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Abstract Lung cancer (LC) is the leading cause of cancer- related deaths worldwide. Traditional 
therapeutic approaches such as chemotherapy or radiotherapy have provided only a marginal 
improvement in the treatment of lung carcinomas. Inhibitors targeting specific genetic aberrations 
present in non- small cell lung cancer (NSCLC), the most common subtype (85%), have improved 
the prognostic outlook, but due to the complexity of the LC mutational spectrum, only a fraction 
of patients benefit from these targeted molecular therapies. More recently, the realization that 
the immune infiltrate surrounding solid tumors can foster tumor- promoting inflammation has led 
to the development and implementation of anticancer immunotherapies in the clinic. In NSCLC, 
one of the most abundant leukocyte infiltrates is macrophages. These highly plastic phagocytes, 
which are part of the cellular repertoire of the innate immunity, can have a pivotal role in early 
NSCLC establishment, malignant progression, and tumor invasion. Emerging macrophage- targeting 
therapies have been focused on the re- differentiation of the macrophages toward an antitumori-
genic phenotype, depletion of tumor- promoting macrophage subtypes, or combination therapies 
combining traditional cytotoxic treatments with immunotherapeutic agents. The most extensively 
used models employed for the exploration of NSCLC biology and therapy have been 2D cell lines 
and murine models. However, studying cancer immunology requires appropriately complex models. 
3D platforms, including organoid models, are quickly advancing powerful tools to study immune 
cell- epithelial cell interactions within the tumor microenvironment. Co- cultures of immune cells along 
with NSCLC organoids allow for an in vitro observation of the tumor microenvironment dynamics 
closely resembling in vivo settings. Ultimately, the implementation of 3D organoid technology 
into tumor microenvironment- modeling platforms might facilitate the exploration of macrophage- 
targeted therapies in NSCLC immunotherapeutic research, thus establishing a new frontier in NSCLC 
treatment.

Introduction
Lung cancer (LC) is the leading cause of cancer- associated death worldwide with an average survival 
being less than 5  years’ post- diagnosis (Ferlay et  al., 2021). Mortality due to LC surpasses the 
combined mortalities caused by breast, colon, and prostate malignancies (Howlader, 2020). The two 
primary histological LC types are small cell lung cancer (SCLC), encompassing about 15% of all cases, 
and non- small cell lung cancer (NSCLC), the predominant subtype accounting for about 85% of cases 
(Conway et  al., 2016; Li et  al., 2020). Further sub- division of NSCLC includes lung adenocarci-
noma (LUAD, ~40%), lung squamous cell carcinoma (LUSC, ~25%), and large cell carcinoma (~10%) 
(Arora et al., 2021). While surgical tumor resection has the greatest success therapeutically, the vast 
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majority of patients (more than 80%) receive their diagnosis at the advanced stages of the disease, 
which makes surgical treatment difficult (Conway et al., 2016; Ettinger et al., 2017). In these cases, 
platinum- based chemotherapy and radiotherapy are used as the first line of treatment. However, the 
therapeutic effects of these traditional approaches are often modest and provide great discomfort 
to the patients due to their inherent toxicity (Conway et al., 2016; Kong et al., 2021; Sarode et al., 
2020). With the recent but rapid advancement of next- generation sequencing methods, targeted ther-
apies using small molecule inhibitors such as gefitinib or erlotinib (epidermal growth factor receptor 
[EGFR] tyrosine kinase inhibitors), among others, have been developed to exploit LC- specific muta-
tions (Dearden et al., 2013; Chung, 2016). When compared to the traditional treatments, targeted 
therapy improved response rates but its utility has been limited to a fraction of LC cases, largely due 
to the complexity of the LC mutational landscape. The eventual acquisition of resistance of the tumor 
to targeted therapies has further hindered the improvement in survival rates, maintaining the average 
5- year survival at around 18% (Conway et al., 2016; Kong et al., 2021).

Emerging evidence gathered over the past decade has repeatedly pointed out the importance of 
the tumor microenvironment (TME) in the development and progression of cancers. The involvement 
of the immune TME has even been highlighted as an emerging hallmark involved in multiple cancer 
types (Hanahan and Weinberg, 2011). The specific composition of the immune microenvironment 
surrounding the tumor can affect the prognosis, disease progression, and patient survival (Arora 
et al., 2021). Therapies aimed at modulating the immune microenvironment were long believed to 
be ineffective in LC as a limited response was observed with non- specific treatments (using inter-
leukin 2 [IL- 2] or interferon [IFN]). The immunogenicity of LC only became known following trials 
using immune checkpoint inhibitors targeting cytotoxic T lymphocyte- associated protein- 4 and anti-
programmed cell death protein- 1 (PD- 1) (Rizvi et al., 2015; Lynch et al., 2012). The range of LC 
responses to immunotherapies remains variable, depending mostly on the mutational burden of the 
tumor and the subsequent neoantigen diversity which, together with a range of other factors (such as 
programmed death- ligand 1 [PD- L1] expression, interferon-γ [IFN-γ] signaling, and others) determine 
T cell reactivity against them (Schumacher and Schreiber, 2015; Hendriks et al., 2018; Hegde and 
Chen, 2020). Additionally, the changing mutational landscape of the lung tumor in response to these 
therapies along with evasion of immune surveillance often lead to the acquisition of chemoresistance 
(Kong et al., 2021).

Therefore, identification of the specific LC immune cell landscape and the tumorigenic processes 
associated with it have been crucial avenues unveiling promising treatment approaches for lung 
tumors (Kong et al., 2021; Sarode et al., 2020; Ruffell and Coussens, 2015). In particular, macro-
phages – phagocytic cells of the innate immunity – have garnered interest as the predominant cell 
type within the immune infiltrate in lung tumors. Macrophages are highly diverse and feature many 
phenotypes with different properties and functions. While their general presence within the immune 
infiltrate in cancer is mostly indicative of a negative prognosis, their effect on cancer progression 
appears subtype- dependent (Conway et  al., 2016; Sarode et  al., 2020; Cassetta and Pollard, 
2018). As NSCLC represents the vast majority of LC cases, we focus on the implications of immu-
notherapeutic treatment options targeting the macrophage component in this highly deadly cancer. 
After briefly discussing the most recent knowledge of different macrophage subtypes and their poten-
tial roles in NSCLC development, we review the current scope of pre- clinical models for NSCLC, with 
a particular focus on 3D organoid- immune cell co- culture platforms. Such 3D platforms have been 
emerging rapidly over the past decades, and are designed to not only capture the highly complex 
macrophage- organoid dynamics but could also be a valuable resource for testing and developing new 
macrophage- targeted immunotherapies.

