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Abstract The failure of cancer treatments, including immunotherapy, continues to be a major 
obstacle in preventing durable remission. This failure often results from tumor evolution, both geno-
typic and phenotypic, away from sensitive cell states. Here, we propose a mathematical framework 
for studying the dynamics of adaptive immune evasion that tracks the number of tumor-associated 
antigens available for immune targeting. We solve for the unique optimal cancer evasion strategy 
using stochastic dynamic programming and demonstrate that this policy results in increased cancer 
evasion rates compared to a passive, fixed strategy. Our foundational model relates the likelihood 
and temporal dynamics of cancer evasion to features of the immune microenvironment, where tumor 
immunogenicity reflects a balance between cancer adaptation and host recognition. In contrast with 
a passive strategy, optimally adaptive evaders navigating varying selective environments result in 
substantially heterogeneous post-escape tumor antigenicity, giving rise to immunogenically hot and 
cold tumors.

Editor's evaluation
This study presents a valuable mathematical model for the adaptive dynamics of cancer evolution in 
response to immune recognition. The mathematical analysis is rigorous and convincing, and overall 
the framework presented could be used in the future as a solid base for analytically tracking tumor 
evasion strategies. The work will be of interest to evolutionary cancer biologists and potentially may 
also have implications for the design of clinical interventions.

Introduction
Cancer dynamics, encompassing both genotypic evolution and phenotypic progression, lies at the 
heart of treatment failure and disease recurrence, and therefore represents a significant and stubborn 
therapeutic hurdle. Prior research efforts have made substantial progress in detailing the mathematics 
of acquired drug resistance (Iwasa et  al., 2006; Michor et  al., 2004; Komarova, 2006) and the 
complementary roles of phenotypic and genotypic changes (Gupta et al., 2019). Recently, there has 
been much renewed interest in therapies that utilize the adaptive immune system to confer durable 
remission (Couzin-Frankel, 2013; Waldman et al., 2020). These latter breakthroughs have gener-
ated considerable interest in quantifying the cancer-immune interaction (Mayer et al., 2019; Sontag, 
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2017; George et al., 2017). As with targeted therapeutic resistance via compensatory evolution or 
adaptive rewiring (Bergholz and Zhao, 2021), tumors can similarly evade the immune system via 
either elimination or downregulation of tumor-associated antigens (TAAs) normally detectable by the 
T cell repertoire (Rosenthal et al., 2019). However, several key features distinguish immune-specific 
evasion from classical drug resistance (Komarova, 2006). Dynamical changes in cancer genotypes and 
phenotypes, while problematic for conventional therapies, create additional TAAs that may subse-
quently be recognized by distinct T cells (Yarchoan et al., 2017). Thus, the evolving diversity of the 
T cell repertoire, consisting of billions of unique clones each with a distinct T cell receptor, provides 
adaptive immunity and immunotherapy the unique advantage of repeated tumor recognition oppor-
tunities (George and Levine, 2021; Lakatos et al., 2020; Qi et al., 2014), making long-term evasion 
more challenging.

Previous research efforts have investigated the diversity of evolutionary trajectories and the 
extent of cancer-immune co-evolution occurring in early disease progression (George and Levine, 
2018; George and Levine, 2020). These works were based on increasing evidence of significant and 
sustained tumor evolution driven by immune surveillance (Turajlic et al., 2018; Jamal-Hanjani et al., 
2017). Immunosurveillance via distinct T cell clones imposes an adaptive, stochastic recognition envi-
ronment on developing cancer populations (Desponds et al., 2016) that can result either in cancer 
elimination, escape, or equilibrium (Schreiber et al., 2002; Dunn et al., 2004). Equilibrium results 
in cancer co-existence with the immune system over large time scales (Turajlic et al., 2018), thereby 
motivating the need for a more complete understanding of the interplay between immune recog-
nition and cancer evolution for effective therapeutic design. In addition to parsing this complexity, 
the precise extent to which a cancer population may actively evade repeated immune recognition 
attempts is at present unknown.

Previous modeling efforts have assumed that cancer adaptation occurs passively, that is, without 
behavior predicated on knowledge of the current immune microenvironment (IME). However, it is 
well known that cancer populations commonly undergo phenotypic changes capable of altering their 
immunogenicity (Tripathi et al., 2016); these changes could be coupled to sensing of the IME in a 
manner similar to cancer mechanical, chemical, and stress sensing (Lee et al., 2019; Damaghi et al., 
2013; Rosenberg, 2001). Moreover, direct experimental evidence demonstrates genetic adaptation 
in bacterial systems capable of sensing stress and consequently varying the per-cell mutation rate (Al 
Mamun et al., 2012; Rosenberg and Queitsch, 2014); there appear to be similar stress pathways in 
cancer (Bindra et al., 2007). Therefore, an alternative to passive evolution is for cancer populations 
to actively sense and evade recognition in the current environment en route to metastasis in a manner 
that maximally benefits survival, which we refer to henceforth as the ‘optimal escape hypothesis.’ 
Understanding the extent and associated features of optimized tumor evasion is a crucial first step 
to identifying the best therapeutic approach, particularly for T cell immunotherapies that may be 
temporally varied.

Here, we introduce a mathematical framework, which we call ‘Tumor Evasion via adaptive Antigen 
Loss’ (TEAL), to quantify the aggressiveness of an evolutionary strategy executed by a cancer popu-
lation faced with a varying recognition environment. This framework enables a dynamical analysis of 
both passive and optimized evasion strategies. The TEAL model describes a discrete-time stochastic 
process tracking the number of targets available to a recognizing adaptive immune system. We apply 
dynamic programming (Bellman and Dreyfus, 1959; Ross, 2014) in order to solve the corresponding 
time homogeneous Bellman equation detailing the tumor optimal evasion strategy for a specific 
example of the assumed penalty for attempting to avoid immune detection. In doing so, we obtain 
an exact analytical characterization of the evasion policy that maximizes long-run population survival, 
which we show is the unique solution. We can then quantify the enhancement in survival for optimal 
threats relative to their passive counterparts under a variety of temporally varying recognition envi-
ronments. Surprisingly, we find that optimized strategies exhibit substantial diversity in their dynam-
ical behavior, distinguishing them from threats with a fixed evolutionary strategy. Notably, immune 
recognition efficiency and the IME microenvironment are predicted to influence the likelihood for 
tumors to either accumulate or lose therapeutically actionable TAAs prior to their escape. The TEAL 
model represents a first attempt to explicitly represent – and in the future test – the optimal escape 
hypothesis in order to frame cancer evasion as a dynamic and informed strategy aimed at maximizing 
population survival.

https://doi.org/10.7554/eLife.82786
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Model development
In greatest generality, our model consists of an evading clonal population that may be targeted over 
time by a recognizing system. We assume henceforth that the recognition-evasion pair consists of 
the T cell repertoire of the adaptive immune system and a cancer cell population, recognizable by a 
minimal collection of sn TAAs present on the surface of cancer cells in sufficient abundance for recogni-
tion to occur over some time interval ‍n‍. Our focus is on a clonal population, recognizing that subclonal 
TAA distributions in this model may be studied by considering independent processes in parallel for 
each clone.

Experimental evidence and prior modeling suggest that tumors may be kept in an ‘equilibrium’ 
state of small population size prior to either escape or elimination, with repeated epochs of recog-
nition and evasion (Dunn et al., 2004; Turajlic et al., 2018; George and Levine, 2020). We adopt a 
coarse-grained strategy and assume that during each epoch, the immune system has an opportunity 
to independently recognize each of the sn TAAs with probability ‍q‍, and also the cancer population 
can lose recognized TAAs, each with probability ‍πn‍, which we refer to as the antigen loss rate. The 
antigen loss rate is either fixed or chosen by the cancer population using information available in the 
current period. If the immune system cannot detect any of the available TAAs in a given period, then 
the cancer population escapes detection. On the other hand, if ‍rn > 0‍ antigens are detected by the 
adaptive immune system in this time frame, then the cancer population is effectively targeted. This 
leads to cancer elimination unless the population is able to lose each of the rn recognized antigens 
during the same period. This loss of recognition would presumably arise in a subpopulation that would 
then expand at the expense of the successfully targeted cells. If evasion balances recognition and all 
detected antigens are lost, then equilibrium (non-escape, non-elimination) ensues, and the process 
repeats in the next period with a new number of target antigens given by a state transition equation

	﻿‍ sn+1 = sn − rn + β + fn‍� (1)

where ‍β‍ represents the basal rate of new antigen accumulation, and fn represents the addition of 
new TAA targets dependent on the rate of escape ‍πn‍ in the current state. We shall refer to fn as the 
(intertemporal) penalty term, the idea being that changes that lead to antigen loss will out of necessity 
give rise to the creation of new TAAs, in the form of either overexpressed/mislocalized self-peptides 
or tumor neo-antigens.

The model therefore defines a discrete time process that involves changes to both the tumor and 
the immune system. The process ends in cancer elimination if the cancer population is unable to match 
all of the rn recognized antigens at any period. The process ends in cancer escape if at any period the 
number of recognized antigens is zero (‍rn = 0‍). This framework mirrors the outcomes resulting from 
known tumor-immune interactions, a process that leads via immunoediting to cancer escape, elimi-
nation, or equilibrium (Schreiber et al., 2002; Dunn et al., 2002; Dunn et al., 2004; Koebel et al., 
2007). Here, tumor antigenicity is represented by the total number of post-escape TAAs. We do not 
distinguish between different types of TAA loss, which may occur through a number of mechanisms, 
including somatic mutation, epigenetic regulation, or phenotypic alteration.

Passive evader
In the passive case, the cancer population does not change its evasion rate so that ‍πn = p‍ is fixed and 
independent of any of the parameters governing the recognition landscape. For this case, we shall 
also use the simple assumption that the net antigen accumulation and penalty ‍β + f ‍ is a fixed constant.

Optimal evader
In the optimized case, ‍πn‍ is chosen in order to maximize the overall evasion probability as a function 
of parameters realizable to the cancer at period ‍n‍. We assume that sn the number of TAAs as well as 
rn the size of the recognized subset is knowable by the cancer prior to strategy selection. In addition, 
we postulate that the intertemporal penalty scales directly with ‍πn‍, a reasonable assumption given, 
for example, the direct relationship between mutagenesis and passenger mutation accumulation (Pon 
and Marra, 2015; McFarland et al., 2014). While many functional forms of ‍fn

(
πn, rn, sn

)
‍ would be 

reasonable, we assume in general that the penalty is ‍πn‍-linear:

	﻿‍ fn(sn, rn,πn) = hm(sn, rn)πn.‍� (2)

https://doi.org/10.7554/eLife.82786
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To make our system analytically solvable, we use a specific choice in which hm scales monotonically 
as a function of both rn and sn and ‍hm ∝ rn‍ in the large rn limit (see ‘Methods’). Since the number of 
recognizable (and thus actively targeted) TAAs reflect, all else being equal, an active IME hostile to 
cancer, we assume that subsequent total TAA addition, ‍β + fn‍, are dependent on the current level 
of immune detection, thereby taking into account the increased cost of surviving in, for example, 
an inflammatory IME. The temporal dynamics of the TEAL process are illustrated in Figure 1A and 
Figure 1—figure supplement 1.

Varying environments
Using the above framework, we subject both passive and active cancer evasion tactics to tempo-
rally varying recognition profiles. We partition pre-escape dynamics into four cases based on immune 
recognition ‍q‍ and basal TAA arrival ‍β‍, from which we characterize the distribution of escape time, 
cumulative mutational burden, and predicted post-escape tumor immunogenicity.

