissimilarity measures that are defined based on inner products of 
the differences with themselves (e.g. squared and unsquared Euclidean distances, Mahalanobis 
distances, Poisson KL divergences). To compute a crossvalidated dissimilarity one computes two 
estimates of the difference vector from independently measured parts of the data and takes the 
inner product of these two independent estimates, averaging over different splits into independent 
data.

The most commonly used version of crossvalidated distances are crossvalidated Mahalanobis 
(Crossnobis) dissimilarities, which we use througout our simulations in this paper. For  N ≥ 2  repeated 
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measurements of response patterns  xmi, m = 1 . . .N, i = 1 . . .K   (for  K   conditions), the crossnobis esti-
mator  d̂ij  is defined as:

 
d̂ij = 1

N(N − 1)
∑

m

∑
n̸=m

(xmi − xmj)TΣ−1(xni − xnj)
 
 
 

(11)

for an estimate noise covariance matrix  Σ .
Crossnobis dissimilarities seem to be the most reliable dissimilarity estimate for fMRI- like data 

(Walther et al., 2016). As in the non- crossvalidated Mahalanobis distance, the linear transformation of 
of the response dimensions (using the noise precision matrix  Σ−1 ) improves reliability (Walther et al., 
2016; Nili et al., 2014) and renders the estimates monotonically related to the linear decoding accu-
racy for each pair of conditions, when a fixed Gaussian error distribution is assumed. Their sampling 
distributions can be described analytically (Diedrichsen et al., 2020).

For Poisson distributed measurements as for electrophysiological recordings we can also define a 
crossvalidated dissimilarity based on the KL- divergence as we introduce in Appendix 2.

Noise covariance estimation
To take the noise covariance into account (in Mahalanobis and Crossnobis dissimilarities) we first 
need to estimate it. To do so, we can use one of two sources of information: We either estimate the 
covariance based on the variation of the repeated measurements around their mean or based on the 
residuals of a first- level analysis which estimated the patterns from the raw data. For fMRI for example, 
these residuals would be the residuals of the first- level GLM. In either case, we may have relatively 
little data to estimate a large noise covariance matrix. Making this feasible usually requires regulariza-
tion. To do so the following methods are available:

• When the estimation task is judged to be entirely impossible one can reduce the Mahalanobis 
and Crossnobis back to the Euclidean and crossvalidated Euclidean distances by using the 
identity matrix instead.

• As a univariate simplification one can estimate a diagonal matrix which only takes the variances 
of voxels into account.

• For estimating a full covariance one may use a shrinkage estimate, which ‘shrinks’ the sample 
covariance toward a simpler estimate of the covariance like a multiple of the identity or the 
diagonal of variances (Ledoit and Wolf, 2004; Schäfer and Strimmer, 2005). The amount of 
shrinkage used in these methods fortunately can be estimated quite accurately based on the 
data directly such that these methods do not require parameter adjustment.

We implemented these different methods. Overall the shrinkage estimates perform best, while 
the other techniques are equally good in some situations. Using the sample covariance directly is 
not advisable unless an unusually large amount of data exists for this estimation, in which case the 
shrinkage estimates converge toward the sample covariance anyway.

Comparing RDMs
The second- level analysis is comparing a measured data RDM (for each subject) to the RDMs predicted 
by different models. There are various measures to compare RDMs. The right choice depends on 
the aspects of the data RDM that the models are meant to predict. A strict measure would be the 
Euclidean distance (or equivalently the mean squared error) between a model RDM and the data RDM. 
However, we usually cannot predict the absolute magnitude of the distances because the SNR varies 
between subjects and measurement sessions. Allowing an overall scaling of the RDMs leads to the 
cosine similarity between RDMs. If we additionally drop the assumption that a predicted difference of 
0 corresponds to a measured dissimilarity of 0, we can use a correlation coefficient between RDMs. 
For the cosine similarity and Pearson correlation between RDMs we recently proposed whitened vari-
ants which take the correlations between the different entries of the RDM into account (Diedrichsen 
et al., 2020). Finally, we can drop the assumption of a linear relationship between RDMs by using 
rank correlations like Kendall’s  τ   or Spearman’s  ρ . For this lowest bar for a relationship Kendall’s  τa  or 
randomized rank breaking for Spearman’s  ρa  are usually preferred over a standard Spearman’s  ρ  or 
Kendall’s  τb  and  τc , which all favor RDMs with tied ranks (Nili et al., 2014). As we discuss below there 
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is a direct formula for the expected Spearman’s  ρ  under random tiebraking, which we prefer now for 
computational efficiency reasons.

Estimating the uncertainty of our model-performance estimates
Additional to the point estimate of model performances we want to estimate how certain we should 
be about our evaluations. In the frequentist framework, this corresponds to an estimate how vari-
able our evaluation results would be if we repeated the experiment. All variances we need can be 
computed from the covariance matrix of the model- performance estimates. Thus, we keep an esti-
mate of this matrix as our overall uncertainty estimate.

Subject variance
The easiest to estimate variance is the variance our results would have if we repeated the experi-
ment with new subjects, but the same conditions, as all our evaluations are simple averages across 
subjects. Thus, an estimate of the variance can always be obtained by dividing the sample variance 
over subjects by the number of subjects.

Bootstrapping conditions
The dependence of the evaluation on the conditions is more complicated. Thus, we use bootstrapping 
(Efron and Tibshirani, 1994) to estimate the variance we expect over repetitions of the experiment 
with new conditions but the same subjects. To do so, we sample sets of conditions with replacement 
from the set of measured conditions and generate the data RDM and the model RDMs for this sample 
of conditions. The variance of the model performances on these resampled RDMs is then an estimate 
of the variance over experiments with different stimulus choices. The bootstrap samples of conditions 
contain repetitions of the same condition. The dissimilarity between a stimulus and itself will be 0 
in the data and any model such that every model would correctly predict these self- dissimilarities. 
Thus, including these self- dissimilarities would bias all model performances upward. To avoid this, we 
exclude them from the evaluation.

2-Factor bootstrap
If we want to estimate the variance for generalization to new subjects and new stimuli simultaneously, 
we need to use the correction we introduce in the results section (see Estimating the variance of 
model- performance estimates for generalization to new subjects and conditions). This yields an esti-
mate of the model evaluation (co- )variances as all other methods for variance estimation.

As we mention in the main text, the exact formulas for the correction contain factors that depend 
on the number of subjects  Ns  and conditions  Nc , respectively. The expected value for the uncorrected 
2- factor bootstrap variance  ̂σsc  is:
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If the true variances due to the subject is  σ
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Combining these equations an unbiased estimate of the variance  ̂σ2  can be obtained:
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As  Ns  and  Nc  grow, the three ratio factors converge to 1, and the result converges to the one given by 
the simpler formula in the main text (Equation 5).
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Bootstrap-wrapped crossvalidation
If we employ any flexible models, we should additionally use crossvalidation, which leads to our new 
bootstrap- wrapped crossvalidation explained in the results section (Evaluating the performance of 
flexible models).

Frequentist tests for model evaluation and model comparison
Based on the uncertainty estimates, we construct frequentist tests to compare models to each other. 
The default method is a  t - test based on bootstrap- estimated variances. There is a collection of other 
tests available to compare model performances against each other, to the noise ceiling, or to chance 
performance.

Because we base our uncertainty estimates on a bootstrap, there are two types of tests we can 
use for these comparisons: A percentile test based on the bootstrap samples or a  t - test based on the 
estimated variances.

For the percentile test, we calculate the bootstrap distribution for the differences and then test by 
checking whether the difference expected under the H0 (usually 0) lies within the simple percentile 
bootstrap confidence interval. It is possible to generate more exact confidence intervals like bias- 
corrected and accelerated intervals based on the bootstrap samples, which might result in better tests. 
In our simulations and experience with natural data, however, model performances tend to be fairly 
symmetrically distributed around the true value, suggesting that these corrections are unnecessary.