I. Macrophage involvement in NSCLC development and 
progression
Cancer- associated inflammation is a process fueled by an arsenal of chronically activated immune 
cell subsets and their associated products within the TME (Coussens et al., 2013). One of the most 
highly represented leukocyte types within the LC TME are macrophages, with LUAD lesions featuring 
a particularly high abundance of these cells compared to other subtypes (Conway et  al., 2016; 
Cassetta and Pollard, 2018; Kargl et al., 2017). Macrophages are widely distributed throughout 
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the body. When innate barriers are breached by viruses or bacteria they ingest these pathogens and 
fight the infection. Under stable physiological conditions, macrophages contribute to processes such 
as wound healing, development of tissues, and maintenance of homeostasis. Their function and pres-
ence have also been implicated in a vast array of autoimmune disorders and tumorigenic processes 
(Conway et al., 2016; Aras and Zaidi, 2017; Zhu et al., 2020). They are either monocyte- derived and 
originate from the bone marrow or tissue- resident and originate from embryonic tissues such as fetal 
liver and the yolk sac. As such, they likely settle into their respective niches in successive waves during 
embryogenesis and further development. Depending on the anatomical site of settling they take on a 
tissue- specific identity which determines their transcriptional profile and specialization (Sreejit et al., 
2020; Laviron and Boissonnas, 2019; Ginhoux and Guilliams, 2016; Blériot et al., 2020). Macro-
phages feature incredible phenotypic plasticity brought on by the specific tissue- dependent micro-
environmental cues such as metabolite composition, the nature of phagocytosed particles, or the 
cellular constituents within the niche. After they receive specific environmental stimuli, they polarize 

Figure 1. Dynamic crosstalk between pro- and antitumorigenic macrophage subtypes and tumor cells. (A) Macrophage differentiation is highly 
heterogenous and depends mostly on the environmental cues within their niche. The classical binary division includes the M1 (tumoricidal and pro- 
inflammatory) and M2 (tumor- supporting and antiinflammatory) polarization. The increasingly favored macrophage division considers macrophage 
diversity as a spectrum and includes tumor- associated macrophages (TAMs), alveolar macrophages (AMs), and interstitial macrophages (IMs) as separate 
subtypes with mostly pro- tumor properties in LC/NSCLC. The dynamic macrophage- tumor crosstalk within the TME results in different activation of the 
immune cells and confers a range of effects that can either aid the tumor development and progression or halt it. The included differentiation factors 
are the most represented within the existing literature. A range of other cues were found to contribute to macrophage differentiation but their effect 
is not yet well defined. The red and orange boxes mark all the macrophage subtypes that are generally considered pro- tumorigenic in LC/NSCLC 
settings and their associated effects on tumor cells (and vice versa). IL, interleukin; GM- CSF, granulocyte macrophage colony- stimulating factor; TGF, 
transforming growth factor; GCs, glucocorticoids; IFN, interferon; LPS, lipopolysaccharides. (B) The prognosis and survival of NSCLC patients are 
reflected by the macrophage infiltrate within the tumor islets. Greater M1 infiltrate generally indicates a favorable prognosis, while the predominance of 
M2 predicts reduced survival.

Created with BioRender.com
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and change the expression of their surface markers as well as alter their effector functions (Figure 1A; 
Aras and Zaidi, 2017; Sreejit et al., 2020; Rodero et al., 2015).

Classically activated and alternative activated macrophages
The functional heterogeneity of macrophages often presents a nomenclature conundrum. The most 
well- established binary division of macrophage phenotypic states is based on an early observation 
of Stein et al., 1992, who recorded distinct phenotypes brought on by stimulation with interleukin 4 
(IL- 4) produced predominantly by T helper 2 cells (TH2), or IFN-γ produced primarily by T helper 1 and 
natural killer cells. IL- 4 is an antiinflammatory cytokine that alternatively activates macrophages into a 
state of enhanced scavenging, restricted expression of major histocompatibility complex II (MHCII), 
and attenuated secretion of pro- inflammatory cytokines (in contrast to IFN-γ-stimulated macrophages) 
(Stein et al., 1992; Bissonnette et al., 2020; Chávez- Galán et al., 2015). The nomenclature for these 
opposing macrophage phenotypes was not established until the 2000s when their distinct metabolic 
profiles were identified, and they have been henceforth referred to as M1 (classically activated by 
IFN-γ and/or lipopolysaccharides [LPS]) and M2 (alternatively activated by IL- 4, IL- 10, IL- 13, trans-
forming growth factor β [TGF-β], and/or glucocorticoids) cells (Figure 1A; Conway et al., 2016; Arora 
et al., 2021; Chávez- Galán et al., 2015; Mills et al., 2000; Murray et al., 2014). The M1 phenotype 
is characterized by high expression of interleukin 1β (IL- 1β), IL- 6, tumor necrosis factor alfa (TNFα), 
as well as inducible nitric oxide synthase. Conversely, the M2 macrophages are unique for their high 
expression of arginase which blocks nitric oxide production through urea and ornithine synthesis. They 
also express high levels of IL- 10 and TGF-β, cytokines with antiinflammatory functions (Arora et al., 
2021; Bissonnette et al., 2020). Due to the secretion of primarily pro- inflammatory cytokines, M1 
macrophages are generally antitumorigenic, while M2 macrophages seem to promote tumorigenicity 
via their antiinflammatory properties (Aras and Zaidi, 2017). The two macrophage polarization- driven 
subtypes vary by their transcriptomic profile, metabolism, surface markers, and cytokines produced 
(Sarode et al., 2020). A high overall density of macrophages within the NSCLC TME seems to be 
indicative of a favorable prognosis (Conway et al., 2016; O’Callaghan et al., 2010). However, the 
microanatomical distribution of the macrophage infiltrate and its polarization state are crucial for 
establishing a more accurate prognosis. As such, a regionally high infiltrate of M2- polarized macro-
phages in NSCLC tumor islets has a greater association with poor prognosis, while the predominant 
presence of M1 macrophages indicates increased chances of extended survival and favorable prog-
nosis (Figure 1B; Ohri et al., 2009; Cao et al., 2019; Jackute et al., 2018; Sumitomo et al., 2019).

Tumor-associated macrophages: separate subtype or M2-associated?
Nowadays, macrophage differentiation is increasingly considered to be a spectrum rather than two 
distinct phenotypes with opposing states of polarization. Tumor- associated macrophages (TAMs) 
reflect an activation state continuum and comprise a large portion of the TME infiltrate in solid tumors 
(Aras and Zaidi, 2017; Chávez- Galán et al., 2015). The microenvironment surrounding solid tumors 
is a hub for generating chemo- attractive molecules (such as C- C motif chemokine ligand 2 [CCL2] and 
colony- stimulating factor [CSF]) that recruit monocytes circulating in peripheral blood. Once at the 
tumor site, these inflammatory monocytes can be stimulated by a range of cytokines to differentiate 
into TAM phenotype cells (Figure 1A). The functional presence of TAMs is usually associated with the 
establishment of a tumor- supporting environment, thus relating to poor prognosis and serving as a 
potential prognostic marker (Cassetta and Pollard, 2018; Aras and Zaidi, 2017). While TAMs share 
some features with the M1/M2 macrophages, they have a distinct transcriptomic profile and are thus 
considered a separate macrophage subtype, although this distinction is often absent in the existing 
literature. Due to overlapping features, the macrophage subtypes have to be thoroughly character-
ized based on several markers. Clear identification of macrophage subtype associated with individual 
tumor types is a prerequisite for establishing a robust and accurate prognosis (Aras and Zaidi, 2017; 
Chávez- Galán et al., 2015; Murray et al., 2014).

