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1. Distinct Mechanisms of PA

n():= baseparams = {KA - 10, Kdim-0.1, RAF50.04, f -0.01, g > 100} ;
(*units: puM v params but KAx)

Section 1.1. Dimer Potentiation (DP) Model

= Quit[]
= 1.1.1. Analytic Solution to the model

The assembled kinase state can dimerize (AA) or bind with a drug (Ad). The kinase dimer (AA), upon drug administration can occur in
either partly (AAd) or fully inhibited state (AdAd). The equilibrium state relationships and protein concentration conservation equations for
both total RAF (RAF) and total drug (DTOT) are defined as follows.
ni2= vars = {a, A, d, AA, Ad, AAd, AdAd}; (xA list of all variablesx)

A 2A%d A% d? Ad
, AAd» ———, AdAdd» —— , Ad» —, a—>0} /.g-1;
Kdim f Kdim Kd f g Kdim Kd? Kd

(xequations derived from equilibrium relationshipsx)

repl = {AA -

Consrvieqgns_] :=
{Simplify[eqns[[1]] +eqns[[2]] +eqns[[5]] +2 (eqns[[4]] +eqns[[6]] +eqns[[7]]1)],
Simplify[eqns[[3]] +eqns[[5]] +eqns[[6]] +2 (eqns[[7]11)]}
(xconservation relations for RAF and DTOT=x)
egnsconsrv = Simplify[Thread [Simplify[Consrv[vars] /. repl] == {RAF, DTOT}]]
(»Solve the conservation equations simplifying to two variables RAF,
DTOT using the equilibrium relationships abovex)
2A (d*+2dKd + fKd?) Ad 2A%d (d+Kd)

outid)= {A d+Kd+ - KARAF, d 4 — + — "7 _ DTOT}
£ Kd Kdim Kd £ Kd? Kdim

A simultaneous solution to both the above conservation equations is unwieldy and hard to obtain. Instead, we find partial solutions for kinase
protomers as a function of free drug and then free drug as a function of the total drug and the kinase protomers. The latter solution is used to
construct d vs DTOT relationship and prove monotonocity thereof leading to a complete solution to PA existence problem.
5= SimplifyPars[x_] :=Simplify[x, {RAF >@, DTOT >0, Kd >0, Kdim>0, KA>0, d>0, f>90, g>0, d..1>0}];
sollA = SimplifyPars[Solve[eqnsconsrv[[1]], A]1]1[[2]] (*Second solution is positivex)
solld = SimplifyPars[Solve[eqnsconsrv[[2]], d]][[2]] (xSecond solution is positivex)

outel= {A— (Kd (-d fKdim - £ Kd Kdim + / (f Kdim
(fKd?® (Kdim + 8 RAF) +d® (f Kdim + 8 RAF) + 2d Kd (f Kdim+ 8RAF))))) /(4 (d®+2dKd + fKd?))}

1

our= {d - -——kd (2A% + Af Kdim + £ Kd Kdim - o/ (8 A2DTOT £ Kdim + (2A% + A Kdim + £ Kd Kdim)?) i
4 A

We estimate the total activity by counting all of the drug-free protomers which occur within a partly active or fully active dimer. Substituting

the above solution into the expression for Raf activity and dividing by total RAF concentration, we obtain the proportionate activity as a

function of total drug and other parameters.
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ngl= RafActivity[vars_] := 2vars[[4]] + vars[[6]]
fnActiveRAFDS = SimplifyPars [RafActivity[vars] /RAF /. repl /. sollA];
repratios = {RAF - Kdim RAF .1, d > Kd dye1};
fnActiveRAFDS = FullSimplify [fnActiveRAFDS /. repratios, {Kd >0, Kdim > @, RAF >0} ]
fnActiveRAF2DS =
E2d

FullSimplify [Simpli-FyPars [anctiveRAFDS /1. {RAFrel - }] /. der— (E1d/F-1),

8f ('F+2d,.e1+d2 )

rel

(Eld >0, E2>0, f>0}]

outl= ((F+de1) (F+Fdper —/ (f (f (1 +dre)?+8 (F+drer (2+dre1)) RAFrer) ) )?) /
(S'F (f +dre1 (2 +dpe1) )ZRAFr‘e1>

2
(Eld -~/ E1d? + E2d ) f (Eld+ (-1 +F) f)

E2d (E1d®+ (-1+f) £?)

out[12]=

Note that the above equations represent the total active RAF protomers in proportion to the total RAF kinase as a function of unbound drug
(d). In order to analytically establish parameter values which correspond to activation of the kinase, we find the first derivative of the function
fnActiveRAFDS and search for it’s zeroes in section 1.1.3.

First, we identify total RAF dimers and it’s proportion to active RAF dimers.
in(13= RafDimers[eqns_] := (eqns[[4]] +eqns[[6]] +eqns[[7]]);
fnDimers = FullSimplify [SimplifyPars [ (RafDimers[vars] /RAF /. repl /. sollA) /. repratios], Kd > 0]
SimplifyPars[fnDimers / fnActiveRAFDS]
Out[14]= <'F +fdpel - \/ <'F ('F (1+ dr‘el)z +8 (f+dpe1 (2 +dre1)) RAFr‘el) ) )2/ (16 f (f +dre1 (2 +dpe1) ) RAFpe1)
f+drer (2 +dre1)
ouj1s)p ——M8M8M8
2 (f+dpe1)
= 1.1.2. Baseline Signaling (drug-free)

in(1e)= baselineActiveRAFDS = SimplifyPars [fnActiveRAFDS /. d .1 - 0]
FullSimplify[D[baselineActiveRAFDS, RAF..1], RAF .1 > 0]

2
(_1 + /1 + 8 RAF o )

Out[16]=
8 RAF 1
2
(71 +/1 + 8 RAF oy )
Out[17]=
8 RAFZ,; V1 + 8 RAF .1

The derivative of baseline signaling relative to RAF,; is a positive definite function. Therefore, baseline signaling is a monotonically
proportionate to RAF,;, which is in turn, monotonically proportionate to RAF concentration and monotonically inverse relationship to Kdim.

Hence in the DS model, increasing RAF ; increases baseline signaling. This is a simple analytic cross-check of expected behaviors in this
model.
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= 1.1.3. Conditions on parameter regions for activation in response to the drug
= dfnl2 = SimplifyPars [D[fnActiveRAFDS, d;e1]]
1

out[18]= ]
8f (f +dre1 (2 +dre1))” RAF)

(F+fdrer -~/ (F(F(L+dre1)?+8 (f+drer (2+dre1)) RAFrel))) (2 (F+dre1) (f+drer (2+dre1))
(f- (F (1+drer) (F+8RAFre1)) / (+/ (F (F (1+ dm) +8 (f+drer (2+dre1)) RAFre1)))) -
4 (1+dpe1) (F+dper) (F+fdrer -/ (f(F (1+dre1)?+8 (f+drer (2+dre1)) RAFre1) ) ) +
(f+drer (2+dre1)) (F+Fdrer—/ (f(f(1+dre1)®+8 (f+drer (2+dre1)) RAFer) ) ) )
in22;= existPADS = SimplifyPars [Reduce[dfnl12 >0]]
ouilz2)= (@ < RAFpep <
(F(F(3-8F+aF) + (2-6F) duer - (1+F+4F2) dig-4Fdiy —dle)) /(8 (f+2Fduer +d%)7) 8&
f(1+drer)?

2f+dre1 <18 drer<1) || |- <RAF. <08 Ff>1| ||
8 ('F+ 2 dpe1 +dr‘el)

((-F(-F(3—8-F+4-F2)+(2—6-F)dre1—(1+-F+4-F2)d,Eel 4fd? d,‘fel))/(s(-F+2-Fdrel+dre1) ) <

rel ©
RAFre1 <@8& f<18& (dre1>1[[2Ff+dre1>1))
Conditions for positive derivative of active RAF relative to unbound drug are shown above. However, RAF concentration is a positive
definite quantity.
in23:= existPADS = Simplify[existPADS, RAF..; > 0]
ousr RAFper < (F(F (3-8F+4F2) + (2-6F) drer - (1+F+4F2) d —4Fd> —dly)) /(8 (Fr2Ffdue +d%)?) 8&
2f +dne; <188 dpe <1

The above condition is realizable only when, the second and third conditions are true: d<Kd(1-2f) and d<Kd. The latter condition is
automatically true when former one is. Further, the former condition can only be true when 2f<1, i.e. <0.5 instead of f<1: which one would
naively expect.

The first condition can only be True when the RHS is positive, since LHS is always so.

4= existPADS2 = SimplifyPars [Reduce[ (existPADS[[1]]1[[2]]>0)]1]

1
out4l= (2 F +dpe1 <18 & dpe; 1) || £> — 3+d,.e1+2dﬁel+ (1 +dpe1) \/9+4drel+4d£el
4

The first condition is identical to second and third conditions of existPADS which implies that £<0.5. The second alternate condition is £>3/4
+ a positive number, which is a direct contradiction. Only one of these conditions can be satistied. However, since the logic of existPADS
equation is (A|B)&A the solution is A alone.

In26)= existPADS[[2]]
out2]= 2 f +dpep <1

Hence we derive the above, necessary but not sufficient condition for PA. It also suggests that for sufficiently small concentration of RAF and
sufficiently small f, there is a small enough concentration of drug for which PA will be observed within this model.

Also, since  d<DTOT/Kd, 2f<1-d, is automatically satisfied if 2f<1-DTOT/Kd.

A corollary: with sufficiently high drug concentration, this condition cannot be satisfied. That is a validation that this model does not support
motonic rise in activation in repsonse to the drug, eventually, the activity gets reduced.

Can PA exist even when above conditions are not satisfied? That is the first derivative of active RAF relative to drug is negative near zero
drug but then becomes positive? And then negative again (since high drug conc have to go to zero)? - the possibility cannot be ruled out at
this stage. This is why the conditions are necessary but not sufficient.

