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Mouse B2 SINE elements function as IFN-
inducible enhancers
Isabella Horton†, Conor J Kelly†, Adam Dziulko, David M Simpson, 
Edward B Chuong*

Department of Molecular, Cellular, and Developmental Biology and BioFrontiers 
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Abstract Regulatory networks underlying innate immunity continually face selective pressures 
to adapt to new and evolving pathogens. Transposable elements (TEs) can affect immune gene 
expression as a source of inducible regulatory elements, but the significance of these elements in 
facilitating evolutionary diversification of innate immunity remains largely unexplored. Here, we 
investigated the mouse epigenomic response to type II interferon (IFN) signaling and discovered 
that elements from a subfamily of B2 SINE (B2_Mm2) contain STAT1 binding sites and function as 
IFN-inducible enhancers. CRISPR deletion experiments in mouse cells demonstrated that a B2_Mm2 
element has been co-opted as an enhancer driving IFN-inducible expression of Dicer1. The rodent-
specific B2 SINE family is highly abundant in the mouse genome and elements have been previously 
characterized to exhibit promoter, insulator, and non-coding RNA activity. Our work establishes a 
new role for B2 elements as inducible enhancer elements that influence mouse immunity, and exem-
plifies how lineage-specific TEs can facilitate evolutionary turnover and divergence of innate immune 
regulatory networks.

Editor's evaluation
This important paper will be of interest to scientists studying evolutionary divergence of immune 
responses and those studying how transposable elements rewire transcriptional regulatory networks. 
Using a combination of computational and experimental approaches, this work describes a new 
class of rodent-specific transposons that can act as enhancers of immune genes in mice.

Introduction
The cellular innate immune response is the first line of defense against an infection and is initiated 
by the activation of transcriptional networks that include antiviral and pro-inflammatory genes. While 
innate immune signaling pathways are generally conserved across mammalian species, the specific 
transcriptional networks are increasingly recognized to show differences across lineages (Chuong 
et al., 2017; Shaw et al., 2017). These differences are widely attributed to independent evolutionary 
histories and continual selective pressures to adapt to new pathogens (Daugherty and Malik, 2012). 
Understanding how innate immune systems have evolved in different host genomes is critical for accu-
rately characterizing and modeling responses that are related to autoimmunity or involved in disease 
susceptibility.

Transposable elements (TEs) are increasingly recognized as a source of genetic elements that shape 
the evolution of mammalian innate immune responses (Chuong et al., 2017; Cordaux and Batzer, 
2009). TE-derived sequences constitute roughly half of the genome content of most mammals, and 
are the predominant source of lineage-specific DNA. While most TE-derived sequences are degraded 
and presumed nonfunctional, TEs have occasionally been co-opted to function as genes or regulatory 
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elements that benefit the host organism. In the context of host innate immunity, there are several 
reported examples of species-specific restriction factors that are encoded by TEs co-opted for host 
defense, including Friend Virus 1, Syncytin, Suppressyn, and Jaagsiekte sheep retrovirus (JSRV) 
(Arnaud et  al., 2008; Aswad and Katzourakis, 2012; Frank et  al., 2022; Lavialle et  al., 2013). 
In many cases, TEs derived from ancient viral infections are poised for co-option since they already 
have the ability to bind to receptors, therefore blocking infection as a dominant negative mechanism 
(Frank and Feschotte, 2017).

More recently, TEs have also been identified as a source of non-coding regulatory elements that 
control inducible expression of cellular innate immunity genes (Buttler and Chuong, 2022). In the 
human genome, we previously showed that MER41 elements have been co-opted as enhancer 
elements to regulate multiple immune genes in human cells, including the AIM2 inflammasome genes 
(Chuong et al., 2016). Elements belonging to other transposon families, including LTR12, MER44, 
and THE1C, have also been co-opted to regulate inducible expression of immune genes (Bogdan 
et al., 2020; Donnard et al., 2018; Srinivasachar Badarinarayan et al., 2020). Notably, the majority 
of these families are primate-specific, supporting the co-option of TEs as a driver of primate-specific 
divergence of immune regulatory networks.

A key open question is whether the co-option of TEs as immune regulatory elements is evolution-
arily widespread as a mechanism driving divergence of innate immune responses. Most research in this 
area has focused on human cells and primate-specific TE families, but different mammalian species 
harbor highly distinct and lineage-specific repertoires of TEs in their genomes. Due to the indepen-
dent origin of most of these TEs in different species, it remains unclear whether the co-option of TEs 
is a rare or common mechanism contributing to the evolution of immune gene regulatory networks.

Here, we focused on the role of TEs in regulating murine innate immune responses. Mice are a 
commonly used model for human diseases but their immune system is appreciated to have signif-
icant differences. Transcriptomic studies have revealed that mouse and human immune transcrip-
tomes show substantial divergence (Shaw et al., 2017; Shay et al., 2013), consistent with functional 
differences in inflammatory responses (Seok et al., 2013). The rodent and primate lineages diverged 
roughly 90 million years ago (Hedges et al., 2006; Mestas and Hughes, 2004) and 32% of the mouse 
genome consists of rodent-specific repeats (Waterston et al., 2002). Therefore, we sought to define 
the potential role of TEs in shaping lineage-specific features of the murine innate immune response.

In our study, we re-analyzed transcriptomic and epigenomic datasets profiling the type II inter-
feron (IFN) response in primary mouse macrophage cells. We screened for TEs showing epigenetic 
signatures of inducible regulatory activity, and identified a rodent-specific B2 subfamily as a substan-
tial source of IFN-inducible regulatory elements in the mouse genome. As a case example, we used 
CRISPR to characterize a B2-derived IFN-inducible enhancer that regulates mouse Dicer1. These find-
ings uncover a novel cis-regulatory role for the SINE B2 element in shaping the evolution of mouse-
specific IFN responses.

Results
Species-specific TEs shape the epigenomic response to type II IFN in 
mouse
To examine how TEs contribute to mouse type II IFN signaling regulation, we re-analyzed two inde-
pendent transcriptomic and epigenomic datasets of primary bone-marrow-derived macrophages 
(BMDMs) that were stimulated with recombinant interferon gamma (IFNG) or untreated for 2 or 4 hr 
(Platanitis et  al., 2019). These datasets included matched RNA-seq and ChIP-seq for STAT1 and 
H3K27ac. The STAT1 transcription factor mediates the type II IFN response (Platanias, 2005) by 
binding to enhancers and promoters containing the Gamma-IFN activation site (GAS) motif, and the 
H3K27ac modification is strongly associated with active enhancers (Creyghton et al., 2010). Using 
these datasets, we mapped both IFNG-inducible enhancers and IFNG-stimulated genes (ISGs).

Our analysis of the RNA-seq data identified a total of 1,896 ISGs (FDR adjusted p-value <0.05, 
log2 fold change (log2FC)>1), which enriched for canonical genes associated with the IFNG response 
(GO:0034341, adjusted p-value = 9.394 × 10–35; Supplementary file 1). We predicted IFNG-inducible 
enhancers based on occupancy by the enhancer-associated histone mark H3K27ac and the transcrip-
tion factor STAT1, which mediates type II IFN signaling. We identified 22,921 regions bound by STAT1 
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in IFNG-induced cells, 18,337 (80.0%) of which also resided within H3K27ac-enriched regions, indi-
cating they are putative enhancers. Specificity of pulldown was confirmed by enrichment of canonical 
STAT1 binding motifs including the Gamma-IFN activation site (GAS; E-value=1.11 × 10–746) and IFN-
stimulated response element (ISRE; E-value=1.01 × 10–442) motifs within the STAT1 ChIP-seq peaks 
(Supplementary file 2).

