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Protein composition of axonal dopamine 
release sites in the striatum
Lauren Kershberg, Aditi Banerjee, Pascal S Kaeser*

Department of Neurobiology, Harvard Medical School, Boston, United States

Abstract Dopamine is an important modulator of cognition and movement. We recently found 
that evoked dopamine secretion is fast and relies on active zone- like release sites. Here, we used in 
vivo biotin identification (iBioID) proximity proteomics in mouse striatum to assess which proteins are 
present at these sites. Using three release site baits, we identified proteins that are enriched over 
the general dopamine axonal protein content, and they fell into several categories, including active 
zone, Ca2+ regulatory, and synaptic vesicle proteins. We also detected many proteins not previously 
associated with vesicular exocytosis. Knockout of the presynaptic organizer protein RIM strongly 
decreased the hit number obtained with iBioID, while Synaptotagmin- 1 knockout did not. α-Synu-
clein, a protein linked to Parkinson’s disease, was enriched at release sites, and its enrichment was 
lost in both tested mutants. We conclude that RIM organizes scaffolded dopamine release sites and 
provide a proteomic assessment of the composition of these sites.

Editor's evaluation
Using a smart proximity labeling approach, the protein composition of dopaminergic neurotrans-
mitter release sites was determined in striatal axons. Using mice in which release sites were 
disrupted as control, the authors identified not only established components of the secretory 
machinery but also many new proteins whose function awaits further characterization. The datasets 
provided are of very high quality and provide an important foundation for studies on the dopami-
nergic exocytotic machinery.

Introduction
Dopamine is a critical neuromodulator and regulates target cells through G- protein- coupled receptor 
(GPCR) signaling (Berke, 2018; Liu et al., 2021a; Surmeier et al., 2014). In the vertebrate brain, 
midbrain dopamine neurons form a crucial regulatory system. The dopamine neuron somata are 
located in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), and one 
prominent target area of their axons is the striatum. In the striatum, dopamine is thought to act as a 
volume transmitter because only a small percentage of dopamine varicosities are directly apposed to 
postsynaptic specializations (Descarries et al., 1996; Wildenberg et al., 2021) and because dopa-
mine receptors are found mostly extrasynaptically (Liu et al., 2021a; Rice et al., 2011; Sesack et al., 
1994; Uchigashima et  al., 2016; Yung et  al., 1995). Hence, dopamine likely signals by diffusing 
through the extracellular striatal space before initiating responses in target cells. While much is under-
stood about the mechanisms and molecules involved in the synaptic release of classical neurotrans-
mitters, the machinery mediating the release of dopamine is less well known.

Spatial and temporal precision of vesicular exocytosis at classical synapses is established by the 
active zone, a conserved molecular machine that docks synaptic vesicles at the presynaptic plasma 
membrane close to voltage- gated Ca2+ channels, primes the vesicles for release, and aligns these 
processes with postsynaptic receptor clusters (Biederer et al., 2017; Südhof, 2012). Several lines 
of evidence point to the existence of active zone- like protein complexes for the control of striatal 
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dopamine release. First, dopamine release is rapid, has a high release probability, and occurs at small 
hotspots (Banerjee et al., 2022; Banerjee et al., 2020; Beyene et al., 2019; Liu et al., 2018; Marcott 
et al., 2014; Patriarchi et al., 2018; Silm et al., 2019; Wang et al., 2014; Zych and Ford, 2022), 
indicating the need for vesicle tethering close to Ca2+ channels before the stimulus arrives. Second, at 
least some dopamine receptors respond rapidly to local, high concentrations of dopamine (Beckstead 
et al., 2004; Condon et al., 2021; Courtney and Ford, 2014; Gantz et al., 2013; Marcott et al., 
2014), which likely necessitates synchrony of vesicular release. Third, dopamine neuron activity and 
secretion often correlate with behavior on fast time scales (Bova et al., 2020; Chaudhury et al., 2013; 
da Silva et al., 2018; Hamilos et al., 2021; Hollerman and Schultz, 1998; Howe and Dombeck, 
2016; Jin and Costa, 2010; Schultz et al., 1997), suggesting the need for precise signaling mech-
anisms. Taken together these properties indicate the presence of protein machinery for rapid and 
efficient release of dopamine.

