
Liu et al. eLife 2023;12:e82954. DOI: https:// doi. org/ 10. 7554/ eLife. 82954  1 of 26

Coevolutionary dynamics via adaptive 
feedback in collective- risk social 
dilemma game
Linjie Liu1,2, Xiaojie Chen2*, Attila Szolnoki3

1College of Science, Northwest A & F University, Yangling, China; 2School of 
Mathematical Sciences, University of Electronic Science and Technology of China, 
Chengdu, China; 3Institute of Technical Physics and Materials Science, Centre for 
Energy Research, Budapest, Hungary

Abstract Human society and natural environment form a complex giant ecosystem, where human 
activities not only lead to the change in environmental states, but also react to them. By using 
collective- risk social dilemma game, some studies have already revealed that individual contributions 
and the risk of future losses are inextricably linked. These works, however, often use an idealistic 
assumption that the risk is constant and not affected by individual behaviors. Here, we develop 
a coevolutionary game approach that captures the coupled dynamics of cooperation and risk. In 
particular, the level of contributions in a population affects the state of risk, while the risk in turn 
influences individuals’ behavioral decision- making. Importantly, we explore two representative feed-
back forms describing the possible effect of strategy on risk, namely, linear and exponential feed-
backs. We find that cooperation can be maintained in the population by keeping at a certain fraction 
or forming an evolutionary oscillation with risk, independently of the feedback type. However, such 
evolutionary outcome depends on the initial state. Taken together, a two- way coupling between 
collective actions and risk is essential to avoid the tragedy of the commons. More importantly, a 
critical starting portion of cooperators and risk level is what we really need for guiding the evolution 
toward a desired direction.

Editor's evaluation
The paper provides a valuable, in- depth mathematical analysis of the coevolutionary dynamics 
resulting from a coupling of players' strategies and (collective) risk, as well as illustrative numerical 
simulations of the system's trajectories for different starting conditions. It is therefore a solid contri-
bution to our understanding of how cooperation can be sustained when there is feedback between 
individual decisions and the global risk of disaster. This paper will be of interest to scientists working 
on mathematical biology/ecology, and more generally various aspects of human decision- making, 
the interplay between human decisions and the environment, and public goods provision.

Introduction
Human activities constantly affect the natural environment and cause changes in its quality, which in 
turn affects our daily life and health conditions (Patz et al., 2005; Steffen et al., 2006; Perc et al., 
2017; Obradovich et al., 2018; Hilbe et al., 2018; Su et al., 2019; Su et al., 2022). A well- known 
example is climate change, which is one of the biggest contemporary challenges of our civilization 
(Parmesan and Yohe, 2003; Stone et al., 2013). A large number of carbon emissions caused by human 
activities will exacerbate the greenhouse effect, which risks raising global temperatures to dangerous 
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levels. The direct consequences of global warming are the melting of glaciers and the rise in sea level, 
which will inevitably affect human activities (Schuur et al., 2015; Obradovich and Rahwan, 2019; 
Moore et al., 2022). Similarly, we can give more examples of coupled human and natural systems to 
continue this list, such as habitat destruction and the spread of infectious diseases (Liu et al., 2001; 
Liu et al., 2007; Chen and Fu, 2019; Tanimoto, 2021; Chen and Fu, 2022). At present, the impor-
tance of developing a new comprehensive framework to study the coupling between human behavior 
and the environment has been recognized by a number of interdisciplinary approaches (Weitz et al., 
2016; Chen and Szolnoki, 2018; Tilman et al., 2020).

Evolutionary game theory provides a powerful theoretical framework for studying the coupled 
dynamics of human and natural systems (Maynard Smith, 1982; Weibull, 1997; Stewart and Plotkin, 
2014; Radzvilavicius et al., 2019; Park et al., 2020; Niehus et al., 2021; Han et al., 2021; Cooper 
et  al., 2021). Furthermore, coevolutionary game models have recognized the fact that individual 
payoff values are closely related to the state of the environment (Weitz et al., 2016; Szolnoki and 
Chen, 2018; Chen and Szolnoki, 2018; Hauert et al., 2019; Tilman et al., 2020; Wang and Fu, 
2020; Yan et al., 2021). For example, Weitz et al., 2016 considered the dynamical changes of the 
environment, which modulates the payoffs of individuals. Their results show that individual strategies 
and the environmental state may form a sustained cycle where strategy swing between full cooper-
ation and full defection, while the environment state oscillates between the replete state and the 
depleted state. Along this line, feedback- evolving game systems with intrinsic resource dynamics 
(Tilman et al., 2020), asymmetric interactions in heterogeneous environments (Hauert et al., 2019), 
and time- delay effect (Yan et al., 2021) have been also investigated where periodic oscillation of 
strategy and environment is observed. As a general conclusion, the feedback loop between individual 
strategies and related environment is a key element to maintain long- term cooperation and sustain-
able use of resources.

Despite the mentioned efforts, the research on possible consequences of the feedback between 
human activity and natural systems is still in early stage. Staying at the abovementioned example, 
potential feedback loops between human activities and climate change exist (Obradovich and 
Rahwan, 2019). However, most scholars study these two topics, that is, human contributions to 
climate change and social impacts of the changing climate on human behavior, in a separated way 
(Vitousek et al., 1997; Barfuss et al., 2020). On the one hand, some of them usually focus on how 
human behaviors (use of land, oceans, fossil fuel, freshwater, etc.) affect environment (Vitousek et al., 
1997). On the other hand, researchers who are interested in society and biology frequently focus on 
how environmental change will affect human behaviors (Culler et al., 2015; Obradovich and Rahwan, 
2019; Celik, 2020). Recently, these two approaches have been merged into a single framework, called 
collective- risk social dilemma game, which serves as a general paradigm for studying climate change 
dilemmas (Milinski et al., 2008). Within it, a group of individuals decide whether to contribute to 
reach a collective goal. If the total contributions of all individuals exceed a certain threshold, then the 
disaster is averted and all individuals benefit from it. Otherwise, the disaster occurs with a probability 
(also known as the risk of collective failure), resulting in fatal economic losses for all participants. Both 
behavioral experiments and theoretical works show that the risk of future losses plays an important 
role in the evolution of cooperation (Milinski et al., 2008; Santos and Pacheco, 2011; Chen et al., 
2012a; Vasconcelos et al., 2013; Hilbe et al., 2013; Vasconcelos et al., 2014; Barfuss et al., 2020; 
Domingos et al., 2020; Sun et al., 2021; Chica et al., 2022).

Previous studies based on the collective- risk dilemma game revealed that the risk of collective 
failure could affect individuals’ motivation to cooperate when they face the problem of collective 
action, but ignored an important practical aspect. That is, human decision- making is not only affected 
by changes in the risk state, but also affects the level of risk (Chen et al., 2012a). Indeed, the risk 
of collective failure is lower in a highly cooperative society, but becomes significant in the opposite 
case. This fact is not only reflected in climate change (Moore et al., 2022), but also in the spread of 
infectious diseases (Chen and Fu, 2022) and vaccination (Nichol et al., 1998; Chen and Fu, 2019). 
Furthermore, although the risk level varies in a changing population, their relation is not necessarily 
straightforward. For example, a study revealed that the infection- fatality risk (IFR) of COVID- 19 in 
India decreased linearly from June 2020 to September 2020 due to improved healthcare or increased 
vaccination (Yang and Shaman, 2022). Throughout the whole process (from March 2020 to April 
2021), the statistical curve of IFR is nonlinear, that is, when the epidemic broke out, the value of IFR 
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remained at a high level, and then with the increase in vaccination or the improvement in healthcare, 
the IFR value gradually decreased, then flattened and remained at a low level (Yang and Shaman, 
2022). On the other hand, the change in risk is bound to affect individuals’ decision- making, which has 
been confirmed in behavioral experiments and theoretical research (Milinski et al., 2008; Pacheco 
et al., 2014). Though potential feedback loops between strategy and risk of future losses are already 
recognized, a study focusing on their direct interaction is missing. Furthermore, it is still an open 
question whether the character of feedback mechanism plays an essential role in the final evolutionary 
outcome. Hence, how the impacts of risk on human systems might, in turn, alter the future trajectories 
of human decision- making remains largely unexplored.