= 1.1.4. Monotonic relationship between unbound (d) and total (DTOT) drug concentrations

For some of the conclusions with regards to PA to hold, the relationship between unbount and total drug has to be monotonic.
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n27):= eqnsconsrv[[2]]

Ad 2A%d (d+Kd)
oue7= d + — + ———— == DTOT
Kd £ Kd? Kdim

The derivative of the function DTOT relative to d is the sum of the derivative of different terms within the second equation in expression
above. Among these the derivative of the first term is 1. And the derivative of the second and third term are shown as non-negative functions
of unbound drug d, below.

in31:= s$d11 = FullSimplify [SimplifyPars[D[Axd /. sollA, d]]11];
rdll = Reduce[sd11 < 0] ;
SimplifyPars[rdil]

ouizs)= False

The first component is positive definite.

ne4p= $d12 = SimplifyPars [D[Simplify [A®d (d +Kd) /. sol1A], d]]
1

Out[34]=
16 (d? + 2dKd + f Kd?)®

Kd? (d fKdim + £ Kd Kdim - o/ (f Kdim (fKd® (Kdim + 8 RAF) + d* (f Kdim + 8 RAF) + 2dKd (fKdim + 8 RAF))))
(2d (d+Kd) (d*+2dKd +fKd?) (fKdim- (f (d +Kd) Kdim (f Kdim + 8 RAF)) /
(v (fKdim (f Kd? (Kdim + 8 RAF) +d?® (f Kdim + 8 RAF) +2dKd (fKdim+8RAF))))) -4d (d+Kd)?
(d fKdim + f Kd Kdim - +/ (fKdim (fKd® (Kdim+ 8 RAF) +d® (f Kdim + 8 RAF) + 2 dKd (fKdim+ 8RAF)))) +
d (d*+2dKd + f Kd?)
(d fKdim + f Kd Kdim - +/ (fKdim (fKd® (Kdim+ 8 RAF) +d® (f Kdim + 8 RAF) + 2 dKd (fKdim+ 8RAF)))) +
(d +Kd) (d*+2dKd+fKd?)
(d fKdim + f Kd Kdim - +/ (f Kdim (f Kd® (Kdim+ 8 RAF) +d® (f Kdim + 8 RAF) + 2 dKd (fKdim+ 8RAF)))))
Note that the first non-trivial product term in this expression is negative definite. This is because the term inside the square root is always

greater than the term outside. So we focus on the second, larger term.

5= $d121 = FullSimplify[sd12[[-1]]];
rd12 = Reduce[sd121 > 9] ;
SimplifyPars[rdi2]

ouz7= False

Since the expression sd121 is never positive. Also, the coefficient to sd121 in sd12 is negative definite as stated above. Therefore the full
expression sd12 which a product of the two is non negative for all positive values of the parameters.

DTOT=d+sd11+sd12
Since all three expressions on RHS are non-negative derivatives as a function of unbound drug - the total drug has a non-negative derivative.

Therefore, DTOT(d) is monotonically positive/increasing function.
We exemplify this point numerically with an example set of parameters in the plot below.

inzsr= FNDTOT = SimplifyPars[eqnsconsrv[[2]][[1]] /. repl /. sollA]
oupel= d+ (d (d+Kd) (dfKdim + £ Kd Kdim -
+/ (fKdim (fKd® (Kdim + 8 RAF) +d? (f Kdim + 8 RAF) + 2d Kd (f Kdim + 8 RAF) ) ) )2)/
(8 F (d*+2dKd + fKd?)*Kdim) + (d (-d f Kdim - £ Kd Kdim + +/ ( Kdim
(fKd® (Kdim + 8 RAF) +d* (f Kdim + 8 RAF) + 2dKd (f Kdim+ 8RAF))))) /(4 (d*+2dKd + f Kd*))
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npol= Sty[x_] :=Style[x, 20, FontFamily » "Arial"];

KTarr = {1.-10°, 1. <107, 1.-107%};

kdarr = {Kd> 1.1077 , Kd> 1.-107°};

pltfn = Flatten[Table[fnDTOT /. kd, {kd, kdarr}, {RAF, KTarr}]] /. baseparams;

ps = {Blue, Green, Directive[Red, Thick], Directive[Blue, Dashed],

Directive [Green, Dashed], Directive[Red, Dashed, Thick]};
LogLogPlot [pltfn, {d, 167°, 167}, Frame - True, FrameTicksStyle - 20, PlotStyle - ps,
PlotLegends - Placed[LineLegend[ {Blue, Green, Directive[Red, Thick]}, Sty /@KTarr,
LegendLabel - Sty ["RAF (M) "], LegendFunction -» Panel, LabelStyle -» 12], {Right, Bottom}],

FrameLabel » (Sty /@ {"Unbound Drug [d] (M)", "Total Drug [DTOT] (M)"}), ImageSize - {500},
FrameStyle » Thickness[0.004], PlotLabel - Sty["Ky: —100nM - -1nM K,:10"]
(x*N[TableForm[parset@l,TableDirections—»>Row] ] *) ]

Kq: —100nM - -1nM K4:10

1075}

10_6§ _________________________ E

10_7§

Out[44]= RAF(M)
—1.x1078
1.x1077

109 —1.x1078 |

TS B U U U
Unbound Drug [d] (M)

= 1.1.5. Analytic Expressions for maximum Fold Change (FC)

107}

Total Drug [DTOT] (M)

Fold change is defined as the ratio between maximum RAF activity (active protomers) to that in absence of drug
in@s;= rafFC = SimplifyPars [fnActiveRAFDS / baselineActiveRAFDS]
2
outts ((F+dper) (F+Fdrer =~/ (F (£ (1+drer)?+8 (F+drer (2+drer)) RAFre1) ) )/
2
[ (F+drer (2 drea))? [-1+ V14 8RAFer | |

Activating Range is defined as the lowest concentration above which the drug no longer acts as a paradoxical activator and becomes an
inhibitor. This function is not easily solved analytically, and to understand its variation within the range of parameters defined in conditions
for PA above, is calculated numerically.

Section 1.2. Negative Cooperativity (NC) Model

= Quit[]
= 1.2.1. Analytic Solution to the model

The assembled kinase state can dimerize (AA) or bind with a drug (Ad). The kinase dimer (AA), upon drug administration can occur in
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either partly (AAd) or fully inhibited state (AdAd). The equilibrium state relationships and protein concentration conservation equations for
both total RAF (RAF) and total drug (DTOT) are defined as follows.

n46:= vars = {a, A, d, AA, Ad, AAd, AdAd}; (*A list of all variablesx)

A? 2A%d A% d? Ad
rep2={AA-> ,MAMd> ——— AdAdd> —————, Ad->—,a->0}/.f—>1;
Kdim £ Kdim Kd f g Kdim Kd? Kd

(xderived from equilibrium relationshipsx)
Consrvieqns_] :=
{Simplify[eqns[[1]] +eqns[[2]] +eqns[[5]] + 2 (eqns[[4]] +eqns[[6]] +eqns[[7]])],
Simplify[eqns[[3]] +eqns[[5]] +eqns[[6]] + 2 (eqns[[7]]1)1};
(xconservation relations for RAF and DTOTx)
egnsconsrv = Simplify[Thread [Simplify[Consrv[vars] /. rep2] == {RAF, DTOT}]]
2A (d*+2dgKd+gKd?) Ad 2A%d (d+gKd)

Out[49]= {A d+Kd+ =KdRAF, d+ — + — == DTOT}
g Kd Kdim Kd g Kd? Kdim

A simultaneous solution to both the above conservation equations is unwieldy and hard to obtain. Instead, we find partial solutions for kinase
protomers as a function of free drug and then free drug as a function of the total drug and the kinase protomers. The latter solution is used to

numerically construct d vs DTOT relationship.
inisop= SimplifyPars([x_] :=
Simplify[x, {RAF >0, DTOT >0, Kd >0, Kdim>0, KA>90, d>0, f>0, g>0, d..1 >0, RAF.; >0}];
s0l2A = SimplifyPars[Solve[eqnsconsrv[[1]], A]][[2]] (*Second solution is positivex)
sol2d = SimplifyPars [Solve[eqnsconsrv[[2]], d]][[2]] (»Second solution is positivex)

out51]= {A—)
1
- [ngKdim d+Kd- [ (2dgkKd (Kdim + 8 RAF) + g Kd* (Kdim + 8 RAF) +d? (ngim+8RAF))]]]/
g Kdim

(4 <d2+2dng+ngz))]}

1 1 ,
outf52)= {d—>——2ng 2 A2 + AKdim + Kd Kdim + [—(z;A2 DTOT Kdim + g (2 A* + AKdim + Kd Kdim) )J }

4A g

We estimate the total activity by counting all of the drug-free protomers which occur within a partly active or fully active dimer. Substituting
the above solution into the expression for Raf activity and dividing by total RAF concentration, we obtain the proportionate activity as a
function of total drug and other parameters.
ine3;= RafActivity[vars_] := 2vars[[4]] + vars[[6]]

fnActiveRAF = SimplifyPars [RafActivity[vars] /RAF /. rep2 /. sol2A];

RAF
repratios = {Kdim - , d->Kd drel};
RAF.e1
fnActiveRAFNC = SimplifyPars [FullSimplify[fnActiveRAF /. repratios]]

fnActiveRAF2NC =
Fullsimplify[SimplifyPars[fnActiveRAFNC //. { (1 +dpe1) - E1n, RAF 1 > E2n/ (g+ 28 drey + drea’) /8}]]

, 8 (g+2gdrer + d2;) RAFe1
1+dpe1 - (1+dpe1)” +
g

2

/ (8 (8 +28dper + d2; ) * RAFe1 )

Out[66]= gz (1 +dpe1)

2
Eln |Eln- [Eln?+ ? ] g2

out[67]=
E2n (g +2gdper + d2y)

Note that the above equations represent the total active RAF protomers in proportion to the total RAF kinase as a function of unbound drug
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(d). In order to analytically establish parameter values which correspond to activation of the kinase, we find the first derivative of this
function and search for it’s zeroes.
ines;= RafDimers[eqns_] := (eqns[[4]] +eqns[[6]] +eqns[[7]]);
fnDimersNC = FullSimplify [SimplifyPars[ (RafDimers[vars] /RAF /. rep2 /. sol2A) /. repratios]]
SimplifyPars[fnDimersNC / fnActiveRAFNC]

, 8 (g+2gdrer + d2) RAFL)
1+dpe - (1L+dpep)” +

g

out[69]=

8

] ]/ <16 (g + 2gdr‘el + dﬁel) RAFr‘el)

g+2gdpe + diel

Out[70) ——mm
2g+2gdrer

= 1.2.2. Baseline Signaling (drug-free)

n711= baselineActiveRAFNC = fnActiveRAFNC /. dpe1 » ©
SimplifyPars[D[baselineActiveRAFNC, RAF..1]]

(1—x/1+8RAF,Ne1 )2

Out[71]=
8 RAF o1
2
(_1 ++/1 + 8 RAF o )
Out[72]=
8 RAFZ,; V1 + 8 RAF .;

The derivative of baseline signaling relative to RAF ; is a positive definite function. Therefore, baseline signaling is a monotonically
proportionate to RAF .