Indeed, our recent work has found that proteins for the control of spatial and temporal precision 
of synaptic vesicle exocytosis are important for evoked dopamine release. These proteins include the 
active zone scaffolds RIM and Liprin-α, the priming protein Munc13, and the fast Ca2+ sensor Synapto-
tagmin- 1 (Syt- 1) (Banerjee et al., 2022; Banerjee et al., 2020; Lebowitz et al., 2022; Liu et al., 2018; 
Robinson et al., 2019). Conversely, the active zone scaffolds RIM- BP and ELKS are dispensable for 
axonal dopamine release, even though at least ELKS is present at these sites (Banerjee et al., 2022; 
Liu et al., 2018). Striatal dopamine release only partially depends on voltage- gated Ca2+ channels of 
the CaV2 family, channels that are required for stimulated release at most synapses (Brimblecombe 
et al., 2015; Held et al., 2020; Liu et al., 2022; Luebke et al., 1993; Takahashi and Momiyama, 
1993). Thus, there appear to be both similarities and differences in the secretory machines in dopa-
mine varicosities compared with synapses. However, only a handful of proteins important for secretion 
are known to mediate dopamine release, and many pieces of the underlying secretory machine remain 
unidentified.

We here characterized the composition of dopamine release sites using an unbiased proteomic 
approach. We adapted in vivo biotin identification (iBioID), a method that allows for purifying proteins 
in close proximity to a marker protein (Kim et  al., 2014; Roux et  al., 2012; Uezu et  al., 2016). 
Using three different release site bait proteins, we found that 527 proteins were present at these 
sites when we applied a threshold of ≥2.0- fold enrichment over soluble axonal proteins. A total of 
190 proteins were enriched in multiple bait conditions and 41 proteins with all three baits. Many 
proteins with previously known functions at classical synapses were identified, including active zone, 
Ca2+ regulatory, and synaptic vesicle proteins, as well as proteins that presently do not have defined 
roles in axonal neurotransmitter secretion. We also tested whether structural scaffolding and dopa-
mine release are important for the composition of these secretory sites. Conditional, dopamine 
neuron- specific knockout of the presynaptic organizer protein RIM strongly decreased the number of 
detected proteins, while that of the Ca2+ sensor Syt- 1 to abolish synchronous dopamine release did 
not. We conclude that dopamine release sites are organized structures controlled by the scaffolding 
protein RIM, and we provide a proteomic assessment of the content of these release sites.

Results
Proximity proteomics to assess dopamine release site composition in 
the mouse striatum
With the overall goal to generate a comprehensive proteome of release sites in striatal dopamine 
axons, we adapted a proximity proteomic approach. We fused a promiscuous version of the biotiny-
lase BirA (also called BirA*) (Roux et al., 2012; Uezu et al., 2016) to several proteins associated with 
dopamine release sites and expressed these bait proteins Cre- dependently using AAVs specifically in 
dopamine neurons of DATIRES- Cre mice (Bäckman et al., 2006). To locally biotinylate proteins in vivo, we 
provided excess biotin through subcutaneous injection for 7 days. We then performed affinity purifica-
tion of the biotinylated proteins from striatal homogenates and identified them by mass spectrometry 
(Figure 1A). The striatal dopamine axons are particularly well suited for this approach because they 
are elaborately branched in the striatum and can be easily separated from their midbrain somata and 
dendrites during tissue dissection, limiting confounds arising from the co- purification of somatoden-
dritic proteins.

https://doi.org/10.7554/eLife.83018
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Figure 1. In vivo biotin identification (iBioID) for release site proteins in dopamine axons of the mouse striatum. (A) Schematic of the experiment with 
AAVs for Cre- dependent BirA fusion protein expression (AAV2/5- DIO- BirA- fusion), followed by in vivo biotinylation, affinity purification, and analyses 
by mass spectrometry. (B) Overview of BirA fusion proteins expressed Cre- dependently with AAVs in midbrain dopamine neurons of DATIRES- Cre mice, P: 
proline- rich motif, H: hemagglutinin (HA) tag. Each mouse expressed one of the three BirA baits (RIMPPCP- BirA, ELKS2β-BirA, and CaVβ4- BirA) or BirA- 
tdTomato (to generate a proteome for normalization). (C) Sample confocal images of striatal slices of DATIRES- Cre mice expressing the BirA fusion proteins 