For the  t - test we use the variance estimated from the bootstrap and use the number of observa-
tions minus one as the degrees of freedom. When bootstrapping across both subjects and conditions, 
we used the smaller number to stay conservative. This approach follows Efron and Tibshirani, 1994, 
chapter 12.4.

The  t - test has some advantages over the percentile bootstrap (Efron and Tibshirani, 1994): First, 
precise  p  value estimates require many bootstrap samples. Especially, when smaller  α  levels or correc-
tions for multiple comparisons are used, the percentile bootstrap can become computationally expen-
sive and/or unreliable. Second, for small sample sizes, the bootstrap distribution does not take the 
uncertainty about the variance of the distribution into account. This is a similar error as taking the stan-
dard normal instead of a  t - distribution to define confidence intervals. Third, the bootstrap distribu-
tions are discrete, which is a bad approximation in the tails of the distribution. For example, a sample 
of five RDMs which are all positively related to the model is declared significantly related to the 
model at any  α  level, because all bootstrapped average evaluations are at least as high as the lowest 
individual evaluation. Fourth, for the 2- factor bootstrap and the bootstrap- wrapped crossvalidation, 
we can give corrections for the variance, but lack techniques to generate bootstrap samples directly.

We should also note that we expect the  t - distribution to be a good approximation for our case: 
We expect fairly symmetric distributions for the differences between models and average them across 
subjects, which should lead to a quick convergence toward a normal distribution for the model perfor-
mances and their differences.

In particular, the model performances we base our tests on are not necessarily positive, allowing us 
to use the same techniques for the test against 0. This is different from tests that handle the original 
dissimilarities, where the true distances can only be positive.

Noise ceiling for model performance
In addition to comparing models to each other, we compare models to a noise ceiling and to chance 
performance. The noise ceiling provides an estimate of the performance the true (data- generating) 
model would achieve. A model that approaches the noise ceiling (i.e. is not significantly below the 
noise ceiling) cannot be statistically rejected. We would need more data to reveal any remaining 
shortcomings of the model. The noise ceiling is not 1, because even the true group RDM would not 
perfectly predict all subjects’ RDMs because of the intersubject variability and noise affecting the 
RDM estimates. We estimate an upper and a lower bound for the true model’s performance (Nili 
et al., 2014). The upper bound is constructed by computing the RDM which performs best among 
all possible RDMs. Obviously, no model can perform better than this best RDM, so it provides a 
true upper bound. To estimate a lower bound, we use leave- one- out crossvalidation, computing the 
best performing RDM for all but one of the subjects and evaluating on the held- out subject. We can 
understand the upper and lower bound of the noise ceiling as uncrossvalidated and crossvalidated 
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estimates of the performance of an overly flexible model that contains the true model. The uncrossval-
idated estimate is expected to be higher than the true model’s performance because it is overfitted. 
The crossvalidated estimate is expected to be lower than the true model’s performance because it is 
compromised by the noise and subject- sampling variability in the data.

For most RDM comparators, the best performing RDM can be derived analytically as a mean after 
adequate normalization of the single subject RDMs. For cosine similarity, they are normalized to unit 
norm. For Pearson correlation, the RDM vectors are normalized to zero mean and unit standard devi-
ation. For the whitened measures the normalization is based on the norm induced by the noise preci-
sion instead, that is subject RDM vectors  d  are divided by  

√
dTΣ−1d  instead of the standard Euclidean 

norm  
√

dTd . For the Spearman correlation, subject RDM vectors are first transformed to ranks.
For Kendall’s  τa , there is no efficient method to find the optimal RDM for a dataset, which is one 

of the reasons for using the Spearman rank correlation for RDM comparisons. If Kendall  τ   based 
inference is chosen nonetheless, the problem can be solved approximately by applying techniques 
for Kemeny–Young voting (Ali and Meilă, 2012) or by simply using the average ranks, which is a 
reasonable approximation, especially if the rank transformed RDMs are similar across subjects. In the 
toolbox, we currently use this approximation without further adjustment.

For the lower bound, we use leave- one- out crossvalidation over subjects. To do this, each subject 
is once selected as the left- out subject and the best RDM to fit all other subjects is computed. The 
expected average performance of this RDM is a lower bound on the true model’s performance, 
because fitting all distances independently is technically a very flexible model, which performs the 
same generalization as the tested models. As all other models it should thus perform worse than or 
equal to the correct model.

When flexible models are used, such that crossvalidation over conditions is performed, the compu-
tation of noise ceilings needs to take this into account (Storrs et al., 2014). Essentially, the compu-
tation of the noise ceilings is then restricted to the test sets of the crossvalidation, which takes into 
account which parts of the RDMs are used for evaluation.

Flexible models
As model types, we implement three types of flexible model, in addition to the standard fixed model, 
which represents a single RDM to be tested:

1. A selection model, which states that one of a set of RDMs is the correct one.
2. A one- dimensional manifold model, which consists of an ordered list of RDMs and is allowed to 

linearly interpolate between neighboring RDMs.
3. A weighted representational model, which states that the RDM is a (positively) weighted sum 

of a set of RDMs.

These models aim to provide the flexibility necessary to appropriately represent the uncertainty 
about the data generation process in different ways. First, we may be uncertain about aspects of the 
underlying brain- computational model, such as the relative prevalence in the neural population of 
different subpopulations of tuned neurons (Khaligh- Razavi and Kriegeskorte, 2014; Khaligh- Razavi 
et al., 2017; Jozwik et al., 2016). Second, we may be uncertain about aspects of the measurement 
process, such as the spatial smoothing and weighted averaging of features due to measurement 
methods. Measurement with functional MRI voxels, for example, can strongly influence the resulting 
RDMs, which can lead to wrong conclusions and generally bad model performance when the models 
are compared to measured RDMs (Kriegeskorte and Diedrichsen, 2016).

The selection model implements flexibility in perhaps the simplest way, by allowing a choice among 
a set of RDMs produced from the model under different assumptions about the brain computations 
and/or the measurement process. For training, we can simply evaluate each possible RDM on the 
training data and choose the best performing one as the model prediction for evaluation. This model 
implies no structure in which RDMs can be predicted, but can only handle a finite set of RDMs.

The one- dimensional manifold model implements an ordered set of RDMs, where the model is 
allowed to interpolate between each pair of consecutive RDMs. This representation is helpful if the 
uncertainty about the measurements effect can be well summarized by one continuous parameter 
like the width of a smoothing kernel. Then we can sample a set of values for this parameter and 
use the simulated results as the basis RDMs for this kind of model. Then the model will provide an 
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approximation to the continuous set of RDMs predicted by changing the parameter without requiring 
a method to optimize the parameter directly.

Finally, the weighted representational model represents the effect of weighting orthogonal 
features. In this case, the overall RDM is a weighted sum of the RDMs generated by the individual 
features. Whenever the original model has a feature representation, we may be uncertain about the 
features relative prevalence in the neural population and/or in the measured responses. It can be 
sensible then to assume that these features are represented with different weights or are differently 
amplified by the measurement process. The squared Euclidean representational distances that would 
obtain from a concatenation of feature subsets, each multiplied by a different weight, is equal to a 
nonnegatively weighted combination of the squared Euclidean RDMs for the individual feature sets. 
This justifies a nonnegative weighted model at the level of the RDMs.