= 1.2.3. Conditions on parameter regions for activation in response to the drug

in73;= dfn2 = SimplifyPars [D[fnActiveRAFNC, d e1]1]

1 ) ) 8 <g+2gdr‘el *dﬁel) RAF e1
out[73]= . g° |1+dpe1 - (1 +dpre1) “ +
8 (g+2gdre; + d%)” RAF.q g

rel
1+dr‘el —\/
1+dr‘el_\/

2 (1+drer) (8+28dper +diey) |1+

rel

-4 (1 +dre1) (8+dre1) (1+dr‘e1>2+

+

8 (g+2gdper + d%; ) RAFe ] ]

g

(1 +drel)2+

(g +2g8dpe) + dzel)

8 (g+2gdrer + d2;) RAF e ]
+
g

-8 (1 +8RAFpe1) —dre1 (8 + 8RAF1)

8 (g+2 g dne1+d?,;) RAF,,
g\/(1+dre1)2+ ( el rel) el

g
in741= existPANC = SimplifyPars [Reduce[ (dfn2 > 0)]]
ouf74)= False

Therefore, the derivative of active RAF relative to unbound drug may never be positive, independent of the drug concentration and negative
cooperativity. This mechanism does not produce PA.
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= 1.2.5. Analytic Expressions for maximum Fold Change (FC)

Fold change is defined as the ratio between maximum RAF activity (no/conc of active protomers) to that in absence of drug

in75:= maxActiveRAFNC = FullSimplify [SimplifyPars [fnActiveRAFNC]];
rafFC = SimplifyPars [maxActiveRAFNC /baselineActiveRAFNC]

8 (g+28drer + d2; ) RAF o1 |)?
1 +dr‘el - /

g
(<g+2gdrel+d£el)2 (—1+\/1+8RAFrel )Z)

in771= dRAFrafFC = SimplifyPars [D[rafFC, RAF.11];
dgrafFC = SimplifyPars [D[rafFC, g]1];
SimplifyPars[Reduce [dRAFrafFC > 0] ]
SimplifyPars[Reduce[dgrafFC > 0] ]

(j-‘*'dr‘el)2 +

outzel= | 8% (1 + dpe1)

outi79)= g>1
outigol= True

Hence, first derivative of the fold change expression relative to RAF ; is always positive in the negative cooperativity model and always
negative in positive cooperativity model. That is when g>1: negative cooperativity mediates increase in activity with increase in [RAF].

Even though fold change is not paradoxical (PA<1), as negative cooperativity increases, fold change increases. In other mechanisms where
PA exists, negative cooperativity increases PA further.

Section 1.3. Conformal Autoinhibition (CA/base) Model

= Quit[]
= 1.3.1. Analytic Solution to the model

This model incorporates all the mechanisms from the part models to combine into a model of kinase which auto-inhibits (a), which, for
simplicity, is modeled to relieve at a first order rate to an assembled state (A). The assembled kinase state can dimerize (AA) or bind with a
drug (Ad). The kinase dimer (AA), upon drug administration can occur in either partly (AAd) or fully inhibited state (AdAd). The equilib-
rium state relationships and protein concentration conservation equations for both total RAF (RAF) and total drug (DTOT) are defined as
follows.
nis1= vars = {a, A, d, AA, Ad, AAd, AdAd}; (*A list of all variablesx)

AZ 2A%d A% d? Ad
, AAd» ———, AdAdd» —— , Ad» —, a-»AKA} /. {f>1, go1};
Kdim f Kdim Kd f g Kdim Kd? Kd

rep3 = {AA -

(*derived from equilibrium relationshipsx)
Consrvieqgns_] :=
{Simplify[eqns[[1]] +eqns[[2]] +eqns[[5]] +2 (eqns[[4]] +eqns[[6]] +eqns[[7]]1)],
Simplify[eqns[[3]] +eqns[[5]] +eqns[[6]] +2 (eqns[[7]])]};
(xconservation relations for RAF and DTOT=x)
egnsconsrv = Simplify[Thread [Simplify[Consrv[vars] /. rep3] == {RAF, DTOT}]]
A (2A (d+Kd)?+Kd (d+Kd+KAKd) Kdim) Ad 2A%d (d+Kd)

Outigd]= { RAF, d4 — ¢ —— DTOT}
Kd? Kdim Kd Kd? Kdim

A simultaneous solution to both the above conservation equations is unwieldy and hard to obtain. Instead, we find partial solutions for kinase
protomers as a function of free drug and then free drug as a function of the total drug and the kinase protomers. The latter solution is used to
numerically construct d vs DTOT relationship.
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ines;= SimplifyPars[x_] :=Simplify[x, {RAF >0, DTOT >0, Kd >0, Kdimn>0, KA>0, d>0, f>0, g>0}];
sol3A = SimplifyPars[Solve[eqnsconsrv[[1]], A]1]1[[2]] (*Second solution is positivex)
sol3d = SimplifyPars[Solve[eqnsconsrv[[2]], d]][[2]] (»Second solution is positivex)

1 (d + Kd + KAKd)? Kdim + 8 (d + Kd) % RAF
outis6l= {Aa——Kd Kdim |d + Kd + KAKd - }
4 (d +Kd)? Kdim

1
oulfs7)= {d > -——Kd (2% + AKdim + Kd Kdim - o/ (8 A*DTOT Kdim + (2 A% + AKdim + Kd Kdim)?) ) }
4 A
We estimate the total activity by counting all of the drug-free protomers which occur within a partly active or fully active dimer. Substituting
the above solution into the expression for Raf activity and dividing by total RAF concentration, we obtain the proportionate activity as a
function of total drug and other parameters.

inss;= RafActivity[vars_] := 2vars[[4]] + vars[[6]]

fnActiveRAF = SimplifyPars [RafActivity[vars] /RAF /. rep3 /. sol3A];
RAF

repratios = {Kdim - , d->Kd drel};

RAF 1

fnActiveRAFCA = SimplifyPars [FullSimplify[fnActiveRAF /. repratios]]
fnActiveRAF2CA = FullSimplify |

SimplifyPars[fnActiveRAFCA //. { (1 +KA +dre1) » E1lc, RAF ) > E2¢ / (1+2dpe + dre1?) /81

2
outo1}= (1+KA+drel—\/ (1+KA+dpe1)?+8 (1+drer)? RAFper ) / (8 (1+dpe1)> RAF 1)

2
(Elc -~/ Elc? + E2c ]

E2¢ (1 + dpep)

Out[92]=

Note that the above equations represent the total active RAF protomers in proportion to the total RAF kinase as a function of unbound drug
(d). In order to analytically establish parameter values which correspond to activation of the kinase, we find the first derivative of this
function (equation 11) and search for it’s zeroes (equation 12).

3= RafDimers[eqns_] := (eqns[[4]] +eqns[[6]] +eqns[[7]]);
fnDimersCA = FullSimplify [SimplifyPars[ (RafDimers[vars] /RAF /. rep3 /. sol3A) /. repratios]]
SimplifyPars[fnDimersCA/fnActiveRAFCA]

2
out94)= 1+KA+dre1_\/ (1+KA+dpe1)?+8 (1+drer)? RAFper ) / (16 (1 + dre1) ? RAFre1 )

1
outgsl= — (1 + dpe1)
2
= 1.3.2. Baseline Signaling (drug-free)

inoel= baselineActiveRAFCA = fnActiveRAFCA /. d..1 - 0;
rep3b = {RAF..; - E3 (1+KA)?/8};
baselineActiveRAF1 = SimplifyPars [baselineActiveRAFCA /. rep3b]
SimplifyPars[D[baselineActiveRAF1, E3] /. rep3b]

(—1+\/1+E3 )Z
E3

(—1+\/1+E3 )2

Out[98]=

Out[99]=
E32+/1+E3
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The derivative of baseline signaling relative to E3 is a positive definite function. Therefore, baseline signaling is a monotonically proportion-
ate to E3, which is in turn, monotonically proportionate to RAF concentration and monotonically inverse relationship to KA.

Hence in the base model, increasing KA decreases baseline signaling and increasing RAF,; increases baseline signaling.
= 1.3.3. Conditions on parameter regions for activation in response to the drug

in(100)= dfn3 = SimplifyPars [D[fnActiveRAFCA, d;e1]]

Out[100}= [(1 + KA + dpe1 7\/ (1+KA +dpet)?+8 (1+dpet) ? RAF o1 ]

(2 (1+dre1) (1~ (1+KA+dne1 +8 (1+dre1) RAFre1) / (+/ ((1+ KA+ dpe1)® +8 (1+dre1) > RAFe1) ) ) -

3 (1 + KA + dpe1 7J (1+KA+dpe1)?+8 (1+drer)? RAF a1 ])]/ (8 (1 +dre1)* RAFpe1)

npion)= Simplify [SimplifyPars[dfn3 //. {(1+ KA +dpe1) - E1l, RAFr > E2 /(1 +2dpe + drea?) /8}],
{E1>0, E2>0, dre1 >0} ]

outf101}= —(((—E1+ E1% + E2 ) (3E12+E2+2x/E12+E2 - E1 [2+3x/E12+E2 ) +2 (—E1+ E1% + E2 ) drel))/
(EZ\/E12+E2 <1+dre1>2))

The first two roots are complex coming from the first bracket term.
n(102)= zeroes = SimplifyPars[Solve[dfn3 == 0, d..;, VerifySolutions - True]]

1+ KA+ 8RAFpe1 + 2 KA1 + 6 RAF ey 1+ KA+ 8RAFpe1 - 2KA V1 + 6 RAF e

b {dras - }
1+ 8 RAF,.q 1+ 8 RAFpe;

out[102]= {{drel - -

The first solution is negative definite. Below, we derive the rules (expression 13) which allow the second solution to be positive

inf03;:= exist = Reduce[ ((dpe1 /. zeroes[[2]]) > 0) && (KA > 0) & (RAF.¢; > 9) ]

1
out103= KA > 1880 < RAF.; < — (-1 - 2KA + 3KA?)
8

Hence with a sufficiently small ratio of raf concentration to dimerization constant ratio, the auto-inhibition mechanism can by itself mediate
activation of the kinase in response to drug administration.