Dynamic crosstalk between the cells of the tumor and the macrophage infiltrate is associated 
with tumorigenic processes such as invasion, metastasis, cancer progression, and angiogenesis (Aras 
and Zaidi, 2017; Almatroodi et al., 2016). LC cells maintaining stem cell- like properties via overex-
pression of Oct4 were found to secrete high levels of macrophage- CSF (M- CSF). M- CSF promotes 
TAM polarization toward the M2 phenotype, increasing tumor progression via enhanced cancer cell 
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migration and metastasis (Lu et al., 2020). Persistent activation of nuclear factor κB (NF-κB) in LUAD 
epithelial cells enhances the pro- inflammatory nature of the TME, recruiting macrophages into the 
tumor site which in turn favors the development of metastatic foci (Stathopoulos et al., 2008). Simi-
larly, elevated neddylation (a type of post- translational modification) fuels tumorigenesis in LC via 
enhanced expression of NF-κB in tumor cells. NF-κB transcriptionally activates CCL2, a potent chemo-
kine that stimulates enhanced macrophage infiltration and subsequent TAM differentiation within the 
TME (Zhou et al., 2019). Similar to other solid tumors, NSCLC lesions feature a highly hypoxic TME 
which allows for downregulation of the complement component 9 (C9), the ultimate component of 
the innate complement system, in TAMs. This is accompanied by a phenotype transition from M1 into 
M2, thus leading to loss of anticancer functions of the M1 phenotype and tumor progression (Li et al., 
2018). Moreover, high intratumoral heterogeneity in Kirsten rat sarcoma viral oncogene homolog 
(Kras)- driven LC allows for M2 polarization through circular RNA regulation, sustaining an immunosup-
pressive environment that favors metastasis and the acquisition of chemoresistance (Katopodi et al., 
2021). NSCLC cell lines were also found to induce Arginase- 1 production in murine macrophages, 
enhancing their immunosuppressive M2- like phenotype (Park et al., 2022). Due to the bidirectional 
communication between the tumor cells and the immune infiltrate, macrophages can also contribute 
to establishing a pro- tumorigenic environment which may allow for evasion of immune surveillance 
at the tumor site (Hofman, 2020; Qiu et al., 2021). Accumulation of M2 TAMs in NSCLC stroma is 
associated with higher production of vascular endothelial growth factors A and C, thus supporting a 
pro- angiogenic and pro- lymphangiogenic environment adjacent to the tumor (Hwang et al., 2020). 
Moreover, secretion of factors such as TGF-β by TAMs (causing an increase in the sex- determining 
region Y- related high mobility group box 9 expression) contributes to the epithelial- mesenchymal 
transition (EMT) within NSCLC, promoting tissue remodeling and metastasis (Hofman, 2020; Zhang 
et al., 2017). Metastasis- promoting effects in LC are also elicited by M2- polarized macrophages via 
upregulation of αB- crystallin expression, inducing EMT and resulting in poor prognosis (Guo et al., 
2019).

Tissue-resident alveolar and interstitial macrophages
To add to the spectrum of phenotypically diverse macrophages, further macrophage subtypes 
distinct from the M1, M2, and TAM profiles have been identified (Figure  1A). Alveolar macro-
phages (AMs) normally function to maintain a steady state of the respiratory system by tempering 
the immune responses to avoid unnecessary inflammation and remove any physical debris that 
enters the airways (Aras and Zaidi, 2017; Bissonnette et  al., 2020). Tissue- resident AMs are a 
lineage derived from the yolk sac and are capable of self- maintenance in adult tissues (Laviron and 
Boissonnas, 2019). Although their role in NSCLC tumorigenesis has been conflicting, they were 
recently found to associate with NSCLC lesions during early tumor formation (Almatroodi et al., 
2014; Casanova- Acebes et  al., 2021). AMs can contribute to early EMT via high expression of 
matrix metalloproteinases (Mmp12, Mmp14, Adamdec1) and support an immunosuppressive TME 
by recruiting regulatory T cells into the cancer site (through TGF-β, CCL17, and MHCII upregula-
tion). This shields the tumor from cells of adaptive immunity. Depletion of CD169+ AMs very early 
in tumorigenesis (0–3 days) enhanced the antitumor environment (Casanova- Acebes et al., 2021; 
Li et al., 2021). CD169+ (also known as Siglec- 1) is an antigen abundantly represented on macro-
phages found in the lung, liver, spleen, lymph nodes, and bone marrow. Information concerning the 
specific activation route of CD169+ macrophages is limited thus far, although their role seems to 
be less phagocytic and more immunoregulatory, depending on their localization (Aras and Zaidi, 
2017; Chávez- Galán et  al., 2015; Luo et  al., 2021). Perhaps even less known tissue- resident 
macrophage subtype is the interstitial macrophage (IM). Under steady- state conditions, IMs are 
seemingly involved in the defense against airway allergies and other innate immune modulation 
(Liegeois et al., 2018). Phenotypically, studies using murine models show that there are at least 
two distinct populations of IMs mostly distinguished by Lyve1highMHCIIlow or Lyve1lowMHCIIhigh gene 
expression (Chakarov et al., 2019). IMs might also play a role in LC, as the presence of IMs and 
their IL- 9- stimulated arginase production correlated with tumor growth in mouse lungs (Fu et al., 
2022; Loyher et al., 2018). However, their low abundance (just 4% of lung monocytes) and a lack 
of defined markers in (human) tissues lead to scarcity of studies investigating their function, also in 
the context of NSCLC (Liegeois et al., 2018).
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Targeting macrophages as a therapeutic avenue in LC
The role of macrophages in LC remains elusive due to conflicting evidence associating macrophages 
with both positive and negative outcomes, but the focus is maintained on these innate cells as they 
make up the majority of the tumor immune infiltrate (Conway et al., 2016; Ruffell and Coussens, 
2015). As such, a multitude of treatment options targeting the macrophage component within LC 
have been proposed. These range from anti- PD- 1/PDL- 1 therapy for NSCLC patients with abundant 
M2 infiltrate (Cao et al., 2019), promotion of C9 secretion in AMs to suspend NSCLC progression 
(Li et  al., 2018), IL- 9 signaling blockade (Fu et  al., 2022), as well as skewing the M2 phenotype 
toward the M1 phenotype to elevate tumor- fighting properties within the TME (Conway et al., 2016; 
Cassetta and Pollard, 2018; Almatroodi et al., 2016; Li et al., 2018). In SCLC, the blockade of ‘do 
not eat me’ signals conveyed by CD47 expression on tumor cells and its interaction with signal regu-
latory protein alpha (SIRPα) on macrophages increased phagocytic activity of macrophages and inhib-
ited tumor growth (Weiskopf et al., 2016; Lin et al., 2020). Preventative measures via depletion of a 
specific subset of macrophages located within the lung TME could also be taken (Casanova- Acebes 
et  al., 2021). The acquisition of resistance to immunotherapies could be overcome by systematic 
identification of immune infiltrate in LC (Ruffell and Coussens, 2015; Horvath et al., 2020). Currently, 
the vast majority of therapies focused on the macrophage component in LC remain in the pre- clinical 
stages, as non- specific systemic targeting of TAMs proved to be detrimental to the health of the 
patients (Sedighzadeh et al., 2021; Kielbassa et al., 2019). Perhaps the most promising therapeutic 
results thus far have been observed in combination therapies, where the macrophage component 
is targeted concurrently with more conventional anticancer regimens such as checkpoint inhibitors, 
cytotoxic chemotherapies, or radiotherapy (Kong et al., 2021; Qiu et al., 2021; Sedighzadeh et al., 
2021). Thus, the new frontier of immunotherapeutic treatment for LC is reliant on improved identifica-
tion of macrophage micro- localization and more accurate subtyping to allow for targeted depletion or 
reprogramming of the tumor- promoting macrophage populations (Sarode et al., 2020; Sedighzadeh 
et al., 2021).