Using this set of STAT1 binding sites, we next asked what fraction of binding sites were derived 
from mouse TEs. Using the summits of the STAT1 ChIP-seq peaks, we found that 26.6% resided 
within TEs, 71.1% of which contain significant matches (p-value <1 × 10–4) to either ISRE or GAS 
motifs (Supplementary file 3). These TEs likely represent direct binding sites of STAT1 with potential 
regulatory activity. We next asked whether any TE families were overrepresented within the set of 
predicted IFNG-inducible binding sites, using GIGGLE colocalization analysis (Layer et al., 2018). We 
identified three subfamilies enriched for STAT1 binding sites, including the rodent-specific B2_Mm2 
subfamily (p-value = 7.18 × 10–201) as well as the RLTR30B_MM (p-value = 9.61 × 10–77) and RLTR30E_
MM (p-value = 7.32 × 10–31) endogenous retrovirus subfamilies (Figure 1A, Supplementary file 4). 
This indicates that the expansion of rodent-specific TE families has shaped the innate immune regu-
latory landscape in mouse.

We previously identified enrichment of RLTR30 elements within STAT1-binding sites in IFNG and 
IFNB-stimulated mouse macrophages based on analysis of a different ChIP-seq dataset (Chuong 
et al., 2016; Ng et al., 2011). However, our previous analysis did not capture enrichment of B2_Mm2, 
likely because the dataset was generated using 36 bp short reads. In contrast, the more recent data-
sets analyzed here used 50 bp reads (Platanitis et al., 2019), which improves mappability to individual 
copies of evolutionarily young TE families such as B2_Mm2 (Sundaram et al., 2014).

B2_Mm2 elements contain STAT1 binding sites and show inducible 
enhancer activity
B2_Mm2 is a murine-specific subfamily of the B2 short interspersed nuclear element (SINE) family, 
which is highly abundant in the mouse genome. B2 SINE elements are divided into three subfamilies, 
including B2_Mm2 (80,541 copies), B2_Mm1a (16,321 copies), and B2_Mm1t (35,812 copies). B2 SINE 
elements have been characterized to show a wide range of regulatory activities in mice, including 
acting as promoters (Ferrigno et al., 2001), insulator elements bound by CTCF (Ichiyanagi et al., 
2021; Lunyak et al., 2007; Schmidt et al., 2012), or regulatory non-coding RNAs (Hernandez et al., 
2020; Karijolich et al., 2017; Karijolich et al., 2015; Schaller et al., 2020; Yakovchuk et al., 2009). 
As the potential for B2_Mm2 SINEs to act as inducible enhancers has not yet been investigated, we 
decided to further investigate B2 SINEs in this context.

The B2_Mm2 subfamily showed strong evidence of enrichment within regions bound by STAT1, 
providing 2,122 total binding sites (odds ratio = 4.85). These B2_Mm2 elements show significantly 
higher localization near ISGs (p-value = 5.03 × 10–52, odds ratio = 9.13) than interferon-repressed 
genes (IRGs) or nonresponsive genes, compared to unbound B2 elements or random genomic regions 
(Figure 1B, Figure 1—figure supplement 1A–B). We did not observe consistent enrichment of the 
B2_Mm1a and B2_Mm1t subfamilies over STAT1-bound regions (Supplementary file 4). Addition-
ally, STAT1-bound B2_Mm2 elements are transcriptionally upregulated at the family level in response 
to IFNG stimulation (Figure 1C, Figure 1—figure supplement 2, Supplementary file 5). Although 
unbound B2_Mm2 elements are also transcriptionally active, we did not observe a significant increase 
in expression in response to IFNG stimulation. Taken together, these data indicate that thousands of 
B2_Mm2 elements show epigenetic and transcriptional evidence of IFNG-inducible regulatory activity 
in primary murine bone marrow derived macrophages.

We investigated the sequence features of each B2 SINE subfamily to determine the basis of IFNG-
inducible activity. Given that B2 SINE elements have previously been associated with CTCF binding 
due to the presence of a CTCF motif harbored by most copies (Schmidt et al., 2012), we subdi-
vided elements from each family based on occupancy by STAT1, CTCF, both factors, or neither factor 
based on ChIP-seq. Across each of these subsets, we looked for the presence of GAS or CTCF motifs 
(Figure  2A, Figure  2—figure supplement 1). As expected, all B2 subfamilies showed extensive 
ChIP-seq binding evidence of CTCF and the RAD21 cohesin subunit, coinciding with a CTCF motif 
(Figure 2—figure supplement 1). In contrast, only a subset of elements from the B2_Mm2 subfamily 
showed inducible binding of STAT1 (Figure 2A). Consistent with ChIP-seq evidence, STAT1-bound 
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Figure 1. Identification of transposon-derived enhancers in innate immunity. (A) Bubble plot showing family-level enrichment of transposons within 
ChIP-seq peak regions. TE families enriched for STAT1 and H3K27ac ChIP-seq peaks are sorted by descending median Kimura distance. GIGGLE 
enrichment score is a composite of the product of both -log10(p-value) and log2(odds ratio). (B) Frequency histogram of absolute distances from STAT1-
bound B2_Mm2 (blue, n=2,122), randomly shuffled B2_Mm2 (black, n=2,122), and randomly subset unbound B2_Mm2 (green, n=2,122), B2_Mm1a (red, 
n=2,122), and B2_Mm1t (yellow, n=2,122) elements to the nearest ISG (n=750), IRG (n=750), or nonresponsive gene (n=750). Data shown for (Piccolo 
et al., 2017) comparing expression in BMDMs stimulated with IFNG for 4 hr relative to untreated. (C) DESeq2 normalized counts showing immune-
stimulated expression of unbound B2_Mm2 (top, n=78,419) and STAT1-bound B2_Mm2 (bottom, n=2122) elements in murine BMDMs. Data shown 
for untreated (n=2) BMDMs and BMDMs stimulated with IFNG for 2 hr (n=3) or 4 hr (n=3). Treatments are indicated by color. ***DESeq2 FDR adjusted 
p-value <0.0001. Error bars designate SEM. Data shown for (Piccolo et al., 2017). ISG: Interferon-stimulated gene; IRG: Interferon-repressed gene. 
BMDMs: Bone marrow derived macrophages. SEM: Standard error of mean.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Distances from each B2 element to the nearest ISG.

Figure supplement 2. IFNG-inducible TE expression in murine BMDMs.

https://doi.org/10.7554/eLife.82617
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B2_Mm2 elements contain both GAS and CTCF motifs, while B2_Mm1a/t elements only harbor CTCF 
motifs (Figure 2B, Figure 2—figure supplement 2). Within B2_Mm2, elements that are bound by 
STAT1 are significantly enriched for GAS motifs when compared against unbound elements (E-value 
2.08×10–71, Supplementary file 6). In addition, STAT1-bound B2_Mm2 elements contain stronger 
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Figure 2. Epigenomic profiling of B2_Mm2. (A) Heatmaps showing CPM-normalized ChIP-seq signal and motif signal centered over B2_Mm2 elements 
bound only by STAT1 (n=1,203); B2_Mm2 bound by both STAT1 and CTCF (n=893); B2_Mm2 bound only by CTCF (n=4,143); and a random subset 
of unbound B2_Mm2 (n=1,000). Regions are sorted by descending mean CPM signal. Signal intensity is indicated below. CTCF track derived from 
Gualdrini et al., 2022. RAD21 track derived from Cuartero et al., 2018. (B) Schematic of GAS (blue) and CTCF (green) motifs present within extant 
B2_Mm2 (left, n=80,541), B2_Mm1a (middle, n=16,321), and B2_Mm1t (right, n=35,812) sequences. Heatmap intensity corresponds to motif matches 
based on the log likelihood ratio. Heatmaps are sorted by descending mean signal. Position weight matrices were obtained from JASPAR (Fornes 
et al., 2020). CPM: Counts per million. GAS: Gamma-IFN activated sequence.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. STAT1 and CTCF occupancy overlapping all B2 elements in murine BMDMs.

Figure supplement 2. Multiple sequence alignment of B2 consensus sequences and B2_Mm2.Dicer1.