Figure 1 continued on next page
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We first generated a series of AAVs to express bait proteins in a Cre- dependent manner. In these 
bait proteins, BirA was fused to RIM or ELKS, active zone proteins associated with dopamine release 
sites (Banerjee et al., 2022; Liu et al., 2018), or to the β4 subunit of voltage- gated Ca2+ channels 
(CaVβ4), a component of CaV Ca2+ channel complexes that are present at release sites (Brimblecombe 
et al., 2015; Dolphin, 2003; Held et al., 2020; Tan et al., 2022b). Full- length active zone proteins 
fused to BirA exceed the packaging limit of AAVs. Considering this limitation, the following constructs 
were selected from initial trial experiments (Figure 1B): RIMPPCP- BirA, containing the central region 
of RIM (PDZ and C2A domains with endogenous linker sequences and proline- rich motifs) that is 
important for its active zone localization, with BirA inserted at the C- terminus (Kaeser et al., 2011; 
Tan et al., 2022a; Tang et al., 2016; Wu et al., 2019); ELKS2β-BirA, a short version of ELKS with BirA 
inserted between the CCC and CCD domains (Held et al., 2016; Kaeser et al., 2009; Liu et al., 2014); 
and CaVβ4- BirA, a CaV subunit with BirA inserted at the C- terminus (Dolphin, 2003; Held et al., 2020; 
Tan et al., 2022b). In all experiments, we used BirA fused to tdTomato (BirA- tdTomato) that localizes 
throughout the axon for calculating enrichment. All constructs also contained hemagglutinin (HA)- 
tags for identification with HA antibodies.

To assess the axonal presence of these BirA fusion proteins, we injected the AAVs into the midbrain 
of DATIRES- Cre mice. After 6 weeks, we perfused the mice and stained striatal brain slices with antibodies 
against HA (to label the fusion proteins) and antibodies against tyrosine hydroxylase (TH, to label dopa-
mine axons) (Figure 1C, Figure 1—figure supplement 1). The fusion proteins were detected within 
TH- labeled axons. RIMPPCP- BirA and ELKS2β-BirA were present in small punctate structures consistent 
with release site localization (Liu et al., 2018). CaVβ4 appeared somewhat more widespread, similar to 
Ca2+ entry in these axons (Pereira et al., 2016), and BirA- tdTomato was broadly overlapping with TH, 
likely reflecting a soluble axonal localization. We previously performed superresolution microscopy 
to assess the localization of select endogenous dopamine axonal proteins (Banerjee et al., 2022; 
Banerjee et al., 2020; Liu et al., 2018). High- quality super- resolved images could not be obtained 
here, likely because of the specific antibodies and conditions that were needed. In vivo biotinylation 
was next confirmed for the BirA fusion proteins with or without biotin injections (for 7 days) followed 
by pilot biotin- affinity purifications and Western blotting of the purified fractions (Figure 1—figure 
supplement 2 and 'Materials and methods'). This established that biotinylation and protein purifica-
tion are efficient, and that background biotinylation in the absence of biotin is limited.

To determine dopamine release site composition, we performed iBioID using these three BirA bait 
proteins and BirA- tdTomato expressed in DATIRES- Cre mice (Figure 1A). After 4–6 weeks of expression, 
biotin injections were done on seven consecutive days, and 10–12 striata per condition and repeat 
were dissected and homogenized. Biotinylated proteins were then isolated using affinity purifica-
tion. The eluates were depleted with antibodies against pyruvate carboxylase (PC), an endogenously 

shown in (B), slices were stained with anti- TH antibodies and anti- HA antibodies to label dopamine axons and BirA fusion proteins, respectively. Images 
are from an experiment in which all constructs were imaged in the same session and with the same settings, and adjusted identically for display, except 
for ELKS2β-BirA. Images for ELKS2β-BirA were acquired in a separate experiment and with its own control; these images were adjusted for brightness 
and contrast slightly differently to match overall appearance, and adjustments were identical to those made to its own control acquired at the same time 
and shown in Figure 1—figure supplement 1. A sample image area is shown from 3 to 5 overview images per mouse and condition, each experiment 
was repeated in ≥3 mice. (D–F) Protein enrichment in BirA bait conditions over BirA- tdTomato. Log2 fold change values are plotted as frequency 
histograms. Values at or below 0 represent proteins that are equal to or lower than in the BirA- tdTomato condition (light colors), values >0 represent 
proteins that are higher than in the BirA- tdTomato condition (saturated colors), and values ≥1 represent hits with ≥2.0- fold enrichment; (D) 1306 total 
proteins identified, 659 proteins with log2 fold change >0, and 269 proteins with log2 fold change ≥1 (hits); (E) 1496/805/382; (F) 1168/354/114. The gene 
encoding the protein that was used as a bait is shown as a dot and labeled individually in each panel; (D) 4 independent repeats (12 striata each); (E) 
4 (12/12/12/10); (F) 4 (12/12/12/10). For sample images of the negative control for ELKS2β-BirA, see Figure 1—figure supplement 1; for pilot iBioID 
experiments and assessment of self- biotinylation, see Figure 1—figure supplement 2; for a table of all proteins identified, see Source data 1A; for 
cDNA sequences used to generate the fusion proteins, see Source data 1B.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Sample images for ELKS2β-BirA expression.