II. Pre-clinical models for NSCLC
Cell lines, patient-derived xenografts, and genetically engineered 
mouse models
Lungs serve as an interface between the outside and the internal structures of the body and are 
therefore constantly exposed to airborne materials. In particular, the inhalation of tobacco smoke 
and other air pollutants poses an increased risk for the development of LC as it drives the process 
of chronic inflammation and has mutagenic effects on the lung epithelium (Ettinger et  al., 2010; 
Yoshida et al., 2020). To model LC dynamics connected to pollutant exposure and other mutagenic 
processes, a range of pre- clinical models has been used. 2D cell lines have been the standard tool 
in cancer research since the 1950s when the first immortalized cancer cell line was introduced (Fitz-
gerald et  al., 2020). There are currently over 200 NSCLC cell lines available. Established NSCLC 
cell lines, such as A549 or PC- 9 (both LUAD), have been used extensively as they are cost- effective, 
high- throughput, and easy to manipulate genetically (Hynds et al., 2021). However, cell lines fail to 
emulate the complexity of the TME and due to immortalized culturing spanning several decades, 
they do not retain mutational signatures present in the parental tumors. As such, cancer therapies 
evaluated using cell lines do not provide robust evidence of their efficacy in the clinic (Hynds et al., 
2021; Ben- David et al., 2018). Cell cultures derived from primary NSCLC patient samples match the 
original tumor profile and are permissive for personalized drug testing, but are difficult to culture for 
prolonged periods. Nonetheless, cell lines remain widely favored in pre- clinical research due to their 
practicality (Hynds et al., 2021).

Implantation or subcutaneous injection of patient tumor material into a murine model (patient- 
derived xenograft [PDX]) can replicate the 3D structure of the tumor, allowing for tumor prolifera-
tion, vascularization, and the maintenance of the mutational profile of the original tumor for several 
passages. Thus, PDX are a superior tool for the prediction of therapy efficacy using novel drug 
regimes. The drawbacks of PDX include low efficiency of establishment (up to 60% failure rate), costly 
maintenance, and prolonged setups (up to 10 months), rendering these models especially impractical 
for personalized medicine (Li et al., 2020; Kim et al., 2019). Moreover, due to a mismatch in immune 
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profiles between mice and humans, immune- deficient mice need to be used to avoid xenotrans-
plant rejection. Using advanced murine models such as humanized mice with a reconstituted human 
hematopoietic system could partially overcome this issue, but their use is highly limited due to their 
immense costs (Fitzgerald et al., 2020; Graham, 2021).

The majority of NSCLC research has been done with genetically engineered mouse models 
(GEMMs), mostly due to the possibility of exploiting tumor- inducing as well as lineage- tracing 
methods (Hynds et al., 2021). The most widely used LUAD GEMMs feature oncogenic Kras muta-
tions that model initial stages of LUAD, and Trp53 alterations present in more than half of the NSCLC 
cases (Dearden et al., 2013; Meuwissen et al., 2001; Jackson et al., 2005; Jackson et al., 2001). 
Currently, there is greater availability of GEMMs that harbor other major genetic aberrations present 
in LUAD such as EGFR (Politi et al., 2006), BRAF (Dankort et al., 2007), and others. Although the 
development of LUSC GEMMs has been hampered by the absence of well- defined activating onco-
genes, GEMMs of LUSC harboring a single (Ji et al., 2007; Xiao et al., 2013) or a combination of (Xu 
et al., 2014; Mukhopadhyay et al., 2014; Ferone et al., 2016) genetic alterations have been devel-
oped to elucidate driver alterations accompanying human LUSC establishment. Ultimately, GEMMs 
are limited by their differential biology to that of a human, particularly when TME composition is 
involved. Even though mouse models cannot fully capture tumor progression and establishment as 
would be present in human tissue, they remain a valuable tool in LC research (Fitzgerald et al., 2020; 
Hynds et al., 2021; Lancaster and Huch, 2019).

Organoid approaches for cancer modeling
Over the recent years, lung organoids have become an increasingly popular tool for disease modeling 
and pre- clinical drug testing. Organoids are 3D structures derived from progenitor cells capable of 
self- assembly to reflect the structure, function, and genetic profile of the organ they are derived 
from, provided they are cultured in an environment emulating their stem cell niche in vivo (Sachs 
et  al., 2019; Barkauskas et  al., 2017). Organoids can be established from adult, embryonic, or 
induced pluripotent stem cells (iPSCs) (Clevers, 2016) however, for cancer modeling adult tissue 
is the preferred source. Human organoids complement current methods of pre- clinical testing and 

Figure 2. The reductionist and the holistic approaches to generate cancer organoids. In the reductionist approach, healthy lung epithelial cells are 
genetically engineered to carry non- small cell lung cancer (NSCLC) driver mutations. This approach works best if the cell of origin is known and culture 
conditions have already been established, to generate isogenic organoid lines. In the holistic approach, tumor- derived cancer cells are isolated and 
propagated as tumor organoids. If a healthy biopsy of the same patient can be obtained, this approach leads to matched patient organoids.

Created with BioRender.com
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alleviate the burden of animal experimentation (Hofer and Lutolf, 2021; Werner et al., 2021). With 
the ultimate aim of creating organoid models that faithfully capture both the response of LC to drugs 
as well as allow for modeling of tumor progression, two general approaches can be taken: the holistic 
and the reductionist approach (Figure 2).