Results
The following section presents the main findings of our analysis (full mathematical details are 
provided in the ‘Methods’ section). For sn available and rn recognized TAAs, we have that 

‍rn ∼ Binom(sn, q)‍. Conditional on recognition (‍rn > 0‍), the number of downregulated antigens, ‍ℓn‍, is 
given by ‍ℓn ∼ Binom(rn,πn)‍. Recognition therefore occurs with probability ‍P

(
rn > 0

)
= 1 − (1 − q)sn

‍. 
Similarly, non-elimination occurs following recognition with probability ‍P

(
ℓn = rn

)
= πrn

n ‍. A decision 

Figure 1. Tumor Evasion via adaptive Antigen Loss (TEAL) model. (A) Illustration of tumor antigen detection and downregulation in the TEAL model of 
cancer-immune interaction. (B) The directed graph with nodes representing the states of the TEAL model and edges labeled based on the probability 
of their occurrence. The interaction leads to elimination, equilibrium, or escape. Both evasion and elimination are absorbing states, and the equilibrium 
state results in repeated interaction. (C) Plots of single-period cancer optimal antigen loss rates ‍π∗‍ given by Equation 8 are plotted as a function of 
recognition rate ‍q‍ for various numbers of recognized antigens ‍0 < rn ≤ sn‍ with ‍sn = 5‍.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Illustration of the Tumor Evasion via adaptive Antigen Loss (TEAL) model.

Figure supplement 2. Passive Evader outcome tree.

Figure supplement 3. Active Evader decision tree.

Figure supplement 4. Active Evader reward structure.

Figure supplement 5. Break-even evasion probability as a function of recognition probability.

Figure supplement 5—source data 1. Source data contains a spreadsheet of Figure 1—figure supplement 5B table.

Figure supplement 6. Probability of equilibrium.

Figure supplement 7. Mean antigenic load at equilibrium.

Figure supplement 8. Error of upper estimate ‍̃µ‍.

Figure supplement 9. Simulated and analytical mean antigenic load at equilibrium.

Figure supplement 10. Probability of Recognizer success.

Figure supplement 11. Optimal evasion.

https://doi.org/10.7554/eLife.82786
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tree for the TEAL process is illustrated in Figure 1B (passive and active decision trees used in the 
analysis are depicted in Figure 1—figure supplements 2–4).

Passive evasion strategy
For a passive evader, the TAA loss rate is fixed so that ‍πn = p‍. It can be shown (see Methods Section. 
Distribution of lost antigens) that the dynamics governed by Equation 1 in the passive case can be 
represented by their mean trajectories while the cancer population is in equilibrium, given by

	﻿‍ En
[
Sn+1

]
= Sn − p(1−γ)ηsn−1

ηsn−γsn sn + (β + f),‍� (3)

where ‍η ≡ 1 − q(1 − p)‍ is the probability of equilibrium (non-escape, non-elimination) between the 
cancer and immune compartments for a single TAA given the existence of at least one available TAA. 
These dynamics may be approximated by

	﻿‍ En
[
sn+1

]
≈ (1 − q)sn + (β + f),‍� (4)

where ‍En
[
·
]
‍ is the conditional expectation given the information available at time ‍n‍. The approx-

imation given by Equation 4 is a lower estimate of tumor antigenicity and is accurate as long as ‍p‍ 
and ‍q‍ are not both small and in particular for choices that give rise to large tie probability (Figure 1—
figure supplements 6 and 10).

Optimal evasion strategy
In contrast to the above case where ‍πn‍ was fixed at ‍p‍, Here, the antigen loss rate is variable and 
selected optimally given the current state of total sn and recognized rn antigens. The use of dynamic 
programming to address the optimal long-term evasion policy relies on a defined value function 
(Bellman and Dreyfus, 1959). We shall focus on the case where the cancer population is assigned 
normalized values of 1 at any period resulting in escape and 0 otherwise. The corresponding stationary 
Bellman equation takes the form

	﻿‍
Jn = max

πn
En

[
πrnn

[
(1 − q)sn+1 +

(
1 − (1 − q)sn+1

)
Jn+1

]]
,
‍�

(5)

where the value function ‍Jn = J(sn, rn, πn)‍ represents the maximal attainable value at period ‍n‍; 
(Methods Section Dynamic programming solution). It can be shown that

	﻿‍
Jn =

Anγsn

1 − (1 − q)sn ‍�
(6)

with

	﻿‍
An = δnq(1 − q)β+rn/c−rn

1 − δnq(1 − q)β+rn/c−rn ‍�
(7)

satisfies Equation 5. Here, ‍0 < δn ≤ 1‍ is a free parameter that varies inversely with the risk aversion 
of the evader (larger values imply a bolder strategy). One advantage of the dynamic programming 
approach is that it reduces an infinite-period optimization problem to a sequence of single-period 
optimizations. The corresponding optimal policy is given by the sequence

	﻿‍
π∗n =

(
δnq

1 − (1 − q)sn

)1/rn

.
‍�

(8)

Plots of ‍π
∗
n‍ are given for various rn in Figure 1C and Figure 1—figure supplement 11. As expected, 

this closed-form strategy results in increased values for the optimal antigen loss rate ‍π
∗
n‍, which increase 

for increasing ‍q‍ and rn. We take ‍δn = 1‍ in subsequent analysis (so that the optimal strategy when 
‍sn = rn = 1‍ is ‍π

∗
n = 1‍).

https://doi.org/10.7554/eLife.82786
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Active evasion strategies enhance population survival rates
For a fixed TAA arrival, Equations 3 and 4 describe a mean-reverting process. Consequently, the 
mean number of TAAs approaches a stable equilibrium

	﻿‍
lim

n→∞
En

[
sn+1

]
≈ (β + f)/q.

‍� (9)

as long as the cancer neither escapes nor is eliminated. In the optimal case, a similar equilibrium 
value ‍s∞‍ may be calculated:

	﻿‍
s∞ =

β

q
∣∣1/ ln(1 − q) − 1

∣∣ .
‍�

(10)

In this case, stability is more complex: If immune recognition is sufficiently effective, meaning 

‍q > q∗ = 1 − e−1
‍, then Equation 10 is a stable equilibrium exhibiting mean reversion similar to that of 

the passive case. On the other hand, recognition impairment (‍q < q∗‍) gives rise to an instability, which 
results in a system harboring an initial number of targets s0 being driven either to escape if ‍s0 < s∞‍ or 
to large accumulations (and likely elimination) if ‍s0 > s∞‍ (Figure 5—figure supplement 2).

We proceed by contrasting active and passive escape rates assuming no recognition impairment, 
and discuss the implications of immune impairment in a later section. Simulations of passive and opti-
mized strategies with passive evasion rates matching mean optimal evasion rates (‍p = E

[
π∗

n
]

|s∞‍) are 
compared in Figure 2. Despite identical mean TAA evolution (Figure 2A) and comparable intertem-
poral penalties, the optimized strategy results in substantially higher cancer escape probability (150%) 
compared to the passive case. Moreover, optimized strategies generate wider escape time distri-
butions, thus illustrating an adaptive evader’s sustained effort to thwart elimination prior to escape 
(Figure 2B).

Figure 2. Passive and optimized evasion strategies against stationary threats. (A) Comparisons of the temporal dynamics of passive (green) and active 
(blue) strategies with parameter selections giving equal mean behavior. In the active case, ‍q‍ yields stable dynamics, giving mean antigen arrival ‍β‍. In 
the passive case, ‍p‍ was selected to match the mean optimal evasion rate and the expected sn of the active case. Also, ‍f ‍ and ‍β‍ both chosen so that ‍s∞‍, 
and the results plotted for s0‍∈‍ {2, 5, 8}. (B) 106 replicates of this process were used to calculate distributions of stopping times conditioned on escape. 
This distribution generates passive (resp. optimized) ‍pescape‍ of 5.37 (resp. 8.44).

The online version of this article includes the following source data for figure 2:

Source data 1. Source data contains a spreadsheet of data for Figure 2B.

https://doi.org/10.7554/eLife.82786
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Arbitrary recognition landscape
The above describes the dynamics of passive and optimized cancer co-evolution during adaptive 
immune recognition with constant governing parameters. We can more generally apply this approach 
to understand how an evasion strategy affects the likelihood and timing of cancer escape under a 
variety of temporally varying recognition landscapes. Such landscapes could, for example, be imposed 
by a clinician temporally modulating an immunotherapeutic intervention and are routinely proposed 
in the setting of traditional therapies, where attempted strategies have included a variety of cyclical 
burst approaches (Foo and Michor, 2009; Eigl et  al., 2005). A similar approach could be taken 
with regard to timing and dosage of adoptive T cell immunotherapy. An advantage of our dynamic 
programming approach is the ability to study optimal evasion strategies for arbitrary recognition land-
scapes (Figure 3A). We simulate TEAL dynamics and find that optimized immune evaders are more 
successful in evading detection than their passive counterparts across various recognition landscapes 
(Figure 3B). Evasion, when it occurs in the optimized case, does so largely after a sustained interac-
tion with the recognizing threat (Figure 3C). Collectively, our results detail the dynamics of sustained 
cancer-immune co-evolution via TAA loss in threats capable of adopting adaptive evasion strategies 
in the presence of complex treatment modulation (George and Levine, 2020; Turajlic et al., 2018).

Optimal evaders under effective immune recognition accrue mutations 
at a fixed rate
One consequence of mean reversion is that the rate of mutation accumulation over time, ‍λ(n)‍, is linear 
in ‍n‍ (Methods Section Mean optimal transitions):

	﻿‍
λ(n) =

2β ln(1 − q)
1 − ln(1 − q)

n, q > q∗ = 1 − e−1.
‍�

(11)

The prediction of constant accumulation is consistent with empirically observed cancer mutation 
behavior (Lawrence et al., 2013; Alexandrov et al., 2013). This is not what holds in the impaired case 
(as will be discussed later), thus suggesting that early cancer progression often proceeds in an envi-
ronment with effective immune recognition. Additionally, our formula shows that larger mutation rates 
can be caused by large evasion penalties or by reduced immune recognition. Of course, the TEAL 
model does not consider any specific features that determine the values of the effective parameters. 
Instead, its utility is in quantifying the overall effect of reducing antigen detection resulting from, for 
example, transitions to an immune impaired microenvironment.

Figure 3. Passive and optimized evasion strategies for temporally varying recognition profiles. (A) Temporally varying recognition functions are selected 
and applied to threats employing passive (blue) and optimized (red) evasion strategies. (B) The mean and standard deviation of escape probabilities 
is compared across recognition profiles for each strategy (pairwise significance was assessed using two-sample t-test at significance ‍α‍ with ‍p‍<10-5). 
(C) Escape time distributions are generated for step, cyclical, increasing, and decreasing recognition environments (solid line: mean). In each case, mean 
total new antigen arrival ‍β + E

[
fn
]
‍ for passive (resp. optimized) evasion were 4.39 (resp. 4.75), and 103 simulations of 103 replicates each were used for 

statistical comparison; all samples were aggregated for escape time violin plots (solid line denotes mean).

The online version of this article includes the following source data for figure 3:

Source data 1. Source data contains a spreadsheet of data for Figure 3B, C.

https://doi.org/10.7554/eLife.82786
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Post-escape tumor antigenicity determined by a balance between recogni-
tion aggressiveness and local penalties in the immune microenvironment
The prior section related recognition and penalty to observed mutation rates. We now consider their 
combined effects on tumor immunogenicity following immune escape. The TEAL model represents 
immunogenicity by the number of available TAAs at the time of cancer detection, an important 
predictor of immunotherapeutic efficacy (Martin et al., 2016; Samstein et al., 2019; Goodman et al., 
2017). We apply the TEAL model to simulate evading cancer populations, focusing exclusively on 
trajectories that result in tumor escape, to characterize the distribution of available TAAs. This is 
performed first for increasing immune recognition rates ‍q‍ (Figure 4A) and then for increasing penalty 
term ‍β‍ (Figure 4B). Our results demonstrate that larger penalties result in higher post-escape TAA 
levels, while efficient immune recognition depletes available TAAs. The presumptive reason for this 
latter observation is that escape in the presence of strong immune recognition biases the tumor to 
have low numbers of TAAs. This prediction agrees with recent empirical observations that strong 

Figure 4. Distribution of available post-escape tumor antigens. The distribution of tumor-associated antigens (TAAs) was estimated from simulations 
of optimized cancer evasion resulting in escape and plotted for (A) increasing recognition probability ‍q ∈ {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}‍ and 
(B) increasing evasion penalty ‍β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}‍. For (A), ‍β = 0.59‍. For (B), ‍q = 0.7 > q∗‍. In both cases, ‍s∞ = 5‍ and ‍n = 106‍ 
simulations were performed for each histogram.