In section 1.2 we will show that our analytic results as a function of unbound drug concentration also extend to the complete case where we
consider the relationship between unbound and bound drug.

To establish that the above constraints imply existence of activation (maxima), we derive the second derivative of fnActiveRAFCA, find it’s
value at the critical point in variable ‘zeroes’. We then find the conditions under which this function is negative.



Mathematica_AllModels.nb |11

in(104= d2fn3 = SimplifyPars [D[dfn3, dre1]]

1

Out[104]= . (1 +dpe1) 1+KA+dre1—\/(1+KA+drel)2+8 (1 + dpre1) 2 RAF ey
8 (1+ dr‘el) RAF .1

16 KA? (1 + dpe1) RAFrer 2 (1+KA+dpe +8 (1 +drer) RAFLe1)
-1- - +
2 2 3/2
((1+KA+dre1)? +8 (1+dre1)” RAF 1 (1 +KA+drer)? 48 (1+drer)? RAFrar
3 (1+KA+ 8RAFpe + dpe; (1 +8RAF1)) 1+KA+dpe; +8 (1+dpe;) RAF g
+ (1+dr‘el) 1-
\/ (1 +KA+dpe1)?+8 (1+drer)? RAF 1 \/ (1 +KA+dpe1)?+8 (1+dper)? RAF 1

[2 (1+dre1) (1- (1+KA+dper +8 (1+dre1) RAFpe1) / (+/ ((1+ KA+ dpe1)? +8 (1+dre1) RAFLe) ) ) -

3 (1+KA+dre1—\/(1+KA+drel)2+8 (1 + dpe1) 2 RAF gy )) -

4 (1+KA+drel—\/ (1+KA+dpe1)?2+8 (1+dpey)? RAFpe; )

[2 (1+dre1) (1- (1+KA+dpe+8 (1+dre1) RAFre1) / (+/ ((1+ KA+ dpe1)? +8 (1+dre1)? RAFre1) ) ) -

3 (1+KA+dre1—\/(1+KA+drel)2+8 (1 + dpe1) 2 RAF g J)

inf05:= d2fn3z = FullSimplify[d2fn3 /. zeroes[[2]], {KA >0, RAF.e >90}]

Outf105]= (1 ~/1+6RAF; +3RAF. (6 ~5+/1+6RAF,o; - 24 RAF,.; (71 +/1+ 6 RAF oy ) ) )/ (162 KA® RAFpe1 )
w06~ Reduce[ (d2fn3z < @) && (KA >= 0) && (RAF,e; >= 0) ]

out106]= KA > @ &% RAF o1 > 0

No additional constraints from second derivative condition that the critical point be a maxima. The ‘exist’ condition above is necessary and
sufficient as long as monotonocity between unbound and total drug can be established.

= 1.3.4. Monotonic relationship between unbound (d) and total (DTOT) drug concentrations

The derivative of the function DTOT relative to unbound drug d is the sum of the derivative of different composing terms. Among these the
derivative of the first term is 1. And the derivative of the second and third term are shown as non-negative functions of unbound drug d,
below.
in(122)= $d311 = FullSimplify [SimplifyPars[D[Axd /. sol3A, d]]1];
rd311 = Reduce[sd311< 9] ;
SimplifyPars[rd311]

d + Kd

oufi241= (3d <Kd | | d<Kd) && [d<Kd<3d|\KA< || Kd>3d| &&

d-Kd
d + Kd Kd d+Kd

<KA < | | KA < ]&&d(Kdim—KAZKdim+8RAF)+Kd<(1+KA)ZKdim+8RAF)<0
d - Kd d - Kd d - Kd
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nii25)= $d312 = SimplifyPars [D[Simplify [A®d (d +Kd) /. sol3A], d]]

(d + Kd + KAKd)? Kdim + 8 (d + Kd) % RAF

1
out[125]= — Kd*Kdim® |d +Kd + KAKd -
16 (d +Kd)* Kdim

(d + Kd + KAKd)? Kdim + 8 (d + Kd) % RAF
-3d |d+Kd+KAKd - +
Kdim

(d +Kd + KAKd)2 Kdim + 8 (d + Kd)? RAF
(d +Kd) |[d+Kd+KAKd - +
Kdim

2d (d+Kd) (1+ (-d (Kdim + 8 RAF) - Kd (Kdim + KAKdim + 8 RAF)) /
(v/ (Kdim ((d +Kd + KAKd)?Kdim + 8 (d +Kd)? RAF) ) ) )

Note that the first non-trivial product term in this expression is negative definite as the term inside the square root is always greater than the
term outside. So we focus on the second term.

in(126)= $d3121 = FullSimplify[sd312[[-1]]1];
rd312 = Reduce [sd3121 > 0] ;
SimplifyPars [SimplifyPars[rd312]]

d + Kd Kd (d +Kd) d+Kd
ouf12e)= Kd>2d&& | ——— <KA<-———— | | KA ——— | &&
2d-kd -4 d? + Kd? 2d-Kd
1
—————(d® (1-4KA?) +2d (1+KA) Kd + (1+KA)?Kd?) Kdim + RAF < @
8 (d +Kd)?

The first two conditions imply: d<Kd/2 combined with KA<~1/(2d-Kd) which gives KA<0. As KA is positive definite, the expression
sd3121 is non positive. Also, the coefficient to sd3121 in sd312 is negative definite as stated above. Therefore the full expression sd12 is non
negative for all positive values of the parameters.

DTOT=d+sd11+sd12
Since all three expressions on RHS are non-negative derivatives as a function of unbound drug - the total drug has a non-negative derivative.

Therefore, DTOT(d) is monotonically positive/increasing function.
We show this point with an example set of parameters in the plot below.

inf1291:= FnDTOT = SimplifyPars[Consrv[vars] [[2]] /. rep3 /. sol3A];
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nfsop= Sty [x_] :=Style[x, 20, FontFamily -» "Arial"];
parset@l = {KA- 2., Kdim— 1.-107 («1@@nMx), f>0.01, g 4};
KTarr = {1.-107°, 1. 1077, 1. 10'8};
kdarr = {Kd> 1.1077 , Kd> 1.-107°};
pltfn = Flatten[Table [fnDTOT /. parsetol /. kd, {kd, kdarr}, {RAF, KTarr}]];
ps = {Blue, Green, Directive[Red, Thick], Directive[Blue, Dashed],
Directive [Green, Dashed], Directive[Red, Dashed, Thick]};
LogLogPlot [pltfn, {d, 167°, 16}, Frame - True, FrameTicksStyle - 20, PlotStyle - ps,
PlotLegends - Placed[LineLegend[ {Blue, Green, Directive[Red, Thick]}, Sty /@KTarr,
LegendLabel - Sty ["RAF (M) "], LegendFunction -» Panel, LabelStyle -» 12], {Right, Bottom}],
FrameLabel » (Sty /@ {"Unbound Drug [d] (M)", "Total Drug [DTOT] (M)"}), ImageSize - {500},
FrameStyle » Thickness[0.004], PlotLabel - Sty["K4: —100nM - -1nM K,:2"]
(*N[TableForm[parset@l,TableDirections—»>Row] ] *) ]

Kq: —100nM - —-1nM K,:2

10‘5; |
— 1070F e ]
O z
l_

2 10-1| ,
Out[136]= 5') RAF(M) E
a * —1.x107®
< 1075 _
o : 1.x10°
— [ s
10-%F — 1.x107 |
10~° 1078 1077 107¢ 107

Unbound Drug [d] (M)

= 1.3.5. Analytic Expressions for maximum Fold Change (FC)

Fold change is defined as the ratio between maximum RAF activity (no/conc of active protomers) to that in absence of drug

in[137;:= maxActiveRAFCA = FullSimplify [SimplifyPars [fnActiveRAFCA /. zeroes[[2]]]1];
rafFC = SimplifyPars [maxActiveRAFCA /baselineActiveRAFCA]

outfi38]= (8 (71 +\/1+6RAFe; +RAF ) (79 +6+/1+ 6 RAF,o ) ) )/ [27 KA

2
1+KA—\/{1+KA)2+8RAFPG1) )

When the ‘exist’ conditions derived above to qualify for existence of PA within this model are satisfied, we can evaluate the functional
dependence of the raf fold change expression on RAF ., and KA:



14 | Mathematica_AllModels.nb

in(1391= dRAFrafFC = SimplifyPars [D[rafFC, RAF.e1]]
dKArafFC = SimplifyPars[D[rafFC, KA]]
Simplify [Reduce [dRAFrafFC < @], exist]
Simplify [Reduce [dKArafFC > 0], exist]

Outf139]= (8 ( [9 (71 — 6 RAFpe; + V1 + 6 RAF ) ) [71 KA+ (1+KA)2 + 8RAF o )

/(mp
(8(—1+m+RAFrel (—9+6\/m)))/ (\/(1+KA)Z+8RAFPel)])/

3
[27KA (1+KA—\/(1+KA)2+8RAFrel) )

outfi40]= —((8 (72 KA +~/ (1+KA)? + 8 RAF ey ] (—1+\/1+6RAFP€1 + RAF o1 (—9+6\/1+6RAFP61 )))/

2
[27KA2\/(1+KA)Z+8RAFrel (1+KA—\/(1+KA)2+8RAFre1 ) ]J

out[141]= True
out[142]= True

Hence, first derivative of the fold change expression relative to KA is always positive when the model displays PA and the first derivative
relative to RAF rel always negative.