In the more widespread holistic approach, organoids are directly derived from lung tumor tissues 
of a patient or a model animal. The primary aim of using tumor samples from patients is to create a 
platform for drug testing (Hofer and Lutolf, 2021). Organoids derived from NSCLC patient material 
(patient- derived organoids [PDOs]) recapitulated the parental tumor histology and mutational profile. 
The long- term expansion and relatively small amount of human material required for their establish-
ment have allowed for high- throughput drug screening, paving the way for personalized medicine 
(Sachs et al., 2019). Tumor organoids can also be established from PDX models (xenograft- derived 
organoids [XDOs]). Established PDOs and XDOs represented the two major NSCLC subtypes (LUAD 
and LUSC) and reflected the histology and tumorigenicity as well as drug sensitivity of their parental 
tumors. Due to the versatility of culturing under both short- and long- term conditions, they emerged 
as valuable platforms for biological experimentation and drug testing (Shi et al., 2020). To encom-
pass the genetic diversity of LC, great effort has been invested in the creation of large- scale organoid 
biobanks containing hundreds of patient samples representative of all the LC subtypes. The PDOs are 
tested for genetic similarity with the original tumors, their histological structure, and drug sensitivities 
(Li et al., 2020; Kim et al., 2019; Sachs et al., 2019; Kim et al., 2021). With such a large undertaking, 
high- throughput screening has become an increasingly practical and efficient method of pre- clinical 
testing using chemotherapeutics and targeted molecular agents. PDOs can also be used to model 
advanced- stage LUAD. When treated with targeted anticancer therapies, the response of advanced 
LUAD PDOs reflected the responses and progression- free survival of the patients they originated 
from. Such PDOs can thus be used to model therapeutic responses to novel drugs targeting different 
tumor vulnerabilities or a combination of pre- existing therapeutics (Kim et al., 2021). Combination 
therapies using two or more targeted inhibitors (such as trametinib as MEK inhibitor and dabrafenib or 
vemurafenib as B- Raf inhibitor) are becoming increasingly investigated for their resistance- preventing 
properties as well as their antitumor efficacy (Park et al., 2013; Planchard et al., 2016; Joshi et al., 
2015). Ideally, healthy patient- matched tissue should be used to generate healthy organoids to serve 
as a control. Long- term culturing conditions for organoids derived from airway cells are well estab-
lished (Lancaster and Huch, 2019; Sachs et al., 2019). More recently, conditions for culturing adult 
alveolar organoids have been published, greatly advancing the lung organoid tool box (Konishi et al., 
2022; Katsura et al., 2020; Youk et al., 2020).

In the reductionist approach, a healthy tissue sample is engineered with mutations that emulate 
the genetic alterations accompanying tumor initiation and progression. For this approach, the cell of 
origin should be known and culturing conditions should have been established. This approach has 
been extensively employed to model how genetic alterations within the intestine drive colorectal 
cancer (CRC) and human melanoma progression (Matano et al., 2015; Drost et al., 2015; Hodis 
et al., 2022). For CRC modeling, human small intestinal stem cell organoid cultures were modified 
using clustered regularly interspersed short palindromic repeat (CRISPR)/CRISPR- associated protein 
9 genome editing (Cas9) system to introduce four defined CRC driver mutations (KRASG12D, loss of 
APC, P53, and SMAD4) (Matano et al., 2015; Drost et al., 2015). The mutations were introduced 
in a defined sequence to recapitulate the adenoma to carcinoma progression as observed in human 
CRC samples (Vogelstein et al., 1988). Consequently, the engineered organoids acquired the ability 
to grow independent of factors usually required by the cell of origin, a feature characteristic for 
patient- derived CRC organoids (Matano et al., 2015; Drost et al., 2015). Similar CRISPR/Cas9- based 
approach was used to study genotype- phenotype associations in human melanoma. To achieve this, 
up to six sequential mutations (CDKN2A, BRAFV600E, TERT, PTEN, TP53, and APC) were introduced 
into healthy human melanocytes. The mutant cells partially recapitulated several defining charac-
teristics of melanoma pathogenesis. Interestingly, depending on the combination of mutations, the 
immune TME underwent changes in the form of variable neutrophil abundance or genotype- specific 
gene expression profiles of macrophages. Due to the promising results of employing the reductionist 
approach in melanoma, the authors suggested its future expansion into a 3D skin organoid model 
(Hodis et  al., 2022). Organoid models employing a bottom- up approach have been valuable for 
informing about the process of tumorigenesis. However, they have remained largely unexplored in 
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the context of LC. Two recent studies have described methods to introduce LUAD driver mutations 
to murine cells in vitro, culturing them as organoids subsequently. However, both studies made use of 
already existing LC GEMMs, restricting the versatility of this system to already available mouse models 
(Dost et al., 2020; Naranjo et al., 2022). LUSC shares characteristics and markers with basal cells, 
which are present in airway organoids; LUAD is thought to arise from alveolar cells (Sachs et al., 2019; 
Sainz de Aja et al., 2021; Hanna and Onaitis, 2013). Even though culturing conditions for these cell 
types have been established in recent years, to this date there is no publication describing the intro-
duction of LC driver mutations into healthy human lung organoids. Modeling lung tumor progression 
from the very initial stages using isogenic organoid lines would provide valuable information about 
molecular events that contribute to early carcinogenesis with aims to prevent tumor progression as 
well as to identify targets for LC treatment (Hynds et al., 2021; Dost et al., 2020).

Outstanding organoid challenges
Despite these recent developments, organoids have certain limitations. In particular, the establish-
ment of pure NSCLC organoids has its challenges. NSCLC organoids are frequently outgrown by 
non- cancerous cells and the establishment of pure organoids has a low success rate of 17%, especially 
when sourced from intrapulmonary tumor lesions (Dijkstra et al., 2020). Limited availability of pure 
tumor organoids limits their use in clinical research. It is recommended that the NSCLC organoid 
purity is thoroughly tested with immunostaining methods combined with traditionally used histo- 
morphological identification to distinguish cancer from normal lung organoids. Sourcing of NSCLC 
cells from metastatic lesions to enhance establishment rate is also possible, although this limits the 
modeling of primary cancers (Werner et  al., 2021; Dijkstra et  al., 2020). Increased efficiency of 
organoid establishment and prevention of over- passaging are needed to prevent excessive deviation 
from original tumor histopathology in personalized drug screens (Werner et al., 2021; Shi et al., 
2020). Moreover, LC develops in the context of its immune TME which interacts strongly with the 
tumor cells, creating a highly complex feedback system that could result in either pro- or antitu-
morigenic effects. As such, epithelium- derived cancer organoids lack the capacity to fully recapit-
ulate tumor progression as supported by the various components in the TME (Kim et  al., 2019). 
However, our understanding of cancer biology is rapidly expanding. With organoid models becoming 

Figure 3. Two organoid co- culture approaches incorporating immune components of the tumor microenvironment (TME). In the intrinsic TME approach 
the non- epithelial cells of the TME are conserved along with the tumor cells. In the reconstituted TME approach tumor cells are isolated from the initial 
tumor biopsy and cultured separately from the immune cells. Immune cells sourced from peripheral blood or from the same tissue sample can then 
be added to the co- culture to reconstitute the TME in a controlled manner. Several methods can be used for immune cell- tumor organoid co- cultures: 
submerged organoid culture, micro- fluidic devices (organ- on- a- chip), or transwell cultures.