Figure supplement 3. Distribution of p-values for GAS motifs overlapping B2 elements.

https://doi.org/10.7554/eLife.82617
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sequence matches to GAS motifs compared to unbound B2_Mm2 elements and B2_Mm1a/t elements 
(Figure  2A, Figure  2—figure supplement 3). While B1_Mm1a elements show a partial match to 
the GAS motif, they show no evidence of STAT1 binding (Figure 2B, Figure 2—figure supplement 
2). Therefore, elements of the B2_Mm2 subfamily are uniquely characterized by containing strong 
matches to GAS motifs that are associated with STAT1 binding activity.

Notably, we found that STAT1-bound B2_Mm2 elements are the only B2 elements that show an 
inducible H3K27ac signal associated with enhancer activity. In contrast, B2_Mm2 elements bound 
only by CTCF or unbound elements show minimal H3K27ac signal (Figure 2A). B2_Mm1a/t elements 
also show minimal STAT1 signal regardless of CTCF binding (Figure 2—figure supplement 2). This 
suggests that the binding of STAT1 to B2_Mm2 elements causes activation of enhancer activity 
including acetylation of H3K27. Thus, B2_Mm2 elements represent a distinct subclass of B2 SINE 
elements that exhibit IFNG-inducible enhancer activity.

An intronic B2_Mm2 element functions as an inducible enhancer of 
Dicer1
Having established that B2_Mm2 elements are an abundant source of IFNG-inducible STAT1 binding 
sites in the mouse genome, we asked whether any of these elements have been co-opted to regulate 
expression of individual ISGs. We first assigned predicted enhancers to their predicted targets using 
the Activity by Contact (ABC) model (Fulco et al., 2019), which incorporates both epigenomic signal 
and Hi-C 3D interaction data to predict enhancer-gene targets. As input into the ABC model, we used 
publicly available ATAC-seq and Hi-C data from murine BMDMs stimulated with IFNG for 2 hours 
(Platanitis et al., 2022) and H3K27ac ChIP-seq and RNA-seq data (Piccolo et al., 2017). Focusing on 
a permissive set of 2,720 ISGs (FDR adjusted p-value <0.05, log2FC >0), we identified 530 B2_Mm2 
elements predicted to interact with 457 mouse ISGs (16.8% of the set of 2720 in this analysis; Supple-
mentary file 7). Compared with a set of human ISGs from human CD14+ monocytes (Qiao et al., 
2016), 393 of these 457 (86%) genes were only ISGs in mouse, and the remaining 64 (14%) were ISGs 
in both mouse and human.

The 393 mouse-specific ISGs predicted to be regulated by B2_Mm2 elements were significantly 
enriched for multiple immune related functions (GO:0002376, adjusted p-value = 6.023 × 10–9; Supple-
mentary file 7). We identified multiple examples of predicted B2_Mm2 target genes with established 
immune functions that showed mouse-specific IFNG-inducible expression (Figure 3—figure supple-
ment 1, Figure 3—figure supplement 2), including dicer 1 ribonuclease III (Dicer1) (Poirier et al., 
2021; Figure 3A), SET domain containing 6, protein lysine methyltransferase (SETD6) (Levy et al., 
2011), DOT1-like histone lysine methyltransferase (Kealy et al., 2020), fumarate hydratase 1 (Fh1) 
(Zecchini et al., 2023), heat shock protein family A (Hsp70) member 1B (Hspa1b) (Jolesch et al., 
2012), and NFKB inhibitor delta (Nfkbid) (Souza et al., 2021).

From this set, we decided to focus on a specific B2_Mm2 element located on Chromosome 12 within 
the first intron of Dicer1, which is an endonuclease responsible for recognizing and cleaving foreign 
and double stranded RNA that has been linked to innate immunity (Chiappinelli et al., 2012; Gurung 
et al., 2021; MacKay et al., 2014; Poirier et al., 2021). While the human ortholog DICER1 does 
not show IFNG-inducible expression in human primary macrophages (Qiao et al., 2016; Figure 3—
figure supplement 3, Supplementary file 1), mouse Dicer1 shows a significant 50% upregulation in 
response to IFNG in primary mouse BMDMs (Figure 3A). This indicates that Dicer1 is a mouse-specific 
ISG and likely acquired IFNG-inducible expression in the mouse lineage, potentially due to the co-op-
tion of the B2_Mm2 element as a species-specific IFNG-inducible enhancer. The intronic B2_Mm2 
element (B2_Mm2.Dicer1) shows biochemical hallmarks of enhancer activity including inducible STAT1 
and H3K27ac signal as well as constitutive binding by CTCF and RAD21 (Figure 3B). The element 
provides the only prominent nearby STAT1 binding site and is not present in rat or other mammals 
(Figure 3B). Therefore, we hypothesized that the B2_Mm2.Dicer1 element was co-opted as an IFNG-
inducible enhancer of mouse Dicer1.

To experimentally test the potential enhancer activity of B2_Mm2.Dicer1, we used the mouse 
J774A.1 macrophage-like cell line, a commonly used model of murine immunity (Lam et al., 2009; 
Ralph and Nakoinz, 1975). We first confirmed using RT-qPCR that Dicer1 shows 30–40% upregulation 
after 4 hr of IFNG treatment (Figure 3C). Given the STAT1 binding site and motif present in B2_Mm2.
Dicer1, we also tested other cytokines that act through STAT-family transcription factors. We found 

https://doi.org/10.7554/eLife.82617
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that 4 hr treatment of J774A.1 cells with IFNA, IL6, and IL4 all induced Dicer1 expression to similar 
levels (30–40%), consistent with inducible regulation of Dicer1 by JAK-STAT signaling, potentially 
through the STAT binding site present in B2_Mm2.Dicer1.

We next used CRISPR to generate clonal J774A.1 lines harboring homozygous deletions of the B2_
Mm2.Dicer1 element. We delivered guide RNAs targeting the flanking boundaries of B2_Mm2.Dicer1 
along with recombinant Cas9 by electroporation (Figure  3—figure supplement 4A–C), isolated 
clones by limiting dilution, and screened clonal lines for homozygous deletions by PCR (Figure 3—
figure supplement 4D–F). We isolated two clonal cell lines with a homozygous knockout of B2_
Mm2.Dicer1, along with multiple wild-type (WT) J774A.1 clonal lines that were not electroporated to 
control for potential effects of clonal expansion (Figure 3—figure supplement 4F). We used RT-qPCR 
to compare Dicer1 expression levels and inducibility by IFNG in knockout and WT clones. WT clones 
showed consistent inducible expression, while both knockout clonal lines showed a complete lack of 
inducible expression (Figure 4A). These experiments demonstrate that B2_Mm2.Dicer1 acts as an 
IFNG-inducible enhancer of Dicer1 in J774A.1 cells.

B2_Mm2.Dicer1 impact on the genomic regulatory landscape
We used RNA-seq to study the genome-wide effects of the B2_Mm2.Dicer1 element in both knockout 
clones and three control wild-type clones which were also isolated by limiting dilution. Consistent 
with the RT-qPCR results, we found that Dicer1 showed significant IFNG-inducible upregulation in all 
WT clones but that this induction was completely ablated in B2_Mm2.Dicer1 KO clones (Figure 4B). 
Notably, the RNA-seq normalized count data revealed that expression of Dicer1 were also significantly 
reduced in untreated KO cells (log2FC = –0.43, FDR-adjusted p-value = 9.246 × 10–4) (Figures 4B 
and 5A, Figure 3—figure supplement 5B–C). Focusing on the IFNG-treated condition, Dicer1 was 
significantly downregulated in KO cells compared to WT cells (log2FC = –0.80, FDR-adjusted p-value 
= 3.393 × 10–15). The deletion of the element did not affect inducibility of other ISGs in the 5 Mb 
locus including the nearby highly induced SerpinA3 ISGs locus (Figure 4C–D). This indicates that the 
B2_Mm2.Dicer1 element specifically regulates both basal expression levels of Dicer1 and inducible 
expression by IFNG. While the enhancer deletion on Dicer1 expression levels had a modest down-
regulating effect, this effect was specific and consistent across individually edited clones, particularly 
under IFNG-stimulated conditions (Figure 4C–D, Figure 3—figure supplement 5D–E).