To fill this gap, we propose a coupled coevolutionary game framework based on the collective- 
risk dilemma to describe reciprocal interactions and feedbacks between decision- making procedure 
of individuals and risk. In particular, we assume that the increasing free- riding behaviors will slowly 
increase the risk of collective failure, and the resulting high- risk level will in turn stimulate individual 
contributions. However, the increase in contribution will gradually reduce the risk of collective failure, 
and the resulting low- risk level will promote the prevalence of free- riding behaviors again. This 
general feedback loop is illustrated in Figure 1. Importantly, we respectively consider two concep-
tually different feedback protocols describing the effect of strategy on risk. Namely, both linear and 
highly nonlinear (exponential) feedback forms are checked. Our analysis identifies the conditions for 
the existence of stable interior equilibrium and stable limit cycle dynamics in both cases.

Materials and methods
Collective-risk social dilemma game
We consider an infinite well- mixed population in which  N   individuals are selected randomly to form a 
group for playing the collective- risk social dilemma game. Each individual in the group has an initial 
endowment  b  and can choose one of the two strategies, that is, cooperation and defection. Coop-
erators will contribute an amount  c  to the common pool, whereas defectors contribute nothing. 
The remaining endowments of all individuals can be preserved if the overall number of cooperators 
exceeds a threshold value  M  , where  1 < M < N   (Milinski et al., 2008; Santos and Pacheco, 2011). 
Otherwise, individuals will lose all their endowments with a probability  r , which characterizes the risk 
level of collective failure. Accordingly, the payoffs of cooperators and defectors in a group of size  N   
with  jC  cooperators and  N − jC  defectors can be summarized as

 PC = bθ(jC + 1 − M) + (1 − r)b[1 − θ(jC + 1 − M)] − c ,  (1)

 PD = bθ(jC − M) + (1 − r)b(1 − θ(jC − M)) ,  (2)

where  θ(x)  is the Heaviside function, that is,  θ(x) = 0  if  x < 0 , being one otherwise. Here, we would like 
to note that the collective- risk social dilemma is a kind of public goods games, which are a special and 
extended version of Donor & Recipient game by referring to the concept of universal dilemma strength 
(Wang et al., 2015; Ito and Tanimoto, 2018; Tanimoto, 2021). However, following previous work 
on collective- risk social dilemma (Santos and Pacheco, 2011), we retain the parameters mentioned 
above for the sake of convenience, instead of replacing them with the universal dilemma strength.

To analyze the evolutionary dynamics of strategies in an infinite population, we use replicator 
equations to describe the time evolution of cooperation (Taylor and Jonker, 1978; Schuster and 
Sigmund, 1983). Accordingly, we have

 ẋ = x(1 − x)(fC − fD) ,  

where  x  denotes the frequency of cooperators in the population, while  fC  and  fD  respectively denote 
the average payoffs of cooperators and defectors, which can be calculated as

 

fC =
∑N−1

jC=0
(N−1

jC
)
xjC (1 − x)N−jC PC ,

fD =
∑N−1

jC=0
(N−1

jC
)
xjC (1 − x)N−jC PD ,  
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Figure 1. Coevolutionary feedback loop of population and risk states in the coupled game system. The meaning of colors is explained in the legend on 
the top.
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where  PC  and  PD  are shown in Equations 1 and 2. After some calculations, the difference between 
the average payoffs of cooperators and defectors can be written as

 fC − fD =
(N−1

M−1
)
xM−1(1 − x)N−Mrb − c .  

In the above replicator equation, we describe a game- theoretic interaction involving the risk of 
collective failure, which is a positive constant in previous works (Santos and Pacheco, 2011; Chen 
et al., 2012a). Here, we are focusing on a dynamical system where there is feedback between stra-
tegic behaviors and risk. In particular, the impact of strategies on the risk level is channeled through a 
function  U(x, r) , which depends on both key variables. Then by using the general form of the feedback, 
the coevolutionary dynamics can be written as

 




εẋ = x(1 − x)[

(
N − 1
M − 1

)
xM−1(1 − x)N−Mrb − c] ,

ṙ = U(x, r) ,   

(3)

where  ε  denotes the relative speed of strategy update dynamics (Weitz et al., 2016), such that when 
 0 < ε ≪ 1  the strategies evolve significantly faster than the change in the risk level. In the following, 
we consider both linear and nonlinear forms of feedback describing the effect of strategy distribution 
on the evolution of risk.

Linear effect of strategy on risk
In the first case, we assume that the effect of strategies on the risk level takes a linear form, which is 
the most common form that can be used to describe the characteristic attributes between key vari-
ables. Just to illustrate it by a specific example, the probability of influenza infection among individuals 
who have not been vaccinated decreases linearly with the increase in vaccine coverage (Vardavas 
et al., 2007). Here, we consider that the value of risk decreases linearly with the increase in coop-
eration level. Furthermore, by following the work of Weitz et al., 2016, we can write the dynamical 
equation of risk as

 ṙ = r(1 − r)[u(1 − x) − x],  (4)

where  u(1 − x) − x  denotes the increase in risk by the defection level at rate  u  and the decrease by the 
fraction of cooperators at relative rate one. Then the dynamical system is described by the following 
equation:

 




εẋ = x(1 − x)[

(
N − 1
M − 1

)
xM−1(1 − x)N−Mrb − c]

ṙ = r(1 − r)[u(1 − x) − x].   

(5)

Exponential effect of strategy on risk
To complete our study, we also apply a nonlinear form of feedback function. The most plausible choice 
is when the risk level depends exponentially on the population state. To be more specific, we consider 
that the risk will decrease when the frequency of cooperators in the population exceeds a certain 
threshold value  T  . Otherwise, the risk level will increase. Such a scenario is suitable for describing 
climate change and the spread of infectious diseases, in which the risk can increase sharply, such as 
the occurrence of extreme weather (Eckstein et al., 2021) or a sudden outbreak of an epidemic in a 
region (Yang and Shaman, 2022). Here, we use the sigmoid function to describe the effect of strategy 
on the risk state (Boza and Számadó, 2010; Chen et al., 2012b; Couto et al., 2020), which can be 
written as

 ṙ = r(1 − r)[ 1
1+eβ(x−T) − 1

1+e−β(x−T) ] ,  (6)

where  β  characterizes the steepness of the function and  r(1 − r)  ensures that the risk state remains 
in the  [0, 1]  domain. For convenience, we introduce the variable  ξ = x − T   and the function 

 B(ξ) = 1
1+eβξ − 1

1+e−βξ  . Thus we have  ̇r = r(1 − r)B(ξ) . When  β = 0 , we know that  B(ξ) = 0 . In this 

https://doi.org/10.7554/eLife.82954
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situation, strategies have no effect on the risk level. For  β = +∞ , the function  B(ξ)  becomes steplike 
so that the risk will decrease only if the frequency of cooperators in the group exceeds the threshold 
 T  . Otherwise, the risk level remains high. To study the consequence of a proper feedback effect, we 
apply a finite  β > 0  value. In Figure 2, we illustrate how  B(ξ)  varies with  ξ  for four different values of  β .