Created with BioRender.com.
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more readily available, the technological possibilities of incorporating TME elements within organoid 
models are rapidly widening as well (Fitzgerald et al., 2020; Bar- Ephraim et al., 2020).

III. Possible implications of 3D NSCLC-macrophage co-culture
There is a high abundance of immune cells orchestrating a variety of protective functions within the 
lung epithelium. The lung epithelial cells secrete molecules to signal monocytes surveilling the blood 
periphery to either maintain a homeostatic state or to induce monocyte maturation into macrophages 
or dendritic cells during a state of infection (Rodero et al., 2015; Jose et al., 2020). Apart from 
their protective functions, immune cells can contribute to the establishment of a tumor- promoting 
environment, designating them as possible targets for pharmacological and cellular immunotherapies 
(Linde et al., 2012; Yuki et al., 2020). Up until now, the most extensively used in vitro platforms for 
observing immune- tumor cell interactions in NSCLC have been 2D co- culture models (Yuan et al., 
2019). 2D co- culturing is highly accessible and easily modulated, but it only poorly imitates the condi-
tions in vivo. As a result, the efficacy of cancer therapies tested in 2D co- cultures can be largely over-
estimated (Hynds et al., 2021; Majety et al., 2015). The ongoing advancements in tumor organoids 
have ensured wider availability of more complex 3D model systems which could gradually displace 2D 
co- culturing. Thus far, the organoid breakthrough has successfully advanced immunological anticancer 
research, enabled the exploration of cancer immunology, and facilitated the design of personalized 
immunotherapies (Yuki et al., 2020; Grönholm et al., 2021; Shamir and Ewald, 2014).

Organoid co-culture with immune cells
There are generally two approaches when considering a co- culture of immune cells with cancer organ-
oids (Figure 3). The first approach preserves the intrinsic TME including immune components and 
other cells of non- epithelial origin from the tumor (PDO or murine) biopsy which are then cultured 
along with the epithelial tumor cells in submerged extracellular matrix domes, microfluidic devices 
such as organs- on- a- chip, or in transwell cultures that can mimic the air- liquid interface (ALI). While 
retention of intrinsic TME maintains a great range of cellular diversity, the culturing timeframe is 
restricted due to the difficulty of providing suitable culturing conditions for an array of immune, 
epithelial, and stromal cells (Yuki et al., 2020; Neal et al., 2018). With passaging, epithelial cells get 
enriched for and stromal cells are not maintained in the cultures.

The second approach involves culturing organoids stripped of any non- tumor cells, with the immune 
cells sourced separately from the tissue or from a sample of peripheral blood (Bar- Ephraim et al., 
2020; Yuki et al., 2020). While certain immune cells such as peripheral blood lymphocytes need to 
be human leukocyte antigen (HLA)- matched with the epithelial tumor cells, innate immune cells such 
as macrophages can be sourced from non- HLA- matched donor blood. Culturing conditions should be 
optimized for the propagation of the immune cell of interest. With this approach, the immune cells 
and the tumor cells can be combined in a co- culture in a controlled manner (Dijkstra et al., 2018). 
Overall, the first co- culture approach maintains the in vivo composition of the original tumor, thus 
allowing for testing of immunotherapeutic approaches (e.g. immune checkpoint inhibitors), while the 
second approach supports long- term culturing and an in- depth investigation of cell- cell interactions 
(Bar- Ephraim et al., 2020; Yuki et al., 2020; Zahmatkesh et al., 2021).

Co-cultures with macrophages in cancer settings
The advent of more complex in vitro 3D co- culture systems has enabled the monitoring of TAMs in 
biologically relevant setups with various types of tumors. Although there is a lack of such research 
in NSCLC settings, observations from other cancers might provide valuable insight into TAM- tumor 
dynamics in 3D settings. In 2012, Linde and colleagues incorporated macrophages into the collagen 
matrix of organotypic human and murine skin squamous cell carcinoma (SCC) co- cultures. The meth-
odology involved the growth of SCC cells atop fibroblast- like collagen- I gel (emulating the fibroblast 
component). Under steady- state conditions, direct keratinocyte interaction with fibroblasts is required 
to allow for growth and differentiation of the epithelial cells, but in cancer settings fibroblasts create a 
platform supportive of tumor growth. This co- culture method enabled for mixing of a cellular compo-
nent matrix to retain the physiological context of the tumor, while also permitting the integration of 
bone marrow or peripheral blood- derived macrophages into the system. The addition of recombinant 
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LPS or IFN-γ into the growth media resulted in strong macrophage polarization toward the inflam-
matory M1 phenotype. In contrast, stimulation of the organotypic co- culture system with IL- 4 was 
found to support macrophage polarization toward the M2 phenotype, resulting in the breakdown 
of both the collagen and the basement membrane via the release of MMPs. Interestingly, prolonged 
co- culturing of the organotypic tumor with macrophages devoid of any exogenous stimulus resulted 
in a spontaneous M2 polarization. This polarization occurred independently of IL- 4, as no IL- 4 was 
detected in the stimulus- free cultures by ELISA. The proposed fibroblast- tumor- macrophage co- cul-
ture setup likely simulates in vivo- like tumor- TME dynamics and could be used for extensive studies of 
macrophage function in a cancer context (Linde et al., 2012).

Similar to LC, mammary adenocarcinomas are characterized by a high abundance of macrophages 
within the neoplastic tissue, along with increased infiltration of cells of the adaptive immunity (B and T 
lymphocytes) (DeNardo et al., 2009; Ruffell et al., 2012). Using organoids derived from a transgenic 
MMTV- PyMT mammary adenocarcinoma murine model, DeNardo et al., 2009, investigated the roles 
of CD4+ T lymphocytes and macrophages in tumor progression and metastasis in malignant epithe-
lial tissues. The co- culture of PyMT- derived invasive organoids and TAMs revealed that TAMs (which 
were immunofluorescently labeled) predominantly localize along the invasive front of the organoid 
structures. Supplementation of this co- culture with IL- 4 or IL- 13 (TH2- derived cytokines) resulted in 
the amplification of invasive properties as well as disruption of the organoids in an IL/TAM dose- 
dependent manner. Conversely, the addition of LPS, IFN-γ, or IL- 10 resulted in enhanced organoid 
stability. A ‘triculture’ setup of the PyMT- derived organoids, CD4+ T effector cells directly derived from 
PyMT mammary tumors and TAMs without exogenous stimulation revealed the M2- like TAM pheno-
type was promoted by higher IL- 4 expression in CD4+ T cells. This induction of invasive properties was 
absent in carcinomas with depleted CD4+ T cell component or in the presence of M1- activating and 
immunoregulatory cytokines (DeNardo et al., 2009).