The online version of this article includes the following source data for figure 4:

Source data 1. Source data contains a spreadsheet of data for Figure 4A, B.

https://doi.org/10.7554/eLife.82786
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immune selective pressure in early cancer development results in tumor neoantigen depletion and is 
prognostic of poor clinical outcome (Rosenthal et al., 2019; Lakatos et al., 2020).

Variation in the tumor microenvironment drives the generation of 
immune hot vs. cold tumors under optimal evasion
In the passive evader case, antigenicity fluctuates around a stable equilibrium that varies directly 
with penalty and inversely with recognition. The adaptive case gives rise to more complex behavior 
resulting from impairments in immune recognition or changes in penalty (Figure 5—figure supple-
ments 1 and 2). These changes are important manifestations of disease progression, which may alter 
the immunogenic landscape via impairments in immune recognition, such as MHC downregulation, 
co-stimulation alteration, T cell exclusion, or the establishment of a pro-tumor IME, via. for example. 
M2 macrophage polarization (Liu et al., 2021; Goswami et al., 2017). Although many factors may 
affect recognition rates, for simplicity we shall refer to larger vs. smaller immune recognition rates ‍q‍ 
as infiltrated vs. excluded.

On the other hand, the generation of new TAA targets is expected to vary substantially across 
tumor type, for example, due to differing somatic mutation rates. Within a given tumor subtype, 
variations in the hostility of the IME, resulting from a large variety of possible mechanisms (meta-
bolic, mechanical, cytokine, environment), require cancer populations to undergo greater degrees 
of adaptation to survive; in our approach, this greater degree of adaptation comes with a greater 
penalty. Consequently, we relate large vs. small local penalty terms ‍β‍ to anti-tumor vs. pro-tumor 
IMEs. Conceptually, the baseline state (infiltrated anti-tumor IME) may give rise to three alternative 

Figure 5. Active Evader dynamics. Violin plots of the distribution of post-immune escape. (A) Cumulative mutation burden. (B) Post-escape 
immunogenicity (available tumor-associated antigens [TAAs]) as a function of time for a variety of tumor immune microenvironment (IME) conditions. 
(Anti-tumor-infiltrated: ‍q = q∗ + 0.1‍, ‍β = 0.529‍; anti-tumor-excluded: ‍q = q∗ − 0.1‍, ‍β = 0.505‍; pro-tumor-infiltrated: ‍q = q∗ + 0.1‍, ‍β = −0.529‍; pro-tumor-
excluded: ‍q = q∗ − 0.1‍, ‍β = −0.505‍. In all cases, ‍β‍ chosen to give ‍|s∞| = 3‍ [‍s∞‍ for the pro-tumor-infiltrated case] giving strictly positive penalties. 
Simulations were run until ‍n = 106‍ escape events occurred for each case.) (C) The number of recognizable TAAs over time along with equilibrium states 
is depicted assuming (left) anti-tumor IME, ‍β > 0‍, and efficient immune recognition. Compromises in (top right) recognition, ‍q < q∗‍; (bottom right) 
the establishment of a pro-tumor IME, ‍β < 0‍, or (middle right) both affect the predicted dynamical behavior of tumor immunogenicity. A phase plot 
partitions each case as a function of relevant critical parameter values.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data contains a spreadsheet of data for Figure 5A, B.

Figure supplement 1. Linear dynamics.

Figure supplement 2. Transition dynamics.

Figure supplement 3. Escape dynamics.

Figure supplement 4. Active evasion summary.
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states (excluded anti-tumor IME, infiltrated pro-tumor IME, or excluded pro-tumor IME), based on 
progression.

Toward this end, we simulate the TEAL model under the above conditions and record post-escape 
TAA distributions. As already explained, our results predict that infiltrated (‍q > q∗‍) environments lead 
to an absorbing equilibrium state in the intervening period prior to escape, while exclusion (‍q < q∗‍) 
results in unstable equilibria. Interestingly, the sign of this equilibrium, and hence the long-term immu-
nogenic trajectory, depends on the sign of ‍β‍ (Equations 88 and 89). The baseline infiltrated anti-
tumor case (‍q > q∗‍, ‍β > 0‍) yields a positive and stable, mean-reverting TAA steady state, generating 
immunogenically ‘warm’ tumors. Excluded anti-tumor IMEs (‍q < q∗‍, ‍β > 0‍) exhibit low recognition and 
large TAAs arrival, resulting in a unstable TAA steady state that leads to increased immunogenicity 
over time, resulting in ‘hot’ tumors. Furthermore, the infiltrated pro-tumor (‍q > q∗‍, ‍β < 0‍) case demon-
strates preserved recognition with low TAAs arrival and generates an unphysiological negative stable 
steady state, thereby predicting that trajectories reduce immunogenicity to zero over time, yielding 
‘cold’ tumors. Lastly, excluded pro-tumor IMEs (‍q < q∗‍, ‍β < 0‍), having compromises in both recogni-
tion and TAA arrival rate, result in an unstable state, above which trajectories accumulate additional 
TAAs over time, becoming immunogenically ‘hot,’ and below which the populations are predicted to 
reduce the number of recognizable TAAs over time, becoming ‘cold’ (Figure 5A and B). Substantial 
heterogeneity in the distributions of escape time predict sustained interactions in the unimpaired 
case (Figure 5—figure supplement 3). Tumor exclusion leads to hot tumors so that escape, should 
it occur, must do so on average prior to the accumulation of many TAAs. Conversely, pro-tumor IME 
with immune recognition drives TAA depletion, so escape occurs relatively early. These results are 
summarized in Figure 5C.

Discussion
The underlying evolutionary dynamics of adaptive populations lies at the heart of many important 
clinical challenges, including antibiotic resistance, acquired drug resistance, immunotherapy failure, 
and tumor immune escape. Quantitative analytic modeling will continue to provide improved insight 
into these complex issues by generating fast and affordable predictions and a convenient theoretical 
framework for hypothesis testing. To date, virtually all of the current models of cancer evolution and 
the tumor-immune interaction have assumed passive acquired evolution without allowing the tumor 
to sense and optimally respond to the current fitness landscape in order to maximize future survival. 
The ‘optimal escape hypothesis’ is, in our opinion, worth exploring in light of the myriad examples of 
treatment failure and adaptive resistance.

Our analysis centered on the ability of cancer populations to adaptively respond to a measured 
immune state, and we have primarily focused on studying subsequent mutations resulting in the 
disruption of existing (targeted) tumor-associated antigenic targets and on the generation of new 
ones. It is important to note that independent empirical observations support the ability of cancer cells 
to sense their IME, and perhaps even the level of CD8+ killing that occurs therein. At the signaling 
level, IL-6 secreted by CTLs, macrophages, and dendritic cells in response to immune recognition has 
been shown to directly activate ataxia-telangiectasia mutated (ATM), a factor implicated in response 
to DNA damage, and this has been associated with increased metastasis and multi-drug resistance 
in lung cancer (Jiang et al., 2015; Yan et al., 2014). IFN-gamma released by activated CD8+ tumor-
infiltrating lymphocytes activates the cell-intrinsic STING pathway in response to DNA damage in 
cancer, implicating an altered TME from activated CD8+ T  cells that is measurable by the cancer 
(Xiong et al., 2022). Lastly, at the level of individual TCR interactions with recognized tumor cells, 
granzyme B release has been directly linked to DNA damage and associated CHK2 and p53 stress 
responses, and studies have demonstrated hSMG-1 stress-activated proteins upregulated in cancer 
cells following granzyme B treatment (Meslin et al., 2011). Moreover, granzyme release in the micro-
environment serves a signaling molecule promoting a pro-inflammatory response from other immune 
cells (Cullen et al., 2010). The relatively acute response and short half-lives of downstream effectors 
(e.g., minutes for p53 and hours for CHK1) provide a tunable response based on the current level 
of immune targeting through stress-induced mutagenesis (Bindra et al., 2007; Rosenberg, 2001; 
Rosenberg and Queitsch, 2014) that in our analysis directly influences tumor-associated antigen 
availability.

https://doi.org/10.7554/eLife.82786
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Toward this end, we propose and analyze the TEAL model for studying and comparing passive and 
optimal escape mechanisms in the tumor-immune interaction. We focused our dynamic programming 
approach on a particular set of relations to provide analytical insight into this process. We do note, 
however, that the Bellman function approach to dynamic programming can be numerically imple-
mented to obtain solutions for arbitrary functional forms of the penalty function, thereby enabling 
analysis of more complex assumptions where analytic progress becomes intractable. As expected, 
threats adopting optimal evasion strategies largely outperform their passive counterparts by 
increasing the rate of immune escape over prolonged cycles of cancer-immune co-evolution. In the 
setting of the tumor-immune interaction, the resulting TAAs available for targeting, a proxy for clinical 
post-detection immunotherapeutic efficacy, are augmented when cancer populations accrue large 
penalties for evasion and, perhaps surprisingly, when immune recognition is impaired.

Evasion dynamics of passive and active evaders are similar in some ways while different in others. 
Similarities include the mean-reverting stationary dynamics of both strategies under efficient immune 
recognition. However, the TEAL model predicts, for adaptive threats in an excluded pro-tumor IME, 
the emergence of an unstable state, resulting in either accrual or depletion of TAAs in a manner that 
depends on the current TAA abundance. This splitting behavior into ‘hot’ and ‘cold’ tumors offers 
insight into the microenvironmental features generating spatial immunogenic diversity within solid 
tumors and is consistent with prior observations (Huss et al., 2021; Jia et al., 2022; Meiller et al., 
2021; Lakatos et al., 2020). This argues that TAA-depleted tumors share in common the tendency for 
their evasion strategies to incur less antigenic penalties. Our results suggest the possibility of altering 
the tumor IME to increase the immunogenicity of immune-cold tumors by making evasion more 
costly in a manner reminiscent of mutational meltdown (Gabriel et al., 1993). We remark that these 
dynamics are worth considering in the case of adoptive T cell-based immunotherapies, marked by 
their potential for exerting substantial co-evolutionary pressure on a developing malignancy (George 
and Levine, 2021). We also predict that impaired immune recognition leads to TAA accumulation, 
consistent with experimental observations in lung cancer wherein patients with HLA loss of heterozy-
gosity harbored larger mutational burdens, an indirect measure of TAAs of our model (McGranahan 
and Swanton, 2017). Lastly, active evader variable mutation rates also distinguish this case from 
passive evaders with fixed mutation rates, and this feature is analogous to that observed in bacterial 
colonies faced with antibiotic selective pressure (Windels et al., 2019).

More generally, the TEAL framework provides a mechanistic basis for several empirical obser-
vations. First, our results would suggest that the lower observed TAA availability of hematological 
malignancies vs. immune-protected solid tumors, such as melanoma (Lawrence et al., 2013), occurs 
as a result of greater immune accessibility and possible immunoediting of liquid cancers. Second, our 
model predicts enhanced immune interactions, both natural and treatment-derived, resulting from 
increasing the cost of immune evasion in the evading cancer population in order to enrich the TAAs 
following escape. This supports the utility of neo-adjuvant radiation therapy (McGranahan et  al., 
2016) or chemotherapy (Mouw et al., 2017) in inducing immunogenicity. Orthogonal efforts to quan-
tify cancer evolution have similarly predicted the benefit of larger evasion rates resulting in mutational 
meltdown (McFarland et al., 2014). Integrated together, the TEAL model can predict the balance of 
generated TAAs given the relative influences of recognition and evasion penalty.