Accordingly, the feedback- evolving dynamical system where the effect of strategies on the risk 
state is expressed by the exponential form can be written as

 




εẋ = x(1 − x)[

(
N − 1
M − 1

)
xM−1(1 − x)N−Mrb − c]

ṙ = r(1 − r)[ 1
1 + eβ(x−T) − 1

1 + e−β(x−T) ].
  

(7)

β = 0.1

β = 1

β = 5
β = 10

−1

−0.5

0

0.5

1
B

(ξ
)

−1 −0.5 0 0.5 1

ξ
Figure 2. Feedback equation  B(ξ)  varies with  ξ  for different values of  β . The parameter  β  determines the steepness of the curves. When the value of 

 β  is small, the  B(ξ)  function is almost constant or decays linearly by increasing  ξ . For larger  β  values, the shape of  B(ξ)  approaches a step- like form. In 
this parameter area, the risk level depends sensitively on whether the group cooperation exceeds the threshold  T   value or not.
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Here, in order to help readers to overview 
easily all the parameters and variables introduced 
in our work, we present them in Table 1. In the 
following section, we respectively investigate 
the coevolutionary dynamics of strategy and risk 
when considering linear and exponential feed-
back forms. We note that the details of theoretical 
analysis can be found in Appendix 1.

Results
System I: Coevolutionary dynamics 
with linear feedback
We first consider the case of linear feedback. 
More precisely, we assume that the risk value of 
collective failure will decrease linearly with the 
increase in cooperation and increase linearly 
with the increase in defection level. The resulting 
dynamical system is presented in Equation 5. 

Table 1. Notation symbols and meanings in our 
work.

Symbol Meaning

 N  Group size

 b Initial endowment

 c Cost of cooperation

 r  Risk

 M  Collective goal

 ε Feedback speed

 u 
Growth rate of risk with the 
proportion of defectors

 T  Threshold value of cooperation

 β Steepness parameter

 x Frequency of cooperation

u

c
b

1 - x2
*

x2
*

N - M 
- 1

Γ( N - 1
- 1

)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(x2
* , 1)

( 1 + u
u ,  r*)

Hopf bifurcation

M 

M 0
0

Figure 3. Representative plot of stable evolutionary outcomes in System I when linear strategy feedback on risk level is assumed. Different colors are 
used to distinguish the stability of different equilibrium points in the parameter space ( u, c

b ). The blue line indicates that the system undergoes a Hopf 
bifurcation at  u = M−1

N−M  . Here,  x
∗
2  is the real root of the equation  Γ(x) = c

b , where  Γ(x) =
(N−1

M−1
)
xM−1(1 − x)N−M

 , and  (
u

1+u , r∗)  is the interior fixed 

point where 
 
r∗ = c(N−1

M−1
)

( u
1+u )M−1( 1

1+u )N−Mb 
. The dashed curve represents that the value of  Γ( u

1+u )  changes with  u  when  u > M−1
N−M  . The horizontal dashed line 

represents that  Γ( M−1
N−1 ) = c

b  when 
 
u > x∗2

1−x∗2  
. The vertical dashed line represents that 

 
u = x∗2

1−x∗2  
 when  Γ(x∗2 ) < c

b < Γ( M−1
N−1 ) .

https://doi.org/10.7554/eLife.82954


 Research article Computational and Systems Biology | Evolutionary Biology

Liu et al. eLife 2023;12:e82954. DOI: https:// doi. org/ 10. 7554/ eLife. 82954  8 of 26

After some calculations, we find that this equation system has at most seven fixed points, which are 

 (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) ,  (
u

1+u , r∗) ,  (x
∗
1 , 1) , and  (x

∗
2 , 1) , where 

 
r∗ = c(N−1

M−1
)

( u
1+u )M−1( 1

1+u )N−Mb 
,  x

∗
1  and  x

∗
2  are the 

real roots of the equation  
(N−1

M−1
)
xM−1(1 − x)N−Mb = c . We further perform theoretical analysis for these 

equilibrium points, as provided in Appendix 1. In order to describe the stable states of System I for 
the complete parameter regions, we present a schematic plot in the parameter space  (u, c

b ) , as shown 
in Figure 3. We use different colors to distinguish the evolutionary outcomes for specific pairs of key 
parameters. In the following, we discuss the representative results in detail.

System I has an interior equilibrium point
When  

(N−1
M−1

)
( u

1+u )M−1( 1
1+u )N−Mb > c , we know that our coevolutionary system has an interior fixed 

point. According to its stability, we can distinguish three subcases here. Namely, when  u > M−1
N−M  , 

then the existing interior fixed point is stable. Besides, since  
(N−1

M−1
)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb > c , 

there exist seven fixed points in the system, namely,  (0, 0), (0, 1), (1, 0), (1, 1), ( u
1+u , r∗), (x∗1 , 1) , and  (x

∗
2 , 1) . 

Here, only  (0, 1)  and  (
u

1+u , r∗)  are stable (marked by the yellow area in Figure 3). Besides, we provide 
numerical examples to illustrate the above theoretical analysis (see the top row of Figure 4). We 
find that bistable dynamics can appear, that is, depending on the initial conditions the system will 
evolve to one of two stable equilibria: here,  (0, 1) , which is the undesirable full defection equilib-
rium, or the interior fixed point suggests that cooperation can be maintained at a high level when 
the value of risk exceeds an intermediate value. Furthermore, we note that the results are not 
affected qualitatively by the feedback speed in any of the cases (see Appendix 1—figure 1 in 
Appendix 1).

If the enhancement rate of risk caused by defection drops to a certain threshold, namely,  u = M−1
N−M , 

a Hopf bifurcation takes place, which is supercritical (marked by the blue line in Figure 3). In this situ-
ation, System I has all seven fixed points. As analyzed in Appendix 1, only  (0, 1)  is stable. Furthermore, 
we provide numerical examples to illustrate our theoretical analysis (see the second row of Figure 4). 
We find that the system is bistable: depending on the initial fractions of cooperators and risk, the 
system can evolve either to a high- risk state without cooperation or to a limit cycle where the frequen-
cies of cooperation and risk show periodic oscillations.

When the enhancement rate of risk caused by defection is weak and meets  u < M−1
N−M  condition, 

then the interior fixed point is unstable. Besides, since  
(N−1

M−1
)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb > c , there exist 

all seven fixed points. According to the theoretical analysis presented in Appendix 1, only  (0, 1)  fixed 
point is stable. In the third row of Figure 4, we present some representative numerical examples. 
They show that all trajectories in the state space terminate at the fixed point  (0, 1) , which is consistent 
with our theoretical results. This means that no individual chooses to contribute to the common pool, 
leading to the failure of collective action, and finally, all individuals inevitably lose all their endowments.

System I has no interior equilibrium point
The alternative case is when there is no interior fixed point, namely,  

(N−1
M−1

)
( u

1+u )M−1( 1
1+u )N−Mb ≤ c . 