3D spheroid models aimed at engineering the TME were also employed to provide insight into 
macrophage association with malignant tissues. Spheroids are randomly distributed aggregates of 
cancer cells that are unable of self- assembly or regeneration but are useful models of immune interac-
tions (Fiorini et al., 2020). A hanging- drop hetero- spheroid model of ovarian cancer stem cells with 
integrated macrophage component revealed an upregulation of the M2- polarization marker driven by 
IL- 10 and WNT release from the cancer stem cells. Reciprocal WNT signaling of the M2 macrophages 
then maintained stemness of the cancer stem cells. The collaborative positive feedback signaling of 
both the tumor cells and macrophages resulted in an immunosuppressive environment supportive 
of enhanced cancer aggressiveness and the acquisition of chemoresistance (Raghavan et al., 2019). 
Overall, these findings could be exploited therapeutically as they identified the link between adap-
tive and innate immunity- associated components (both cellular and molecular) in malignancies of 
the breast and ovaries (DeNardo et al., 2009; Raghavan et al., 2019). As with any newly estab-
lished methods, limitations are still present. In particular, while PDO co- systems reflect therapeutic 
vulnerabilities of parental tumor tissues, it is unclear whether short- term responses of organoids in 
culture would capture long- term treatment prognosis in patients and how this would be reflected in 
personalized immunotherapies (Bar- Ephraim et al., 2020; Yuki et al., 2020; Grönholm et al., 2021). 
Nonetheless, macrophage incorporation into a 3D system is gradually becoming a promising research 
avenue for an improved investigation of cancer dynamics, cell- cell crosstalk, as well as testing of anti-
cancer therapeutic approaches.

Co-cultures with macrophages in non-cancerous lung settings
Even though macrophage- organoid co- cultures have not yet been studied extensively in the context 
of LC, a great amount of investigative effort has been invested into co- cultures of lung organoids 
with macrophages in cancer- unrelated contexts. Such research can still provide valuable insight into 
the methodological approaches available and the technology employed for capturing cell- cell TME 
crosstalk. As such, a 2020 study by Jose et al., 2020 aimed to address the ability of iPSC- derived lung 
organoids to emulate human immunocompetent mucosal tissues. The incorporation of monocytes 
into lung organoid culture resulted in their migration toward the lung epithelium while supporting 
their maturation, as confirmed by bulk RNA sequencing. The attraction of host macrophages was 
observable under homeostatic conditions as well as during inflammation, suggesting 3D organoids 
could be used to explore a range of disease states (Jose et al., 2020).
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To investigate the role of macrophages in lung development and tissue repair post- injury, Vazquez- 
Armendariz et  al., 2020, developed a 3D bronchioalveolar lung organoid (BALO) model derived 
from murine lung cells . They were generated from bronchioalveolar stem cells, progenitors of various 
subsets of pulmonary epithelial cells (club cells, alveolar epithelial cells 1/2, and ciliated cells) in 
normal lung and precursors of LUAD (Kim et al., 2005; Salwig et al., 2019). BALOs were maintained 
alongside resident mesenchymal cells (Vazquez- Armendariz et al., 2020). As tissue- resident macro-
phages represent a crucial component of early embryonic lung development, integrating them in 
the BALO model system revealed the cooperation of tissue- resident macrophages with the epithe-
lium to guide cell differentiation and downregulation of the inflammatory response. In contrast, the 
inflammatory response was enhanced by these macrophages upon the introduction of the influenza 
virus into the system. Macrophages were incorporated into the BALO model system via microinjec-
tion to ensure engraftment of macrophages facing the apical side of epithelial cells. The transcrip-
tomic analysis using single- cell RNA sequencing revealed the downregulation of proliferation and 
inflammation- associated genes and the upregulation of cell clusters responsible for cell differentia-
tion under steady- state conditions. The organoid- macrophage crosstalk was visualized using electron 
microscopy via the observation of microvillous protrusions (Vazquez- Armendariz et al., 2020). Taken 
together, the engraftment of tissue- resident macrophages into organoid cultures provides a platform 
for the investigation of detailed functions and interactions of the epithelial cells with cells of the innate 
immune system expandable to a variety of lung pathologies.

Transwell cultures
Transwell setups feature a permeable membrane that is available with different pore sizes, which allows 
for the seeding of different cell types in different compartments that are connected through micro-
pores. With this system, epithelial cells can be seeded on top of the membrane, while (conditioned) 
media and/or immune cells can be added to the bottom compartment, modeling the basolateral 
positioning of the immune cells in most epithelia (Guo et al., 2019; Bar- Ephraim et al., 2020; Lacroix 
et al., 2018). As one example, Noel et al., 2017, used this system to culture enteroid cells together 
with macrophages that were attached to the bottom compartment- facing side of the membrane. They 
traced the epithelial- immune cell crosstalk via changes in the cell morphology including ruffling of 
edges in macrophages and increased cell height of the epithelial cells. This allowed for observations 
of morphological and cytokine changes in both cell types, and the co- culture model was deemed 
reproducible for modeling gut physiology (Noel et al., 2017). In the lung field, transwells are often 
used as ALI systems. Lung cells derived from human bronchial epithelial cell cultures, organoids, or 
other sources first expand in 2D on top of the membrane in a submerged state. To induce differenti-
ation of the cells to a pseudostratified epithelium, the liquid is then removed from the apical side of 
the epithelial cell layer so that the cells are exposed to air, mimicking the conditions of the respiratory 
tract (Pezzulo et al., 2011; Ghosh et al., 2020). Using these physiologically relevant ALI cultures, a 
variety of TME cellular components could be introduced into this system in the future.

A microfluidic device: lung-on-a-chip
Cancer model systems can now be expanded into previously unforeseen levels of complexity. 
Organoid- complementary ‘on- a- chip’ microfluidic devices serve as improved model systems allowing 
for advanced and long- term modeling of the complex lung microenvironment (Figure 3; Hofer and 
Lutolf, 2021; Evans and Lee, 2020). Initially devised by Huh and colleagues in 2010, organs- on- a- 
chip are biomimetic microsystems that reconstitute different tissue elements as present in various in 
vivo organ systems, such as the lung (Huh et al., 2010). This biomimetic method can also be success-
fully utilized to model NSCLC progression, establish NSCLC responses to anticancer drug treatments, 
as well as to analyze persister cells to uncover mechanisms underlying tumor dormancy in LC (Hassell 
et al., 2017). Despite recent advancements in immunological research implicating immune cells as 
key players in various stages of tumorigenesis, immune systems- on- a- chip remain an underrepre-
sented research avenue. The extensive amenability of these microfluidic devices renders them ideal 
for the study of immune cell migration toward cancer tissues in a manner otherwise unreproducible 
with other model systems. Initial immune systems- on- a- chip setups preferentially focus on cells of the 
innate immune system (such as macrophages) as the innate immune responses are faster compared 
to delayed adaptive immunity (Guo et al., 2019; Grönholm et al., 2021; Polini et al., 2019). The 
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rapid advancements of the on- a- chip devices might eventually lead to the implementation of complex 
NSCLC model systems into anticancer research, paving the way for more advanced therapies for lung 
carcinomas.