Figure supplement 2. BirA fusion proteins are self- biotinylated and purified with iBioID.

Figure supplement 2—source data 1. Western blots for Figure 1 – figure supplement 2A.

Figure supplement 2—source data 2. Western blots for Figure 1 – figure supplement 2B.

Figure 1 continued
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biotinylated protein, before assessment of protein content with mass spectrometry. In total, four inde-
pendent biological repeats per BirA fusion protein were performed (i.e., four times 10–12 striata per 
condition, conditions: RIMPPCP- BirA, ELKS2β-BirA, CaVβ4- BirA, BirA- tdTomato, also see 'Materials and 
methods'). The four repeats were run as two large experiments for in vivo biotinylation, biotin affinity 
purification, and mass spectrometry; two repeats were run in parallel in each experiment, and the 
two experiments were run approximately 1 year apart from one another (the second experiment also 
contained analyses of conditional knockout mice described below).

Peptides from 1969 proteins were identified in at least one of the BirA conditions. A total of 300 
(15%) of those proteins are mitochondrial proteins, which is common in iBioID, and these proteins 
were removed from further analyses unless noted otherwise, as has been done before (Loh et al., 
2016; Uezu et al., 2016). To identify proteins enriched in the immediate vicinity of the bait proteins 
(RIMPPCP- BirA, ELKS2β-BirA, and CaVβ4- BirA), the number of peptides identified for each protein and 
bait was normalized to the number of peptides found for the same protein in the BirA- tdTomato 
condition, effectively generating a ratio of enrichment over soluble dopamine axonal protein content 
as fold change. For proteins that were not detected with all BirA fusions, we assigned an average 
value of 0.5 peptides so that we could calculate fold change values for proteins that otherwise had 
a 0 in the denominator and log2 of fold change for all detected proteins. After producing log2 of 
the fold change, values >0 represent proteins detected at levels higher than in the BirA- tdTomato 
condition (Figure 1D–F, saturated colors), while proteins <0 (light colors) were below. For the main 
analyses, 'hits' were proteins enriched ≥2.0- fold and have log2 fold change values of ≥1 (Figure 1D–F). 
These proteins are included in the analyses presented in Figure 2. Analyses with alternate enrichment 
thresholds are shown in Figure 2—figure supplements 1 and 2. These applied cutoffs are similar to 
previous studies using iBioID (Takano et al., 2020; Uezu et al., 2016).

For RIMPPCP- BirA (Figure 1D) and ELKS2β-BirA (Figure 1E), 50% and 54% of the detected proteins 
were higher than with BirA- tdTomato, and 20% and 25% were above the 2.0- fold enrichment threshold, 
respectively. Only 30% of all proteins detected in the CaVβ4- BirA condition were higher compared to 
BirA- tdTomato, and 9% were enriched ≥2.0- fold. These observations generally align with the morpho-
logical data (Figure 1C), where CaVβ4- BirA appeared more widely expressed than RIMPPCP- BirA and 
ELKS2β-BirA. They are also consistent with functional analyses that revealed that Ca2+ entry in dopa-
mine axons is widespread (Pereira et al., 2016), while active zone proteins (Banerjee et al., 2022; Liu 
et al., 2018) and release (Pereira et al., 2016) are only detected in 20–30% of the varicosities. In each 
condition, the protein that was used as a BirA bait was robustly enriched (individually labeled proteins 
in Figure 1D–F). This further establishes the approach, as self- biotinylation of the BirA fusion proteins 
should be high compared to other proteins if the labeling radius is small, which has been estimated to 
be 10–50 nm (Kim et al., 2014; Roux et al., 2012).

Assessment of the protein composition of release sites in dopamine 
axons
We next constructed Venn diagrams with proteins that were above the 2.0- fold enrichment threshold 
to assess the overlap of hits between the different bait conditions. In total, there were 527 proteins 
≥2.0- fold enriched (Figure  2A). The enrichment compared to BirA- tdTomato indicates that these 
proteins have a localization that is restricted compared to general dopamine axonal proteins. Of the 
527 proteins, 190 were enriched in more than one condition and 41 were enriched with all three baits, 
RIMPPCP- BirA, ELKS2β-BirA, and CaVβ4- BirA.

Given that the BirA baits are proteins with roles in transmitter secretion and are expressed in dopa-
mine axons, it is expected that proteins with known roles in neurotransmitter release are enriched 
in the iBioID dataset. We assessed the hits by evaluating their cellular compartment annotations in 
SynGO, an expert- curated database that assigns localization and function of synaptic genes (Koop-
mans et al., 2019). Of the 527 enriched proteins, 194 (37%) have one or multiple synaptic cellular 
compartment annotations in SynGO (Figure 2B), reflecting that their synaptic localization has been 
established. SynGO does not distinguish between synapse or neurotransmitter type, but instead 
broadly determines whether there is evidence to support the presence or function of a given protein 
at synapses in general (Koopmans et al., 2019).