In this situation, when  
(N−1

M−1
)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb > c , System I has six fixed points, which are 

 (0, 0), (0, 1), (1, 0), (1, 1), (x∗1 , 1),  and  (x
∗
2 , 1) , respectively. The theoretical analysis, presented in Appendix 

1 , shows that  (0, 0), (1, 0), (1, 1),  and  (x
∗
1 , 1)  are unstable,  (0, 1)  is stable, and  (x

∗
2 , 1)  is stable for  x

∗
2 < u

1+u  
(shown by the green area in Figure 3). In the bottom row of Figure 4, we provide some numerical 
examples to illustrate our theoretical results. The phase plane dynamics show that most trajectories in 
phase space converge to the stable equilibrium point  (x

∗
2 , 1) , which suggests that driven by the high 

risk of future loss, most individuals will contribute to the common pool. Besides, the remaining trajec-
tories in the phase space will converge to the fixed point  (0, 1) , which means a complete failure when 
all individuals lose all remaining endowments.

Furthermore, we prove that the fixed point  (x
∗
2 , 1)  is unstable when  x

∗
2 > u

1+u  in Appendix 1. For the 
special case of  x

∗
2 = u

1+u , we find that one eigenvalue of the Jacobian matrix at  (x
∗
2 , 1)  is zero and the 

other one is negative. We provide the stability analysis of this fixed point by using the center manifold 
theorem (Khalil, 1996). When  

(N−1
M−1

)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb ≤ c ,  (0, 1)  is the only stable equilibrium 

point of the System I.

https://doi.org/10.7554/eLife.82954
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Figure 4. Coevolutionary dynamics on phase planes and temporal dynamics of System I when linear feedback is considered. Filled circles represent 
stable and open circles denote unstable fixed points. The arrows provide the most likely direction of evolution and the continuous color code depicts 
the speed of convergence in which red denotes the highest speed, while purple represents the lowest speed of transition. On the right- hand side, 
blue solid line and red dash line respectively denote the fraction of cooperation and the risk level, as indicated in the legend. The first three rows 

show the coevolutionary dynamics when  u > M−1
N−M  ,  u = M−1

N−M  , and  u < M−1
N−M  , respectively. The bottom row shows coevolutionary dynamics when 

 
(N−1

M−1
)
( u

1+u )M−1( 1
1+u )N−Mb < c . Parameters are  N = 6, c = 0.1, b = 1, u = 2, ε = 0.1, M = 3  in panel (a). The initial conditions are  (x, r) = (0.4, 0.3)  in 

Figure 4 continued on next page
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System II: Coevolutionary dynamics with exponential feedback
In this section, we consider the case of exponential feedback. Here, there are at most seven 
equilibrium points of the replicator Equation 7. Namely,  (x, y) = (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) ,  (x

∗
1 , 1) , 

 (x
∗
2 , 1) , and 

 
(T, c(N−1

M−1
)

TM−1(1−T)N−Mb
)
 
, in which  x

∗
1  and  x

∗
2  satisfy the equation  

(N−1
M−1

)
xM−1(1 − x)N−Mb = c  

and  x
∗
1 < M−1

N−1 < x∗2  (Santos and Pacheco, 2011). For convenience, we set 
 
r̄ = c(N−1

M−1
)

TM−1(1−T)N−Mb 
. Here, 

the first six equilibria are boundary fixed points, and the last one is an interior fixed point. In Appendix 

panel (b) and  (x, r) = (0.1, 0.1)  in panel (c).  N = 6, c = 0.1, b = 1, u = 2
3 , ε = 0.1, M = 3  in panel (d). The initial conditions are  (x, r) = (0.4, 0.3)  in 

panel (e) and  (x, r) = (0.4, 0.5)  in panel (f).  N = 6, c = 0.1, b = 1, u = 0.5, ε = 0.1, M = 3  in panel (g). The initial conditions are  (x, r) = (0.4, 0.3)  in 
panel (h).  N = 6, c = 0.1, b = 1, u = 4 ,  ε = 0.1, M = 3  in panel (i). The initial conditions are  (x, r) = (0.4, 0.3)  in panel (j) and  (x, r) = (0.1, 0.1)  in panel 
(k).

Figure 4 continued
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Figure 5. A representative diagram about stable solutions of System II when strategy feedback on risk level is exponential. We use different colors 
to distinguish the stability of equilibrium points in the parameter space ( T, c

b ). The blue line indicates that the system undergoes a Hopf bifurcation 
at  T = M−1

N−1  . Here,  (T, r̄)  is the interior fixed point where 
 
r̄ = c(N−1

M−1
)

TM−1(1−T)N−Mb 
. The dashed curve represents that the value of  Γ(T)  changes 

with  T   when  T > M−1
N−1  . The horizontal dashed line represents that  Γ( M−1

N−1 ) = c
b  when  T > x∗2  . The vertical dashed line represents that  T = x∗2  when 

 Γ(x∗2 ) < c
b < Γ( M−1

N−1 ) .
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2, we analyze the stability of these equilibria under four different parameter ranges by evaluating the 
sign of the eigenvalues of the Jacobian (Khalil, 1996). The basins of each solution in parameter space 

 (T, c
b )  are shown in Figure 5. In the following, we will discuss the evolutionary outcomes depending on 

whether System II has an interior equilibrium point.

System II has an interior equilibrium point
In this case  c <

(N−1
M−1

)
TM−1(1 − T)N−Mb , there are three typical dynamical behaviors for the evolution 

of cooperation and risk according to the stability conditions of the interior equilibrium point (for 
details, see Appendix 2).

When  T > M−1
N−1  , the interior fixed point is stable. Besides, since  

(N−1
M−1

)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb − c > 0 , 

there exist two boundary fixed points, which are  (x
∗
1 , 1)  and  (x

∗
2 , 1) . Thus the system has seven fixed 

points, which are  (0, 0), (0, 1), (1, 0), (1, 1), (x∗1 , 1), (x∗2 , 1) , and  (T, r̄) . From the Jacobian matrices, we can 
conclude that the fixed points  (0, 0), (0, 1), (1, 0), (1, 1), (x∗1 , 1),  and  (x

∗
2 , 1)  are unstable, while  (0, 1)  and 

 (T, r̄)  are stable. The latter case is shown in the top row of Figure 6, where we plot the phase plane 
and temporal dynamics of the system. It suggests that there is a stable interior fixed point, and most 
trajectories in phase space converge to this nontrivial solution, which means that the system can 
evolve into a state where the risk is kept at a low level and almost half of the individuals contribute 
to the common pool. The remaining trajectories in the phase space will converge to the alternative 
destination in which the risk level becomes particularly high and cooperators disappear.

When  T = M−1
N−1  , the eigenvalues of Jacobian matrix at the interior fixed point are a purely imaginary 

conjugate pair. Then, according to the Hopf bifurcation theorem (Kuznetsov, 1998; Guckenheimer 
and Holmes, 2013), the system undergoes a Hopf bifurcation at  T = M−1

N−1   and a limit cycle encircling 
around interior equilibrium emerges. By calculating the first Lyapunov coefficient, we can evaluate that 
the limit cycle is stable (see Appendix 2). Besides, there exist two boundary fixed points,  (x

∗
1 , 1)  and 

 (x
∗
2 , 1) , because  

(N−1
M−1

)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb − c > 0 . Thus the system has all seven fixed points. As 

we discuss in Appendix 2, only the fixed point  (0, 1)  is stable. A representative numerical example is 
shown in the second row of Figure 6, which is conceptually similar to those we observed for System I. 
More precisely, the population either converges toward a limit cycle in the interior space or arrives to 
the undesired  (0, 1)  point where there are no cooperators, but just high risk.

The interior fixed point is unstable when  T < M−1
N−1  . Besides, there are two boundary fixed points, 

 (x
∗
1 , 1)  and  (x

∗
2 , 1) , because  

(N−1
M−1

)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb − c > 0 . In this situation, the system has all seven 

fixed points. Theoretical analysis, presented in Appendix 2, confirms that only  (0, 1)  is stable. This 
is illustrated in the third row of Figure 6 where all trajectories terminate in the mentioned point, 
signaling that the tragedy of the commons state is inevitable.