Genome-wide, there were 101 genes that showed greater significance than Dicer1 when testing 
for differential expression between IFNG-treated KO and WT cells (out of 3,567 genes with FDR-
adjusted p-value <0.05; Supplementary file 8). Out of these 101 genes, 24 showed higher variability 
than Dicer1 (based on DESeq2 log2FC standard error) between individual clones (Figure 3—figure 
supplement 5B–E), consistent with intrinsic clonal transcriptional variation revealed by the limiting 

signal maxima. Bottom inset shows B2_Mm2.Dicer1 with accompanying STAT1 (IFNG 2 h Piccolo et al.) ChIP-seq signal and conservation tracks for 
rat, rabbit, human, cow, and dog. CTCF track derived from Gualdrini et al., 2022. RAD21 track derived from Cuartero et al., 2018. (C) RT-qPCR of 
wild type untreated (gray, n=3) J774A.1 cells and J774A.1 cells stimulated with IFNG (blue, n=3), IFNA (green, n=3), IL-2 (orange, n=3), IL-4 (light blue, 
n=3), or IL-15 (purple, n=3) for 4 hr. Treatments are indicated by color. *p-value <0.05, Student’s paired two-tailed t-test. BMDM: Bone-marrow-derived 
macrophage. SEM: Standard error of mean. CPM: Counts per million.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Predicted B2_Mm2 enhancers associated with mouse-specific ISGs Setd6, Dot1l, and Fh1.

Figure supplement 2. Predicted B2_Mm2 enhancers associated with mouse-specific ISGs Hspa1b and Nfkbid.

Figure supplement 3. Constitutive expression of human DICER1.

Figure supplement 4. Validation of CRISPR B2_Mm2 knockout in J774.A1 cells.

Figure supplement 4—source data 1. Uncropped gel image from Figure 3—figure supplement 4B.

Figure supplement 4—source data 2. Uncropped gel image from Figure 3—figure supplement 4D.

Figure supplement 4—source data 3. Uncropped gel image from Figure 3—figure supplement 4E.

Figure supplement 4—source data 4. Uncropped gel image from Figure 3—figure supplement 4F.

Figure supplement 4—source data 5. Uncropped, labeled gel images from Figure 3—figure supplement 4.

Figure supplement 5. B2_Mm2 KO effect on the genomic landscape.

Figure 3 continued
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dilution and/or CRISPR editing process (Nahmad et al., 2022; Westermann et al., 2022). Thirty-five 
of these genes showed upregulation in the KO cells, suggesting that they could be silencing targets of 
Dicer1 that become upregulated upon Dicer1 downregulation. However, given the relatively modest 
effect of Dicer1 especially in the untreated condition, further experiments would be necessary to 
establish these genes as targets of Dicer1.

We confirmed the absence of intronic enhancer activity in B2_Mm2.Dicer1 knockout cells. We used 
CUT&TAG (Kaya-Okur et al., 2020) to profile H3K27ac, phosphorylated RNA polymerase II subunit 
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Figure 4. B2_Mm2 in the genomic landscape. (A) RT-qPCR of Dicer1 expression in untreated and IFNG-treated cell lines across 3 clonal WT lines 
J774A.1 cells and 2 B2_Mm2.Dicer1 knockout (KO) lines, with three replicate treatments per cell line. Dicer1 expression was normalized relative to CTCF. 
Treatments are indicated by color. *p-value <0.05, **p-value <0.01, ***p-value <0.001, Student’s paired two-tailed t-test. (B) DESeq2 normalized counts 
of Dicer1 expression in each clonal WT and B2_Mm2.Dicer1 KO J774A.1 cell line. Treatments are indicated by color. ***DESeq2 FDR adjusted p-value 
<0.001. (C) Distance plot visualizing changes in gene expression in wild type J774A.1 cells in response to IFNG over a 5 Mb window centered on B2_
Mm2.Dicer1. Significantly downregulated (log2FC <0, FDR adjusted p-value <0.05) genes are shown in red while significantly upregulated (log2FC >0, 
FDR adjusted p-value <0.05) genes are shown in blue. Dicer1 is labeled, as well as significantly IFNG-regulated genes within 1 Mb. (D) Same as in (C) but 
visualizing changes in gene expression in KO J774A.1 cells in response to IFNG.
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A (POLR2A), and STAT1. In IFNG-stimulated WT cells, the B2_Mm2.Dicer1 element shows prominent 
H3K27ac, STAT1, and POLR2A signal. However, these signals are completely lost in the knockout 
clone (Figure 5B). Collectively, these experiments confirm that B2_Mm2.Dicer1 has been co-opted to 
function as an IFNG-inducible enhancer that regulates Dicer1.
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Figure 5. B2_Mm2 impacts local chromatin profile. (A) Genome browser screenshot of the Dicer1 locus visualizing CPM-normalized expression in WT 
and B2_Mm2.Dicer1 KO J774A.1 cells. Values on the right of each track correspond to signal maxima. B2_Mm2.Dicer1 is represented as a black box (not 
drawn to scale). (B) Genome browser screenshot of the Dicer1 locus showing CUT&TAG data from bulk WT and B2_Mm2.Dicer1 KO J774A.1 cells. CPM: 
Counts per million.
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Given the B2_Mm2.Dicer1 element is bound by POLR2A in WT cells, we asked whether the B2_
Mm2.Dicer1 element may alter transcription by affecting usage of different splice sites or polyadenyla-
tion sites, which would be consistent with pause site activity (Jonkers and Lis, 2015). We examined 
transcript isoform-level expression changes in KO cells in both untreated and treated conditions 
and found multiple transcripts that showed the same trend as the gene-level analysis, where most 
expressed transcripts are downregulated in both basal and IFNG-treated conditions and show lack of 
inducibility in KO cells (Supplementary file 9). These findings are consistent with the element acting 
primarily as an IFNG-inducible enhancer without any major effect on alternative splicing. However, 
further experiments such as CDK9 inhibition and profiling of nascent transcription in stimulated condi-
tions (Gressel et  al., 2017; Laitem et  al., 2015) are necessary to establish whether the element 
affects transcriptional elongation.

Considering that the B2_Mm2 enhancer is specific to rodents, we examined the regulatory land-
scape of the human DICER1 locus. Our analysis of RNA-seq data from human primary monocytes 
treated with IFNG for 24  hr (Qiao et  al., 2016) indicated that human DICER1 expression is not 
induced by IFNG (Supplementary file 1, Figure 3—figure supplement 3). However, ChIP-seq data 
from IFN-treated monocytes from the same group (Qiao et  al., 2013) showed multiple inducible 
STAT1 binding sites within the human DICER1 locus, including one originating from a primate-specific 
TE (LTR27) (Figure  3—figure supplement 3). Although these binding sites do not correlate with 
inducible DICER1 expression in the matched RNA-seq dataset, they suggest human DICER1 may be 
inducible under different conditions. An analysis of an independent dataset generated from another 
donor (McCann et al., 2022) supported the inducible expression of DICER1 (log2FC = 0.91 and FDR 
adjusted P-value = 3.0 × 10–4; Supplementary file 1). Thus, while the evidence for inducible human 
DICER1 expression is inconsistent, our analyses indicate that human DICER1 has independently 
evolved primate-specific binding STAT1 binding sites, which may also confer inducible regulation.

Discussion
B2 SINE elements are abundant in the mouse genome and they have been widely studied due to 
their substantial influence on genome regulation and evolution. B2 elements have contributed non-
coding RNAs inducible by stress or infection (Allen et al., 2004; Karijolich et al., 2017; Karijolich 
et al., 2015; Li et al., 1999; Schaller et al., 2020; Walters et al., 2009; Wick et al., 2003; Williams 
et al., 2004), splicing signals (Kress et al., 1984), promoter elements (Ferrigno et al., 2001), and 
CTCF-bound insulator elements (Ichiyanagi et al., 2021; Lunyak et al., 2007; Schmidt et al., 2012). 
Our study reveals a new subclass of B2 elements that have IFNG-inducible enhancer activity. These 
elements, which belong to the B2_Mm2 subfamily, contain strong binding sites for both STAT1 and 
CTCF, are marked by H3K27ac, and have the potential to exert inducible enhancer activity on nearby 
genes.