A particular application of the weighted representation model is motivated by the local aver-
aging in fMRI voxels, which leads to an overrepresentation of the population- mean dimension of the 
multivariate response space (Carlin and Kriegeskorte, 2017; Kriegeskorte and Diedrichsen, 2016; 
Ramírez et al., 2014). The expected RDM for measurements that independently randomly weight 
features is a linear combination of two RDMs, one based on treating features separately and one 
based on averaging all features before computing the RDM (see Appendix 4).

Our methodology is not specific to these types of model and can be easily extended to other 
types of model. To do so, the only requirement is that there is a reasonably efficient fitting method to 
infer the best fitting parameters for a given dataset of training RDMs. Indeed, new model types can 
be slotted into our toolbox by users by implementing only two functions: one that predicts an RDM 
based on a parameter vector and one that fits the parameter vector to a dataset.

Validation of the methodology
To evaluate our methods we use three kinds of simulations. First, we implement simulations based 
on deep neural networks and a simple approximation of voxel sampling. By choosing a new random 
voxel sampling per subject and using different randomly selected input images, we can test our 
methods with systematic variations across conditions and/or subjects. Second, we implement a simu-
lation based on real fMRI data recombining measurements signals and noise to keep all complications 
found in true fMRI data. Third, we present simulations based on calcium- imaging data from mice (de 
Vries et al., 2020).

Additionally, we tested that the tests we implement are in principle valid using a simple simula-
tion based on a normal distribution for the original measurements, which corresponds to the matrix- 
normal generative model we used for theoretical derivations elsewhere (Diedrichsen et al., 2020). 
These simulations are presented in Appendix 1.

Neural-network-based simulation
Our simulations were based on the activities in the convolutional layers of AlexNet (Krizhevsky 
et al., 2012) in response to randomly chosen images from the ecoset validation set (Mehrer et al., 
2021). For each stimulus, we computed the activities in the convolutional layer and took randomly 
chosen local averages to simulate the averaging of voxels. We then generated fMRI- like measurement 
timecourses to a randomly ordered short event- related design by convolution with a hemodynamic- 
response function and addition of autoregressive noise. We then ran a GLM analysis to estimate the 
response strength to each stimulus. From these estimated voxel responses, we computed data RDMs 
per subject and ran our proposed analysis procedures to compute model performances of different 
models which we also based on the convolutional layers of AlexNet.

For the network, we used the implementation available for pytorch through the torchvision package 
(Paszke et al., 2019).

Stimuli
Stimuli were chosen independently from the validation set of ecoset by first choosing a category 
randomly and then sampling an image randomly from that category. These stimuli are natural images 
with categories chosen to approximate the relevance for human observers. The validation set contain 
565 categories with 50 images each, that is 28,250 images in total.
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Noise-free voxel response
To compute the response strength of a voxel to a stimulus we computed a local average of the feature 
maps. We first convolved the feature maps with a Gaussian representing the spatial extend of the 
voxels, whose size we defined by its standard deviation relative to the overall size of the feature map. 
A voxel with size 0.05 would thus correspond to a Gaussian averaging area whose standard deviation 
is 5% of the size of the feature map. Voxel locations were then chosen uniformly randomly over the 
locations within the feature map. To average across features, we chose a weight for each feature and 
each voxel uniformly between 0 and 1 and then took the weighed sum as the voxel response.

fMRI simulation
To generate timecourses we assumed a measurement was taken every 2 s and a new stimulus was 
presented during every second measurement, with no stimulus presented in the measurement inter-
vals between stimulus presentations.

To generate a simulated fMRI response, we computed the stimulus by voxel response matrix and 
normalized it per subject to have equal averaged squared value. We then converted this into time-
courses following the usual GLM assumptions and convolved the predictions with a hemodynamic- 
response function. We set the hrf to the standard sum of two gamma distributions as assumed in 
statistical parametric mapping (SPM; Pedregosa et al., 2015), normalized to an overall sum of 1.

We then added noise from an autoregressive model of rank 1 (AR1) with covariance between pairs 
of voxels given by the overlap of the weighting functions of their weights. To control the strength of 
the autocorrelation, we set the coefficient for the previous data point to 0.5. To enforce the covariance 
between voxels, we multiplied the noise matrix with the cholesky decomposition of the desired cova-
riance. To control the overall noise strength we scaled the final noise by a constant.

Each stimulus was presented once per run, with multiple stimulus presentations implemented as 
multiple runs.

Analysis
To analyse the simulated data we ran a standard GLM analysis which yielded a  β - estimate for each 
presented stimulus for each run of the experiment.

To compute RDMs we used Crossnobis distances based on leave- one- out crossvalidation over runs 
and the covariance of the residuals of the GLM. For this step, we used the function implemented in 
our toolbox.

Fixed-model definition
As models to be compared we used the different layers of AlexNet. To generate an optimal model 
RDM we applied two transformations to mimic the average effect of voxel sampling. First we convolved 
the representation with the spatial receptive field of the voxels to mimic the spatial averaging effect. 
To capture the effect of pooling the features with nonnegative weights, we then computed a weighted 
sum of the RDM containing the features separately and one RDM based on the summed response 
across features weighted with weights 1 and 3.

This weighting computes the expected Euclidean distance of patterns under our random weighting 
scheme as we derive in Appendix 4: For our  wi ∼ U(0, 1)  the expected value is  E(w) = 1

2  and the vari-
ance is  Var(wi) = 1

12  such that the weights for the RDM based on the individual features is  
1
4  and the 

weight for the RDM based on the summed feature response is  
1
12 , that is a 3:1 weighting.

Based on this weighting we generated a fixed model for each individual processing step in AlexNet 
including the nonlinearities and pooling operations resulting in 12 models predicting a fixed RDM.

Tested conditions
For the large deep- neural- network- based simulation underlying the results in Figure 4, we chose a 
base set of factors which we crossed with all other conditions and a separate set of factors which were 
not crossed with each other but only with the base set.

Into the base set of factors we included the following factors: Which experimental parameters were 
changed over repetitions of the experiment (none, subjects, conditions, or both) and which bootstrap-
ping method we applied (over conditions, over subjects, over both or applying the bootstrap correc-
tion). We applied all four bootstrapping conditions to the simulations in which none of the parameters 
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were varied, the fitting ones to the subject and stimulus varying simulations and the bootstrap with 
and without correction for to the simulations were both parameters varied over repetitions resulting 
in 8 conditions for variation and bootstrap. Additionally, we included the number of subjects (5, 10, 
20, 40, or 80) and the number of conditions (10, 20, 40, 80, and 160). For each set of conditions we 
thus ran 8 × 5 × 5 = 200 conditions.

Other factors we varied were: The number of repeats, which we set to 4 usually and tested 2 and 8. 
The layer we used to simulate the data, which we usually set to layer number 8 which corresponds to 
the output of the 3rd convolutional layer, and also tried 2, 5, 10, and 12, which correspond to the other 
4 convolutional layers of AlexNet. The size of the voxels which we usually set to 0.05, that is we set the 
standard deviation of the Gaussian to 5% of the size of the feature map. As variations we tried 0, 0.25, 
and  ∞ , that is no spatial pooling, a quarter of the size of the feature map as standard deviation and an 
average over the whole feature map. Finally, we varied the number of voxels, which we usually set to 
100, but tried 10 and 1000 additionally. In total we thus ran 3 + 5 + 4 + 3 = 15 sets of conditions with 
200 conditions each resulting in 3000 conditions, with a grand total of 300,000 simulations.

Bootstrap-wrapped crossvalidation
To test the precision and consistency of the calculations for the bootstrap- wrapped crossvalidation 
(Figure  5a, b), we needed repeated analyses for the same datasets. For this simulations we thus 
simulated only 10 datasets for the standard conditions, 20 subjects and 40 conditions, while varying 
both conditions and subjects and then ran repeated analyses on these datasets. For each setting, we 
ran 100 repeated analysis of each dataset. As conditions we chose 2, 4, 8, 16, and 32 crossvalidation 
assignments for 1000 bootstrap samples and additionally variants with only 2 crossvalidation folds and 
2000, 4000, 8000, or 16,000 bootstrap samples.