System II has no interior equilibrium point
When  c ≥

(N−1
M−1

)
TM−1(1 − T)N−Mb , there is no interior fixed point in System II. In this case, when 

 
(N−1

M−1
)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb − c < 0 , there are four equilibrium points, namely,  (0, 0), (0, 1), (1, 0), (1, 1) , 

where  (0, 1)  is stable. When  
(N−1

M−1
)
( M−1

N−1 )M−1(1 − M−1
N−1 )N−Mb − c > 0 , there exist two boundary fixed 

points,  (x
∗
1 , 1)  and  (x

∗
2 , 1) . Altogether, the system has six fixed points, which are  (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) , 

 (x
∗
1 , 1),  and  (x

∗
2 , 1) . As we discuss in Appendix 2, the fixed points  (0, 0), (1, 0), (1, 1), (x∗1 , 1)  are unstable, 

while  (0, 1)  is stable. In the special case of  x
∗
2 < T  , the fixed point  (x

∗
2 , 1)  becomes stable, which suggests 

that there is a significant cooperation at a high risk level. A representative numerical illustration is 
shown in the bottom row of Figure 6, signaling the importance of the initial conditions because the 
trajectories converge either to the fixed point  (0, 1)  or to  (x

∗
2 , 1) .

Discussion
Human behavior and the natural environment are inextricably linked. Motivated by this fact, rapidly 
growing research efforts have recognized the importance of developing a new comprehensive frame-
work to study the coupled human–environment ecosystem (Stern, 1993; Liu et  al., 2007; Farah-
bakhsh et  al., 2022). Starting from the powerful concept of coevolutionary game theory, several 
works focus on depicting the reciprocal interactions and feedback between human behaviors and 
natural environment – both the impact of human behaviors on nature and the effects of environment 
on human behaviors (Weitz et al., 2016; Chen and Szolnoki, 2018; Tilman et al., 2020). Along this 

https://doi.org/10.7554/eLife.82954
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Figure 6. Coevolutionary dynamics on phase planes and temporal dynamics of System II when exponential feedback is assumed. Filled circles represent 
stable and open circles denote unstable fixed points. The arrows provide the most likely direction of evolution and the continuous color code depicts 
the speed of convergence in which red denotes the highest speed, while purple represents the lowest speed of transition. Blue solid line and red 
dash line respectively denote the fraction of cooperation and the risk level, as indicated in the legend. The first three rows show the coevolutionary 
dynamics when  T > M−1

N−1  ,  T = M−1
N−1  , and  T < M−1

N−1  , respectively. The bottom row shows the case when  c >
(N−1

M−1
)
TM−1(1 − T)N−Mb . Parameters are 

 N = 6, c = 0.1, b = 1, T = 0.5, ε = 0.1, M = 3  in panel (a). The initial conditions are  (x, r) = (0.4, 0.3)  in panel (b) and  (x, r) = (0.1, 0.1)  in panel 
(c).  N = 6, c = 0.1, b = 1, T = 0.4, ε = 0.1, M = 3  in panel (d). The initial conditions are  (x, r) = (0.4, 0.3)  in panel (e) and  (x, r) = (0.4, 0.5)  in panel 

Figure 6 continued on next page
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research line, we have developed a feedback- evolving game framework to study the coevolutionary 
dynamics of strategies and environment based on collective- risk dilemmas. Here, the environmental 
state is no longer a symbol of resource abundance, but depicts the risk level of collective failure. More 
precisely, we assume that the frequencies of strategies directly affect the risk level and reversely, the 
change in risk state stimulates individual behavioral decision- making. Importantly, we have explored 
both linear and highly nonlinear feedback mechanisms that characterize the link between the main 
system variables.

In particular, we have incorporated the strategies- risk feedback mechanism into replicator dynamics 
and explored the possible consequences of coevolutionary dynamics. We have shown that sustainable 
cooperation level can be reached in the population in two different ways. First, the coevolutionary 
dynamics can converge to a fixed point. This fixed point can be in the interior, indicating that the 
frequency of cooperators and the level of risk can be respectively stabilized at a certain level, or at the 
boundary, indicating that high- level cooperation can be maintained even at a significantly high- risk 
environment. Second, the system has a stable limit cycle where persistent oscillations in strategy and 
risk state can appear. In addition, we have found that the above- described evolutionary outcomes do 
not depend significantly on the character of feedback mechanism of how strategy change affects on 
risk level. No matter it is linear or nonlinear, what really counts is the existence of the proper feed-
back. Importantly, we have theoretically identified those conditions that are responsible for the final 
dynamical outcomes.

In this work, we introduce a two- way coupling between strategy and environment. Indeed, the 
effect of a two- way interplay between environments and strategy has been involved in previous works. 
For example, Hilbe et al. considered that the public resource is changeable and depends on strategic 
choices of individuals (Hilbe et al., 2018). By analyzing the stochastic dynamics of the system, they 
found that the interplay between reciprocity and payoff feedback can be crucial for cooperation. And 
they considered this two- way interplay between environments and strategy in repeated stochastic 
game with discrete time steps. Differently, in our work we focus on one- shot collective- risk social 
dilemma with such two- way interplay. We find that a two- way coupling between collective actions and 
risk is essential to avoid the tragedy of the commons.

Previous theoretical studies have revealed that the coevolutionary game models describing the 
complex interactions between collective actions and environment can produce periodic oscillation 
dynamics (Weitz et al., 2016; Tilman et al., 2020). Although our feedback- evolving game model can 
also produce persistent oscillations, there are some differences. In particular, we have theoretically 
proved that Hopf bifurcation can take place and a stable limit cycle can appear in the system, which is 
different from the heteroclinic cycle dynamics reported by Weitz et al., 2016. Besides, we have found 
that the existence of a limit cycle does not depend on the speed of coupling (see Appendix 1—figure 
1, Appendix 2—figure 1), whereas Tilman et al., 2020 reported the opposite conclusion. Further-
more, we observe that a small amplitude oscillation is more conducive to maintaining the stability of 
the system than a large magnitude oscillation because a higher risk will make it easier for all individuals 
to lose all their endowments.

The reciprocal feedback process, though many types have not been well characterized, occurs 
at all levels of our life (Liu et  al., 2007; Ezenwa et  al., 2016; Obradovich and Rahwan, 2019). 
Consequently, they may play an indispensable role in maintaining the stability of human society and 
the ecosystem. Mathematical modeling based on evolutionary game theory is a powerful tool for 
addressing social–ecological and human–environment interactions and analyzing the evolutionary 
dynamics of these coupled systems. The mathematical framework proposed in this article considers 
two characteristic forms to describe the effect of strategy on risk, namely, linear and nonlinear (expo-
nential) forms of feedback. Although these two forms can be equivalent under some limit condi-
tions, there are essential differences. On the one hand, linear relationship is a relatively simple way 
to describe the correlation mode of two factors, which is common in real society. For example, with 
the increase in protection awareness and vaccination proportion, the mortality rate of the epidemic 
decreased gradually (Yang and Shaman, 2022). Furthermore, linear feedback has been used to 

(f).  N = 6, c = 0.1, b = 1, T = 0.2, ε = 0.1, M = 3  in panel (g). The initial conditions are  (x, r) = (0.4, 0.3)  in panel (h).  N = 6, c = 0.1, b = 1, T = 0.8 , 

 ε = 0.1, M = 3  in panel (i). The initial conditions are  (x, r) = (0.4, 0.3)  in panel (j) and  (x, r) = (0.1, 0.1)  in panel (k).
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describe the interactions between actions of the population and environmental state (Weitz et al., 
2016; Tilman et al., 2020). However, linear link cannot fully describe the relationship between vari-
ables in real societies. For example, in recent years, extreme weather phenomena have occurred 
more frequently, with greater intensity and wider impact areas. Thus the feedback between human 
behaviors and environment may take on a more complex nonlinear form. In this work, we consider that 
the strategy of the population has an exponential effect on risk level, and such form can describe the 
phenomenon that risk will rise and fall sharply with the change in strategy frequency (Figure 2). It is 
worth emphasizing that although we use different forms of feedback to describe the impact of strat-
egies on risk, the evolutionary dynamics have not changed substantially, which highlights the prime 
importance of the feedback mechanism independently of its actual form.