Given the abundance of B2 elements and their potential to cause pathological regulatory rewiring, 
many B2 elements are targeted for SETDB1/H3K9me3-mediated epigenetic repression which inhibits 
their regulatory potential (Gualdrini et al., 2022). Therefore, the functional impact of B2 elements 
on the mouse epigenome remains unclear. By using CRISPR to generate knockout cells of a B2_Mm2 
element, we demonstrated that B2 elements can be co-opted to act as inducible enhancer elements 
in the context of IFNG stimulation. While our experiments were conducted in the J774.A1 immor-
talized cell line, we confirmed that thousands of B2_Mm2 elements including B2_Mm2.Dicer1 show 
strong transcriptional and epigenetic signatures of inducible enhancer activity in multiple primary 
macrophage epigenomic datasets.

We identified hundreds of B2_Mm2-derived enhancers that are predicted to regulate genes 
displaying IFNG-inducible expression in mouse cells but not human cells, which supports their role 
in facilitating lineage-specific evolution of the IFNG-inducible regulatory network. However, we also 
identified a subset of target genes that show inducible expression in both species, suggesting inde-
pendent evolution or turnover of regulatory elements that could serve similar regulatory functions 
as the B2_Mm2 enhancers. For instance, we identified an intronic STAT1 binding site derived from 
a primate-specific TE in the human DICER1 locus. While we did not uncover consistent evidence 
supporting IFNG-inducible regulation of human DICER1, these observations align with the concept of 
convergent regulatory evolution, in which similar expression patterns are perpetuated by the co-op-
tion of lineage-specific TEs (Choudhary et al., 2020; Sundaram et al., 2014). Therefore, as B2_Mm2 
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elements shaped the evolution of rodent immune regulatory networks, individual co-option events 
may have mediated either divergence or preservation of gene expression patterns.

Our identification of a B2_Mm2 element as an intronic enhancer of Dicer1 potentially uncovers a 
novel regulatory feedback loop that controls Dicer1 function related to TE silencing. Previous studies 
have demonstrated that Dicer1 cleaves double-stranded RNAs including those derived from B2 SINE 
transcripts (Fan et al., 2021). In Dicer1 knockout embryonic stem cells, TE-derived transcripts are 
upregulated (Bodak et al., 2017), and upregulation of B2-derived double-stranded RNAs causes acti-
vation of the IFN response (Gurung et al., 2021). Therefore, Dicer1 is important for defense against 
aberrant TE upregulation. We speculate that co-option of the B2_Mm2 element as an enhancer of 
Dicer1 facilitates upregulation of Dicer1 in response to conditions that drive TE upregulation, such as 
infection or stress.

In human, dysregulation of DICER1 is associated with a wide range of pathologies ranging from 
DICER1 syndrome, cancer, neurological diseases such as Parkinson’s disease, and autoimmune disor-
ders such as rheumatoid arthritis (Theotoki et al., 2020). While DICER1 has a highly conserved func-
tion as an endonuclease involved in RNA interference, our work highlights that orthologs of DICER1 
have undergone lineage- or species-specific regulatory evolution that may drive underappreciated 
differences in function across species. While we found that both human and mouse orthologs of 
DICER1 have STAT1 binding sites, the underlying cis-regulatory architecture is not conserved and 
likely results in different expression patterns. This could have significant implications when devel-
oping and testing RNA-based therapeutics in mouse genetic models, which may elicit distinct Dicer1-
mediated responses due to species-specific enhancers such as B2_Mm2.Dicer1.

In conclusion, our work adds to a growing body of evidence highlighting the co-option of lineage-
specific TEs for the regulation of ISGs. Previous genomic and experimental studies in human (Chuong 
et al., 2016) and cow cells (Kelly et al., 2022) have revealed independent co-option of TEs as IFNG-
inducible enhancer elements. Interestingly, while endogenous retroviruses have been described as 
a prevalent source of TE-derived inducible enhancers in human, their contribution is relatively minor 
in cows and mice. Instead, we found that the B2_Mm2 SINE subfamily is the predominant source of 
TE-derived inducible enhancers in mouse, and the Bov-A2 SINE subfamily is the predominant source 
in cow (Kelly et  al., 2022). These findings indicate that the acquisition of STAT1-associated GAS 
motifs and enhancer activity is not limited to a specific type of TE. In human cells, Alu SINE sequences 
are transcriptionally activated upon infection (Jang and Latchman, 1989; Panning and Smiley, 1993), 
although their epigenetic impact remains unexplored. It remains unclear whether the infection-
inducible regulatory activity promotes SINE replication, and it is possible that the emergence of these 
motifs is coincidental and does not affect TE fitness. Nevertheless, our work supports the idea that 
TEs have been repeatedly co-opted as IFNG-inducible enhancers throughout mammalian evolution, 
contributing to the rewiring of immune regulatory networks.

Materials and methods
Sequences
A list of all primer sequences and gRNA sequences can be found in Supplementary file 10.

RNA-seq re-analysis
RNA-seq data (single-end reads) from primary murine BMDMs stimulated with 100 ng/mL IFNG for 
2 or 4 hr (Piccolo et al., 2017) or 10 ng/mL IFNG for 2 hr (Platanitis et al., 2019) were downloaded 
from SRA using fasterq-dump v2.10.5 (NCBI, 2022 ). Adapters and low-quality reads were trimmed 
using BBDuk v38.05 (Bushnell, 2018) using options ‘ktrim = r k=34 mink = 11 hdist = 1 qtrim = r 
trimq = 10 tpe tbo’. Library quality was assessed using FastQC v0.11.8 (Andrews, 2018) and MultiQC 
v1.7 (Ewels et  al., 2016), and trimmed reads were aligned to the mm10 assembly using HISAT2 
v2.1.0 (Kim et al., 2019) with option ‘--no-softclip’. Only uniquely aligned fragments (MAPQ 
≥ 10) were retained using samtools v1.10 (Li et al., 2009). Aligned fragments were assigned to the 
complete mm10 Gencode vM18 (Frankish et al., 2021) annotation in an unstranded manner using 
featureCounts v1.6.2 (Liao et al., 2014) with options ‘-p -O -s 0 t exon -g gene_id’, and differentially 
expressed genes between IFNG-stimulated and unstimulated cells were called using DESeq2 v1.26.0 
(Love et al., 2014). For most analyses, ISGs and IRGs were defined as genes with a false discovery 
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rate (FDR) adjusted p-value of at least 0.05 and log2FC greater than 0 and less than zero, respectively. 
Nonresponsive genes were defined using the following cutoffs: baseMean greater than 100; FDR 
adjusted p-value greater than 0.90; and absolute log2FC less than 0.10. Interferon stimulation was 
confirmed by gene ontology analysis using gProfiler (last updated 05/18/2022) with FDR adjusted 
p-value <0.05 (Raudvere et al., 2019). We additionally aligned RNA-seq data from human CD14+ 
monocytes stimulated with 100 U/mL IFNG for 24 hr to the hg38 assembly and identified differentially 
expressed genes using Gencode v38 (Frankish et al., 2021) with the methods described above.