To assess how the enrichment threshold of  ≥2.0 influenced this overall assessment of the 
release site proteome, we constructed Venn diagrams with alternate enrichment thresholds of ≥1.5 

https://doi.org/10.7554/eLife.83018
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(Figure 2—figure supplement 1) or ≥2.5 (Figure 2—figure supplement 2). Naturally, the overall 
number of proteins that reached threshold varied, with 991 proteins being ≥1.5- fold and 348 proteins 
≥2.5- fold enriched, compared to the 527 proteins detected with the ≥2.0- fold enrichment threshold. 
Changing enrichment thresholds did not increase the percentage of synaptic proteins as identified 
via SynGO (31% for ≥1.5 and 33% for ≥2.5 thresholds, respectively, Figure 2—figure supplement 3), 
justifying the use of ≥2.0 as the threshold for further analyses.

We next categorized the proteins based on whether they are known to be localized pre- or post-
synaptically in order to assess which types of synaptic proteins were enriched. Proteins with SynGO 
annotations may have multiple annotations and can be both pre- and postsynaptic, but do not require 
a more specific annotation. A total of 102 proteins (19% of the entire dataset, 53% of the SynGO 
synaptic proteins) have a presynaptic annotation with many having additional specific assignments to 
the active zone or synaptic vesicles, while 87 (17% of the entire dataset, 45% of the SynGO synaptic 
proteins) have postsynaptic annotations (Figure 2B). Also, 43 proteins (8% of the entire dataset, 22% 
of the SynGO synaptic proteins) are annotated both pre- and postsynaptically.

If the iBioID approach used here enriched proteins at sites of dopamine release, it would be 
expected that proteins previously shown to localize to dopamine release sites are enriched. Indeed, 
RIM1 (Rims1), ELKS2 (Erc2), and Bassoon (Bsn), proteins that can be used as markers for dopamine 
release sites (Banerjee et al., 2022; Liu et al., 2018) and that were shown to be associated with 
synaptic vesicle docking sites using a different proteomic approach (Boyken et al., 2013), were all 
enriched across multiple conditions (Figure 2A).

Proteomic assessment of release site composition, like the one described here, can serve to iden-
tify new putative components. Of the 527 enriched proteins with the ≥2.0- fold threshold, 333 (63%) 
do not have a SynGO annotation (Figure 2B), and 46 proteins are annotated broadly as 'synaptic' 
without more exact specification. Additionally, for the characterization of the dopamine axon secre-
tory machinery, proteins known to be associated with classical synaptic release that have not been 
implicated in dopamine release can also be identified. One example of the latter category is Neuro-
plastin (Nptn), a transmembrane protein with pre- and postsynaptic roles at synapses (Beesley et al., 
2014; Boyken et  al., 2013; Schmidt et  al., 2017; Smalla et  al., 2000). Neuroplastin is strongly 
enriched across conditions (Figure 2A), but its association with dopamine release sites has – to our 
knowledge – not been described. To assess Neuroplastin localization with a secondary approach, we 
prepared striatal synaptosomes as we described before (Banerjee et al., 2022; Banerjee et al., 2020; 
Liu et  al., 2018) and stained them with antibodies against TH to mark dopamine synaptosomes, 
Bassoon to label release sites, and Neuroplastin. In particles labeled with TH, Neuroplastin antibody 
staining intensity was significantly higher when Bassoon was present (Figure 2—figure supplement 
4). These results suggest that Neuroplastin is enriched in proximity to release sites of dopamine axons 
and provide an independent approach that helps validate iBioID for this specific hit.

Ablation of RIM, but not of Synaptotagmin-1, strongly decreased the 
number of proteins detected in the dopamine release site proteome
We next asked whether removing proteins important for dopamine release affects the composition 
of the dopamine release site proteome. Previous work has established genetic strategies to abolish 

enrichment across repeats (key on the bottom right). For proteins enriched in multiple bait conditions, circle size corresponds to the bait condition 
with the largest enrichment. (B) Hits from (A) that have cellular compartment annotations in the SynGO database (Koopmans et al., 2019) are colored 
in brown and are classified into increasingly specific SynGO subcategories, subcategorizations are not mutually exclusive; proteins used as baits are 
not included. For a list of hits, see Source data 1C; for Venn diagrams constructed with 1.5- and 2.5- fold enrichment thresholds, see Figure 2—figure 
supplements 1 and 2; for a comparison of SynGO cellular compartment annotations across thresholds, see Figure 2—figure supplement 3; and for 
assessment of Neuroplastin (Nptn) localization in striatal synaptosomes, see Figure 2—figure supplement 4.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Venn diagram of the dopamine release site proteome with a 1.5- fold enrichment threshold.