Our feedback- evolving game model reveals that the coupled strategy and environment system will 
produce a variety of representative dynamical behaviors. We find that the undesired equilibrium point 

 (0, 1)  in our feedback system is always evolutionarily stable, which does not depend on whether the 
effect of strategy on risk is linear or exponential. Such evolutionary outcome means that all individuals 
are unwilling to contribute to achieving the collective goal, which leads to the failure of collective 
action, and all individuals inevitably lose their remaining endowments. In real- world scenarios, such 
as climate change (Milinski et al., 2008) and the spread of infectious diseases (Cronk and Aktipis, 
2021; Chen and Fu, 2022), once the whole society is in such a state, it is undoubtedly disastrous for 
the public. Therefore, how to adjust and control the system to deviate from this state is particularly 
important for policymakers.

Finally, it is worth emphasizing that the feedback loop operates over time. In this situation, the 
change in risk state or strategy frequency may lead to the change in other factors, such as collective 
target, which provides an opportunity for the emergence of new feedback loops. Thus, multiple types 
of feedback loops are possible in a single coupled system. Such multiple feedback loops have been 
confirmed in the coupling system of animal behavior and disease ecology (Ezenwa et  al., 2016). 
Therefore, a promising expansion of our current model could be to consider the multiple feedback 
loops.

Code availability
The Mathematica (Wolfram Mathematica 11.1) source code used to generate Figures 4 and 6 is avail-
able on GitHub (copy archived at Liu, 2023).
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Appendix 1
We first study the case where the strategy of the population has a linear effect on the risk level. Then 
the dynamical system can be written as

 




εẋ = x(1 − x)[

(
N − 1
M − 1

)
xM−1(1 − x)N−Mrb − c],

ṙ = r(1 − r)[u(1 − x) − x].   

This equation system has at most seven fixed points, which are  (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) , 

 
( u
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)
( u
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,  (x

∗
1 , 1)  and  (x

∗
2 , 1) , where  x

∗
1  and  x

∗
2  are the real roots of the equation 
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M−1
)
xM−1(1 − x)N−Mb = c . For convenience, we introduce the abbreviation 

 
r∗ = c(N−1

M−1
)

( u
1+u )M−1( 1

1+u )N−Mb 
 

and  Γ(x) =
(N−1

M−1
)
xM−1(1 − x)N−M

 . In the following, we analyze the stability of these equilibrium 
points.

(1) When  0 < r∗ < 1 , namely,  Γ( u
1+u ) > c

b , the system has an interior fixed point. Accordingly, the 
Jacobian for the interior fixed point is

 

J( u
1+u , r∗) =


 ā11 ā12

ā21 0


 ,

  

where  ̄a11 = c
ε [M − 1 − u(N−1)

u+1 ] ,  ̄a12 = 1
ε

(N−1
M−1

)
( u

1+u )M( 1
1+u )N−M+1b , and  ̄a21 = −r∗(1 − r∗)(1 + u) .

(i) When  ̄a11 > 0 , namely,  u < M−1
N−M , the existing interior fixed point is unstable. Since  Γ( M−1

N−1 ) > c
b , 

we can know that the two boundary fixed points  (x
∗
1 , 1)  and  (x

∗
2 , 1)  exist. Thus, the system has seven 

fixed points in the parameter space, namely,  (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) ,  (
u

1+u , r∗) ,  (x
∗
1 , 1),  and  (x

∗
2 , 1) . The 

Jacobian matrices of these equilibrium points are respectively given as follows.
For  (x, r) = (0, 0) , the Jacobian is

 

J(0, 0) =


 − c

ε 0

0 u


 ,

  

thus the fixed equilibrium is unstable.
For  (x, r) = (0, 1) , the Jacobian is

 

J(0, 1) =


 − c

ε 0

0 −u


 ,

  

thus the fixed equilibrium is stable.
For  (x, r) = (1, 0) , the Jacobian is

 

J(1, 0) =




c
ε 0

0 −1


 ,

  

thus the fixed equilibrium is unstable.
For  (x, r) = (1, 1) , the Jacobian is

 

J(1, 1) =




c
ε 0

0 1


 ,

  

thus the fixed equilibrium is unstable.
For  (x, r) = (x∗1 , 1) , the Jacobian is

https://doi.org/10.7554/eLife.82954
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J(x∗1 , 1) =




c
ε (M − 1 − x∗1 (N − 1)) c

ε x∗1 (1 − x∗1 )

0 (1 + u)x∗1 − u


 ,

  

thus the fixed equilibrium is unstable since  x
∗
1 < M−1

N−1  .
For  (x, r) = (x∗2 , 1) , the Jacobian is

 

J(x∗2 , 1) =




c
ε (M − 1 − x∗2 (N − 1)) c

ε x∗2 (1 − x∗2 )

0 (1 + u)x∗2 − u


 ,

  

because  u < M−1
N−M  and  x

∗
2 > M−1

N−1  , then  1 − 1
1+u < M−1

N−1 < x∗2 . Thus this fixed equilibrium is unstable.
(ii) When  ̄a11 = 0 , namely,  u = M−1

N−M , the trace and determinant of the Jacobian matrix at the 
interior equilibrium point are respectively given by

 

tr(J( u
1+u , r∗)) = ā11 = 0,

det(J( u
1+u , r∗)) = −ā12ā21 = r∗(1−r∗)(1+u)

ε

(N−1
M−1

)
( u

1+u )M( 1
1+u )N−M+1b > 0.  

The eigenvalues of the Jacobian matrix can be calculated

 

λ1 =
ā11 +

√
ā2

11 + 4ā12ā21

2
= µ̄ + iw̄,

λ2 =
ā11 −

√
ā2

11 + 4ā12ā21

2
= µ̄− iw̄,

  

where  ̄µ = ā11
2 = 0  and  ̄w2 = −ā12ā21 .

Accordingly, we know that the eigenvalues satisfy the following conditions:

 

Re(λ) = µ̄ = 0,

lm(λ) =
√

−ā2
11−4ā12ā21

2 ̸= 0,
dRe(λ)

du |u= M−1
N−M

= − c(N−1)
2ε(u+1)2 = − c(N−M)2

2ε(N−1) < 0.
  

The first two conditions imply that the eigenvalues of Jacobian matrix at  (
u

1+u , r∗)  has a pair of pure 
imaginary roots. The third condition means that the pair of complex- conjugate eigenvalues crosses 
the imaginary axis with nonzero speed. According to Hopf bifurcation theorem (Kuznetsov, 1998), 
we know that a Hopf bifurcation takes place at  u = M−1

N−M . In order to determine the stability of the 
existing limit cycle from Hopf bifurcation, we need to calculate the first Lyapunov coefficient. We 
denote that  F1(x, r) = x(1−x)

ε [
(N−1

M−1
)
xM−1(1 − x)N−Mrb − c]  and  F2(x, r) = r(1 − r)[u(1 − x) − x] .