ChIP-seq re-analysis
ChIP-seq data (single-end reads) from primary murine BMDMs (Cuartero et al., 2018; Gualdrini et al., 
2022; Piccolo et al., 2017; Platanitis et al., 2019) were downloaded from SRA using fasterq-dump 
v2.10.5 (NCBI, 2022). Adapters and low-quality reads were trimmed using BBDuk v38.05 (Bushnell, 
2018) using options ‘ktrim = r k=34 mink = 11 hdist = 1 qtrim = r trimq = 10 tpe tbo’. Library quality 
was assessed using FastQC v0.11.8 (Andrews, 2018) and MultiQC v1.7 (Ewels et al., 2016), and 
trimmed reads were aligned to the mm10 assembly using BWA-MEM v0.7.15 (Li, 2013). Low quality 
and unmapped reads were filtered using samtools v1.10 (Li et al., 2009), and duplicates were removed 
with Picard MarkDuplicates v2.6.0 (Broad Institute, 2016). Peak calling was performed with MACS2 
v2.1.1 (Liu, 2014) using options ‘--gsize mm –pvalue 0.01 –bdg –SPMR –call-summits’. bigWigs corre-
sponding to read pileup per million reads for visualization on the UCSC Genome Browser (Kent et al., 
2002). Where possible, only peaks overlapping more than one replicate were retained for further 
analysis. To confirm whether STAT1 peaks were enriched for their associated binding motifs, we ran 
XSTREME v5.4.1 (Grant and Bailey, 2021) using options ‘--minw 6 --maxw 20 –streme-nmotifs 20 
–align center’ querying against the JASPAR CORE 2018 vertebrates database (Fornes et al., 2020).

Transposable element analysis
To identify TE families enriched for STAT1 and H3K27ac peaks, we used GIGGLE v0.6.3 (Layer et al., 
2018) to create a database of all TE families annotated in the mm10 genome according to Dfam v2.0 
(Storer et al., 2021) annotation. STAT1 and H3K27ac ChIP-seq peaks were then queried against each 
TE family in the database. GIGGLE applies the Fisher’s exact test to assess family-level enrichment, 
attributing an odds ratio, Fisher’s two tailed p-value, and a GIGGLE combo score combining the two 
values. We only retained TE families that met the following criteria: (1) number of total annotated 
elements >100; (2) number of elements overlapping a ChIP-seq peak >30; (3) odds ratio >3; and (4) 
a GIGGLE combo score >100. Results were visualized as a bubble plot where the filtered TE fami-
lies were sorted by ascending Kimura divergence according to RepeatMasker (Smit et  al., 2019) 
output. Reported odds ratios and p-values are derived from Fisher’s exact test. For further analysis, 
we intersected STAT1 peaks with the full TE annotation or B2 elements specifically using BEDTools 
v2.28.0 (Quinlan and Hall, 2010). For the heatmap visualizations using deepTools v3.0.1 (Ramírez 
et al., 2016), signal from counts per million- (CPM) normalized bigWigs was plotted over a subset of 
B2_Mm2 elements that are bound only by STAT1, CTCF, both, or neither. We additionally visualized 
ChIP-seq signal over all B2_Mm2, B2_Mm1a, and B2_Mm1t elements by descending average signal, 
excluding elements with zero overlapping signal.

To assess whether STAT1-bound B2_Mm2 elements are enriched near ISGs, we sorted all ISGs 
and IRGs by descending and ascending log2FC, respectively, and retained the top 750 genes. We 
additionally randomly subset for 750 nonresponsive genes. The absolute distance to the nearest ISG, 
IRG, or nonresponsive gene was determined for all STAT1-bound B2_Mm2 elements using BEDTools 
v2.28.0 (Quinlan and Hall, 2010). Randomly shuffled STAT1-bound B2_Mm2 as well as randomly 
subset, unbound B2_Mm2, B2_Mm1a, and B2_Mm1t were included as controls. Statistical significance 
was determined for the first 20 kb bin using Fisher’s exact test with BEDTools v2.28.0 (Quinlan and 
Hall, 2010).

To identify TE families that are differentially expressed in response to IFNG in primary murine 
BMDMs, we realigned the RNA-seq data to the mm10 reference genome using HISAT2 v2.1.0 (Kim 
et al., 2019) with options ‘-k100 –no-softclip’. Aligned reads were assigned to TE families using TEtran-
scripts v2.1.4 (Jin et al., 2015) with options ‘--sortByPos –mode multi –iteration 100 –stranded no’. 
TEtranscripts allows for quantification of TE expression at the family level and does not discriminate 
between individual elements within a family. To differentiate unbound and STAT1-bound B2_Mm2 
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elements, we generated a custom TE annotation file compatible with TEtranscripts that includes all 
TEs annotated in Dfam v2.0 (Storer et al., 2021) but annotates STAT1-bound B2_Mm2 elements as 
an independent subfamily. Differentially expressed TE families between IFNG-stimulated and unstim-
ulated cells were identified using DESeq2 v1.26.0 (Love et al., 2014). TE families with an FDR less 
than 0.05 and an absolute log2FC greater than 0.50 were considered as differentially expressed. These 
relaxed thresholds were used to better enable the identification of differentially expressed TE families 
where only a subset of elements are inducibly expressed and the majority are only lowly expressed.

We identified putative STAT1 and CTCF binding sites genome-wide using FIMO v5.0.3 (Grant 
et al., 2011) with a p-value cutoff of 1×10–4 (heatmaps) or 1 (B2 box-and-whisker). For all motif anal-
yses, binding motif position-weight matrices for STAT1 and CTCF were obtained from the JASPAR 
CORE 2018 vertebrate database (Fornes et  al., 2020). To visualize motif presence over all B2 
elements, repeat 5’ start coordinates were recalculated based on their alignment to the consensus 
according to RepeatMasker annotations. Motif presence was visualized as a heatmap using deepTools 
v3.0.1 (Ramírez et al., 2016), and elements were sorted by descending average signal. We addition-
ally aligned the consensus sequences for B2_Mm2, B2_Mm1a, and B2_Mm1t from Repbase v24.02 
and the sequence for B2_Mm2.Dicer1 using MUSCLE v3.8.1551 (Edgar, 2004). Predicted STAT1 and 
CTCF motifs were identified using FIMO v.5.0.3 (Grant et al., 2011), and base changes relative to 
the canonical binding motifs were highlighted according to the weight of each individual base in 
the position-weight matrices. Finally, we filtered for STAT1-bound B2_Mm2 elements that were non-
overlapping, non-nested, and unique and ran AME v5.4.1 (McLeay and Bailey, 2010) using a subset 
of unbound B2_Mm2 elements as the background control with options ‘--kmer 2 –method fisher 
–scoring avg’.

ATAC-seq re-analysis
Paired-end ATAC-seq data from primary murine BMDMs stimulated with 10  ng/mL IFNG for 2  hr 
(Platanitis et  al., 2022) were downloaded from SRA using fasterq-dump v2.10.5 (NCBI, 2022). 
Adapters and low-quality reads were trimmed using BBDuk v38.05 (Bushnell, 2018) with options 
‘ktrim = r k=34 mink = 11 hdist = 1 tpe tbo qtrim = r trimq = 10’. Library quality was assessed using 
FastQC v0.11.8 (Andrews, 2018) and MultiQC v1.7 (Ewels et al., 2016), and trimmed r eads were 
aligned to the mm10 assembly using Bowtie 2 v2.2.9 (Langmead and Salzberg, 2012) with options 
‘--end-to-end --very-sensitive -X 1000 --fr’, and only uniquely mapping reads with a minimum MAPQ 
of 10 were retained. Fragments aligning to the mitochondrial genome were removed, and duplicates 
were removed using Picard MarkDuplicates v2.6.0 (Broad Institute, 2016). Aligned fragments were 
shifted +4/–5 using deepTools alignmentSieve v3.0.1 with option ‘--ATACshift’ (Ramírez et al., 2016) 
and used to call ATAC-seq peaks with an FDR <0.05 using MACS2 v2.1.1 (Liu, 2014) with options ‘--
SPMR -B --keep-dup all --format BAMPE –call-summits’.