Figure supplement 2. Venn diagram of the dopamine release site proteome with a 2.5- fold enrichment threshold.

Figure supplement 3. Assessment of release site hits listed in SynGO across enrichment thresholds.

Figure supplement 4. Neuroplastin antibody labeling is enhanced in Bassoon- containing dopaminergic synaptosomes.

Figure 2 continued
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(1) evoked dopamine release by removing the presynaptic scaffolding protein RIM (Banerjee 
et  al., 2022; Liu et  al., 2018; Robinson et  al., 2019) or (2) synchronous dopamine release by 
removing the fast Ca2+ sensor Syt- 1 (Banerjee et al., 2020; Lebowitz et al., 2022). We crossed 
mice with floxed alleles for RIM1 and RIM2 or for Syt- 1 to DATIRES- Cre mice (Bäckman et al., 2006; 
Kaeser et al., 2011; Banerjee et al., 2020; Kochubey et al., 2016; Liu et al., 2018; Zhou et al., 
2015) to remove these proteins from dopamine neurons (Figure 3A, RIM cKODA or Syt- 1 cKODA, 
respectively). We then performed iBioID analogous to the proteome described in Figures 1 and 2 
(called 'control proteome' from this point forward), with the modification that in each mutant we 
completed two independent repeats instead of four (i.e., two times 10–12 striata for each of the 
bait conditions in RIM cKODA and Syt- 1 cKODA mice) due to the genetic complexity and volume of 
the experiment.

We first compared the BirA- tdTomato condition in control, RIM cKODA, and Syt- 1 cKODA and found 
that both the number of identified proteins and the peptide counts were similar across experiments 
(Figure 3B). Hence, removal of RIM or Syt- 1 from dopamine neurons did not cause strong disruptions 
in the overall dopamine axon protein content in the striatum. The presence of similar amounts of 
axonal material is consistent with previous work that found TH axon density to be similar to control 
mice in these mutants (Banerjee et al., 2020; Liu et al., 2018).

We next assessed fold change over tdTomato for each of the BirA baits and each mutant. In RIM 
cKODA mice, 31% (RIMPPCP- BirA), 12% (ELKS2β-BirA), and 13% (CaVβ4- BirA) of the identified proteins 
were higher than with BirA- tdTomato, and 14% (RIMPPCP- BirA), 6% (ELKS2β-BirA), and 4% (CaVβ4- BirA) 
reached the ≥2.0- fold enrichment threshold to be considered hits (Figure 3C–E). These percentages 
are overall lower than in the control proteome (Figure  1D–F). The protein enrichment over BirA- 
tdTomato in Syt- 1 cKODA mice was more similar to the control proteome (Figure 3F–H, RIMPPCP- BirA: 
42% higher than with BirA- tdTomato and 20% ≥2.0- fold enriched; ELKS2β-BirA: 56% and 30%, CaVβ4- 
BirA 53% and 24%). We conclude that in RIM cKODA mice, release site protein enrichment close to the 
baits is disrupted compared to control or Syt- 1 cKODA mice. This suggests that RIM removal disrupts 
mechanisms important for release site scaffolding. Abolishing synchronous dopamine release by Syt- 1 
cKODA has no strong effects on the overall number of proteins detected at release sites in dopamine 
axons with iBioID.

We next assessed hits in more detail by generating and analyzing Venn diagrams for each mutant. 
The RIM cKODA dataset contained a total of 198 hits (Figure 3—figure supplement 1), compared 
to the 527 hits in the control proteome (Figure 2). RIM1 enrichment was absent from all conditions 
except for RIMPPCP- BirA, which likely reflects self- biotinylation of the bait. It is noteworthy that 49% 
of all hits (98 out of 198) in the RIM cKODA dataset came from the RIMPPCP- BirA bait only (Figure 3—
figure supplement 1, yellow circle), indicating that expression of RIMPPCP, the central region of RIM 
containing its scaffolding domains (Figure 1B), may restore some scaffolding deficits caused by RIM 
cKODA. In Syt- 1 cKODA mice, 450 hits were detected with the 2.0- fold enrichment threshold (Figure 3—
figure supplement 2), similar to the 527 hits in the control dataset, and 104 (23%) of the hits were at 
least 2.0- fold enriched for all three BirA baits, including RIM (Figure 3—figure supplement 2, center). 
Changing enrichment thresholds to ≥1.5- fold (RIM cKODA: 268 hits; Syt- 1 cKODA 602 hits) or ≥2.5- fold 
(RIM cKODA: 82 hits; Syt- 1 cKODA 252 hits) substantiated the conclusion that RIM but not Syt- 1 ablation 
strongly decreased the overall hit number.