Let  q, p ∈ C2
  respectively denote the eigenvectors of the Jacobian matrix  J(T, r∗)  and its transpose. 

We then have

 

q=




−iā12
w̄

1


 , p =




−iw̄
ā12

1


 ,

  
(8)

which satisfy

 

Jq = iw̄q,

JTp = −iw̄p.  

To achieve the necessary normalization  < p, q >= p̄1q1 + p̄2q2 = 1 , we can take

 

q=




−iā12
2w̄
1
2


 , p =




−iw̄
ā12

1


 ,

  
(9)

According to Kuznetsov, 1998, we construct the complex- valued function

https://doi.org/10.7554/eLife.82954
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 G(x, r) = p̄1F1( u
1+u + xq1 + rq̄1, r∗ + xq2 + rq̄2) + p̄2F2( u

1+u + xq1 + rq̄1, r∗ + xq2 + rq̄2),  

where  p, q  are given above, to evaluate its formal partial derivatives with respect to  x, r  at  (T, r∗) , 
obtaining  g20 = Gxx, g11 = Gxr , and  g21 = Gxxr . After some calculations, we can get the first Lyapunov 
coefficient

 
l1 = 1

2w̄2 Re(ig20g11 + w̄g21).
  

Specifically, when  l1 < 0 , a unique and stable limit cycle bifurcates from the equilibrium appears, while 
when  l1 > 0 , the Hopf bifurcation is subcritical such that an unstable limit cycle will be generated. 
Due to the complexity of the system, it is difficult to conduct bifurcation analysis collectively. Here, 
we conduct a numerical analysis to investigate the stability of the existing limit cycle when the model 
parameters are consistent with Figure 4d. By using the algorithm in Kuznetsov, 1998, we can get 
 l1 = −1.407166124 × 10−8 < 0 , which implies that the Hopf bifurcation is supercritical.

Besides, since  Γ( M−1
N−1 ) > c

b , we can state that the two boundary fixed points  (x
∗
1 , 1)  and  (x

∗
2 , 1)  exist. 

Thus the system has seven equilibrium points, which are  (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) ,  (
u

1+u , r∗) ,  (x
∗
1 , 1),  and 

 (x
∗
2 , 1) , respectively. Accordingly to the sign of the eigenvalues of the Jacobian matrices, we know 

that only  (0, 1)  is stable.
(iii) When  ̄a11 < 0 , namely,  u > M−1

N−M , the trace and determinant of the Jacobian matrix at the 
interior equilibrium point are respectively given by

 

tr(J( u
1+u , r∗)) = ā11 < 0,

det(J( u
1+u , r∗)) = −ā12ā21 = r∗(1 − r∗)(1 + u)

ε

(
N − 1
M − 1

)
( u
1 + u

)M( 1
1 + u

)N−M+1b > 0.
  

Thus the interior fixed point is stable. Besides, since  Γ( M−1
N−1 ) > c

b , two boundary fixed points,  (x
∗
1 , 1)  

and  (x
∗
2 , 1) , exist. Thus there are seven fixed points in the system, which are  (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) , 

 (
u

1+u , r∗) ,  (x
∗
1 , 1),  and  (x

∗
2 , 1) , respectively. Here, the fixed points  (0, 1)  and  (

u
1+u , r∗)  are stable, while 

others are unstable.
(2) When  r∗ ≥ 1 , namely,  Γ( u

1+u ) ≤ c
b , the system has no interior equilibrium point. In this case, 

when  Γ( M−1
N−1 ) > c

b , the system has six fixed points, which are  (0, 0), (0, 1), (1, 0), (1, 1), (x∗1 , 1),  and  (x
∗
2 , 1) , 

respectively. According to the sign of the largest eigenvalues of the Jacobian matrices, we can say 
that  (0, 0), (1, 0), (1, 1), (x∗1 , 1)  are unstable, while  (0, 1)  is stable. Particularly, when  x

∗
2 < u

1+u , the fixed 
point  (x

∗
2 , 1)  is stable, and it is unstable when  x

∗
2 > u

1+u . When  x
∗
2 = u

1+u , we know that one eigenvalue 
of the Jacobian matrix is zero and the other eigenvalue is negative. Then we study its stability by 
using the center manifold theorem (Khalil, 1996). For the fixed point  (x

∗
2 , 1) , the Jacobian matrix can 

be written as

 

J(x∗2 , 1) =


 γ11 γ12

0 0


 ,

  

where  γ11 = c
ε (M − 1 − x∗2 (N − 1))  and  γ12 = c

ε x∗2 (1 − x∗2 ) . To do that, we take  z1 = x − x∗2  and 
 z2 = r − 1 , then the system can be rewritten as

 




ż1 = 1
ε

(x∗2 + z1)(1 − x∗2 − z1)[

(
N − 1
M − 1

)
(x∗2 + z1)M−1(1 − x∗2 − z1)N−M(z2 + 1)b − c],

ż2 = (z2 + 1)(−z2)[u(1 − x∗2 − z1) − x∗2 − z1].   

Let  Q  be a matrix whose columns are the eigenvectors of  J(x∗2 , 1) , which can be written as

 

Q =


 1 −γ12

γ11

0 1


 .

  

Then we have

https://doi.org/10.7554/eLife.82954
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Appendix 1—figure 1. Coevolutionary dynamics of System I for different  ε  values when linear feedback effect of strategy on risk level is considered. 
Parameters are  N = 6, c = 0.1, b = 1 , and  M = 3  in left column and  u = 2/3  in right column. The initial conditions are  (x, r) = (0.4, 0.3) .
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Q−1JQ =


 γ11 0

0 0


 .

  

We further take  [η1 η2]T = Q−1[z1 z2] , and then we have  η1 = z1 + γ12
γ11

z2  and  η2 = z2 . We then have

 η̇2 = −η2(η2 + 1)[u(1 − u
1+u − η1 + γ12

γ11
η2) − u

1+u − η1 + γ12
γ11

η2].  

According to the center manifold theorem, we know that  η1 = h(η2)  is a center manifold. Then we 
start to try  h(η2) = O(|η2|2) , which yields the reduced system

 η̇2 = −(1 + u)γ12
γ11

η2
2 − (1 + u)γ12

γ11
η3

2 + O(|η2|4).  

Since  −(1 + u)γ12
γ11

̸= 0 , the fixed point  η2 = 0  of the reduced system is unstable. Accordingly, the fixed 
point  (x

∗
2 , 1)  of the original system is unstable.