Hi-C re-analysis
Paired-end Hi-C data from primary murine BMDMs stimulated with 10 ng/mL IFNG for 2 hr (Platanitis 
et al., 2022) were downloaded from SRA using fasterq-dump v2.10.5 (NCBI, 2022). Library quality 
was assessed using FastQC v0.11.8 (Andrews, 2018) and MultiQC v1.7 (Ewels et al., 2016), and 
reads were aligned to the mm10 assembly using BWA-MEM 0.7.17 (Li, 2013) with arguments ‘-SP’, 
and the resulting bam file was converted to pairsam format pairtools parse v0.2.2 (https://github.com/​
mirnylab/pairtools; Goloborodko, 2019). Technical replicates were merged using pairtools merge 
v0.2.2. Duplicate reads were marked using pairtools dedup v0.2.2, and only aligned fragments with 
pairtools classification ‘UU’ or ‘UC’ were retained using pairtools filter v0.2.2 resulting in approximately 
600 M pairs. A Knight Ruiz (KR)-normalized, Arima restriction site-aware Hi-C matrix was prepared 
using juicer pre v1.22.01 (Dudchenko et al., 2017) at 5 kb resolution and fitted to a powerlaw distri-
bution in preparation for running the Activity-by-Contact (ABC) model (Fulco et al., 2019).

Gene-enhancer target prediction by Activity-by-Contact (ABC) analysis
We applied the Hi-C matrix (Platanitis et al., 2022) in conjunction with ATAC-seq (Platanitis et al., 
2022) and H3K27ac (Piccolo et al., 2017) data from IFNG-stimulated BMDMs to predict enhancer 
activity using the Activity-by-Contact (ABC) model (Fulco et  al., 2019). The ABC model predicts 
enhancer-gene contacts by leveraging epigenomic and chromatin interaction capture data. Each 

https://doi.org/10.7554/eLife.82617
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potential enhancer-gene contact is assigned an ABC interaction score that depends on the activity of 
the enhancer by ATAC-seq and H3K27ac ChIP-seq in addition to the likelihood of contact by Hi-C. We 
ran the ABC model as previously described (Fulco et al., 2019). In brief, we first identified candidate 
enhancer elements using ​makeCandidateRegions.​py with options ‘--peakExtendFromSummit 250 –
nStrongestPeaks 150000’ and quantified activity using ​run.​neighborhoods.​py. Predicted enhancer-
gene pairs were attributed an ABC interaction score using ​predict.​py with options ‘--hic_type juicebox 
–hic_resolution 5000 –scale_hic_using_powerlaw –threshold 0.02 –make_all_putative’. Only enhancer 
regions with an ABC interaction score over 0.001 were considered for subsequent analysis.

Orthology analysis
We used BioMart with human Ensembl v105 annotation (Cunningham et al., 2022) to identify high 
confidence, one-to-one orthologs in mouse for each identified human ISG (log2FC >0, FDR adjusted 
p-value <0.05). A union set consisting of mouse and human-to-mouse ISGs was generated, and each 
ISG was identified as mouse-specific, human-specific, or shared according to induction status. To 
determine how broadly B2_Mm2 has shaped murine innate immune responses, we identified 344 
unique B2_Mm2 elements fully overlapping enhancers predicted to interact with 706 ISGs using the 
ABC model with a minimum ABC score of 0.001. The proportion of ISGs predicted to interact with a 
putative B2_Mm2 enhancer were plotted according to species status. We independently identified 
926 ISGs with at least one of 655 STAT1-bound B2_Mm2 elements (irrespective of ABC) within 50 kb 
of the transcriptional start site.

Cell line passing and interferon treatments
J774A.1 mouse cells were purchased from ATCC and were cultured in DMEM supplemented with 
1  X penicillin-streptomycin and 10% fetal bovine serum. J774A.1 cells were routinely passaged 
using 0.25% Trypsin-EDTA and cultured at 37 °C and 5% CO2. All IFNG treatments were performed 
using 100 ng/mL recombinant mouse IFNG (R&D Systems #485-MI-100). Cells were confirmed to be 
Mycoplasma-free by the Barbara Davis Center for Childhood Diabetes BioResources Core Molecular 
Biology Unit at the University of Colorado Anschutz Medical Center. The identity of the cells was veri-
fied using the ATCC Cell Line Authentication Service (STR profiling).

Cytokine panel
All treatments were carried out using a 4 hr time period. IL-4 (Sigma-Aldrich #I1020-5UG) was added 
to a final concentration of 1 ng/mL, recombinant IFNA (R&D Systems #12100–1) to a final concentra-
tion of 1000 U/mL, recombinant IL-2 (R&D Systems #402 ML-020) to a final concentration of 100 ng/
mL, and recombinant IL-6 (Sigma-Aldrich #I9646-5UG) to a final concentration of 20 ng/mL in accor-
dance with manufacturers’ recommendations. RNA was extracted using an Omega Mag-Bind Total 
RNA Kit (Omega Bio-Tek #M6731-00) and analyzed via RT-qPCR.

Design of gRNA constructs
Two gRNA sequences were designed to flank each side of B2_Mm2.Dicer1 in order to delete the 
element and generate knockout J774A.1 cells via SpCas9 (Integrated DNA Technologies #1081060). 
All gRNA sequences were also verified to uniquely target the locus of interest using the UCSC BLAT 
tool (Kent, 2002) against the mm10 genome assembly.

Generation of CRISPR KO cell lines
After gRNAs were designed, we used Alt-R Neon electroporation (1400 V pulse voltage, 10 ms pulse 
width, 3 pulses total) with four different combinations of the gRNAs to target B2_Mm2. One set of 
guides was found to produce the expected doubles-stranded cuts on both sides of the element in 
the bulk electroporated cell populating using gel electrophoresis. Clonal lines were isolated using the 
array dilution method and screened for the expected homozygous deletion using primers flanking 
the B2_Mm2.Dicer1 element. Clonal lines homozygous for the deletion were further validated using 
one flanking primer and one primer internal to B2_Mm2.Dicer1. To determine deletion breakpoint 
sequences, PCR products flanking each deletion site were cloned into a sequencing vector using 
the CloneJET PCR Cloning Kit (Thermo Fisher Scientific #K1231) and transformed into 5-alpha 
Competent E. coli (New England Biolabs #C2987H). Plasmid DNA was harvested using the EZNA 
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Omega Plasmid DNA Mini Kit I (Omega Bio-Tek #D6942-02), and the sequence of each construct 
was verified by Sanger sequencing (Quintara Biosciences, Fort Collins, CO; Genewiz, South Plain-
field, NJ). Sequencing results were visualized by aligning to the mm10 reference genome using BLAT 
(Kent, 2002). We identified two clonal lines homozygous for the B2_Mm2.Dicer1 deletion for further 
experimentation.

Quantifying Dicer1 expression using RT-qPCR
Real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify Dicer1 expres-
sion in WT and knockout cell lines. WT J774A.1 cells used in RT-qPCR are all biological replicates 
that underwent the same single cell seeding process as the KOs to serve as a control. Forward and 
reverse primers were designed for CTCF, Dicer1, and Gbp2b. Each set of primers was designed using 
a combination of tools from NCBI Primer BLAST (Ye et al., 2012), Benchling (Benchling), and IDT 
RT-qPCR Primer Design. The final primer sequences chosen were confirmed to uniquely bind to the 
desired target sequence using BLAT (Kent, 2002). RT-qPCR reactions were prepared using the Luna 
Universal One-Step RT-qPCR Kit (New England Biolabs #E3005S) according to the manufacturer’s 
instructions. RT-qPCR data were analyzed using CTCF as a housekeeping gene. A Cq, deltaCq, and 
deltaDeltaCq value were obtained for each well. These values were averaged to arrive at a mean 
deltaDeltaCq expression value for each treatment and genotype condition. Standard deviation and a 
two-tailed Student’s t-test were then calculated for each treatment and genotype condition. A p-value 
of less than 0.05 demonstrates there is a statistically significant difference in gene expression levels 
between two treatment and/or genotype conditions.