In other words, an equilibrium that more and more favors the inactive state (increasing KA), the fold change continues to increase as a
function of KA. And as the concentration of RAF increases or it’s dimerization rate increases (Kdim reduces), the fold change relative to
baseline continues to reduce.

in(143)= {maxActiveRAFCA, baselineActiveRAFCA}

2
(1+KA—\/(1+KA)2+8RAFrel)

outi43)= { (71 +/1+6RAFre; + RAF (79 +6~/1+ 6 RAFe1 ) )/ (27 KA RAF re1)

8 RAF o1

Activating Range is defined as the lowest concentration above which the drug no longer acts as a paradoxical activator and becomes an
inhibitor. This function is not easily solved analytically, and to understand its variation within the range of parameters defined in conditions
for PA above, is calculated numerically in python files.

Section 1.4. Unified Model

1= Quit[]
= 1.4.1. Analytic Solution to the model

This model incorporates all the mechanisms.
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in(1441= vars = {a, A, d, AA, Ad, AAd, AdAd}; (*A list of all variablesx)

A? 2A%d A? @2 Ad
s AAd> —————, AdAdd > ————, Ad>»> —, a-»AKA};
Kdim £ Kdim Kd f g Kdim Kd? Kd

rep4 = {AA -

(xderived from equilibrium relationshipsx)
Consrvieqns_] :=
{Simplify[eqns[[1]] +eqns[[2]] +eqns[[5]] + 2 (eqns[[4]] +eqns[[6]] +eqns[[7]])],
Simplify[eqns[[3]] +eqns[[5]] +eqns[[6]] +2 (eqns[[7]1]1)1};
(xconservation relations for RAF and DTOTx)
egnsconsrv = Simplify[Thread [Simplify[Consrv[vars] /. rep4] == {RAF, DTOT}]]
2A (d*+2dgKd+f gkd?) Ad 2A%d (d+gKkd)

Out[147]= {A d+Kd+KAKd + —KdRAF, d+ — + >0 DTOT}
f g Kd Kdim Kd f g Kd? Kdim

A simultaneous solution to both the above conservation equations is unwieldy and hard to obtain. Instead, we find partial solutions for kinase
protomers as a function of free drug and then free drug as a function of the total drug and the kinase protomers. The latter solution is used to
numerically construct d vs DTOT relationship.

inf4s;= SimplifyPars[x_] :=
Simplify[x, {RAF >0, DTOT >0, Kd >0, Kdim>0, KA>90, d>0, f>0, g>0, d..1 >0, RAF.; >0}];
so0l4A = SimplifyPars[Solve[eqnsconsrv[[1]], A]]1[[2]] (*Second solution is positivex)
solad = SimplifyPars [Solve[eqnsconsrv[[2]], d]][[2]] (»Second solution is positivex)

/

8 (d*+2dgkKd + f gKd?) RAF

out[149]= {A - - || fgKdKdim

d+Kd+KAKdJ[(d+Kd+KAKd)2+

J

1
2 A% + A fKdim + fKd KdimJ (—(8AZDTOT'FKdim+g (2% + A f Kdim + f Kd Kdim)z)
g

f g Kdim

(4 (d>+2dgkd + f gKd®))

1
out[150]= {d - ——Zg Kd
4 A

I

We estimate the total activity by counting all of the drug-free protomers which occur within a partly active or fully active dimer. Substituting
the above solution into the expression for Raf activity and dividing by total RAF concentration, we obtain the proportionate
activity as a function of total drug and other parameters.

nf51:= RafActivity[vars_] := 2vars[[4]] + vars[[6]]
fnActiveRAF = SimplifyPars [RafActivity[vars] /RAF /. rep4 /. sol4A];

repratios = {Kdim - , d->Kd drel};

RAF.e1
fnActiveRAF = SimplifyPars [FullSimplify[fnActiveRAF /. repratios]]
fnActiveRAF2 = FullSimplify|

SimplifyPars[fnActiveRAF //. { (1 +KA +d.) » Elc, RAF. g > E2ufg/ (fg+2gdre + drea’®) /8}]]

rel

8 (fg+2gdre + d%;) RAF a1 | )2
oufisa= | F g% (F+dpe1) |1+ KA +dpeg - J (1 +KA +dpey)? + /
fg
2
(8 (fg+2gdre1 + drey ) * RAF 1)
2
(Elc -/ E1c? + E2u ) g (f +dre1)
Out[155]=

rel

E2u (fg+2gdrer + d2)

Note that the above equations represent the total active RAF protomers in proportion to the total RAF kinase as a function of unbound drug
(d). In order to analytically establish parameter values which correspond to activation of the kinase, we find the first derivative of this
function and search for it’s zeroes.
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nsel:= RafDimers[eqns_] := (eqns[[4]] +eqns[[6]] +eqns[[7]1]);
fnDimers = FullSimplify [SimplifyPars[ (RafDimers[vars] /RAF /. rep4 /. sol4A) /. repratios]]
SimplifyPars[fnDimers / fnActiveRAF]

8 (fg+2gdrer + dZ) RAFLe

rel

fg

out[157]=

1+KA+d,ﬂ61J[(1+KA+drel)2+

fe ] ]/ (16 (fg+2g drer + d7e1) RAF e1)

'Fg+2gdpel+dr2,el

out[158]=
2fg+2gdprer

= 1.4.2. Baseline Signaling (drug-free)

in[59:= baselineActiveRAF = fnActiveRAF /. d..; - 0;
rep3b = {RAF.; » E3 (1 +KA)?/8};
baselineActiveRAF1 = SimplifyPars [baselineActiveRAF /. rep3b]
SimplifyPars[D[baselineActiveRAF1, E3] /. rep3b]

(—1+\/1+E3 )2

out{161]=
E3
2
(-1 +V1+E3 )
ou162)r —m8M™
E32+/1+E3

The derivative of baseline signaling relative to E3 is a positive definite function. Therefore, baseline signaling is a monotonically proportion-
ate to E3, which is in turn, monotonically proportionate to RAF concentration and monotonically inverse relationship to KA.

Hence in the base model, increasing KA decreases baseline signaling and increasing RAF,,; increases baseline signaling. Without drug, only
autoinhibition and dimerization drive the activation, as validated in above expressions.

= 1.4.3. Conditions on parameter regions for activation in response to the drug
in(163= dfnd = SimplifyPars [D[fnActiveRAF, dre1]]
1

out[163]=
8 (fg+2gdees +dZ)’ RAF e

rel

8 (fg+2gdme +d2) RAF e

rel

-ng 1+KA+dr‘e1_J[(l‘*KA‘*’dr‘el)z*' 2 ('F+dr~e1> (‘Fg‘*'ngrel'*'diel)
fg
8 (g +dre1) RAF 1 ) 8 ('Fg+2gdpel +d£el) RAF re1
1-[1+KA+dper + / (1 +KA+dpep)” + -
fg fg

8 (fg+2gdre + 2 ) RAF e

rel

4 (f +dre1) (8+dpre1)

1+KA+d,ﬂel—\/[(1+KA+drel)2+

] :

The first product term in the numerator is negative definite being of the form x — Sqrt[x2+<positive term>]. We evaluate the conditions under

fg

rel

(1 + KA+ dpe)? +

, ' 8 (fg+2gdres +d2,) RAF e
('Fg+2gdre1+dr,el> 1+ KA+ dpe1 -

fg

which the second term may also be negative.
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n(1641:= dfnd[[-1]]

out164)= 2 (F + dpe1) ('F g+2gdney + dﬁel)

8 (g +dre1) RAF e
1-|1+KA+dpey+ /
fg
1+KA+drel—\/

(fg+2gdrer +di) [1+KA+dre1—\/[(1+KA+drel)2+

8 (fg+2gdrer +d2, ) RAF e

rel

(1+KA +dpep)? +

)

fg
8 (fg+2gdres +d2,) RAF e
fg

4 (f +dre1) (8+dre1) (1+KA+dr‘el)2+

+

8 (fg+2gdrer +d2, ) RAF e
fe ]J
in(165= rd4 = Reduce[dfn4[[-1]] <0];
existPA4 = SimplifyPars[rd4]
outi1eel= 1 + KA >2 f + dpep && ( (g =18&
RAF.e < (f (f (4F2-8F (1+KA) +3 (1+KA)?) + (-8 KA+2 (1+KA)?+F (-6-2KA+4KA)) dpey -
(1+Ff+4F-2KA+8FKA-3KA?) d2) -2 (2F+KA) dioy - dier) ) / (8 (f+2fdrel+dﬁel)2)) [ |
(g=288& (f (-2 (4F*-8F (1+KA) +3 (1+KA)?) -4 (-2 (-1+KA) + (1+KA)? +f (-4 - 3KA+KA?))
dre1+ (5+4F° +2KA-3KA* + f (-6 +8KA) ) digy +2 (-1 +2F +KA) dley +diey) )/
(4 (2f+2fdrel+dﬁel)2) +RAFe1 <) | | (RAFre1< (fg (-1+2F-KA+dper)
(fg(2f-3 (1+KA)) + (3Fg-4Ff (1+KA) -28 (1+KA)) dre1 - (3+2F-2g+3KA) dZey -dier) )/
(8 (Fg+2fder +d2)?) && (L<g<2||g<1]]g>2)))
Conditions for positive derivative of active RAF relative to unbound drug are shown above.
n(167):= existPAU = FullSimplify[existPA4, {g>=1, f<=1, f>0, KA>=1}]
out67)= 1+ KA > 2 f + drey 8& ( (8 == 1 8& RAF 1 <
(F(-1+2F-KA+dpe1) (F(2F-3 (1+KA)) ~dpey (2+F+2KA+4FKA+dpey (1+2F+3KA+drer))))/
(8 <'F+2‘Fdre1+d£el>2>) || (8==28%RAFne; < (f (-1+2Ff-KA+dpey) (2F (2F-3 (1+KA)) -
drep (4-2F+4KA+4FfKA+dne (-1+2F+3KA+dre1))))/ (4 (2f+2fd.~e1+dﬁe1)2)) ||
(RAFpe1 < (Fg (-1 +2F-KA+dpe1) (FE (2F-3 (1+KA)) —drey (28 (1+KA) +f (4-3g+4KA) +
dre1 (3+2F-2g+3KA+dre1)))) /(8 (Fg+2Fder+d2)?) 8& (1<g<2(]g>2)))
The above condition is quite complex and dependent strongly on the drug concentration.
Also, the smallest value of d, is 0, corresponding to which a condition can be set upon f and RAF,; for PA to exist.
in(168]:= existPAU@ = SimplifyPars [existPAU /. d.e1 - 0]
ouies 82> 18&8 (f+FKA+RAFpey) <4F2+3 (1+KA)2&&1+KA>2F
in(169:= Reduce [existPAUO, RAF..;]
KA