Tumor antigen depletion is a concerning consequence of immunotherapy since increased recogni-
tion is desirable and required for tumor elimination. In solid tumors, one contributor to this problem is 
T cell exclusion (Pai et al., 2020). However, should effective treatment and robust tumor recognition 
lead to relapse, the resulting tumor has a greater chance of being TAA-depleted (Rosenthal et al., 
2019). Other strategies that fall in this group include those that effectively reduce recognition, like 
the presence of T-regulatory cells. Our results suggest that this detrimental effect of targeting can be 
offset by increasing the ‘hostility of the IME.’ Strategies encourage making tumor adaptation more 
penalizing, such as fostering an anti-tumor environment by, for example, M1 macrophage polariza-
tion, or the inactivation of tumor-associated macrophages (Liu et al., 2021; Goswami et al., 2017).

Of course, this foundational model is not without limitation. At present, we have assumed that 
the recognition agent is not employing an optimized strategy informed by optimal cancer evasion. 
Instead, we have detailed our results for arbitrarily imputed recognition landscapes, which is useful 
for predicting the response of an aggressive evader like cancer to particular immunotherapeutic inter-
ventions, such as hematopoietic stem cell transplant and adoptive T cell therapy, where the clinician 
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has temporal control over treatment. Identification of such optimal treatment strategies upon quan-
tification of disease evasion aggressiveness is of paramount importance. In this foundational model, 
we demonstrated the dynamics of immune recognition of an adaptive population of cancer cells 
expressing a purely clonal pattern of antigens. Our model implicitly equates antigen loss and the 
progression of a subpopulation currently adapted to evade immune targeting – either by direct pruning 
of the fittest subclone or by stochastic emergence and subsequent growth of a new one lacking the 
targeted antigens – as equivalent. Here, we tracked the fittest clone represented by a core set clonal 
antigens. We remark that heterogeneous populations each having a distinct subclonal signature can 
also be tracked, but the corresponding antigen-driven selection and fitness cost to each clone would 
be coupled through shared antigens (see ‘Methods’). Finally, we note that this extended approach 
implicitly assumes that antigen detection rates over a given period are subclone size-independent, 
given that antigens are tracked over a period where each of the clones with comparable fitness would 
be detectable by the immune system during their growth trajectory en route to attempted escape.

Lastly, cancers characterized by co-evolutionary dynamics resulting in large variability in population 
size prior to escape or elimination would require in general that recognition and evasion parameters 
depend on the current period. While possible to incorporate, we have for foundational understanding 
assumed these to be constant. In this discrete-time evolutionary model, the intertemporal period 
considered represents the time period between the earliest moment that the adaptive immune system 
may identify a cancer clone and the latest point after which such a recognition event would no longer 
be able to prevent cancer escape (George and Levine, 2020). This effectively gives ‍q‍ a probabilistic 
representation for the total rate of opportunity to recognize a given TAA during cancer progression. 
Implementing this model in cancer subtype-specific contexts thus requires a consideration of the per-
cell division rates, for example.

We detailed strategies that affect the number of TAAs present following escape. In addition to 
quantity, variations in individual TAA antigenicity could affect overall immunogenicity, but we do not 
as yet take this into account. In future work, individual antigenicities could be built in by allowing 
individual TAA contributions to sn and ‍q‍ to depend on the particular TAA. Many additional features 
contribute to the immune landscape. Here, we focused on TAA availability and effects of general 
immune recognition rates and IME hostility on TAA accrual. Future efforts may incorporate additional 
cancer-specific features, including antigen presentation, immunomodulatory gene expression, and 
measured immune signatures present in the IME.

These optimized dynamics are proposed in the absence of the precise mechanistic details of cancer 
decision-making. Further studies linking changes in the evasion rates to cell signaling are necessary 
next steps at elucidating a possible mechanism of optimal evasion. Our framework serves as a tool for 
evaluating the extent of evasion aggressiveness in a variety of observed disease contexts, including 
cancer. Differentiating dynamics of passive and adaptive evasion mechanisms is a first step to under-
standing this difference, its importance underscored by the large implications such an understanding 
would have on our approach to treatment.

The TEAL model represents a framework broadly applicable for studying population behavior 
consistent with optimized collective decision-making, and subsequent experimental validation 
or refutation is of highest priority. Future direction aims to apply this framework for personalizing 
optimal interventions that maximize disease elimination probabilities. Consequently, stochastic anal-
ysis and optimal control theory are indispensable tools for better understanding the complex cancer-
immune interaction. Defeating an evolving cancer population has provided a persistent challenge 
to researchers and clinicians, with the majority of progress heralded by fundamental discoveries on 
cancer behavior, and additional insights require a more detailed understanding of cancer evasion. The 
possibility that cancer population-level strategies are somewhat informed to the present recognition 
threat would have a radical effect on our own optimal treatment approach.

Methods
Passive evader in an adaptive environment
Let ‍Sn‍ denote the set of tumor antigens recognizable by the immune system and present at period 
‍n‍ on a population of cancer cells, and let ‍sn = |Sn|‍ count their number (‍|A|‍ denotes the cardinality of 
set ‍A‍). From one period to the next, each of the sn detectable antigens may be independently and 
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identically detected by the immune system with probability ‍q‍ per antigen. We let ‍Rn ⊆ Sn‍ denote the 
collection of antigens that are recognized by the immune system at time ‍n‍. As the immune system 
targets and begins to eliminate cells via the ‍Rn‍ antigens, the cancer population has an opportunity to 
lose or downregulate each of the ‍rn = |Rn|‍ recognized antigens with a similar independent and iden-
tical manner. The rate of antigen loss ‍πn‍ may in general vary as a function of time and environmental 
features (considered in Section Active evader in an adaptive environment). In this section, we assume 
it is passively fixed and denote this rate as p. We denote the collection of antigens that are lost by the 
cancer population at time ‍n‍ by ‍Ln ⊆ Sn‍. We track the number of recognized and lost antigens at time 
‍n‍ by rn and ‍ℓn = |Ln|‍, respectively, so that ‍ℓn ≤ rn ≤ sn‍.

The system evolves as follows (Figure 1—figure supplements 1 and 2): If ‍Rn = ∅‍, then the immune 
system is unable to recognize any tumor antigen at time ‍n‍ and so the process ends in cancer escape. 
Since in this case the immune system loses, we denote this event by ‍Ln‍. If ‍Rn ̸= ∅‍, then the immune 
system recognizes the threat by at least one TAA and one of two outcomes results: The f﻿﻿irst possi-
bility is that the cancer population successfully downregulates or loses all of the targeted antigens, 
expressed as ‍Ln = Rn‍, and survives to the next time step. We call this a tie and denote the event by 
‍En‍. Alternatively, the cancer population is unable to lose every recognized antigen and subsequently 
becomes eliminated. This means the immune system has won so we denote this event by ‍Wn‍. Although 
the recognition and evasion probabilities may in general be clonally and temporally dependent, we 
assume fixed probabilities for the recognition, ‍q‍, and evasion, ‍p‍, of individual antigens. In the event 
of a tie, ‍sn − rn‍ antigens remain, with the addition of a basal antigen arrival rate ‍β‍ and a possibly noisy 
penalty term fn to reflect the production of new antigens as the population evolves. For simplicity, 
we assume the ‍β‍ to be constant and the fn a sequence of independent, identically distributed (IID) 
random variables with mean ‍f ‍. While it is in general possible that the distributions of rn and ‍ℓn‍ be both 
state- and time-dependent, we focus on the foundational example above.

This process is identical to the following game between two players, hereafter referred to as the 
‘Recognizer’ (immune system) and the ‘Evader’ (threat): the Recognizer starts off with a collection, ‍S0‍, 
of s0 coins and begins her turn by flipping each coin with IID success probability ‍q‍. If she has no success 
(‍R0 = 0‍), she loses (denoted by event L0) and the game ends. If ‍r0 > 0‍ of her coins land on heads, 
then the next turn goes to the Evader, who proceeds to flip his r0 coins with IID success probability ‍p‍ 
in an attempt to match the Recognizer’s successful coin flips. The Evader must succeed in all coin flips 
(‍L0 = R0‍) for the turn to end in a tie (equilibrium between Evader and Recognizer), given by event E0. 
Otherwise, he loses and the game ends with a Recognizer win, (event W0). If a tie occurs then both 
players restart the game, but only after the removal from ‍S0‍ of the r0 coins that landed on heads for 
both players as well as the addition of a random number f0 of new coins. The Evader wins by default 
if a new turn begins and there are no longer any remaining coins to flip.

Probability of equilibrium
It is immediately apparent that this game is unfair to the Evader if s0 is much larger than 1, unless the 
recognition probability ‍q‍ is low and the evasion probability ‍p‍ is high. We motivate the following anal-
ysis with this in mind and proceed to characterize the dynamics of this stochastic process. Clearly, the 
number of recognized and lost antigens during each period is binomially distributed, their respective 
distributions given by

	﻿‍ rn ∼ Binom(sn, q); ℓn ∼ Binom(rn, p).‍� (12)

The event that the immune and cancer systems are in equilibrium (non-escape and non-extinction) 
may be written as

	﻿‍ En = [Ln = Rn ⊋ ∅] = [ℓn = rn > 0].‍� (13)

One might expect that the number of antigens lost at time ‍n‍ is affected by knowledge of whether 
or not the game continues to be played. The distribution of ‍ℓn‍ conditioned on equilibrium may 
be characterized by conditioning on the number of recognized antigens at time ‍n‍. To this end, let 

‍Fn,r = [rn = r]‍ denote the event that ‍r‍ antigens are recognized at period ‍n‍, with

	﻿‍ P
(
Fn,r

)
=
(sn

r
)
qr(1 − q)sn−r.‍� (14)
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We remark that events ‍{Fn,r}r‍ are disjoint and exhaustive; in other words, for sample space ‍Ω‍,

	﻿‍

sn∪
r=0

Fn,r = Ω; Fn,i ∩ Fn,j = ∅, for i ̸= j.
‍�

(15)

Additionally, we note that equilibrium cannot occur if no antigens are recognized (i.e., 

‍Fn,0 = [Rn = ∅]‍). Lastly,

	﻿‍ P
(
En | Fn,r

)
= pr,‍� (16)

since if ‍r‍ antigens are recognized then ‍Ln = Rn‍ occurs if and only if each of the ‍ln = rn‍ recognition 
positions are exactly matched with rn evasions. We will make use of the following variables to simplify 
subsequent results:

	﻿‍ η ≡ (1 − q) + qp =
[
1 − q(1 − p)

]
; γ ≡ 1 − q.‍� (17)

Here, ‍η‍ may be interpreted as the probability of the complement of the following event: ‘recog-
nition occurs without matched evasion for a single antigen.’ In other words, ‍η‍ is the probability that 
equilibrium exists at one antigen position provided that there is at least one available antigen for 
immune targeting. This event occurs in one of two disjoint ways for a single antigen: either there is no 
recognition, and so equilibrium occurs regardless of evasion, or there is recognition that must also be 
matched by evasion. The joint distribution of recognized and lost antigens is given by the probability 
mass function

	﻿‍

m(r, l) = P
(
[rn = r] ∩ [ℓn = ℓ]

)

= P
(
ℓn = ℓ | rn = r

)
P
(
rn = r

)

=
(r
ℓ

)
pℓ(1 − p)r−ℓ ·

(sn
r
)
qr(1 − q)sn−r.‍�

(18)

The probability that equilibrium occurs and the process continues at period ‍n‍ is given by

	﻿‍

P
(
En

)
=

sn∑
r=1

m(r, r)

=
sn∑

r=1

(sn
r
)
(pq)r(1 − q)sn−r

= (1 − q)sn
[(

q−pq−1
q−1

)sn
− 1

]

=
[
1 − q(1 − p)

]sn − (1 − q)sn

= ηsn − γsn , ‍�

(19)

which is equal to the probability of equilibrium occurring at every position minus the probability 
that all of the sn antigens are not recognized, since at least one recognized antigen is required for 
equilibrium to occur.