Flexible-model treatment
To test whether our methods are adequate for estimating the variability for model performances of 
flexible models (Figure 5d–f), we ran our standard settings for 20 subjects and 40 stimuli and drawing 
new subjects and new stimuli, while replacing the fixed models per layer with flexible models of 
different kinds.

We generated models by combining models with different assumptions about the voxel pooling 
pattern: We varied two factors: (1) How feature weighting was handled: full, that is predicted distances 
are Euclidean distances in the original feature space; avg, that is distances are the differences in the 
average activation across features; or ‘weighted’, that is the weighted average of these two models, 
that corresponds to the expected RDM under the weight sampling we simulated. (2) How averaging 
over space was handled.

We first used different kinds fixed models, which serve as the building blocks for the flexible 
models. We varied two aspects of the measurement models applied: How large voxels are assumed 
to be (no pooling,  std = 5%  of the image size and pooling over the whole feature maps) and how the 
features pooling is handled (no pooling, average feature, or the correct weighting assumed for the 
fixed models previously). These 3 × 3 combinations are the 9 fixed- model variants.

We then generated selection models which had a range of voxel sizes to choose from (no pooling, 
std = 1%, 2%, 5%, 10%, 20%, 50% of the image size and pooling across the whole feature map). For 
the treatment of pooling over features we used four variants: For the first three called full, average, 
and weighted we used one of the types of fixed models to generate the RDMS. For the last, we 
allowed both the RDMs used by the full models and the ones used by the average models as a choice.

As an example of a linearly weighted model, we generated a model which was allowed to use a 
linear weighting of the four corner- case RDMs: no feature pooling and no spatial pooling, average 
feature and no spatial pooling, a global average per feature map, and the RDM induced by pooling 
over all locations and features. The model could predict any linear combination of the corner- case 
RDMs to fit the data RDMs.

fMRI-data-based simulation
With our fMRI- data- based simulation, we aim to show that our analyses are correct and functional 
for real fMRI data. Real data may contain additional statistical regularities, which we did not take into 
account in our deep- neural- network- based simulations. To do so, we took a large published dataset 
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of fMRI responses to images and sampled from this dataset to generate hypothetical experimental 
datasets across which we would like to generalize. All scripts for the fMRI- data- based simulation are 
openly available on https://github.com/adkipnis/fmri-simulations, (Kipnis, 2023).

Dataset
For these simulations we used data from Horikawa and Kamitani, 2017 (as available from https:// 
openneuro.org/datasets/ds001246/versions/1.2.1). This dataset contains fMRI data collected from 
five subjects viewing natural images selected from ImageNet or imagining images from a category. 
For our simulations, we used only the ‘test’ datasets, which contain 50 different images from distinct 
categories, which were each presented 35 times to each subject giving us an overall reliable signal 
and repetitions to resample from.

We used the automatic MRI preprocessing pipeline implemented in fMRIPrep 1.5.2 (Esteban 
et al., 2019; Esteban et al., 2019; RRID:SCR_016216), which is based on Nipype 1.3.1 (Gorgolewski 
et al., 2011; Gorgolewski et al., 2018; RRID:SCR_002502). This program was also used to produce 
the following description of the preprocesing performed.

Anatomical-data preprocessing
The T1- weighted (T1w) image was corrected for intensity non- uniformity (INU) with N4BiasFieldCor-
rection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et al., 2008, RRID:SCR_004757), 
and used as T1w reference throughout the workflow. The T1w reference was then skull stripped with 
a Nipype implementation of the  antsBrainExtraction. sh workflow (from ANTs), using OASIS30ANTs as 
target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM), and gray 
matter (GM) was performed on the brain- extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang 
et al., 2001). Brain surfaces were reconstructed using recon- all (FreeSurfer 6.0.1, RRID:SCR_001847, 
Dale et al., 1999), and the brain mask estimated previously was refined with a custom variation of the 
method to reconcile ANTs- and FreeSurfer- derived segmentations of the cortical GM of Mindboggle 
(RRID:SCR_002438, Klein et al., 2017). Volume- based spatial normalization to one standard space 
(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs 
2.2.0), using brain- extracted versions of both T1w reference and the T1w template. The following 
template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 
2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym).

Functional data preprocessing
For each of the 35 blood- oxygen- level- dependent (BOLD) runs found per subject (across all tasks and 
sessions), the following preprocessing was performed. First, a reference volume and its skull- stripped 
version were generated using a custom methodology of fMRIPrep. The BOLD reference was then 
co- registered to the T1w reference using bbregister (FreeSurfer) which implements boundary- based 
registration (Greve and Fischl, 2009). Co- registration was configured with six degrees of freedom. 
Head- motion parameters with respect to the BOLD reference (transformation matrices, and six corre-
sponding rotation and translation parameters) are estimated before any spatiotemporal filtering using 
mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD runs were slice- time corrected using 3dTshift from 
AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR_005927). The BOLD time- series, were resampled 
to surfaces on the following spaces: fsaverage5 and fsaverage6. The BOLD time- series (including 
slice- timing correction when applied) were resampled onto their original, native space by applying 
the transforms to correct for head- motion. These resampled BOLD time- series will be referred to as 
preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time- series were resam-
pled into standard space, generating a preprocessed BOLD run in [‘MNI152NLin2009cAsym’] space. 
First, a reference volume and its skull- stripped version were generated using a custom methodology 
of fMRIPrep. Several confounding time- series were calculated based on the preprocessed BOLD: 
framewise displacement (FD), the spatial root mean square of the data after temporal differencing 
(DVARS) and three region- wise global signals. FD and DVARS are calculated for each functional run, 
both using their implementations in Nipype (following the definitions by Power et al., 2014). The 
three global signals are extracted within the CSF, the WM, and the whole- brain masks. Addition-
ally, a set of physiological regressors were extracted to allow for component- based noise correction 
(Behzadi et al., 2007). Principal components are estimated after high- pass filtering the preprocessed 
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BOLD time- series (using a discrete cosine filter with 128  s cut- off) for the two CompCor variants: 
temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from 
the top 5% variable voxels within a mask covering the subcortical regions. This subcortical mask is 
obtained by heavily eroding the brain mask, which ensures it does not include cortical GM regions. For 
aCompCor, components are calculated within the intersection of the aforementioned mask and the 
union of CSF and WM masks calculated in T1w space, after their projection to the native space of each 
functional run (using the inverse BOLD- to- T1w transformation). Components are also calculated sepa-
rately within the WM and CSF masks. For each CompCor decomposition, the k components with the 
largest singular values are retained, such that the retained components’ time- series are sufficient to 
explain 50% of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining 
components are dropped from consideration. The head- motion estimates calculated in the correction 
step were also placed within the corresponding confounds file. The confound time- series derived 
from head- motion estimates and global signals were expanded with the inclusion of temporal deriv-
atives and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold 
of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. All resamplings can be 
performed with a single interpolation step by composing all the pertinent transformations (i.e. head- 
motion transform matrices, susceptibility distortion correction when available, and co- registrations 
to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsAp-
plyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of 
other kernels (Lanczos, 1964). Non- gridded (surface) resamplings were performed using mri_vol2surf 
(FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham et al., 2014, RRID:SCR_001362), 
mostly within the functional processing workflow. For more details of the pipeline, see the section 
corresponding to workflows in fMRIPrep’s documentation.

The above boilerplate text was automatically generated by fMRIPrep with the express intention 
that users should copy and paste this text into their manuscripts unchanged. It is released under the 
CC0 license.