J774A.1 RNA-seq library preparation
The Zymo Quick RNA Miniprep Plus Kit (Zymo Research #R1504) was used to extract RNA from 
J774A.1 cells for all treatments except for the cytokine panel which used the Omega RNA Extraction 
Kit (Omega Bio-Tek #M6731-00). WT J774A.1 cells used in RNA-seq and all downstream analysis were 
clones that underwent single-cell expansions of from wild-type J774A.1 cells. All RNA lysates and 
single-use aliquots of extracted RNA were stored at –80 °C until library preparation. RNA integrity 
was quantified with High Sensitivity RNA TapeStation 4200 (Agilent). Libraries were generated using 
the KAPA mRNA HyperPrep Kit (KAPA Biosystems #08098123702) according to the manufacturer’s 
protocol. The final libraries were pooled and sequenced on a NovaSeq 6000 as 150 bp paired-end 
reads (University of Colorado Genomics Core).

J774A.1 RNA-seq analysis
Adapters and low quality reads were first trimmed using BBDuk v38.05 (Bushnell, 2018). Library 
quality was assessed using FastQC v0.11.8 (Andrews, 2018) and MultiQC v1.7 (Ewels et al., 2016) 
and trimmed reads were aligned to the mm10 assembly using HISAT2 v2.1.0 (Kim et al., 2019) with 
option ‘--rna-strandness RF’. Only uniquely aligned fragments were retained, and technical replicates 
were merged using samtools v1.10 (Li et al., 2009). CPM-normalized, stranded bigWigs were gener-
ated using deepTools bamCoverage v3.0.1 (Ramírez et  al., 2016) and visualized using the UCSC 
Genome Browser (Kent et al., 2002). Aligned fragments were assigned to the mm10 refseq gene 
annotation in a reversely stranded manner using featureCounts v1.6.2 (Liao et al., 2014) with options 
‘-t exon -s 2’, and differentially expressed genes were called using DESeq2 v1.26.0 (Ramírez et al., 
2016). We analyzed every individual pairwise comparison to determine the effects due to both treat-
ment and genotype. Untreated and wild type conditions were defined as the reference level. Log2FC 
values were shrunken using the apeglm function v1.8.0 (Zhu et  al., 2019) for visualization across 
Chromosome 12 as a distance plot.

To determine whether the B2_Mm2.Dicer1 element acts as a regulator of splicing, we conducted 
transcriptome-guided transcript assembly on all WT and B2_Mm2.Dicer1 KO J774 RNA-seq align-
ments individually using Stringtie v1.3.3b with options ‘--rf -j 5’. Individual GTF files were merged 
into a single file with option ‘--merge’. Reads were subsequently aligned against the merged tran-
scriptome using Salmon v1.9.0 with options ‘--validateMappings –rangeFactorizationBins4 –gcBias’. 
Transcript-level quantification data for each WT and KO sample were used for differential expression 
analysis with DESeq2 v1.26.0 (Ramírez et al., 2016).

https://doi.org/10.7554/eLife.82617
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CUT&Tag
CUT&Tag datasets were generated using a protocol from Kaya-Okur and Henikoff, 2020; Kaya-Okur 
et al., 2020 with an input of 100–500 k cells and the following modifications: pAG-Tn5 (EpiCypher 
#15–1017) was diluted 1:40 in nuclease-free water containing 20 mM HEPES pH 7.5, 300 mM NaCl, 
0.5 mM spermidine, 0.01% digitonin, and a protease inhibitor tablet, and libraries were amplified for 
14 cycles. The following primary antibodies were used: rabbit IgG (1:1000, EpiCypher #13–0042), 
rabbit anti-H3K27ac (1:100), rabbit anti-pRPB1-Ser5 (1:100, Cell Signaling Technology #13523  S), 
rabbit anti-STAT1 (1:100, Cohesion Biosciences #CPA3322), rabbit anti-pSTAT1-Ser727 (1:100, Active 
Motif #39634), rabbit anti-CTCF (1:100, EMD Millipore #07-729-25UL). Guinea pig anti-rabbit IgG 
(1:100, Antibodies-Online #ABIN101961) was used as a secondary antibody. CUTANA pAG-Tn5 
(EpiCypher #15–1017) was added to each sample following primary and secondary antibody incuba-
tion. Pulldown success was measured by Qubit dsDNA High Sensitivity (Invitrogen) and TapeStation 
4200 HSD5000 (Agilent) before proceeding to library preparation. Pulldowns were concentrated and 
pooled using KAPA Pure Beads (Roche). The final pooled libraries were quantities with TapeStation 
4200 HSD5000 and sequences on an Illumina NovaSeq 6000 as 150 bp paired-end reads (University 
of Colorado Genomics Core).

CUT&Tag analysis
Adapters and low quality reads were first trimmed using BBDuk v38.05 (Bushnell, 2018). Library 
quality was assessed using FastQC v0.11.8 (Andrews, 2018) and MultiQC v1.7 (Ewels et al., 2016). 
Trimmed reads were then aligned to the mm10 assembly using BWA-MEM v0.7.15 (Li, 2013) and 
samtools (Li et al., 2009) retained only uniquely aligned fragments (MAPQ ≥ 10). Peaks were called 
without a control file using MACS2 v2.1.1 (Liu, 2014). bigWigs corresponding to read pileup per 
million reads for visualization on the UCSC Genome Browser (Kent et al., 2002).

External datasets
Publicly available data were downloaded from public repositories using fasterq-dump from the NCBI 
SRA Toolkit. RNA-seq datasets were obtained from GSE84517, GSE115434, GSE84691, GSE176562, 
and GSE43036. ChIP-seq datasets were obtained from GSE84518, GSE108805, GSE189971, and 
GSE115433. Hi-C and ATAC-seq datasets were obtained from SRA using accession PRJNA694816.

Data access
Raw and processed sequencing data generated in this study have been submitted to the NCBI Gene 
Expression Omnibus (GEO) with accession number GSE202574.

Code Availability
UCSC Genome browser sessions and all code available at https://genome.ucsc.edu/s/coke6162/B2_​
SINE_enhancers_Horton_et_al and https://github.com/coke6162/B2_SINE_enhancers (copy archived 
at Kelly, 2023).
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The following previously published datasets were used:
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GSE84691

NCBI Gene Expression 
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McCann KJ, 
Christensen S, 
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IA, Zerbe CS, Li P, 
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McCormick BA, 
Holland SM

2021 IFNg Regulates NAD+ 
Metabolism in Human 
Monocytes

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE176562

NCBI Gene Expression 
Omnibus, GSE176562

Qiao Y, Li Y, 
Giannopoulou E

2013 Synergistic Activation of 
Inflammatory Cytokine 
Genes by Priming of 
Regulatory DNA Elements 
for Increased Transcription 
in Response to TLR 
Signaling

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE43036

NCBI Gene Expression 
Omnibus, GSE43036

Piccolo V, Curina A, 
Genua M, Ghisletti S, 
Simonatto M, Sabò 
A, Amati B, Ostuni R, 
Natoli G

2017 Opposing macrophage-
polarization programs show 
extensive epigenomic and 
transcriptional cross-talk 
[ChIP_narrow]

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE84518

NCBI Gene Expression 
Omnibus, GSE84518

Merkenschlager M, 
Dharmalingam G, 
Cuartero S

2013 Transcriptional control of 
macrophage inducible 
gene expression by cohesin 
[ChIP-Seq II]

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE108805

NCBI Gene Expression 
Omnibus, GSE108805

Gualdrini F, Polletti 
S, Simonatto M, 
Prosperini E, Natoli G

2022 H3K9 trimethylation in 
active compartments 
optimizes stimulus-
regulated transcription by 
restricting usage of CTCF 
sites in SINE-B2 repeats 
[ChIP-Seq]

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE189971

NCBI Gene Expression 
Omnibus, GSE189971

Platanitis E, Decker T 2019 STAT1, STAT2 and IRF9 
transcription factor binding 
analysis in wild type and 
Irf9-/- bone marrow derived 
macrophages in response 
to type I and type II 
interferons

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE115433

NCBI Gene Expression 
Omnibus, GSE115433

Max Perutz Labs 2021 3D chromatin 
rearrangements in 
response to Interferon 
treatment

https://www.​ncbi.​
nlm.​nih.​gov/​sra/​
PRJNA694816

NCBI Sequence Read 
Archive, PRJNA694816
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