Break-even probability
The process is usually more favorable for the Recognizer. The Recognizer loses at period ‍n‍ if there are 
zero recognition events, and this occurs with probability

	﻿‍ P
(
Ln
)

= γsn .‍� (20)

The Recognizer wins at period ‍n‍ if she does not lose or tie, which occurs with probability

	﻿‍
P
(
Wn

)
= 1 −

(
P
(
En

)
+ P

(
Ln

) )
= 1 − ηsn .

‍� (21)

If ‍q‍ and sn are given, then the evasion probability ‍p‍ required for equal probabilities of Recognizer 
failure and success, or the break-even probability, is given by

	﻿‍ peven = (1−γs)1/s−γ
1−γ ,‍� (22)
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and exists whenever ‍peven > 0‍. We plot ‍peven‍ as a function of recognition probability ‍q‍ for various 
numbers of TAAs, ‍s‍ (Figure  1—figure supplement 5A). The ‘fair-game’ line indicates where the 
break-even evasion probability is always equal to the recognition probability. Regions where the 
break-even probability localizes above the fair-game line favor the Recognizer since there the evasion 
rates ‍p‍ must be higher than recognition rates ‍q‍ for the game to be fair. Alternatively, areas below the 
break-even curve favor the Evader. It is clear from Figure 1—figure supplement 5B that the process 
favors recognition for a majority of parameter choices ‍(p, q)‍ in all cases except for when ‍s = 1‍. Thus, 
the process is largely unfair and mostly favors the Recognizer over the Evader when ‍p = q‍ so long 
as ‍s‍ is not small. In order for the Evader to have a reasonable chance of success, either the evasion 
probability must be very large or the number of TAAs must remain small.

Tracking distinct clones
The above describes a clonal population harboring a core minimal set of TAAs for which recognition 
and downregulation ultimately determine cancer escape, elimination, or equilibrium. Our model can 
however be adapted to study the more general scenario involving a clonal hierarchy of heterogeneous 
cancer cells. We illustrate this by considering a population of cells with a set ‍C‍ of ‍c = |C|‍ core clonal 
TAAs, together with distinct groups of cells with subclonal collections of TAAs S1 and S2 (having size 

‍s1 = |S1|‍ and ‍s2 = |S2|‍, respectively). The relevant populations therefore have antigen sets given by 

‍P1 = C ∪ S1‍ and ‍P2 = C ∪ S2‍. The basic event considered in the foundational model, ‍[rn > 0]‍, must now 
be replaced by the event that recognition occurs in both P1 and P2; in the absence of recognition of 
both subclones, the cancer escapes. Recognition happens either if there is a recognition event ‍r‍ in 
‍C‍ or if there are simultaneous recognition events r1 in S1 and r2 in S2. Assuming that TAA recognition 
occurs independently as before with probability ‍q‍, the total probability of relevant recognition, origi-
nally ‍(1 − γsn )‍, is now given by ‍(1 − γc) + γc(1 − γr1 )(1 − γr2 )‍. The first term characterizes the coupling 
of the fate of both subclones should a common TAA be recognized, while the latter term represents 
the parallel recognition process required to control each subclone separately via subclonal TAA recog-
nition. Lastly, assuming that recognition proceeds either by a shared TAA in ‍C‍ or instead by subclonal 
TAAs in both S1 and S2, then the probability of elimination and progression proceed identically as 
before. In the remainder of the discussion, we will, for baseline understanding, only track a core set of 
clonal antigens on the fittest clone.

Distribution of lost antigens
The process transitions at period ‍n‍ if and only if equilibrium occurs, which means that the number of 
lost antigens match those recognized and are strictly positive. In other words,

	﻿‍ En =
[
ℓn = rn > 0

]
.‍� (23)

The survival probability as a function of ‍q‍ and ‍p‍ are plotted for various choices of ‍s‍ in Figure 1—
figure supplement 6. From this, we find that equilibrium occurs with high probability for large evasion 
rates, ‍p‍, as well as for recognition rates ‍q‍ that vary inversely with the number of recognizable antigens. 
This coincides with conditions that do not disadvantage the Evader so that the equilibrium probability 
is maintained. We remark that recognition and evasion rates in general vary with the IME. We shall 
subsequently restrict our attention to large recognition probabilities (‍p > 1/2‍).

Exact dynamics
Let ‍IF‍ denote the usual indicator random variable on event ‍F‍:

	﻿‍

IF(ω) =




1, ω ∈ F;

0, ω /∈ F.‍�
(24)

If rn is unknown, then the distribution of ‍ℓn‍ follows that of rn on a strictly positive outcome normal-
ized to the probability of surviving:

https://doi.org/10.7554/eLife.82786


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Immunology and Inflammation

George and Levine. eLife 2023;12:e82786. DOI: https://doi.org/10.7554/eLife.82786 � 16 of 31

	﻿‍

P
(
ℓn = ℓ | En

)
= P

([
ℓn = ℓ

]
∩
[
ℓn = rn > 0

])
/ P

(
En

)

= P
(
rn = ℓn = ℓ > 0

)
/
(
ηsn − γsn

)

=




m(ℓ, ℓ)/ P
(
En

)
, 0 < ℓ ≤ sn;

0, ℓ = 0.

= I[ℓ>0
](sn

ℓ

) [
p(1 − γ)

]ℓ γsn−ℓ

(
ηsn − γsn

) .
‍�

(25)

In this case, the mean number of lost antigens conditioned on a tie becomes

	﻿‍

E
[
ℓn | En

]
=

sn∑
ℓ=0

ℓ P
(
ℓn = ℓ | En

)

=
(
ηsn − γsn

)−1 ∑sn
ℓ=1 ℓ

(sn
ℓ

) [
p(1 − γ)

]ℓ
γs−ℓ

= p(1 − γ)ηsn−1

ηsn − γsn
sn.

‍�

(26)

Of course, for any realized number of recognized antigens rn at period ‍n‍ (event ‍Fn,r = [rn = r]‍), the 
number of lost antigens conditional on equilibrium ‍ℓn‍ is completely determined since

	﻿‍

P
(
ℓn = ℓ | En ∩ Fn,r

)
= P

(
ℓn = ℓ | ℓn = rn = r > 0

)

= I[ℓ=r], ‍�
(27)

so that the conditional mean number of lost antigens must match exactly those recognized:

	﻿‍

E
[
ℓn | En ∩ Fn,r

]
=

sn∑
ℓ=0

ℓ · P
(
ℓn = ℓ | En ∩ Fn,r

)

=
sn∑
ℓ=0

ℓI[ℓ=r
] = r.

‍�

(28)

Mean transition behavior
The state transition equation for this process is given by Equation 1:

	﻿‍ sn+1 = sn − ℓn + β + fn,‍�

where ‍β + fn‍ represents the arrival of new antigens through a basal production rate ‍β‍ plus addi-
tional antigens ‍{fn}n‍ that possibly depend on the evasion strategy employed. In our model, we will 
assume that the ‍{fn}n‍ are IID random penalties with mean ‍E

[
fn
]

= f ‍ and finite variance (e.g., Poisson-
distributed). Given this, we will now characterize the mean transition behavior conditioned on equilib-
rium and the information available at the present moment. We write ‍En

[
·
]
‍ to denote the conditional 

expectation with respect to date-‍n‍ information.

Exact dynamics
The mean number of detectable antigens evolves according to the difference equation (Equation 3):

	﻿‍

En
[
sn+1 | En

]
= En

[
sn − ℓn + β + fn | En

]

= En
[
sn
]
− En

[
ℓn | En

]
+ β + E

[
fn
]

= sn −
p(1 − γ)ηsn−1

ηsn − γsn
sn + (β + f),

‍�

which gives Equation 3 and follows since sn is measurable at period ‍n‍ and independent from ‍En‍, 
while fn is independent from period ‍n‍ and ‍En‍. This process is mean stationary at ‍sn = µ‍ whenever

	﻿‍ ∆sn ≡ En
[
sn+1 | En

]
− sn = 0‍� (29)

giving

	﻿‍
µ =

(
β+f

q

)(
ηµ−γµ

pηµ−1

)
.
‍� (30)
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Plots of fixed points of Equation 3 are illustrated in Figure 1—figure supplement 7 for ‍p > 1/2‍ 
and ‍q‍ away from zero for small total mean antigen accumulation rates ‍β + f ‍. As expected, increases 
in ‍(β + f)‍ result in higher equilibria. In the large ‍P

(
En

)
‍ region of interest, increased ‍q‍ results in a lower 

number of detectable antigens at equilibrium since more are recognized during each period.

Approximate dynamics
If rn is explicitly given, then the mean transition equation simplifies to

	﻿‍

En
[
sn+1 | En ∩ Fn,r

]
= En

[
sn − ℓn + β + fn | En ∩ Fn,r

]

= sn − En
[
ℓn | En ∩ Fn,r

]
+ β + E

[
fn
]

= sn − rn + β + f, ‍�

(31)

since sn is measurable at period ‍n‍, while fn is independent from period ‍n‍ and ‍En ∩ Fn,r‍. We can use 
this to approximate the exact recognition dynamics described above by assuming ‍rn = En

[
rn
]

= qsn‍. 
In this case, we have Equation 4:

	﻿‍ En
[
sn+1 | En ∩ Fn,r

]
= (1 − q)sn + β + f.‍�

The equilibrium may be given explicitly as

	﻿‍ µ̃ = (β + f)/(1 − γ) = (β + f)/q.‍� (32)

We distinguish the approximate equilibrium ‍̃µ‍ from that of exact case μ, the latter incorporating a 
correction term arising from the fact that knowledge of equilibrium occurring requires a larger average 
value of rn above ‍qsn‍ since equilibrium occurs only when ‍rn > 0‍. We remark that the steady states given 
by Equations 30 and 32 are close to one another for small penalty (Figure 1—figure supplement 8) 
and parameter regions that overlap with those having large equilibrium probabilities (‍p ∼ 1‍, ‍q > 0.5‍; 
Figure 1—figure supplement 6), which intuitively suggests that a process driven by its mean overlaps 
well with one conditional on equilibrium provided the escape and elimination probabilities are small. 
We obtain good agreement between averages of large-scale simulations of the process, together with 
the predicted exact and approximate steady states for ‍p, q > 0.5‍ and small penalty (Figure 1—figure 
supplement 9). Of course, the mean dynamics are also approximate since ‍qsn‍ is in general non-
integer-valued. With this in mind, we focus on the dynamics given by Equation 31.

Here, rn is Binomially distributed conditional on the number of current antigens, so that

	﻿‍ En
[
rn
]

= qsn; Varn
[
rn
]

= q(1 − q)sn.‍� (33)

We define the following zero-mean noise variable

	﻿‍ εn ≡ (fn − f) − (rn − qsn),‍� (34)

and rewrite Equation 1 as

	﻿‍ sn+1 = γsn + β + f + εn.‍� (35)

This is none other than a first-order autoregressive, or AR(1), process with innovation terms ‍εn‍ 
comprised of endogenous noise due to the variance in the number of recognized antigens and exog-
enous noise generated by fluctuations in the random penalty term.