When  Γ( M−1
N−1 ) = c

b , the system has five fixed points, which are  (0, 0), (0, 1), (1, 0), (1, 1),  and  (
M−1
N−1 , 1) , 

respectively. According to the sign of the eigenvalues in the Jacobian matrices, we can state that 
only  (0, 1)  is stable. When  Γ( M−1

N−1 ) < c
b , the system has four fixed points, namely,  (0, 0), (0, 1), (1, 0) , and 

 (1, 1) . Here, only  (0, 1)  is stable.

https://doi.org/10.7554/eLife.82954
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Appendix 2
System II with exponential feedback is described by

 




εẋ = x(1 − x)[

(
N − 1
M − 1

)
xM−1(1 − x)N−Mrb − c],

ṙ = r(1 − r)[ 1
1 + eβ(x−T) − 1

1 + e−β(x−T) ].
  

where the parameter  β > 0  represents the steepness of the function.
This equation system has at most seven fixed points, which are  (0, 0) ,  (0, 1) ,  (1, 0) , 
 (1, 1) ,  

 
(T, c(N−1

M−1
)

TM−1(1−T)N−Mb
)
 
,  (x

∗
1 , 1)  and  (x

∗
2 , 1) , where  x

∗
1  and  x

∗
2  are the real roots of the equation 

 
(N−1

M−1
)
xM−1(1 − x)N−Mb = c  and  x

∗
1 < M−1

N−1 < x∗2 . For simplicity, we introduce the abbreviation 

 
r̄ = c(N−1

M−1
)

TM−1(1−T)N−Mb 
 and  Γ(x) =

(N−1
M−1

)
xM−1(1 − x)N−M

 . In the following, we study the stabilities of 

equilibria based on whether the system has an interior equilibrium point.
(1) When  0 < r̄ < 1 , namely,  Γ(T) > c

b , System II has an interior equilibrium point.
The Jacobian matrix evaluated at this equilibrium is

 

J(T, r̄) =


 a11 a12

a21 0


 ,

  

where  a11 = c
ε (M − 1 − T(N − 1)), a12 = 1

ε

(N−1
M−1

)
TM(1 − T)N−M+1b,  and  a21 = − r̄(1−r̄)β

2  . Notice that 

 
1
ε

(N−1
M−1

)
TM(1 − T)N−M+1b > 0  and  −

r̄(1−r̄)β
2 < 0 , then the trace and determinant of the Jacobian 

matrix are respectively given by

 

tr(J(T, r̄)) = c
ε (M − 1 − T(N − 1)),

det(J(T, r̄)) = 1
ε

(N−1
M−1

)
TM(1 − T)N−M+1b r̄(1−r̄)β

2 > 0.  

The eigenvalues of the Jacobian matrix can be calculated as

 

λ1 = a11+
√

a2
11+4a12a21
2 ,

λ2 = a11−
√

a2
11+4a12a21
2 .  

Here, we set that  µ(T) = a11
2 , w2(T) = − a2

11+4a12a21
4 ,  and  T0 = M−1

N−1 . 
(i) When  a11 > 0 , namely,  T < T0 , the interior equilibrium point is unstable. Since  Γ(T0) > c

b , we can 
know that the two boundary fixed points  (x

∗
1 , 1)  and  (x

∗
2 , 1)  exist. Thus, the system has seven fixed 

points in the parameter space, namely,  (0, 0), (0, 1) ,  (1, 0), (1, 1), (T, r̄), (x∗1 , 1),  and  (x
∗
2 , 1) .

For  (x, r) = (0, 0) , the Jacobian is

 

J(0, 0) =


 − c

ε 0

0 1−e−βT

1+e−βT


 ,

  

thus the fixed equilibrium is unstable.
For  (x, r) = (0, 1) , the Jacobian is

 

J(0, 1) =


 − c

ε 0

0 − 1−e−βT

1+e−βT


 ,

  

thus the equilibrium point is stable.
For  (x, r) = (1, 0) , the Jacobian is

https://doi.org/10.7554/eLife.82954
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J(1, 0) =




c
ε 0

0 1−eβ(1−T)

1+eβ(1−T)


 ,

  

thus the fixed point is unstable.
For  (x, r) = (1, 1) , the Jacobian is

 

J(1, 1) =




c
ε 0

0 − 1−eβ(1−T)

1+eβ(1−T)


 ,

  

thus the fixed equilibrium is unstable.
For  (x, r) = (x∗1 , 1) , the Jacobian is

 

J(x∗1 , 1) =




c
ε (M − 1 − x∗1 (N − 1)) c

ε x∗1 (1 − x∗1 )

0 − 1−eβ(x∗1 −T)

1+eβ(x∗1 −T)


 ,

  

thus the fixed equilibrium is unstable since  x
∗
1 < T0 .

For  (x, r) = (x∗2 , 1) , the Jacobian is

 

J(x∗2 , 1) =




c
ε (M − 1 − x∗2 (N − 1)) c

ε x∗2 (1 − x∗2 )

0 − 1−eβ(x∗2 −T)

1+eβ(x∗2 −T)


 ,

  

thus the fixed equilibrium is unstable since  T < T0 < x∗2 .

(ii) When  a11 = 0 , namely,  T = T0 = M−1
N−1  , we have  µ(T0) = 0 . Moreover,  w

2(T) = − a2
11+4a12a21

4 =  

 
1
ε

(N−1
M−1

)
TM(1 − T)N−M+1b r̄(1−r̄)β

2 > 0 . Therefore, the eigenvalues of the Jacobian matrix are a purely 
imaginary conjugate pair  λ1,2(T0) = ±iw(T0) . Considering that  

∂µ(T)
∂T |T0 = − c(N−1)

2ε < 0 , then we know 
that the system undergoes a Hopf bifurcation at  T = T0  and there exists a limit cycle around the 
interior equilibrium. Accordingly, we can evaluate the direction of the limit cycle bifurcation by 
computing the first Lyapunov coefficient l1 of the system. Here, we also conduct numerical calculations 
to investigate the stability of the existing limit cycle when the model parameters are consistent with 
Figure 6d. By using the algorithm in Kuznetsov, 1998, we can get  l1 = −1.876221498 × 10−8

 , which 
implies that the Hopf bifurcation is supercritical.

Besides, since  Γ(T0) > c
b , we know that there are seven equilibrium points in System II. They are 

 (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) ,  (T, r̄) ,  (x
∗
1 , 1),  and  (x

∗
2 , 1) . According to the sign of the eigenvalues of the 

Jacobian matrices, only  (0, 1)  is stable.
(iii) When  a11 < 0 , namely,  T > T0 , the interior equilibrium point is stable. Besides, since  Γ(T0) > c

b , 
we find that there are seven fixed points in the system, which are  (0, 0) ,  (0, 1) ,  (1, 0) ,  (1, 1) ,  (T, r̄) ,  (x

∗
1 , 1),  

and  (x
∗
2 , 1) , respectively. Here, the fixed points  (0, 1)  and  (T, r̄)  are stable, while others are unstable.

(2) When  ̄r ≥ 1 , namely,  Γ(T) ≤ c
b , System II has no interior equilibrium point. In this case, when 

 Γ(T0) > c
b , the system has six fixed points, which are  (0, 0), (0, 1), (1, 0), (1, 1), (x∗1 , 1),  and  (x

∗
2 , 1) , 

respectively. According to the sign of the largest eigenvalues of the Jacobian matrices, we can say 
that  (0, 0), (1, 0), (1, 1), (x∗1 , 1)  are unstable, while  (0, 1)  is stable. Particularly, when  x

∗
2 < T  , the fixed 

point  (x
∗
2 , 1)  is stable, and it is unstable when  x

∗
2 > T  . When  Γ(T0) = c

b , the system has five fixed points, 
which are  (0, 0), (0, 1), (1, 0), (1, 1),  and  (T0, 1) , respectively. According to the sign of the eigenvalues in 
the Jacobian matrices, we can see that only  (0, 1)  is stable. When  Γ(T0) < c

b , the system has four fixed 
points, namely  (0, 0), (0, 1), (1, 0) , and  (1, 1) . Here, only  (0, 1)  is stable.

https://doi.org/10.7554/eLife.82954
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Appendix 2—figure 1. Coevolutionary dynamics of System II for different  ε  values when the strategy feedback on risk is exponential. Parameters are 

 N = 6, c = 0.1, b = 1 , and  M = 3  in the left column and  T = 0.4  in the right column. The initial condition is  (x, r) = (0.4, 0.3) .
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