Discussion and future directions
The vast majority of LC cases are attributable to the effects of smoking and air pollution. The repetitive 
tissue damage caused by tobacco inhalation leads to high levels of immune cell infiltration, causing 
widespread tumor- promoting inflammation. Smoking also induces specific mutations within the lung 
epithelium, which can then generate a large number of neoantigens (Schumacher and Schreiber, 
2015; Alexandrov et al., 2013). A high neoantigen load can be exploited and targeted by personal-
ized immunotherapies, such as PD- 1/PDL- 1 blockade, focused on the amplification of T cell reactivity 
against cancer cells (Ye et al., 2021). However, the large reliance of immune checkpoint inhibitors on 
the neoantigen load limits their utility to a subgroup of NSCLC patients, leading the search for NSCLC 
therapies toward the immune landscape of the TME.

Macrophages, which are highly abundant within the innate immune infiltrate of the NSCLC TME, 
lead a dynamic crosstalk with the epithelial cells of the NSCLC tumors and contribute to NSCLC 
establishment, tumor progression, metastasis, angiogenesis, immunosuppression, and the acquisition 
of chemoresistance. However, high macrophage phenotypic plasticity, uncertainties concerning their 
origins, and the impact of niche- dependent signaling on their phenotype lead to persistent confusion 
in deciphering their specific functions within NSCLC lesions. As systematic depletion of macrophages 
causes a lot of side effects in patients, continuous research efforts have been aimed at unveiling 
markers specific for tumor- supporting macrophage subtypes. For instance, the centrally positioned 
AMs residing within the lung tissue have been assigned conflicting roles in NSCLC. The most recent 
efforts identified that CD169+ tissue- resident AMs in NSCLC tissues contribute to enhanced tumor 
growth and attenuate T cell- mediated antitumor response, elucidating their depletion as an emerging 
treatment for early NSCLC lesions (Casanova- Acebes et al., 2021). Because AMs reside in the alve-
olar space and are therefore present on the apical side of the epithelium, regular basal- out polarity 
organoid co- cultures with AMs would not accurately model the AM- epithelial cell interactions. 
Apical- out airway organoid cultures or transwell systems with AMs seeded on top of the epithelial cell 
layer would therefore be superior methods to study these interactions in vitro (Stroulios et al., 2022). 
Indeed, AMs are one of the first immune cells to encounter a newly transformed LC cell in vivo. There-
fore, co- culturing AMs with early- stage LC cells or with engineered cancer using the above- mentioned 
culturing setups could deliver valuable insights into AM- cancer cell crosstalk.

As more knowledge is gathered concerning the specific cues leading to M1 and M2 polariza-
tion, therapies such as IFN-γ supplementation could lead to a re- differentiation of M2 macrophages 
toward the tumoricidal M1 phenotype, thus preventing cancer progression. Alternatively, the treat-
ment focus could shift toward signaling molecules that enable cell- cell crosstalk. Targeting CCL2 or 
CSF released from the tumor cells could block the recruitment of monocytes toward the NSCLC 
lesions, thus preventing TAM infiltration and differentiation (Sedighzadeh et al., 2021). Similarly, the 
neutralization of IL- 4- induced pro- TAM signaling may be a potent method of enhancing cytotoxic 
properties of the innate and adaptive immunity cells, allowing the immune system to efficiently target 
tumors (DeNardo et  al., 2009). The disruption of the phagocytosis- suppressing CD47- SIRPα axis 
could promote macrophage- induced killing of LC cells (Weiskopf et al., 2016; Lin et al., 2020). The 
therapeutic agents could also be administered in combination to achieve a synergistic anticancer 
effect. Finally, it is important to note that continuous exposure to tobacco diminishes therapeutic 
outcomes, making smoking cessation a crucial part of any LC therapy (Cataldo et al., 2010).

The ever- expanding armamentarium of therapeutic regimens requires adequate testing platforms. 
The many models available for NSCLC research have advanced our understanding of LC biology and 
facilitated the implementation of numerous therapeutic regimens such as the combination of MEK 
and B- Raf inhibitor into the clinic (Planchard et al., 2016; Joshi et al., 2015). As the model systems 
are gradually shifting from 2D into 3D settings, 3D organoid models derived from either healthy or 
NSCLC tissues are continuously improved to faithfully capture features specific to human lung malig-
nancies. To start, macrophages could be systematically incorporated into NSCLC organoids derived 
from wild- type tissues that have been genetically engineered to emulate NSCLC driver alterations. 
This approach could identify the specific macrophage- tumor crosstalk accompanying the initial stages 
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of tumor establishment. It would be reasonable to focus these initial co- culturing efforts on LUAD 
organoids, as LUAD lesions are the most represented NSLSC subtype where high macrophages infil-
trate might be of great relevance. However, it is important to recognize that with this stripped- down 
co- culturing method, the signaling from other immune or stromal cells toward the macrophages or the 
tumor epithelium itself would be absent.

The relationship between the development of immunotherapies and an advancement in their 
application in 3D settings is already becoming apparent. A potentially promising novel approach in 
TAM- focused immunotherapy is emerging in the form of chimeric antigen receptor- modified macro-
phages (CAR- M). The currently developed CAR- M therapies are primarily (but not exclusively) focused 
on the enhancement of the macrophage phagocytic activity against cells in solid tumors. In this way, 
CAR- M therapy aims to address shortcomings of its predecessor – the CAR- T cell therapy – which 
has been mostly successful in hematological tumors (Abdin et al., 2021; Wang et al., 2022). The 
capacity of TAMs to penetrate into and persist in solid malignancies might not only be crucial for 
targeted CAR- M treatment in LC, but it could also be utilized for organoid immunotherapy testing. A 
recent study by Dekkers et al., 2023, details how single- cell imaging of engineered T cells with solid 
tumor PDOs could prove useful in establishing the extent of their immunotherapeutic potential. Their 
newly developed cell tracking system enabled them to track and pinpoint engineered T cells with a 
particularly potent tumor- killing capacity (Dekkers et al., 2023). The emergence of such methods 
might be further applied for the evaluation of CAR- M efficacy against LC PDOs in the future. Nowa-
days, patient- matched healthy and malignant LC PDOs can be easily attained in order to compare the 
effects of CAR- M delivery to healthy versus cancer tissues. iPSC- derived CAR- Ms could be particularly 
useful for such experimentation, as their ex vivo expansion potential is unlimited (Zhang et al., 2020).

Breakthroughs involving organoid development are being paralleled by the evolution of platforms 
replicating the TME via organoid- immune cell co- cultures, such as lung- on- a- chip. This biomimetic 
approach could eventually be used to model the contribution of a greater range of TME cells toward 
NSCLC, providing a complex overview of the pro- and antitumorigenic signaling interplay within the 
TME. To conclude, the utility of complex 3D co- culture systems is supported by an increasingly avail-
able array of methods that enable the investigation of the tumor cell- immune cell interactions. In 
the future, organoid- macrophage co- culture platforms might have promising applications for NSCLC 
disease modeling, pre- clinical immunotherapeutic testing, as well as personalized medicine devoid of 
reliance on the use of animal models.
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