To characterize which proteins were depleted from the release site proteome in the RIM cKODA 
mice, we first used SynGO to categorize all identified proteins in each dataset into synaptic proteins 
(Figure 4A, gray bars), presynaptic proteins (Figure 4B), and active zone proteins (Figure 4C). We 
then plotted the log2 of the fold change of the average of all annotated proteins in each category. 
In the control dataset (gray bars), synaptic proteins were enriched as expected (Figure 4A), and the 
extent of enrichment had a tendency to increase as the SynGO annotation became more specific 
(to presynaptic, Figure 4B, and to active zone, Figure 4C). These effects not only disappeared in 
RIM cKODA mice, but instead reverted (Figure 4A–C, green bars), and for ELKS2β-BirA and CaVβ4- 
BirA, proteins in all three SynGO categories appeared depleted (log2 fold change values <0). The 
depletion is absent in the RIMPPCP- BirA condition in RIM cKODA mice, supporting that release site 
scaffolding is partially restored. In contrast to RIM cKODA, the proteins found in the Syt- 1 cKODA 
dataset show an enrichment that is overall relatively similar to the control dataset with all condi-
tions having log2 fold change values >0 (Figure  4A–C, maroon bars), supporting that abolishing 

https://doi.org/10.7554/eLife.83018
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Figure 3. Enrichment of release site proteins after conditional ablation of RIM or of Synaptotagmin- 1 from dopamine neurons. (A) Strategy for ablation 
of RIM1 and RIM2 (RIM cKODA) or Synaptotagmin- 1 (Syt- 1 cKODA) from dopamine neurons using conditional mouse genetics (Banerjee et al., 2020; 
Liu et al., 2018). (B) The average number of peptides per protein in bins of five detected with BirA- tdTomato. The control is from data in Figures 1 
and 2 and is the average peptide count of 4 repeats, the proteomes from RIM cKODA and Syt- 1 cKODA are an average peptide count of 2 repeats each. 
The x- axis is cut at a peptide count of 50 covering >99% of the detected proteins. Average number of detected proteins: control, 1195; RIM cKODA, 
1155; Syt- 1 cKODA, 1011. (C–E) Protein enrichment in BirA bait conditions over BirA- tdTomato in RIM cKODA mice. Log2 fold change values are plotted 
as frequency histograms. Values at or below 0 represent proteins that are equal to or lower than in the BirA- tdTomato condition (light colors), values 
>0 represent proteins that are higher than in the BirA- tdTomato condition (saturated colors), and values ≥1 represent hits with ≥2.0- fold enrichment; (C) 
1089 total proteins identified, 334 proteins with log2 fold change >0, and 149 proteins with log2 fold change ≥1 (hits); (D) 1003/123/62; (E) 1008/130/65. 
The gene encoding the protein that was used as a bait is shown as a dot and labeled individually in each panel: (c) 2 independent repeats (10/12 
striata); (D) 2 (12/10); (E) 2 (10/12). (F–H) Same as (C–E), but for Syt- 1 cKODA mice; (F) 1017 total proteins identified, 424 proteins with log2 fold change >0, 
and 199 proteins with log2 fold change ≥1 (hits); (G) 1103/619/327; (H) 1016/544/246, (F) 2 independent repeats (10/12 striata); (G) 2 (12/12); (H) 2 (12/12). 
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synchronous dopamine release does not strongly disrupt overall release site protein content. These 
effects were overall similar for proteins annotated as synaptic vesicle or postsynaptic proteins in 
SynGO (Figure 4—figure supplement 1).

We next mapped the ≥2.0- fold enriched proteins detected in each mutant onto the Venn diagram 
of the control proteome shown in Figure 2. Only 15% of proteins in the control dataset were also 
enriched in the RIM cKODA dataset (Figure 4D), and 49% of those proteins stem from the RIMPPCP- 
BirA condition (Figure 4D, circles with yellow outline). In contrast, 37% of the proteins in the control 
dataset were also enriched in the Syt- 1 cKODA dataset (Figure 4E). The observation that there is no 
full overlap between the control and Syt- 1 cKODA datasets is likely due to a combination of factors. 
Examples are that the approach may not be saturating and may not detect all release site proteins, 
that the mutant data were derived from fewer repeats, and that Syt- 1 cKODA may influence the exact 
composition but not the overall extent of the release site proteome.