Region selection
Visual areas were defined according to the surface atlas by Glasser et al., 2016. For our simulations 
we used the following 10 visual areas as ROIs, joining areas from the atlas to avoid too small ROIs 
(the name of the areas in the atlas is given in brackets): V1 (V1), V2 (V2), V3 (V3), V4 (V4), ventral visual 
complex (VVC), ventromedial visual area (VMV1, VMV2, VMV3), parahippocampal place area (PHA1, 
PHA2, PHA3), fusiform face area (FFC), inferotemporal cortex (TF, PeEc), and MT/MST (MT, MST). The 
areas were selected separately for the two hemispheres.

To map the atlas onto individual subject’s brain space we used the mappings estimated by Free-
Surfer with fmriprep’s standard settings. The Glasser Atlas was registered to each participant’s native 
space with mri_surf2surf, and voxels labeled using mri_annotation2label. Next, each ROI was mapped 
to native T1w volumetric space with mri_label2vol. To cover as many contiguous voxels as possible, 
the resulting masks were inflated with mri_binarize and every voxel outside of the volume between 
the pial surface and WM was eroded with mris_calc. To convert the resulting masks to T2*w space we 
used custom python scripts: First, masks were smoothed with a Gaussian kernel of FWHM = 3 mm, 
resampled to T2*w space using nearest neighbor interpolation, and finally thresholded. The threshold 
for each mask was set to equalize mask volume between T1w and T2*w space. Finally, voxels with 
multiple ROI assignments were removed from all ROIs but the one with the highest pre- threshold 
value. Voxels outside the fMRIPrep- generated brain mask were removed from all generated 3d- masks 
of ROIs.

General linear modeling
For extracting response patterns from the measurements we used two GLMs. In the first GLM, we 
regressed out noise sources and in the second we estimate stimulus responses. This two- step process 
is advantageous in this case where stimulus predictors and noise predictors are highly collinear (As 
there is only one presentation of each stimulus per run and as they cover the whole run they can 
together form almost any sufficiently slow variation.): It allows us to attribute all variance that could 
be attributed to the noise sources uniquely to them and not to effects of stimulus presentation. This 
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is closer to the original papers analysis, leads to higher reliability and generates the second GLM as a 
stage at which we can adequately model the noise with a relatively simple AR(2) model.

GLM was performed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm). No spatial smoothing was applied, 
models were estimated using Restricted Maximum Likelihood on top of Ordinary Least Squares and 
auto- correlations were taken into account using SPM’s inbuilt AR(1) method.

For the first GLM, we used the following noise regressors from the ones provided by fMRIprep: An 
intercept for each run, the six basic motion parameters and their derivatives, six cosine basis functions 
to model drift, FD, DVARS, and the first six aCompCors with the largerst eigenvalues. All runs were 
pooled to get the best noise parameter estimates possible.

We interpret the residuals from the first GLM as a denoized version of the fMRI signal and use 
them as input for a second GLM separately for each run to estimate stimulus effects: Stimulus- specific 
regressors were generated by convolving stimulus onset time- series with the canonical HRF without 
derivatives. From this GLM, we kept the estimated  β  coefficients  ̂βi ∈ Rp

  for each stimulus and the 
residuals ri for further processing.

Resampling
To sample a single run for further analysis, we randomly chose a run from the measured data without 
replacement. To expand the set of possible datasets, we then generated a new simulated BOLD signal 

 ̃yi  for each voxel  i  at the stage of the second- level GLM. To do so, we model the data as a GLM with 
an AR(2) model for the noise and then generate a new timecourse by permuting the residuals  ηi  of 
the AR(2) model. As we apply the same permutation to each voxel, this procedure largely preserves 
spatial noise covariance.

In mathematical formulas, this process can be described as follows: Let  p  be the number of condi-
tions,  n  be the number of scans per run, and  yi ∈ Rn

  be the denoized BOLD response of voxel  i . We 
can then use the design matrix of the run  X ∈ Rn×p  , the point estimate  ̂βi ∈ Rp

  for the parameter 
values and corresponding residuals  ri ∈ Rn

  estimated by SPM to simulate a new data run:

 ỹi = Xβ̂i + λ · r̃i, r̃i,t = ŵi,1r̃i,t−1 + ŵi,2r̃i,t−2 + η̃i,t  (16)

where  wi,1  and  wi,2  are the estimated parameters of an AR(2) model fitted to the residuals  ri . Its resid-
uals are denoted  ηi  and were randomly permuted to give  ̃ηi  using the same permutation for all voxels 
in a run.

Additionally, we sampled the conditions to use with replacement, that is we used the  βi  of a 
random sample of conditons, which we also used to select the RDMs from the models.

We saved this dataset in the same format as the original data and re- ran the second- level GLM 
using SPM on these simulated data to generate noisy estimates stimulus responses in each voxel.

RDM calculation and comparison
We use crossnobis RDMs for this simulation, testing four different estimates for the noise covariance: 
We either use the identity, univariate noise normalization, or a shrinkage estimate of the covariance 
based on the covariance of the residuals, or based on the covariance of the individual runs’ mean- 
centered  β  estimates.

For comparing RDMs, we use the cosine similarity throughout.

Model RDMs
We use the RDMs of different ROIs as models, effectively testing how well our methods recover the 
data- generating ROI. The model RDM for each ROI is the pooled RDM across all subjects and runs 
computed by the same noise normalization method as the one used for the data RDMs. Data for these 
RDMs stemmed from the original results of the second- level GLM, making them less noisy than any 
RDM stemming from the simulated data.

Simulation design
For each condition, we ran 100 repeats to estimate the true variability of results and ran all combina-
tions of the following conditions: We used 2, 4, 8, 16, or 32 runs per simulation (5 variants). We used 
5, 10, 20, 30, or 50 stimuli (5 variants). We scaled the noise by 0.1, 1.0, or 10.0 (3 variants). We used 
each of the 20 ROIs for data generation once (20 variants). And we used the 4 methods for estimating 
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the noise covariance (4 variants). Resulting in 24· 5· 5· 3· 20·4 = 144,000 different simulations. To save 
computation time, we ran the fMRI simulation and analyses only once per repeat and noise level and 
ran all analysis variants on the same data. When fewer runs or conditions were required for a variant, 
we randomly selected a subset for the analysis without replacement.

Calcium-imaging-data-based simulation
For the calcium- imaging- data- based simulation we used the Allen institutes mouse visual coding 
calcium- imaging data available at https://observatory.brain-map.org/visualcoding/ (de Vries et al., 
2020). Detailed information on the recording techniques can be obtained from the original publica-
tions and with the dataset.

We used the ‘natural scenes’ data, which consists of measured calcium responses to 118 natural 
scenes. The natural scenes were shown for 250 ms each without an inter stimulus interval in random 
order. In each session, each image was present 50 times.

From this dataset, we selected all experimental sessions, which contained a natural scenes exper-
iment. Additionally, we restricted ourselves to three relatively broad cre driver lines, which target 
excitatory neurons relatively broadly: ’Cux2- CreERT2’, ’Emx1- IRES- Cre’, and ’Slc17a7- IRES2- Cre’. 
For further analyses, we ignore which driver line was used to achieve enough data for resampling. 
This resulted in 174 experimental sessions from 91 mice with 146 cells recorded on average (range: 
18–359). Of these recordings, 35 came from laterointermediate area, 32 from posteromedial visual 
area, 23 from rostrolateral visual area, 46 from primary visual cortex, 16 from anteromedial area, and 
22 from anterolateral area.

To quantify the response of a neuron to the stimuli, we used the fully preprocessed  
df
F   traces as 

provided by the dataset. We then extract the measurements from the frame after the one marked as 
stimulus onset till the stated stimulus endframe resulting in six or seven frames per stimulus presenta-
tion. As a response per neuron we then simply took the average of these frames.