The process is stable for all but trivial choices of probability ‍γ‍. The mean behavior evolves according 
to

	﻿‍ En
[
sn+1

]
= En

[
γsn + β + f − εn

]
= γsn + β + f,‍� (36)

which ultimately gives Equation 9:

	﻿‍

E
[
sn
]

= γns0 + (β + f)
n−1∑
j=0

γj

= γns0 +
(

1−γn

1−γ

)
(β + f)

→ (β + f)/q as n → ∞, ‍�

https://doi.org/10.7554/eLife.82786


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Immunology and Inflammation

George and Levine. eLife 2023;12:e82786. DOI: https://doi.org/10.7554/eLife.82786 � 18 of 31

thus showing agreement in mean with the fixed point given by Equation 32. Of course, 

‍sn = µ̃ = (β + f)/q‍ satisfies the martingale property:

	﻿‍ E
[
sn+1

]
= γ(β + f)/q + (β + f) = (β + f)/q = sn,‍� (37)

and the process tends toward steady state with expected intertemporal difference

	﻿‍

���E [
sn+1

]
− E

[
sn
] ��� = γn��(β + f) − qs0

��.
‍� (38)

The variance at stationarity, ‍Var
(
sn
)
‍, can be calculated by solving for the fixed point of

	﻿‍ Var
(
s
)

= γ2Var
(
s
)

+ σ2
f ,‍� (39)

giving

	﻿‍ Var
(
sn
)

= σ2
f /(1 − γ2).‍� (40)

Recognizer success probability
For the event ‍Wn‍ (resp. ‍Ln‍) that the Recognizer wins (resp. loses) at period ‍n‍, and for the event ‍En‍ of 
equilibrium at period ‍n‍, we have

	﻿‍ P
(
Wn

)
= P

(
En−1

)
(1 − ηsn )‍� (41)

	﻿‍ P
(
Ln
)

= P
(
En−1

)
γsn ,‍� (42)

	﻿‍ P
(
En

)
= P

(
En−1

)
(ηsn − γsn ).‍� (43)

These relationships, along with the implicit evolution given by Equation 32, are used to approx-
imate ultimate Recognizer success probabilities for all possible ‍p‍ and ‍q‍ against several choices of 
initial antigen number s0 and mean antigen arrival rate ‍β + f ‍, and are compared with simulations of 
using actual transitions via Equation 29 (Figure 1—figure supplement 10). We find good agree-
ment between these methods in characterizing the final outcome over a variety of parameter choices, 
where accuracy is highest in the relevant parameter region of interest. In particular, the left column of 
Figure 1—figure supplement 10 details the likelihood that a (static) threat is controlled in the special 
case where no penalty is assumed.

Mutation accumulation rate and tumor antigen availability
The above analysis was motivated by a desire to explain both genetic and non-genetic possibili-
ties leading to recognition evasion. We can consider applying this model to strictly describe genetic 
evasion in the form of somatic mutations leading either to the generation of (recognizable) tumor-
associated antigens or to escape via the removal of these antigens. Using the above framework, 
mutations, denoted by ‍λ‍, accumulate across each period in proportion to the sum of antigens down-
regulated to enhance escape and antigens gained via basal arrival and penalty. Thus their rate of 
accumulation may be expressed by

	﻿‍ ν(n) ≡ ∆λ(n)
∆n ∝ ℓn + β + fn.‍� (44)

Together with the fact that ‍ℓn = rn‍ during progression, we have for the mean rate of mutant 
accumulation

	﻿‍

E
[
ν(n)

]
∝ E

[
E
[
rn | sn

]
+ (β + f)

]

= qE
[
sn
]

+ β + f

→ 2(β + f) as n → ∞, ‍�

(45)

ultimately giving

	﻿‍ λ(n) ∝ 2(β + f)n.‍� (46)

https://doi.org/10.7554/eLife.82786
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which predicts that the rate of mutational acquisition is linear in time, consistent with empirical 
observation (Alexandrov et al., 2013; Lawrence et al., 2013). Heuristically, tumors that survive while 
accumulating an average of ‍β + f ‍ targetable alterations must balance those gains by ‍β + f ‍ additional 
evasion events. This theory predicts, perhaps surprisingly, that the mutation rate is a direct reflection 
of the penalty paid for cancer progression as a function of the basal antigen arrival rate and contribu-
tions from the local environment. Tumors having a more difficult time surviving in a hostile or restric-
tive environment would be predicted to have higher rates of mutation. In this context, high mutational 
signatures are predicted to be correlated with tumors that are more susceptible to recognition. For 
a passive Evader, our theory predicts that the observed mutation rate depends only on basal arrival 
and mean penalty term for cancer progression, unaffected by recognition rate. On the other hand, 
the stationary number of available antigens, approximated by ‍̃µ = (β + f)/q‍, varies directly with evasion 
penalty and inversely with antigen recognition rate. Moreover, mutation or adaptation accumulation is 
expected to converge to a stable steady state for all allowable recognition, evasion, and penalty rates.

Active evader in an adaptive environment
In the previous section, we considered the predicted dynamical behavior when the Evader is assumed 
to adopt a fixed strategy. In that case, if number of detectable antigens is moderately large (‍s0 ∼ 10‍), 
then the game is biased against the Evader for most combinations of evasion and recognition success 
probabilities (Section Break-even probability). Additionally, mean transitions in the number of recog-
nizable antigens obey an AR(1) process tending toward the quotient of the mean penalty and recog-
nition rate (Section Mean transition behavior). Moreover, this behavior predicts that the observed 
mutation accumulation rate is linear in time and proportional to the sum of basal antigen creation rate 
and mean penalty term (Section Mutation accumulation rate and tumor antigen availability). Here, we 
allow for the Evader to optimally select his evasion rate ‍πn‍ at each period (Figure 1—figure supple-
ment 3). Larger success rates come at the cost of adding back more recognition opportunities in the 
subsequent time step, so that the Evader employs a strategy to maximize his survival or likelihood of 
escape. This framework is motivated by the observation that cancer threats are known to accumulate 
perhaps mildly deleterious mutations that occur passively during evolution to obtain rare ‘driver’ 
mutations (McFarland et al., 2014). The novelty here is that we propose a unifying theoretical frame-
work to investigate the resulting strategy employed by a cancer population if the choice of evasion is 
planned based on knowledge of the current antigen landscape and hostility, or number of recognized 
targets.

In contrast with the prior section, which considered temporal evolution as a function of fixed 
evasion rate ‍p‍ and random penalty fn, here, the evasion rate ‍πn‍ may depend on time, and for simplicity 
we consider deterministic penalties. In order to properly frame this problem in a manner suitable to 
handle via dynamic programming, we define the necessary parameters, expectation, and value func-
tions below. We assume that the process evolves according to state transition equation,

	﻿‍ sn+1 = sn − rn + β + fn,‍� (47)

and that conditional expectations are taken with respect to ‍Fn‍, the natural filtration (Karatzas and 
Shreve, 1998) with respect to the underlying process.

If at time ‍n‍ knowledge of total sn and recognized rn targets is known, then the Evader’s objective is 
to select a policy ‍π ≡ {πn,πn+1, . . . }‍ that maximizes the sum of present and future rewards, ‍R(sn, rn,πn)‍, 
which in general depend on the current state, sn, as well as the Recognizer, rn, and Evader, ‍πn‍, actions. 
The value function is defined to be the maximal attainable sum of expected future rewards, given by

	﻿‍
Jn(sn) = sup

π
En

[ ∞∑
m=n

R
(
sm, rm,πm

)]
.
‍�

(48)

Problems that may be framed in this context have been well-studied and utilize a rich theory 
of stochastic dynamic programming, originally proposed by Bellman, 1954; Bellman and Dreyfus, 
1959. Bellman’s Principle of Optimality and Bellman equation for a stationary solution (independent 
of starting time) are given via backward induction by

	﻿‍ J(sn) = R(sn, rn,πn) + J(sn+1).‍� (49)

https://doi.org/10.7554/eLife.82786
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Equation 49 states that the maximal attainable value at period ‍n‍ is given by the sum of the maximal 
attainable value at the next time step, ‍J(sn+1)‍, and the ‍n‍-period reward of strategy ‍πn‍ obeying Equa-
tion 48. For the problem at hand, we assume that the Evader receives a normalized reward of either 
‍Rn = 1‍ if it escapes at any time period (there is no temporal discount for escape at later periods), or 
‍Rn = 0‍ if it is eliminated. In this case, we may draw a decision tree for the ‍n‍-period problem in terms 
of the value function ‍J ‍, current antigen number sn, Recognizer antigen recognition miss probability 

‍γ = 1 − q‍, number of recognized antigens rn, and Evader strategy, ‍πn‍ (Figure 1—figure supplement 
4). Here, ‍πn‍ represents the ‍n‍-period probability of antigen loss by the Evader.

Using the dynamic programming principle, the Bellman equation under uncertainty takes the form 
given by Equation 5:

	﻿‍
J
(
sn
)

= max
πn

{
En

[
πrn

n
[
γsn+1 +

(
1 − γsn+1

)
J
(
sn+1

)]]}
.
‍�

Under a particular choice of assumed penalty and transition equation, we can calculate an exact, 
closed-form solution to the dynamic program in Equation 5. This solution generates an optimal policy, 
given by ‍π

∗ = {π∗
1 ,π∗

2 , . . . ,π∗
n , . . . }‍, a sequence of optimal decisions, in addition to the maximal value 

at each time assuming the optimal policy, given by ‍J(sn)|π∗
n ‍.

Constitutive relations for intertemporal penalty
We make the following assumptions in our setting to make this problem more tractable. The first 
assumption is that the penalty function is time-homogeneous and deterministic:

	﻿‍ f(sn, rn,πn), πn ∈ [0, 1], sn, rn ∈ Z+.‍� (50)

Conditional on progressing to the next period, the transition equation takes the following form:

	﻿‍ sn+1 = sn − rn + β + f(sn, rn,πn).‍� (51)

In cases where we wish to emphasize the dependence of the transition equation on ‍πn‍, we will 
denote ‍sn+1.‍ by ‍g(πn)‍ so that

	﻿‍ g(sn, πn) = sn+1‍� (52)

The second assumption is that this penalty is ‍πn‍-linear, given by Equation 2:

	﻿‍ f(sn, rn,πn) = hm(sn, rn)πn‍�

for positive hm.
In order to analytically characterize the solution, we assume that rn is known prior to choosing ‍πn‍ 

(‍rn ∈ Fn‍). In the analogous coin game, the Evader is allowed to see the success of his opponent, the 
Recognizer, prior to choosing a strategy. In this case, the dynamic program has a solution if we also 
assume that the linear penalty term can be represented by

	﻿‍
hm(sn, rn) =

rn
c

(
1
δn

· 1 − γsn

1 − γ

)1/rn

‍�
(53)

with ‍c ≡ − ln γ > 0‍ and ‍0 < δn ≤ 1‍. This assumption implies that the marginal penalty of increasing 
‍πn‍ is asymptotically proportional to the number of recognized antigens. This is reasonable to assume, 
for example, in cases where significant immune system recognition and tumor killing create an envi-
ronment that makes subsequent adaptation more costly, resulting possibly from increased inflamma-
tion. The constant ‍δn‍, a free variable, is inversely related to aversion of the Evader strategy so that 
larger values imply a bolder evasion strategy for all else held constant. This parameter may in general 
vary temporally and as a function of disease subtype.

Dynamic programming solution
In the above case, we may find an exact solution to the optimal programming problem. Since ‍rn ∈ Fn‍ 
(the filtration generated by the evolution of sn and the Recognizer action at time ‍n‍), the stationary 
Bellman equation takes the form

https://doi.org/10.7554/eLife.82786
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	﻿‍
J
(
sn
)

= max
0≤πn≤1

{
πrn

n
[
γsn+1 +

(
1 − γsn+1

)
J
(
sn+1

)]}
.
‍�

(54)

For simplicity in the subsequent definition, we drop the period index, rewriting Equation 54 as

	﻿‍
J
(
s
)

= max
0≤π≤1

{
πr[γg(s,π) +

(
1 − γg(s,π))J

(
g(s,π)

)]}
‍�

(55)

Using ‍c ≡ − ln γ‍, the first-order condition (FOC) is

	﻿‍
∂
∂π

{
πr[e−cg(s,π) +

(
1 − e−cg(s,π))J

(
g(s,π)

)]}
= 0.