1+
ou169)- KAe R&_Rg=>18&&f <
2

1
&& RAF oy < — (3-8 F +4 >+ 6 KA - 8fKA+3KA?)
8
1
In170}:= Fullsimplify[— (3-8Ff+4f2+6KA-8FKA+ 3KA2)]
8

1
oui7o- — (42 -8 F (1+KA) +3 (1+KA)?)
8

Since PA is experimentally observed at smaller values for the drug (in other words, inhibition then activation phenotype is not observed in
dose response), the derivative of active RAF limiting to zero drug concentration can only be positive if above conditions are satisfied.

However, when the above conditions are satisfied, will PA always exist? Yes.
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Can PA exist even when above conditions are not satisfied? That is the first derivative of active raf relative to drug is negative near zero drug
but then becomes positive? And then negative again (since high drug conc have to go to zero)? - the possibility cannot be ruled out at this
stage.

= 1.4.4. Monotonic relationship between unbound (d) and total (DTOT) drug concentrations
n[1711= eqnsconsrv[[2]]
Ad 2A%d (d+gKd)
out71= d + — + —————————— =DTOT
Kd f g Kd? Kdim

The derivative of the function DTOT relative to d is the sum of the derivative of different terms within the second equation in expression
above. Among these the derivative of the first term is 1. And the derivative of the second and third term are shown as non-negative functions
of unbound drug d, below.

in(172)= s$d11 = FullSimplify [SimplifyPars[D[Axd /. sol4A, d]]1];
rdll = Reduce[sd11 < 0] ;
SimplifyPars[rdil]
out174= False
ni175)= $d12 = SimplifyPars [D[Simplify[2A®d (d + gKd) /. soldA], d]]
1

Out[175]= f2 g2 Kd? Kdim?
8 (d? +2dgkd + f gkd?)’

d+Kd+KAKdJ
8 (d + g Kd) RAF
d+Kd+KAKd+—]/
f g Kdim

d+Kd+KAKdJ[(d+Kd+KAKd)Z+

8 (d*+2dgkKd+ f gKd?) RAF

(d+Kd+KAKd)? +

2d (d+gKd) (d*+2dgKd+fgKd®)
f g Kdim

8 (d*+2dgkd + f gKd?) RAF

1- (d +Kd + KAKd)? +

f g Kdim

8 (d*+2dgkd + f gKd*) RAF
4d (d+gkKd)?

f g Kdim
8 (d*+2dgkd + f gKd*) RAF

d (d*+2dgkd + fgKd?)

d+Kd+KAKdJ[(d+Kd+KAKd)Z+

d+Kd+KAKdJ ]

Note that the first non-trivial product term in this expression is negative definite as the term inside the square root is always greater than the
term outside. So we focus on the second term.

f g Kdim
8 (d* +2dgkd + f gKd*) RAF

(d+gkd) (d®+2dgkKd+fgKd?) (d +Kd + KAKd)? +

f g Kdim
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inf176= sd121 = Simplify [sd12[[-1]11];
rd12 = Reduce[sd121 > 9] ;
SimplifyPars[rdi2]
ouriel= (RAF < (f (d (-2 (1+KA)) -g (1+KA) Kd) (d® (3g-2 (1+KA)) +d’g (-3+4f+2g-3KA)Kd+dg
(-2g (1+KA) +f (2+3g+2KA)) Kd® + fg? (1+KA) Kd®) Kdim)/(8g<d2+2d-FKd+-Fng2)2)&&
g+1882g+1882g+ 38 ((gKd® (2d (f-g) +fgkd) >d® (2d+3gKd) &&
KA< (d® (-2+3g) +d*g (-3+4Ff+2g)Kd+dg (-2g+F (2+3g)) kd*+ fg’Kd®) /
(2d>+3d*gKd+2dg (-f+g) Kd> - fg>Kd®)) || (1+KA) (2d+gKd) <dg)) ||

2d (4d*+3dKd +Kd?)
f > 882 g == 18&RAF < (f (3d+4dKA+Kd +KAKd)
Kd? (4d +Kd)

(d> (2+8KA) +2d* (2-4f+3KA)Kd+d (2-7F+2KA-4FKA) Kd® - f (1+KA) Kd*) Kdim) /
(8 (2d2+4ded+de2)2) &&KA< (-2d>+4d® (-1+2F) Kd+d (-2+7F) Kd® + fKd*) /

(8d’>+6d*Kd+2d (1-2F) Kd® - fKd®) | ||

[Kd2 (2d (-1 +F) +fKd) >d* (2d+3Kd) && g = 18&RAF < (f (d + 2 d KA + Kd + KAKd)

(d® (-1+2KA) +d® (1-4F+3KA)Kd+d (2-5F+2KA-2fKA) Kd® - f (1+KA) Kd*) Kdim) /

2 (d+Kd) (d?+2d (-1+2F) Kd + fKd?)
(8 (d*+2dfKd+fKd*)") &&KA < y
2d*+3d?Kd-2d (-1 +F) Kd? - fKd?

(3Kd® (d (-6 +4f) +3FKd) >2d* (4d+9Kd) &&2g=38&
(f(d+4dKA+3 (1+KA)Kd) (d® (16 -8KA) +6d® (4Ff-3KA) Kd+3d (-6 (1+KA) +f (13+4KA)) Kd* +
9f (1+KA) Kd*) kdim) /(24 (2d2+4ded+3de2)2) + RAF < 0 8&
KA< (10d’>+24d*fKd+3d (-6 +13f) Kd* +9fKd’) / (8d>+18d*Kd-6d (-3 +2f) Kd* - 9 fKd®))

infoo}= SimplifyPars[rd12 && existPAUO]
out(190)= $Aborted
rd12 needs more detailed analysis.
DTOT=d+sd11+sd12
in(179= FnDTOT = SimplifyPars[eqnsconsrv[[2]][[1]] /. repd /. sol4A]

8 (d*+2dgkd + f gKd*) RAF

8- |2fgKdim

outi179)= — d
8

/

d+Kd+KAKdJ[(d+Kd+KAKd)2+

f g Kdim
(d*+2dgkd + fgKd®) +
8 (d* +2dgkKd + f gKd?) RAF

fg (d+gKd) Kdim

y

d+Kd+KAKdJ[(d+Kd+KAKd)2+

f g Kdim

(d2+2dg|<d+fg|<d2)2]
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nfsor= Sty [x_] :=Style[x, 20, FontFamily -» "Arial"];

KTarr = {1.-10°, 1. <107, 1.-107%};

kdarr = {Kd> 1.1077 , Kd> 1.-107°};

pltfn = Flatten[Table[fnDTOT /. kd, {kd, kdarr}, {RAF, KTarr}]] /. baseparams;

ps = {Blue, Green, Directive[Red, Thick], Directive[Blue, Dashed],

Directive [Green, Dashed], Directive[Red, Dashed, Thick]};
LogLogPlot [pltfn, {d, 167°, 167}, Frame - True, FrameTicksStyle - 20, PlotStyle - ps,
PlotLegends - Placed[LineLegend[ {Blue, Green, Directive[Red, Thick]}, Sty /@KTarr,
LegendLabel - Sty ["RAF (M) "], LegendFunction -» Panel, LabelStyle -» 12], {Right, Bottom}],

FrameLabel » (Sty /@ {"Unbound Drug [d] (M)", "Total Drug [DTOT] (M)"}), ImageSize - {500},
FrameStyle » Thickness[0.004], PlotLabel - Sty["Ky: —100nM - -1nM K,:10"]
(x*N[TableForm[parset@l,TableDirections—»>Row] ] *) ]

Kq: —100nM - -1nM K4:10

1075}

10_6§

10_7§

Out[185]= RAF(M)
—1.x1078
1.x1077

109 —1.x107® |

107 107" 10~ 100 10
Unbound Drug [d] (M)

= 1.4.5. Analytic Expressions for maximum Fold Change (FC)

10_8§

Total Drug [DTOT] (M)

Fold change is defined as the ratio between maximum RAF activity (no/conc of active protomers) to that in absence of drug

nf91:= rafFC = SimplifyPars [fnActiveRAF / baselineActiveRAF]
8 (fg+2gdne +d%;) RAFer | )2
1+ KA +dpey - /

fg
2 2
(fg+2gdme +d2) (1+KA—\/(1+KA)2+8RAFre1) ]

out[191]= 'ng (f +dpe1) (1+KA+dre1)2+

rel

Activating Range is defined as the lowest concentration above which the drug no longer acts as a paradoxical activator and becomes an
inhibitor. This function is not easily solved analytically, and to understand its variation within the range of parameters defined in conditions
for PA above, is calculated numerically.