To compute RDMs based on these data, we used Crossnobis distances based on different esti-
mates of the noise covariance matrix based on the variance of the stimulus repetitions around the 
average neural response for each stimulus. We either used: an identity matrix, effectively calculating 
a crossvalidated Euclidean distance; a diagonal matrix of variances, corresponding to univariate noise 
normalization; a shrinkage estimate toward a constant diagonal matrix (Ledoit and Wolf, 2004), or 
a shrinkage estimate shrunk toward the diagonal of sample variances (Schäfer and Strimmer, 2005).

To generate new datasets, we randomly sampled subsets of stimuli, mice, runs, and cells from 
a brain area without replacement. To exclude possible interactions we avoided sampling multiple 
sessions recorded from the same mouse by sampling the mice and then randomly sampling from the 
sessions of each mouse, if there were more than one. For this dataset, we did not use any further 
processing of the data.

As variants for this simulation, we performed all combinations of the following factors: 20, 40, or 
80 cells per experiment; 5, 10, or 15 mice; 10, 20, or 40 stimuli; 10, 20, or 40 stimulus repeats; the 
four types of noise covariance estimates; four types of rdm comparison: cosine similarity, correlation, 
whitened cosine similarity, and whitened correlation; whether the bootstrap was corrected; and the 
six brain areas. This resulted in 3 × 3 × 3 × 3 × 4 × 4 × 2 × 6 = 15,552 simulation conditions for which 
we simulated 100 simulations each.

As models for the simulations, we used the average RDM for each brain area as a fixed RDM 
model for that brain area. Thus the models are not independent from the data in our main simulation. 
This is not problematic for checking the integrity of our inference methods, but does not show that 
we can indeed differentiate brain areas based on their RDMs. To show that retrieving the brain area 
is possible as displayed in Figure 7b in the main text, we performed leave- one- out crossvalidation 
across mice, that is we chose the RDM models for the brain areas based on all but one mice and eval-
uated the RDM correlation with the left out mouse’s RDM.
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https:// observatory. 
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Allen Brain Atlas, 
visualcoding
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Appendix 1
Matrix-normal simulations
To establish the validity of our model- comparative frequentist inference, we need to look at the 
false- alarm rate for data that is generated under the assumption that the null hypothesis H0 is true, 
that is that a model has chance performance in expectation or that two models, predict distinct 
RDMs, but achieve equal RDM prediction accuracy in expectation. In the deep- neural- network- 
based simulations and the data- resampling simulations in the main text, we are not able to generate 
such data. Here, we used a matrix- normal model, as a simpler simulation scheme for RSA in which 
we can enforce these null hypotheses.

We started by specifying a desired RDM for our data that fulfills the null hypothesis for the 
model(s). We then exploit the relationship between the RDM and the covariance matrix between 
conditions (Diedrichsen and Kriegeskorte, 2017) to find a covariance matrix that results in the 
given RDM and generate responses with this covariance between conditions. This random pattern 
will then have the desired (squared Euclidean) RDM.

Concretely, the second- moment matrix  G  of inner products among condition- related patterns 
across voxels can be computed from the squared Euclidean- distance matrix  D  as follows:

 
G = −1

2
(HDH)

  
(17)

where  H = Ik − 1
K 1k  is a centering matrix with  1k  being a square matrix of ones. A dataset with this 

covariance across conditions has  D  as its squared Euclidean RDM (Diedrichsen and Kriegeskorte, 
2017). We can easily generate Gaussian data with a given second- moment matrix and can thus 
generate data with any desired RDM.

Comparison against 0
To generate H0 data for testing our comparisons of models against 0, we choose both the model and 
the data RDMs as the distances between independent drawn Gaussian noise samples.

Model comparisons
To generate H0 data for model comparisons, we first generate two random model RDMs from 
independent standard normal noise data. We then normalize the model RDMs to have 0 mean and 
standard deviation of 1. Then we average the two RDMs, which yields a matrix with equal correlation 
to the two models. As a last step, we then subtract the minimum, to yield only positive distances and 
add the maximum distance to all distances once, such that the triangle inequality is guaranteed. As 
this last step only shifted the distance vector by a constant, the final distance vector still has the exact 
same correlation with the two model predictions. These methods effectively draw the covariance 
over conditions from a standardized Wishart distribution with as many degrees of freedom as the 
number of measurement channels.

Random conditions
To generate H0 data for model comparisons with variance due to stimulus selection, we created two 
models for a large set of 1000 conditions, and generated a data RDM and covariance matrix that 
would yield equal performance as for the other model- comparison simulations. We then sampled a 
random subset of the conditions for each simulated experiment.

Data generation
In all cases, we find a new configuration of data points that produce the desired RDM for each 
subject by converting the RDM into the second- moment matrix via equation 17 and drawing random 
normal data as described at the beginning of this section. We then add additional i.i.d. normal 
‘measurement noise’ to each entry of the data matrix. From this data matrix we then compute a 
squared Euclidean- distance RDM per subject and use this as the data RDM to enter our inference 
process. Finally, we run our inference methods on these data RDMs and the original model RDMs to 
check whether the false- positive rate matches the nominal level.

https://doi.org/10.7554/eLife.82566
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Selected conditions
For each test and setting we generated 50 randomly drawn model RDMs and 100 datasets for each 
of these RDMs. We always used 200 measurement dimensions and tested all combinations of the 
following factors: 5, 10, 20, or 40 subjects, 5, 20, 80, or 160 conditions and all test types. As tests 
we used percentile tests and  t - tests based on bootstrapping both dimensions, subjects only or 
conditions only, a standard  t - test across subjects and a Wilcoxon rank- sum test. For the corrected 
bootstrap, we only used the  t - test based on the estimated variances, because we cannot draw 
bootstrap samples based on our correction.

Results
All test results are shown in Appendix  1—figure 1. They mostly turned out as expected. The 
classical  t  - and Wilcoxon tests performed very similar to the bootstrap tests based on subjects. For 
the tests against chance performance and the model comparisons with fixed conditions the false- 
positive rates are all close to the nominal 5%. However, we observed some inflated false- positive 
rates for the bootstraps at small sample sizes: About 7% when using the  t  - test and up to 12% for 
the simple percentile bootstrap test. These slightly too large false- positive rates are due to the 
bootstrap estimating the biased variance estimate (dividing by  N   instead of  N − 1 ). For more than 
20 subjects, we cannot distinguish the percentage from 5% anymore. For the  t  - test and Wilcoxon 
rank- sum test, there were no such caveats as they consistently achieved a false- positive rate of 
about 5%.
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Appendix 1—figure 1. Evaluation of the tests using normally distributed data simulated under different null 
hypotheses. Each plot shows the false- positive rate plotted as a function of the number of subjects and conditions 
used. Ideal tests should fall on the dotted line at the nominal alpha level of 5%. Dots below the line indicate 
tests that are valid but conservative. Dots above the line are invalid. The ‘test against chance’ simulations (top 
row) evaluate tests of the ability of a model to predict RDMs. Data are simulated under the null hypothesis of 
no correlation between the data and model RDMs. A positive result would (erroneously) indicate that the model 
predicts the data RDM better than expected by chance. The ‘model comparison’ simulations (middle and bottom 
row) evaluate tests that compare the predictive accuracy of two models. Data are simulated under the null 
hypothesis that both models are equally good matches to the data. For the ‘fixed conditions’ simulations (middle 
row) this was enforced for the exact measured conditions. For the ‘random conditions’ simulations (bottom row) we 
instead generated models that are equally good on a large set of 1000 conditions, of which only a random subset 
of the given size is available for the inferential analysis.