‍� (56)

In expanded form, the FOC becomes

	﻿‍

0 = πr−1
{

r
[
e−cg +

(
1 − e−cg)J(g)

]

+π
[
− c ∂g

∂π e−cg + c ∂g
∂π e−cgJ(g) + (1 − e−cg) ∂J

∂g
∂g
∂π

]}
.
‍�

(57)

From Equation 2, we have that

	﻿‍
∂f
∂π = ∂g

∂π = hm.‍� (58)

We postulate that the solution takes the form of Equation 6:

	﻿‍ J(s) = Aγs

1−γs .‍�

so that

	﻿‍
∂J
∂s = − cJ(s)

(1−e−cs) .‍� (59)

This, together with Equation 59, reduces Equation 58 to

	﻿‍
πr−1

[
e−cg +

(
1 − e−cg)J(g)

](
r − chmπ

)
= 0.

‍� (60)

Thus, the optimal Evader success probability, ‍π∗‍, is given by

	﻿‍ π∗ = r/chm.‍� (61)

Under Evader optimal strategy, the transition equation in Equation 51 becomes

	﻿‍

g∗ ≡ g(s,π∗) = s − r + β + f(s, r,π∗)

= s − r +
(
β + r/c

)
. ‍�

(62)

We next confirm that this satisfies the Bellman equation (Equation 55). The above solution implies

	﻿‍ J
(
s
)

= π∗r[
γg∗ +

(
1 − γg∗)J

(
g∗

)]
,‍� (63)

which ultimately yields

	﻿‍ Aγs = δ(1 − γ)(1 + A)γβ+r/c−rγs.‍� (64)

Equating coefficients and applying this logic to each policy gives Equation 7:

	﻿‍
An =

δn(1 − γ)γβ+r/c−r

1 − δn(1 − γ)γβ+r/c−r .
‍�

The optimal policy (Figure 1—figure supplement 11) is given by (Equation 8) the sequence

	﻿‍
π∗n =

(
δn(1 − γ)
1 − γsn

)1/rn

.
‍�
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We henceforth refer to ‍δn‍ as the aversion parameter. Large values of ‍δn‍ imply low aversion. It can 
be interpreted as the selected strategy in the simplest case where ‍δn = δ > 0‍ and ‍sn = rn = 1‍ since

	﻿‍ π∗
n = δ;‍� (65)

Rearranging Equation 8 gives

	﻿‍
1−γs

n
1−γ = δ

π∗
n

rn .‍� (66)

Solution uniqueness
Proposition
The above value function is unique.

Proof
We consider value functions ‍V(s)‍ in the space of functions that are continuous in ‍π‍ and bounded in 
‍s‍. We take ‍||V||∞ ≡ sups |V(s)|‍. From the previous section, we have identified such a function ‍J ‍ so that

	﻿‍
J(sn) = max

0≤π≤1
πr [γsn+1 + (1 − γsn+1 )J(sn+1)

]
.
‍� (67)

Assume that ‍V(s)‍ is another solution. For fixed sn, let ‍π∗‍ be such that

	﻿‍ V(sn) = π∗r [
γsn+1 + (1 − γsn+1 )V(sn+1)

]
.‍� (68)

We can rewrite the following term:

	﻿‍ γsn+1 = γsn−r+hmπ+β = γsn−r+β(γhm )π ≡ γks γ̃π ,‍� (69)

where ‍̃γ, γks < 1‍. Then

	﻿‍

V − J = π∗r
[
γks γ̃π

∗
+ (1 − γks ˜γπ

∗ )V(sn+1)
]

−max
0≤π≤1

πr
[
γks γ̃π + (1 − γks γ̃π)J(sn+1)

]
‍�

(70)

	﻿‍
≤ π∗r

[
γks γ̃π

∗
+ (1 − γks ˜γπ

∗ )V(sn+1)
]

− π∗r
[
γks γ̃π

∗
+ (1 − γks γ̃π

∗
)J(sn+1)

]
‍� (71)

	﻿‍ = π∗r(1 − γks γ̃π
∗

)(V(sn+1) − J(sn+1))‍� (72)

	﻿‍
≤ π∗r(1 − γks γ̃π

∗
)
∣∣∣V(sn+1) − J(sn+1)

∣∣∣
‍� (73)

	﻿‍ ≤ π∗r(1 − γks γ̃π
∗

)||V − J||∞.‍� (74)

Note that

	﻿‍ C(π) ≡ πr(1 − γkγ̃π) ≤ 1 − γkγ̃π‍� (75)

is increasing in ‍π‍ (since ‍̃γ < 1‍) so that ‍C(π) ≤ 1 − γkγ̃ ≡ K < 1‍. Thus,

	﻿‍ V − J ≤ K||V − J||∞.‍� (76)

By identical argument above, this time reversing the roles of ‍V ‍ and ‍J ‍ gives

	﻿‍ J − V ≤ K||V − J||∞,‍� (77)

and so

	﻿‍

∣∣∣V(sn) − J(sn)
∣∣∣ ≤ K||V − J||∞ < ||V − J||∞ for all sn.

‍� (78)

Therefore,

	﻿‍
||V − J||∞ = sup

sn

|V(sn) − J(sn)| < ||V − J||∞.
‍� (79)
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Thus,

	﻿‍ ||V − J||∞ = 0.‍� (80)

□

Mean optimal transitions
From Equation 63, the mean optimal transitions are

	﻿‍ En
[
sn+1 | En

]
= sn + (1/c − 1)rn + β.‍� (81)

The mean increment, ‍∆sn‍, assuming the process is driven by ‍rn ∼ Binomial(sn, q)‍, becomes

	﻿‍ ∆sn = (1/c − 1)qsn + β.‍� (82)

We next consider two cases. In the first case, the basal antigen creation rate ‍β‍ scales linearly with 
the number of currently recognized antigens, and in the second case we instead assume that it is fixed.

rn-linear basal antigen creation rate
This case considers ‍β = αrn‍. Here, larger recognition in the current period results in larger exogenous 
penalty, and hence easier targeting, in the next period. Consequently, the number of detectable 
antigens in the future is directly influenced by both the tumor evasion strategy ‍π∗‍ and the extent of 
that recognition resulting from immune targeting rn. In this case (Figure 5—figure supplement 1), 
we have that

	﻿‍ E
[
(1/c − 1 + α)rn | sn

]
= (1/c − 1 + α)qsn,‍� (83)

so that the process satisfies the Martingale condition

	﻿‍ E
[
sn+1 | sn

]
= sn‍� (84)

for critical alpha

	﻿‍ αc = log γ−1−1
log γ−1 .‍� (85)

Mutation accumulation rate
In the trivial case where, ‍α = αc‍, ‍s‍ is constant and so mutation accumulation is predicted to be linear. 
Contributions by optimal evasion to the mutation rate are expected to exponentially decrease (resp. 
increase) over time if ‍α < αc‍ (resp. ‍α > αc‍).

In this case, dynamics and resultant mutation accumulation is determined by ‍α‍ relative to ‍αc‍, and 
only those ‍α‍ close to the threshold generate behavior resembling linear mutation accumulation. Given 
this, the added penalty ‍β(rn) = αrn‍ due to the number of recognized antigens appears to be a less 
reasonable assumption based on empirical mutation rates (Lawrence et al., 2013; Alexandrov et al., 
2013). We next consider the case for which the basal antigen creation rate is independent of ‍r‍.

rn-independent basal antigen creation rate
In this case, ‍∆sn‍ from Equation 83 becomes

	﻿‍ ∆sn = (1/c − 1)qsn + β.‍� (86)

The recognition dynamics of this case are more complex and partition into three regimes based 
on recognition relative to a critical threshold ‍q∗ = 1 − 1/e‍ (for which ‍c = 1‍ and Equation 87 ‍∆sn = β‍): 
effective immune recognition, critical recognition, and impaired recognition.

Effective immune recognition
Here, ‍q > q∗‍, giving ‍c > 1‍. In this case, the Recognizer exerts a large recognition rate on the evading 
tumor. If ‍β ≤ 0‍, then the equilibrium, ‍s∗‍ for which ‍∆sn = 0‍ is negative, and the sn is driven to 0. If ‍β‍ is 
a positive, then there exists a stable, positive antigen state:

https://doi.org/10.7554/eLife.82786
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	﻿‍ s∗ = β
q(1−1/c)‍� (87)

Trajectories assuming a variety of initial conditions are given with ‍s∗ = 10‍ in Figure  5—figure 
supplement 2A.

Impaired immune recognition
In contrast with effective recognition ‍q < q∗‍, ‍c < 1‍, and in this case, the equilibrium points are unstable. 
Moreover, If ‍β ≥ 0‍, then by a similar reasoning as above, ‍s∗ ≤ 0‍ so that sn is driven to become very 
large. Alternatively, if ‍β < 0‍ then the equilibrium state is

	﻿‍ s∗ = β
q(1/c−1)‍� (88)

so that collectively the equilibrium value is given by Equation 10.

Critical immune recognition
At criticality ‍q = q∗‍, ‍c = 1‍, and Equation 83 simplifies to

	﻿‍ ∆sn = β.‍� (89)

In this special case, all randomness imparted to the process by rn is eliminated by a critical offset 
in the number of recognized antigens and the net addition of new antigens so that the long-term 
behavior of the process is completely determined by ‍β‍. Predictably, ‍β > 0‍ (resp. ‍β < 0‍) results in net 
expansion (resp. depletion) of antigens over time, and ‍β = 0‍ is stationary. The sign of ‍β‍ may change 
as a function of the tumor IME. For example, immune exclusion and the resulting attenuated inflam-
mation may both decrease ‍q‍ and ‍β‍ as well as genetic aberrations involving mismatch repair (MMR) 
deficiency and microsatellite instability. Other alterations, such as modulated MHC expression, or 
MHC loss of heterozygosity (LOH), may affect ‍q‍ in isolation Rosenthal et al., 2019.

Mutation accumulation rate
Critical and impaired immune recognition dynamics follow a similar behavior to that detailed in Section 
Mean optimal transitions. The effective recognition case bears a resemblance to the approximate 
dynamics of the informed Evader in Section Mean transition behavior. Here, by a similar argument in 
Section Mutation accumulation rate and tumor antigen availability once equilibrium is achieved, we 
have that

	﻿‍ ν(n) ≡ ∆λ(n)
∆n ∝ rn + β + fn.‍� (90)

Studying the process at ‍s0 = s∗‍ given by Equation 88, and ‍f∗n = rn/c‍, we have that

	﻿‍

En
[
ν(n) | En

]
∝ En

[
rn + rn/c + β | En

]

= (1 + 1/c)En
[
rn | En

]
+ β

= (1 + 1/c)qs∗ + β

= β
[

(1+1/c)
(1−1/c) + 1

]

=
(

2c
c−1

)
β.

‍�

(91)

This implies Equation 11:

	﻿‍ λ(n) ∝ 2βcn/(c − 1).‍�

Therefore, linear mutation accumulation as a function of time ensues for an effective Recognizer as 
in the passive Evader case (Equation 46), this time as a function not only of the basal antigen creation 
rate ‍β > 0‍ but also of ‍q‍ through ‍c‍. We recall that under effective recognition, ‍q∗ < q < 1‍ (equivalently 
‍1 < c < ∞‍), which ultimately gives via Equation 11

	﻿‍ 2βn < µ(n).‍� (92)

https://doi.org/10.7554/eLife.82786
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Dynamics summary
The assumption that the basal antigen production depends on recognition ‍β = αrn‍ results in exponen-
tial growth or decay in the number of recognizable antigens (and therefore mutation rate), and it was 
only for a very narrow parameter value ‍α ∼ αc‍ for which linear mutation accumulation could occur. It 
is for this reason that the rn-linear constitutive assumption is less realistic.