= 1.4.6. Convert to Python
m Section 1.5. Unified Model: fully-analytic solution to special case where g=f
mf- 7= Quit[]

= 1.5.1. Analytic Solution to the model
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This model is a solvable limit to the general all-mechanisms model and can therefore be used to test some of the analytic results. However, it
is not compatible with the data. f<1 and g>1 respectively support PA mechanism and f>1 and g<1 do not. Therefore f=g with PA extant
would mean that the two mechanisms act in opposite manner relative to PA. This may still be instructive as a theoretical limit applicable in
dimer kinase inhibition where positive cooperativity as well as dimer stabilization mechanisms exist.

ini2s4;= vars = {a, A, d, AA, Ad, AAd, AdAd}; (*A list of all variablesx)

A2 2A%d A% d? Ad
, AAd» ————, AdAdd»> —— , Ad» —, a-»AKA} /.8~ F;
Kdim £ Kdim Kd f g Kdim Kd? Kd

rep5 = {AA -

(xderived from equilibrium relationshipsx)
Consrvieqns_] :=
{Simplify[eqns[[1]] + eqns[[2]] +eqns[[5]] +2 (eqns[[4]] +eqns[[6]] +eans[[7]1)],
Simplify[eqns[[3]] +eqns[[5]] +eqns[[6]] + 2 (eqns[[7]1)1};
(xconservation relations for RAF and DTOT=x)
egnsconsrv = Simplify[Thread [Simplify[Consrv[vars] /. rep5] == {RAF, DTOT}]]
2 A% (d+fKd)? Ad 2A%d (d+fKd)
Outi285]= {Af (d+Kd+KAKd) + — " _ fKARAF, d+ — + — " __ DTOT}
f Kd Kdim Kd 2 Kd? Kdim

A simultaneous solution to both the above conservation equations is unwieldy and hard to obtain. Instead, we find partial solutions for kinase
protomers as a function of free drug and then free drug as a function of the total drug and the kinase protomers. The latter solution is used to
numerically construct d vs DTOT relationship.

in2sel= SimplifyPars[x_] :=
Simplify[x, {RAF >0, DTOT >0, Kd >0, Kdim>0, KA>09, d>0, f>0, g>0, dr1 >0, RAF.1 >0}];
sol5A = SimplifyPars [Solve[eqnsconsrv[[1]], A]]1[[2]] (*Second solution is positivex)
sol5d = SimplifyPars [Solve[eqnsconsrv[[2]], d]][[2]] (xSecond solution is positivex)

]/ (4(d+-FKd)2)J}

1
Out288)= {d%——zf Kd (2A2+A'FKdim+'FKd Kdim—\/ (8 A2 DTOT Kdim + (2 A% + A f Kdim +  Kd Kdim)z))}
4A

8 (d + fKd) 2 RAF
out[287]= {A - —| | fKdKdim -

d-F+-FKd+-FKAKd—\/[-F2 (d+Kd+KAKd)? +

Kdim

We estimate the total activity by counting all of the drug-free protomers which occur within a partly active or fully active dimer. Substituting
the above solution into the expression for Raf activity and dividing by total RAF concentration, we obtain the proportionate activity as a
function of total drug and other parameters.

n2sol= RafActivity[vars_] := 2vars[[4]] + vars[[6]]

fnActiveRAF5 = SimplifyPars [RafActivity[vars] /RAF /. rep5 /. sol5A];
RAF

repratios = {Kdim - , d->Kd drel};

RAF.e1
fnActiveRAF5 = SimplifyPars [FullSimplify[fnActiveRAF5 /. repratios]]
fnActiveRAF52 = FullSimplify[

SimplifyPars [fnActiveRAF5 //. {KA—-E1c -1 -de1, RAF.e1 » E2u2 xf/ (f +dpe1 (2 + Fdpre1)) /78311

ouzoz= (F (F+FKA+Fder —+/ (F2 (1+KA+dpe1)? +8 (f + dre1) * RAF 1 ) )2)/(8 (f + dre1) ® RAF 1)

2
E2u2 (f +dper)?
ou293= | (F+dpey (2 + Fdpe1)) |-ElcF+ |F |E1c®F+ /(Ezuz (f +dre1)?)
f+drer (2+fdrer)

Note that the above equations represent the total active RAF protomers in proportion to the total RAF kinase as a function of unbound drug
(d). In order to analytically establish parameter values which correspond to activation of the kinase, we find the first derivative of this
function (equation 11) and search for it’s zeroes (equation 12).
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in2o41= RafDimers[eqns_] := (eqns[[4]] +eqns[[6]] +eqns[[7]1]);
fnDimers5 = FullSimplify [SimplifyPars[ (RafDimers[vars] /RAF /. rep5 /. sol5A) /. repratios]]
SimplifyPars[fnDimers5 / fnActiveRAF5]

2
out2esl= | —F (L1 + KA + dpe1) +\/-F2 (1 +KA +dpe1)?+8 (f+drer) > RAF a1 ] / (16 (f + dre1)? RAFre1)

f+ dr\el

2f
o 4.2. Baseline Signaling (drug - free)

Out[296]=

in(2971:= baselineActiveRAF5 = fnActiveRAF5 /. d.e1 - 90;
rep3b5 = {RAF¢; » E3 (1 + KA) 2/8};
baselineActiveRAF15 = SimplifyPars [baselineActiveRAF5 /. rep3b5]
SimplifyPars[D[baselineActiveRAF15, E3] /. rep3b5]

(—1+\/1+E3 )Z

Out[299]=
E3
2
(71 +J1+E3 )
Oout[300)z —————
E32+/1+E3

The derivative of baseline signaling relative to E3 is a positive definite function. Therefore, baseline signaling is a monotonically proportion-
ate to E3, which is in turn, monotonically proportionate to RAF concentration and monotonically inverse relationship to KA.

Hence in the base model, increasing KA decreases baseline signaling and increasing RAF ; increases baseline signaling.
= 1.5.3. Conditions on parameter regions for activation in response to the drug

in3o1:= dfn5 = SimplifyPars [D[fnActiveRAF5, d..1]1]

1
Out[301]= f

f+fKA+Fdeer 7\/# (1+KA+dpe1)2+8 (f+dee1)? RAF a1
8 (f +dre1)* RAF 1

212 (1 +KA+dpe) +16 (f+drer) RAFpe1
2 ('F+d,ne1) ‘F— -

szz (1+KA+dpe1)?+8 (f+dper)? RAF a1

3 (-F+-FKA+-Fd,ne1—\/-F2 (1+KA +dpe)?+8 <f+dre1)2RAFrel)

In302)= zeroes5 = SimplifyPars [Solve[dfn5 == @, d..;, VerifySolutions - True]]

f|f+FKA+8RAF.e; + 2Abs[1 - f + KA] \/ f2 + 6 RAF .o )
out[302]= {{drel - - 2.3 },
+ 8 RAFe1
f (-F+-FKA+8RAFre1 ~2Abs[1-f+KA] \/ 2+ 6 RAF o1 )
{dr‘elﬁ - }
2 + 8 RAF e

The first solution is negative definite. Below, we derive the rules (expression 13) which allow the second solution to be positive
In303)= exist5 = SimplifyPars [Reduce[ ((dre1 /. zeroes5[[2]]) > 0) & (KA > 0) & (RAF..; >0) 1]

ouzos= 4F2+3 (1+KA)2>8 (F+FKA+RAF ) & (2F<1+KA || 2F>3+3KA)
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in304)= d2fn5 = SimplifyPars [D[dfn5, dre1]]
1

out[304]=
8 (f +dpe1) > RAF 1

16 f2 (1 - f + KA)? (f + dpe1) RAF a1 22 (1 +KA+dper) +16 (f+dper) RAF 1
f | (f+dee) |-F- +

2 2 2 3/2
(F2 (14 KA+ dre1)® + 8 (F+ drer) * RAFrer ) 2/ F (1 KA+ der)2+ 8 (F+drer) ? RAF a1

('F+'FKA+'Fdrel—\/'F2 (1+KA+dpe1)?+8 (f+dpet)? RAF o1 J +

2F2 (1+KA+dpey) +16 (F+dper) RAF e

(f +dre1) |-

2\/f2 (1 +KA+dpe1)?+8 (f+dper)? RAF 1

22 (1 +KA+dpe1) +16 (f+dper) RAFper
2 (F+dpey) |F- -

2 sz (1 +KA+dpep)?+8 (f+dpe1)? RAF a1

3 (f+fKA+fdrel—\/f2 (1+KA +dpe1)?+8 (F+dpet)? RAF ey J -

4 (f+fKA+fdre1—\/-Fz (1+KA+dpey)?+8 (-F+drel)2RAFrel)

22 (1 +KA+dpe1) +16 (f +dper) RAFper
2 (F+dpey) |F- -

2 sz (1 +KA+dpe1)?+8 (f+dpe1)? RAF a1

3 (f+fKA+fdrel—\/1’2 (1+KA +dpe1)?+8 (F+dpet)? RAF o1 J

in3osi= d2fn5z = SimplifyPars[d2fn5 /. zeroes5[[2]]]

f—\/f2+6RAFrel]) F<1+KA
[RAFrel [6-F—4\/-F2+6RAFrel ) + 2 [-F—\/f2+6RAFrel J)J/
4

[41cz (-1 + f - KA) 3 RAF o1 (ﬂzm) )]
((f2 +8RAFre1)Z (12 RAF .1 + f (f— \/ 2 + 6 RAF a1 )) True

[1296 RAFZ,; + 6 f RAF o1 (45f- 16 \/ 2 + 6 RAF g1 ] +13 3 (1:_ J£2 + 6 RAF g )])/

5

(4f2 (-1 +f - KA) > RAF .1 (ﬁz\/stRAFrel ) )

nzos= d2fn5z[[1]1]1[[1, 1]1]

ou306l= - ( [ (2 + 8 RAF e1)? (4 RAF,e + f (f ~~/ 2 + 6 RAFe; ) ]
(RAFPel (sf 4~/ f?+ 6 RAF ¢ ] +f2 (f —~/ 2 + 6 RAF o1 )] )/
4
(4{2 (-1 +F - KA)> RAF o1 (f—Z\/fz + 6 RAF o1 ] ]J

- [ ( (F2 + 8 RAF e1)? (4 RAF .o + f

Out[305]=




24 | Mathematica_AliModels.nb

In307)= exist5d2 = SimplifyPars [SimplifyPars[Reduce[ (d2fn5z[[1]][[1, 1]] <©) && (KA >=0) & (RAF.e; >=0)1]1
oupor= F<1 ] 1+KA>F