Once we introduce variance due to stimulus selection by random sampling of the conditions 
(Appendix  1—figure 1 third row), all methods based solely on the variance across subjects 
fail catastrophically with false- positive rates of up to 60% that grow with the number of tested 
subjects. This effect demonstrates the need to include the bootstrap across conditions into the 
evaluation.
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Appendix 1—figure 2. Sensitivity to model differences of different RDM comparators. We used the data 
simulated on the basis of neural network representations of images to assess how well different models (neural 
network layer representations) can be discriminated for model- comparative inference when using different RDM 
comparators. We plot the model discriminability (signal- to- noise ratio, Equation 10) computed for the same 
simulated data for each RDM comparator and generalization objective (to new measurements of the same 
conditions in the same subjects: gray, to new measurements of the same conditions in new subjects: red, to new 
measurements of new conditions in the same subjects: blue, and to new measurements of new conditions in new 
subjects: purple). Because the condition- related variability dominated the simulated subject- related variability 
here, model discriminability is markedly higher (gray, red) when no generalization across conditions is attempted. 
The different rank- based RDM comparators  τa, τb, ρa, ρb  perform similarly and at least as well as the Pearson 
correlation (corr) and cosine similarity (cosine), while requiring fewer assumptions. This may motivate the use of 
the computationally efficient  ρa , which we introduce in Appendix C. Better sensitivity to model differences can be 
achieved using the whitened Pearson (whitened corr) and whitened cosine similarity (whitened cosine).

When bootstrap resampling the conditions, the tests were conservative, achieving false- positive 
rates below 1%, lower than the nominal 5% (at the expense of power). This held whether or not 
subjects were treated as a random effect: The  t - tests based on either the corrected or the uncorrected 
2- factor bootstrap similarly had false- positive rates below 1%. This conservatism is expected for the 
tests against chance and the model comparisons with fixed conditions, because these simulations 
contained no true variation due to sampling of conditions. All techniques that include resampling the 
conditions also remain valid and conservative in the random conditions simulations that add some 
variation due to the condition choice. In particular, the corrected bootstrap remains conservative 
despite yielding strictly lower variance estimates than the uncorrected bootstrap.

We additionally ran a similar simulation, to test the tests against the noise ceiling, which is not 
displayed in the figure, but the results of this simulation are quickly summarized: We generated a 
single random model and used the same RDM also for data generation. In these data, the lower 
noise ceiling never significantly outperformed the true model indicating that the comparison against 
the lower noise ceiling is a very conservative test. This is most likely due to the difference between 
the lower bound on the noise ceiling and the true noise ceiling.

https://doi.org/10.7554/eLife.82566
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Appendix 2
Poisson KL-divergence
Instead of the Gaussian variability implied by the Euclidean and Mahalanobis dissimilarity measures, 
noise is often assumed to be Poisson or at least to have its variance increase linearly with mean 
activation. This is used primarily when the spiking variability of neurons is thought to be the main 
noise source as in electrophysiological recordings. For this case, we discuss two possible solutions.

The first alternative, discussed by Kriegeskorte and Diedrichsen, 2019a is to use a variance 
stabilizing transform, that is to apply a square root to all dimensions of all representations and use 
an RDM based on the transformed values. This has the advantage, that the covariances can be taken 
into account.

The second alternative, which we introduce here, is to use a symmetrized KL- divergence of 
Poisson distributions with mean firing rates given by the feature values. This approach automatically 
takes the increased variance at larger activation levels into account and inherits nice information- 
theoretic and decoding- based interpretations from the KL- divergence.

The KL- divergence of two Poisson distributions with mean rates  λ1  and  λ2  is given by:

 
KL(λ1||λ2) =

∞∑
k=0

P(k|λ1) log P(k|λ1)
P(k|λ2)  

(18)

 
= λ1 log λ1

λ2
+ λ2 − λ1

  
(19)

Based on this we can compute the symmetrized version of the KL:

 KLsym(λ1,λ2) = KL(λ1||λ2) + KL(λ2||λ1)  (20)

 = (λ1 − λ2)(logλ1 − logλ2)  (21)

To get a crossvalidated version of this dissimilarity we can calculate the difference in logarithms 
from one crossvalidation fold and the difference between raw values for a different fold and average 
across all pairs of different crossvalidation folds.

This KL- divergence- based dissimilarity is theoretically more interpretable than the square- root 
transform, but comes with two small drawbacks: First, the underlying firing rates cannot be 0 as a 
Poisson distribution which never fires is infinitely different from all others. This can be easily fixed 
by using a weak prior on the firing rate, which results in a non- zero estimated firing rate. Second, 
there is no straightforward way to include a noise covariance into the dissimilarity. While such noise 
correlations are much weaker than correlations between nearby voxels in fMRI or nearby electrodes in 
MEG, correlated noise may still reduce or enhance discriminability based on large neural populations 
(Averbeck et al., 2006; Kriegeskorte and Wei, 2021). There might be situations when the need to 
model noise correlations is a good reason to prefer the square- root transform.

https://doi.org/10.7554/eLife.82566
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Appendix 3
Spearman’s  ρa 
Nili et al., 2014 recommended Kendall’s  τa  as the RDM comparator over other rank correlation 
coefficients whenever any of the models predicts tied ranks. Kendall’s  τa  does not prefer predictions 
with tied ranks over random orderings of the same entries in expectation, making it a valid RDM 
comparator when any model predicts the same dissimilarity for any pair of conditions. However, 
Kendall’s  τ  - type correlation coefficients are considerably slower to compute than Spearman’s  ρ - type 
correlation coefficients. Moreover, finding the RDM with the highest average  τa  for a given set of 
data RDMs (for computing noise ceilings) is equivalent to the Kemeny–Young method for preference 
voting (Kemeny, 1959; Young and Levenglick, 1978), which is NP- hard and in practice too slow to 
compute for our application (Ali and Meilă, 2012).

Here, we propose using the expectation of Spearman’s  ρ  under random tie breaking as the RDM 
comparator instead. The coefficient  ρa  was described by Kendall, 1948, chapter 3.8 and is derived 
below. For a vector  x ∈ Rn , let  Rae(x)  be the distribution of random- among- equals rank- transforms, 
where each unique value in  x  is replaced with its integer rank and, in the case of a set of tied values, 
a random permutation of the corresponding ranks. For each draw  ̃x ∼ Rae(x) , thus,  xi < xj ⇒ x̃i < x̃j  . 
However, for pairs  (i, j) , where  xi = xj , the ranks will fall in order  ̃xi < x̃j  or  ̃xi > x̃j  with equal probability. 
The set of values  {x̃i|1 ≤ i ≤ n}  is  {1, . . . , n} . The  ρa  correlation coefficient is defined as:

 
ρa(x, y) = Ex̃∼Rae(x)

ỹ∼Rae(y)

[
ρ(x̃, ỹ)

]
  

(22)

For this expectation, we can derive a direct formula:

 

ρa(x, y) = E
ã=x̃−

1
n

∑n
i=1 i,x̃∼Rae(x)

b̃=ỹ−
1
n

∑n
i=1 i,ỹ∼Rae(y)

[
ã⊤b̃

∥ã∥2∥b̃∥2

]

= 12
n3 − n

Eã[ã]⊤ Eb̃[b̃]

= 12x̄⊤ȳ
n3 − n

− 3(n + 1)
n − 1   

(23)

where  ̄x  and  ̄y  contain the ranks of  x  and  y , respectively, with tied values represented by tied average 
ranks. Thus, computing  ρa  does not require drawing actual random tie breaks to sample  ̃x  and  ̃y .