For basal antigen rates ‍β‍ that are rn-independent, mutations are predicted to accumulate linearly 
under effective immune recognition, in a similar manner to that observed in the passive Evader case. 
In contrast with that case, however, an active Evader executes an optimal strategy to maximize the 
overall escape probability. This predicts that one effect of a dynamic evasion that optimally maximizes 
escape probability is a concomitant increase in the mutation accumulation rate relative to the passive 
case via a correction term ‍c/(c − 1)‍. This enhancement becomes indistinguishable when recognition is 
very aggressive (‍q → 1‍) and becomes large when ‍q‍ approaches the critical detection rate.

Interestingly, the active evasion strategy predicts that mutation accumulation rates vary as a func-
tion of recognition pressure, in contrast with the passive evasion model. Additionally, disease progres-
sion may affect immune recognition (changes in ‍q‍) and tumor evasion penalty (changes in ‍β‍). While the 
number of recognizable TAAs for the passive case continues evolve according to the mean-reverting 
process, there is a dramatic discontinuity in active systems whereby recognition rates below a critical 
threshold may result in unstable behavior prior to escape (Figure 5—figure supplement 2).

Optimal evasion strategy
From Equations 6–8, we have

	﻿‍
J(sn, rn) = Ane−csn

1 − e−csn
,
‍�

(93)

	﻿‍
An = δnqe−(1−c)rn−cβ

1 − δnqe−(1−c)rn−cβ ,
‍�

(94)

and

	﻿‍
π∗

n =
(

δnq
1 − (1 − q)sn

)1/rn

.
‍�

(95)

Thus,

	﻿‍
J(s0, r0) = δ0qe−(1−c)r0−cβ

1 − δ0qe−(1−c)r0−cβ · e−cs0

1 − e−cs0
,
‍�

(96)

We note that for ‍sn = sn−1 + (1/c − 1)rn−1 + β‍, therefore

	﻿‍

e−csn = γsn−1+(1−c)rn−1/c+β

= γsn−2+(1−c)(rn−1+rn−2)/c+2β

= ... = γs0+nβ+CγRn−1 , ‍�

(97)

where

	﻿‍ Cγ ≡ 1−ln γ−1

ln γ−1 ‍� (98)

and

	﻿‍
Rn ≡

n∑
j=1

rj.
‍�

(99)

By iteratively applying Equation 98, we ultimately obtain the value function in terms of the history 
of the environmental landscape, ‍{rn}n‍

	﻿‍
J(sn, rn) = δnq(1 − q)Cγ rn−β

1 − δnq(1 − q)Cγ rn−β
· (1 − q)s0−nβ+CγRn−1

1 − (1 − q)s0−nβ+CγRn−1
.
‍�

(100)
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We remark that this simplifies for constant ‍δn = δ‍, which we will typically take as 1.

Critical recognition
At the critical value of recognition ‍q∗ = 1 − 1/e‍ (‍c = 1‍), the dynamics become deterministic. Here, the 
value of the present state depends only on the initial number of detectable antigens and number of 
periods that have elapsed and is independent of the history of recognized antigens ‍{rn}n‍.

	﻿‍
J(sn, rn) = δnq(1 − q)β

1 − δn(1 − q)β
· (1 − q)s0−nβ

1 − (1 − q)s0−nβ .
‍�

(101)

At criticality, the value of the present state depends only on the initial number of detectable anti-
gens and number of periods that have elapsed, and not on the number of recognized antigens.

Non-critical recognition
We recall that the value function carries meaning as the maximal attainable expected future value. 
Under effective recognition (‍c = 1 ⇒ γCr

‍ is increasing in ‍r‍), so that the value function (Equation 101) 
has an exponent that increases.

We are motivated to consider either mild or aggressive recognition of Section 5.2.4. We will assume 
that there is minimal aversion so that ‍δn = 1‍.

Predicted dynamical behavior
From Section Mean optimal transitions, the dynamical behavior of the number of recognizable TAAs, 
or immunogenicity, of an active Evader is determined by ‍β‍ and ‍q‍. Disease progression may ultimately 
affect immune recognition (reducing ‍q‍) and/or tumor basal tumor antigen creation (reducing ‍β‍). ‍β‍ 
is expected to vary widely across tumor types. Within a given tumor subtype, the extent of environ-
mental hostility is expected to require additional tumor adaptation that may manifest as additional 
TAA targets. Therefore, larger (resp. smaller) evasion penalties ‍β‍ correspond with anti-tumor (resp. 
pro-tumor) IME. Similarly, larger (resp. smaller) ‍q‍ corresponds to infiltrated (resp. excluded) environ-
ments, and from this we model four possible states: anti-tumor-infiltrated, anti-tumor-excluded, pro-
tumor-infiltrated, and pro-tumor-excluded. The model predicts that infiltrated (‍q > q∗‍) environments 
lead to an absorbing equilibrium state in the intervening period prior to escape, while exclusion 
(‍q < q∗‍) result in unstable equilibria. Interestingly, the sign of the equilibrium, and hence the behavior, 
depends on ‍β‍, and leads to dramatically diverse behavior in the antigenicity of a dominant tumor 
clone as it progresses via immune recognition. This case is meaningful as long as the intertemporal 
penalty assuming the optimal strategy occurs, ‍β + f∗n‍, remains non-negative whenever there is at least 
one recognition event. This is equivalent to the condition that ‍f∗n + β ≥ 1/ ln γ−1 + β > 0‍, which is 
assumed in all examples that follow. These results are summarized in Figure 5 and organized below. 
The corresponding immunogenicity and cumulative mutations following escape are given by Figure 4, 
with the timing of escape and example trajectories given by Figure 5—figure supplement 3.

1.	 Anti-tumor-infiltrated (‍q > q∗‍, ‍β > 0‍): This stable steady state is positive, so that the process is 
mean-reverting, and generates immunogenically warm’ tumors.

2.	 Anti-tumor-excluded (‍q < q∗‍, ‍β > 0‍): Here, recognition is low, while the arrival of new TAAs is 
large. This unstable steady state is negative, so that all trajectories tend to increase their immu-
nogenicity over time, resulting in ‘hot’ tumors.

3.	 Pro-tumor-infiltrated (‍q > q∗‍, ‍β < 0‍): In this case, recognition is large while the arrival of new 
TAAs is low. This stable steady state is negative, so that all trajectories tend to reduce their 
immunogenicity to zero over time, yielding ‘cold’ tumors.

4.	 Pro-tumor-excluded (‍q < q∗‍, ‍β < 0‍): Lastly, if both recognition and new TAA arrival rates are 
low, then there is a positive unstable state, above which trajectories accumulate additional 
TAAs over time, becoming ‘hot,’ and below which the populations are predicted to reduce the 
number of recognizable TAAs over time, becoming ‘cold.’

These predicted dynamics parallel the observation that tumors under active immunosurveillance 
via effective recognition undergo significant immunoediting. Our results predict that the resulting 
tumor becomes ‘warm’ or ‘cold’ depending on the extent of new TAA arrival during active evasion. 
On the one hand, impaired recognition leads to diverse behavior dependent on the rate at which new 
TAAs are acquired during active evasion. If this acquisition rate is large, then the tumor accumulates 

https://doi.org/10.7554/eLife.82786
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TAAs over time to become ‘hot.’ On the other hand, tumors subject to reduced selection pressures 
may evolve as immune-hot or immune-cold tumors, consistent with previous observations (Lakatos 
et al., 2020). Moreover, the effect of reducing immune recognition leads to an accumulation of TAAs 
over time, consistent with experimental observations in lung cancer wherein patients with HLA loss of 
heterozygosity harbored larger mutational burdens, an indirect measure of TAA number of our model 
(McGranahan and Swanton, 2017). Our predictions suggest that immunogenicity ultimately depends 
on the number of detectable TAAs at the time of impaired immune recognition, suggesting that TAA-
depleted tumors share in common the tendency for their evasion strategies to incur less antigenic 
penalties. Our results would predict the utility of altering the tumor microenvironment to increase the 
immunogenicity of immune-cold tumors by making evasion more costly in a manner reminiscent of 
mutational meltdown (Gabriel et al., 1993). We remark that these dynamics are worth considering in 
the case of adoptive T cell-based immunotherapies, which have a large potential for exerting substan-
tial co-evolutionary pressure on a developing malignancy (George and Levine, 2021).

Survival benefit of active evasion
From the above analysis, immunogenicity dynamics of an active Evader are closest to those of a mean-
reverting passive Evader under the pro-tumor-infiltrated case. Given this, we study the dynamics 
under active and passive evasion as well as the distribution of escape times and probability of escape 
(Figure 2). For a reasonable comparison, we fix ‍q‍ and ‍s∗‍ for each case, and the passive evasion rate 

‍p‍ is chosen to match the stationary mean optimal evasion rate ‍π∗‍. Our simulations result in escape 
occurring 1.6 times more frequently under active evasion. Moreover, active evasion exhibits a broader 
distribution of elimination and escape times (Mean Passive Escape = 6.0, Var Passive Escape = 25.0, 
Mean Passive Elimination = 6.1, Var Passive Elimination = 30.1; Mean Active Escape = 7.2, Var Active 
Escape = 35.8, Mean Active Elimination = 6.7, Var Active Elimination = 38.0). Our results demonstrate 
that active evasion allows an Evader to adapt to the observed recognition and, despite continual 
penalty, allows an Evader to ‘out-wait’ a Recognizer in order to undergo escape.

Exogenous recognition
One powerful advantage of this approach is that the theoretical predictions are not limited by the 
underlying distribution of rn driving the process. In fact, the optimal policies and value function can 
handle any temporally varying recognition landscape, ‍{rn}n‍, so long as ‍0 ≤ rn ≤ sn‍. We consider the 
effects of step, cyclical, increasing, and decreasing recognition landscapes on the relative evasion 
probability for populations adopting either a passive or active strategy (Figure 3).

In addition to arbitrary recognition landscapes, our dynamic programming approach may be 
applied to understand the effects of immunotherapeutic intervention, whereby immune escape can 
be modeled as a range of possible behavior on the spectrum of passive evasion to the most aggres-
sive (active) evasion. For example, the active evasion dynamics assuming an anti-tumor-infiltrated case 
are similar to those of passive evasion. In both cases, the process escapes with immunogenicity values 
that fluctuate around a stationary ‍s∗‍. We can recover the recover the relationship between ‍s∗‍ and 
mutation rate ‍ν(n) = ∆λ/∆n‍ via Equations 32 and 46 for the passive case and Equation 88, Equation 
11 for the active case. In both cases, the result is similar:

	﻿‍ s∗ = ν/2q.‍� (102)

demonstrating that immunogenicity, and thus the success likelihood of immunotherapeutic inter-
vention, varies directly with mutation rate and inversely with recognition rate. This theory predicts 
that escape to a cold tumor is more likely when ‍s∗‍ is close to 0 and is akin to complete evasion as 
modeled in George and Levine, 2018, contrasting with temporary evasion that may be recognized 
subsequently George and Levine, 2020. All else equal, higher mutational rates can lead to higher 
predicted efficacy via higher ‍s∗‍, but this is not the only way as concomitantly high rates of recogni-
tion can drive ‍s∗‍ down, thereby reducing predicted efficacy. In Equation 103, it is clear that a better 
immunotherapy prognosis occurs when the mutational rate is higher and the recognition rate is also 

https://doi.org/10.7554/eLife.82786
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low since ‍s∗‍ is predicted large in this case. Figure 5—figure supplement 4 summarizes the behavior 
of an adaptive Evader subject to a temporally varying recognition pressure.
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