The f<1 condition comes naturally from the equations. The alternative is that KA>1+f so PA exists even when f>1.

nzos)= SimplifyPars [SimplifyPars[Reduce[ (d2fn5z[[2]] <©) & (KA >=0) && (RAF..1 >=90)]11]
outos= F<1 ] 1+KA>F

inBogi= exist5A = FullSimplify [exist5 & exist5d2]
ou309= 4F2+3 (1 +KA)2>8 (F+FKA+RAFe) & (2F<1+KA || 2Ff>3+3KA)&& (F<1||1+KA>F)

These are the full set of conditions for PA to exist in the model. The conditions above require f<(1+KA)/2. This is because considering the
last two ‘AND’ conditions, if £>3/2(1+KA) it cannot simultaneously satisfy either of the last two conditions. Therefore, f <(1+KA)/2 needs to
be satisfied. Under this condition, if <1, it is automatically satisfied that f<(1+KA)/2 as long as KA>1. If f<(1+KA)/2, the last condition is
automatically satisfied that f<1+KA.

n310= exist5A1 =f < (1 +KA) /2

1+KA

outa1o= F <
2

n311:= exist5full = SimplifyPars [Reduce [exist5A && exist5A1]]
ouatie 2F<1+KAB&S (f+fKA+RAFe) <4f2+3 (1+KA)2

= 1.5.4. Monotonic relationship between unbound (d) and total (DTOT) drug concentrations

The derivative of the function DTOT relative to d is the sum of the derivative of different terms within the second equation in expression (1).
Among these the derivative of the first term is 1. And the derivative of the second and third term are shown as non-negative functions of

unbound drug d, below.
in312:= eqnsconsrv[[2]]

Ad 2A%d (d+fKd)
ougiz d+ — + ———————————— == DTOT
Kd 2 Kd? Kdim
in313:= $d511 = FullSimplify [SimplifyPars[D[Axd /. sol5A, d]1]1];
rd511 = Reduce [sd511< 0] ;
rd511s = SimplifyPars [rd511]

oupis- F>1+KA&& [d (1-2F+KA) =f (1+KA)Kd ||

(1+KA) (d (1-2F+KA) —F (1+KA) Kd) Kdim

&& f (2d+Kd+KAKd) <d (1+KA)J

[RAF>
8 (d + fKd)

Note that the first condition, f be larger than 1+KA and the conditions derived for PA, that f<(1+KA)/2 cannot be simultaneously satisfied.
Therefore, drugs that display PA have positive or 0 value for the derivative sd511.

n316:= SimplifyPars [Reduce [rd511s & exist5A1] ]
ouzie)= False

Therefore, when PA exists, the function sd511 cannot be negative.
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n317)= $d512 = SimplifyPars [D[Simplify [A*d (d + fKd) /. sol5A], d]]

1 - . " , 8 (d + f Kd) 2 RAF
ouzt17: —————F“ Kd“ Kdim“ |[df + fKd + fKAKd - |[f° (d+Kd +KAKd)" + ——
16 (d + fKd)* Kdim

2F2 (d+Kd+ KAKd) + 0197 RaF
Kdim

2d (d+fKd) |f- _

2
2\/+2 (d+Kd + KAKd)?2 ¢ SloFKa)7RAP

Kdim

8 (d + fKd)?2 RAF
3d [df+fKd+fKAKDd- [f? (d+Kd+KAKd)?+ —————— | +
Kdim

8 (d + fKd)?RAF
(d+fKd) |df+FfKd+fKAKA- |f* (d+Kd+KAKd)2+ ————
Kdim

Note that the first non-trivial product term in this expression is negative definite as the term inside the square root is always greater than the
term outside. So we focus on the second term.

in3ts;= $d5121 = SimplifyPars[sd512[[-1]]];
rd512 = Reduce[sd5121 > 0] ;

inE2oj= rd512s = SimplifyPars [SimplifyPars[rd512]]

1
ou320)= RAF < ————————(d® (3% -8 (1+KA) +4 (1+KA)?) -2df? (1+KA) Kd - £* (1 +KA)*Kd®) Kdim &&
8 (d+ fKd)?

(1 +KA) (2d+fKd) <df
Again, notice the second necessary condition.
in321= SimplifyPars [Reduce [rd512s[[-1]] && exist5A1]]
ouyz21= False
When PA exists, the function sd5121 is never positive. And since its coefficient is always negative, therefore sd512 is positive or 0.
Finally,
DTOT=d+sd511/Kd+sd512/(f2 Kd? Kdim)

Since all three expressions on RHS are non-negative derivatives as a function of unbound drug - the total drug has a non-negative derivative.
Therefore, DTOT(d) is monotonically positive/increasing function.

in3221= FnDTOT = SimplifyPars[Consrv[vars] [[2]] /. rep5 /. sol5A];

= 1.5.5. Analytic Expressions for maximum Fold Change (FC)

Fold change is defined as the ratio between maximum RAF activity (no/conc of active protomers) to that in absence of drug
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in323:= maxActiveRAF5 = FullSimplify [SimplifyPars [fnActiveRAF5 /. zeroes5[[2]]11];
rafFC5 = SimplifyPars [maxActiveRAF5 /baselineActiveRAF5]

2
4 (f? + 8 RAF.1) (4 (-1 + f - KA) RAFpe1 + Abs[1 - f + KA] (SRAFrel+'F ('F—\/'FZ+6RAF,«91 ))) J/
3 2
[('F(—1+'F—KA)+2Abs[1—'F+KA]x/'F2+6RAF,~el) (1+KA—\/(1+KA)2+8RAFrel)

When the ‘exist’ conditions derived above to qualify for existence of PA within this model are satisfied, we can evaluate the functional
dependence of the raf fold change expression on RAF,; and KA:

out[324]=

in325;= dRAFrafFC5 = SimplifyPars[D[rafFC5, RAF.1]1];
dKArafFC5 = SimplifyPars [D[rafFC5, KA]];
dfrafFC5 = SimplifyPars[D[rafFC5, f]];

inz2s;= Simplify [SimplifyPars [Reduce [dRAFrafFC5 <9]], exist5A1]
oua2g= 4F2+3 (1 +KA)2>8 (f+FKA+RAF.e1)

Under typical conditions for PA, f<1 and KA>1. Therefore the above condition is pretty easy to satisfy with RAF<<Kdim. That is when RAF
has a low concentration or weakly dimerizes. In that case, RAF increase reduces fold change.

However, with stronger dimerization or very high, likely super-physical RAF concentration(~100 micro-molar), it may be possible to invert
the curve, however, the same condition is derived for PA, therefore, the increasing RAF concentration will keep reducing fold change until no
PA is observed. Monotonically.

in329)= exist5full
ouzzo= 2 F <1 +KAB&S (F+FKA+RAFLe) <4F2+3 (1+KA)2

Activating Range is defined as the lowest concentration above which the drug no longer acts as a paradoxical activator and becomes an
inhibitor. This function is not easily solved analytically, and to understand its variation within the range of parameters defined in conditions
for PA above, is calculated numerically.

Descriptive, example Plots (supp text section 3)

Plots for individual curves. Run all 1st sub sections (*.1) for any ONE of sections 1-4 to get the following plots.
m = Sty[x_] :=Style[x, 22, Bold, FontFamily - "Times"];

1= plfnl = ({fnActiveRAFDS / (fnActiveRAFDS /. d..; - 9),
fnActiveRAFNC / (fnActiveRAFNC /. d.e; - 0), fnActiveRAFCA/ (fnActiveRAFCA /. d.e1 - 9),
fnActiveRAF / (fnActiveRAF /. d.e; » 0) } /. {RAF 1 -» RAF /Kdim} /. baseparams) ;
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n- = legendlist = Sty ["AK\n"];

rvals = {2., 0.03, 0.07, 0.02};

rl= {Tiny, Small, Medium, Large};

cols = {Blue, Orange, Green, Black};

cs = Table[Directive[ Thickness[0.01], cols[[i]], Dashing[{rvals[[i]], r1[[i]1]1}]1], {i, 4}];
(xdashing style by modelx)

LogPlot[plfnl, {dre1, ©, 100}, Frame -> True,
(*FrameLabel- (Sty/@{"Relative Unbound Drug Concentration”,"RAF Complex Molecules"}),=*)
ImageSize -> {500}, FrameStyle -> Thickness[0.004], FrameTicksStyle -> Directive[25, Black],
PlotRange -> Full, PlotStyle - cs, PlotLegends -> "AK"]

S50 o = =

)]
—

AK

“0.50

S
)
R

0 20 40 60 80 100

in[- = fn2part[1] =
SimplifyPars[ (({a, AA, AAd, AdAd, A, Ad} /. repl /. sollA) /RAF /. d - (d.e1 Kd)) /. baseparams];
fn2part[2] = SimplifyPars|
(({a, AA, AAd, AdAd, A, Ad} /. rep2/.sol2A) /RAF /.d - (d.; Kd)) /. baseparams];
fn2part[3] = SimplifyPars[ (({a, AA, AAd, AdAd, A, Ad} /. rep3 /. sol3A) /RAF /.d - (d..1 Kd)) /.
baseparams];
fn2part[4] = SimplifyPars[ ( ({a, AA, AAd, AdAd, A, Ad} /. rep4 /. sol4A) /RAF /.d - (d..1 Kd)) /.
baseparams];
plfn =SimplifyPars[Table[fn2part[i]1[[j]], {J, 6}, {i, 4}11;
legendlist = Sty /e { "a\n", "AA\n", " AAd\n", " AdAd\n", " A\n", " Ad\n"};
Table[Plot[Evaluate[plfn[[i]]], {dre1, ©, 100}, Frame -> True, ImageSize -> {500},
FrameStyle -> Thickness[0.004], FrameTicksStyle -> Directive[25, Black],
PlotRange -> All, PlotStyle - cs, PlotLegends -> legendlist[[i]]], {i, Length[plfn]}]
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