The RDM comparator  ρa  provides a general solution for rank- based evaluation that is correct in 
the presence of tied predictions and fast to compute. In addition, the mean of rank- transformed 
RDMs provides the best- fitting RDM, obviating the need for optimization and approximation in 
computing the noise ceiling.

https://doi.org/10.7554/eLife.82566
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Appendix 4
Expected RDM under random feature weighting
If measurements weight features identically and independently, we can directly compute the 
expected squared Euclidean RDM for the measurements. We use this calculation both to justify a 
linear weighting model and to compute the correct models in some of our simulations.

Formally, we can show that this is true by the following calculation: Let  wiv  be the weighting 
for the  i  th feature in the  v  th voxel for two patterns  x  and  y  with feature values xi and yi. Then the 
expected squared Euclidean distance in voxel space can be written as:

 

E


 1

Nv

∑
v

(∑
i

wiv(xi − yi)

)2

 = E



(∑

i
wi(xi − yi)

)2


  

(24)

 

= E

[∑
i

w2
i (xi − yi)2

]
+ E


∑

i

∑
j̸=i

wiwj(xi − yi)(xj − yj)



  

(25)

 
= Var

[
w
]∑

i
(xi − yi)2 + E2 [w]

∑
i

∑
j

(xi − yi)(xj − yj)
  

(26)

 
= Var

[
w
]∑

i
(xi − yi)2 + E2 [w]

(∑
i

xi −
∑

i
yi

)2

  
(27)

This means that the expected RDM is a linear combination of the RDM based on individual features 
and the RDM based on the average across features weighted by the variance and the squared 
expected value of the weight distribution, respectively. As averaging or filtering across space is 
interchangeable with feature weighting, we can also use this calculation to compute the expected 
RDM for models that combine averaging over space and across features as in our simulations. Then 
the RDM at some level of averaging over space is still always a linear combination of the feature- 
averaged and feature- separate RDMs at that level of spatial averaging.

https://doi.org/10.7554/eLife.82566
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Appendix 5
Choosing experimental design parameters for sensitive model 
adjudication
To quantify how much increasing the number of measurements along one of the experimental factors 
improved SNR for adjudication among models (Equation 10), we can use the slope of a regression 
line for the SNR against the number of measurements in log–log space. This slope corresponds to 
the exponent of the power- law relationship (Figure 4 in the main text). We observe that increasing 
the number of conditions ( slope = 0.935 ) is slightly more effective than increasing the number of 
subjects ( slope = 0.690 ), and increasing the number of repeated measurements is most effective 
( slope = 1.581 ), probably due to the crossvalidation we employ. The crossvalidation across repeated 
measurements we use to yield unbiased distance estimates produces  

m
m−1  times the variance in the 

original RDM entries compared to the biased estimates without crossvalidation. This provides an 
additional benefit for increasing the number of repeated independent measurements.

The model- discriminability SNR depends on the sources of nuisance variation included in the 
simulations. In these particular simulated experiments, resampling the conditions set induces 
more nuisance variation than resampling the subjects set (Figure 4g). This indicates that inference 
generalizing across conditions is harder than inference generalizing across subjects in these 
simulations. For small noise levels, the SNR is much higher when nothing is varied over repetitions or 
only subjects are varied than when the conditions are also varied. At large measurement noise levels 
this effect disappears, because the measurement noise becomes the dominant factor.

The intuition to explain our observations about the SNR is that it is most helpful to take more 
samples along the dimension which currently causes most variation in the results. Clearly, our 
variation in conditions caused more variance than our variation in voxel sampling to simulate subject 
variability. As a result, to boost the model- discriminability SNR, increasing the number of conditions 
is more effective than increasing the number of subjects by the same factor. Results also reveal 
that we simulated sufficiently high noise levels for a reduction in measurement noise through more 
repetitions to remain effective. Beyond noise reduction through averaging, more repetitions are also 
more profitable due to the crossvalidated distances, which loses less efficiency the larger the sample 
becomes Diedrichsen et al., 2020.

Additionally, we observe that an intermediate voxel size (Gaussian kernel width) yields the highest 
model discriminability as measured by the SNR (Figure  4h in the main text). When each voxel 
averages over a large area, information in fine- grained patterns of activity is lost, which is detrimental 
to model selection. The fall- off for very small voxels in our simulations is due to randomly sampled 
voxels covering the feature map less well leading to greater variability. In real fMRI experiments, we 
do not expect this effect to play a role, as we expect voxels to always cover the whole- brain area, 
such that smaller voxels correspond to more voxels, which are clearly beneficial for better model 
selection. We do nonetheless expect a fall of for small voxel sizes for real fMRI experiments as well, 
because small voxel sizes lead to a steep increase in instrumental noise for fMRI and the BOLD signal 
itself is not perfectly local to the neurons that cause it (Bodurka et al., 2007; Chaimow et al., 2018; 
Weldon and Olman, 2021). Thus, the dependence on voxel averaging size is what we expect for 
real fMRI experiments as well, albeit for different reasons. Also, it might be informative for other 
measurement methods like electrophysiology, that a local average can be preferable over perfectly 
local measurements for model selection, when the number of measured channels is limited.

https://doi.org/10.7554/eLife.82566
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Appendix 6
Choosing an RDM comparator for sensitive model adjudication
An important question is how to measure RDM prediction accuracy for model evaluation. We ran 
the same analysis with different RDM comparators on the same datasets in a separate simulation.

We presented the deep neural network with our standard set of stimuli and simulated data for 
10 subjects, 40 conditions, and 2 repeats, changing which parameters varied over repetitions of 
the experiment as in the main simulation. We omitted all bootstrapping, because the bootstrap 
variances are not needed to estimate model discriminability (SNR, Equation 10) for different RDM 
comparators. To improve comparability between different generalization conditions, we enforced 
that the first simulation for each generalization condition used the same conditions and subjects. The 
other 99 simulations then varied conditions and subject according to the required generalization. 
The different RDM comparators were applied to the same simulated experimental data.

We found that different types of rank correlation are all similarly good at discriminating models 
(Appendix 1—figure 2). Proper evaluation of models predicting tied dissimilarities requires Kendall’s 
 τa  (Nili et al., 2014) or  ρa , a rarely used variant of Spearman’s rank correlation coefficient without 
correction for ties, analogous to Kendall’s  τa  (derivation in Appendix 3). We recommend  ρa  over  τa  
for its lower computational cost and analytically derived noise ceiling.

If we are willing to assume that the representational dissimilarity estimates are on an interval 
scale, we expect to be able to achieve greater model- performance discriminability with RDM 
comparators that are not just sensitive to ranks. In this context, we compare the Pearson correlation 
and cosine similarity, and their whitened variants, which we introduced recently (Diedrichsen et al., 
2020). The whitened measures boost the power of inferential model comparisons, by accounting for 
the anisotropic sampling distribution of RDM estimates. To further increase our model- comparative 
power, both the whitened and the unwhitened cosine similarity assume a ratio scale for the 
representational dissimilarities, which requires that indistinguishable conditions have an expected 
dissimilarity of zero. This assumption is justified when using a crossvalidated distance estimator 
(Nili et al., 2014; Walther et al., 2016), which provides unbiased dissimilarity estimates with an 
interpretable zero point.

Consistent with the theoretical expectations, we observe greatest model- performance 
discriminability for the whitened cosine similarity, which assumes ratio- scale dissimilarities, 
intermediate discriminability for the whitened Pearson correlation, and somewhat lower model- 
performance discriminability for the unwhitened Pearson correlation and the unwhitened cosine 
similarity. Rank correlation coefficients performed surprisingly well, matching or even outperforming 
unwhitened Pearson correlation and unwhitened cosine similarity (Appendix  1—figure 2). They 
provide an attractive alternative to the whitened criteria when researchers wish to make weaker 
assumptions about their model predictions.

https://doi.org/10.7554/eLife.82566
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