Finally, to assess the organization of the proteins and their interactions in the various 
release site proteomes, we used the STRING database (Snel et  al., 2000; Szklarczyk et  al., 
2019). STRING combines both theoretical predictions and empirical data to generate maps of 
protein–protein functional and physical interactions. We selected the proteins that were ≥2.0- fold 
enriched and assigned as synaptic proteins in SynGO (Figure 2B, Figure 3—figure supplement 
1B, Figure 3—figure supplement 2B, 'synaptic'), and analyzed each dataset (Figure 5A–C). In 
the control dataset, the proteins formed an integrated network with functional nodes classified as 
active zone proteins, synaptic vesicle proteins, Ca2+ regulatory proteins, and synaptic ribosomes 
(Figure 5A). The same nodes were detected in the Syt- 1 cKODA mice (Figure 5C), substantiating 
the overall similarities of these datasets. In contrast, these networks were disrupted in RIM cKODA 
mice (Figure 5B), even when hits from the RIMPPCP- BirA bait (lighter colors in Figure 5B) were 
included. Only the synaptic ribosome node remained, suggesting that while release site disrup-
tion was strong in RIM cKODA mice, other protein complexes near the bait proteins remained 
intact.

Disrupted recruitment of α-synuclein to release sites in dopamine axons 
after impairing dopamine release
Loss of dopamine neurons underlies the motor symptoms characteristic of Parkinson’s disease 
(Poewe et al., 2017), and recent human genetic studies establish that mutations in RIMS genes 
increase the risk of Parkinson’s disease and are key drivers of disease progression (Liu et  al., 
2021b; Nalls et al., 2019). Monogenic forms of Parkinson’s disease exist and genetic associa-
tions with variable penetrance have been described (Blauwendraat et al., 2020; Day and Mullin, 
2021; Marras et  al., 2016). Our control dataset contained five of these genes: Snca, Park7, 
Dnajc6, Synj- 1, and Vps35 (Figure 6A). Three were enriched in the release site proteome with 
at least one of the BirA baits, and Snca, which encodes the synaptic vesicle associated protein 
α-synuclein, was ≥2.0- fold enriched in each condition (Figures 2A and 6A). In both RIM cKODA 
and Syt- 1 cKODA mice, α-synuclein enrichment was reduced and fell below the 2.0- fold threshold 
(Figure 6B, Figure 3—figure supplements 1A and 2A). α-Synuclein is associated with synaptic 
vesicles and regulates synaptic vesicle clustering, SNARE complex formation, and endocytosis 
(Burré et al., 2010; Diao et al., 2013; Murphy et al., 2000). RIM or Syt- 1 knockout causes a 
loss of docked vesicles at synapses (Chang et al., 2018; Kaeser et al., 2011). If these proteins 
have similar roles in dopamine axons, the loss of α-synuclein enrichment might be explained by 
reduced vesicle docking.

Two- way ANOVA was used in (B) (genotype: p>0.6, peptide count: p<0.001). For a table of all peptides identified in RIM cKODA, see Source data 1F; for 
a table of all peptides identified in Syt- 1 cKODA, see Source data 1G; and for Venn diagrams of release site protein enrichment, see Figure 3—figure 
supplement 1 for RIM cKODA and Figure 3—figure supplement 2 for Syt- 1 cKODA.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Venn diagrams for the RIM cKODA dataset.

Figure supplement 2. Venn diagrams for the Syt- 1 cKODA dataset.

Figure 3 continued
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Figure 4. RIM cKODA disrupts the protein composition of release sites in dopamine axons. (A) The average log2 fold change of identified proteins 
over the same proteins in the BirA- tdTomato conditions, all proteins with a synaptic localization annotation in SynGO for each bait and genotype 
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Discussion
We used iBioID to assess release site composition in striatal dopamine axons using three bait proteins. 
Applying a ≥2.0- fold enrichment threshold, we identified 527 proteins, of which 190 were enriched 
with multiple baits. This proteome contains known secretory machinery, including active zone, Ca2+ 
regulatory, and synaptic vesicle proteins, and additional proteins not previously associated with vesic-
ular exocytosis. Dopamine neuron- specific knockout of RIM, but not of Syt- 1, strongly decreased the 
number of enriched proteins. We conclude that dopamine axons contain active zone- like sites with 
secretory machinery for rapid vesicular exocytosis and present an assessment of the protein compo-
sition of these sites. Each newly detected protein will require validation for a definitive assignment to 
dopamine release sites. Our findings establish that the integrity of these active zone- like sites strongly 
depends on the scaffolding protein RIM.

Proximity proteomics establish a scaffolding role for RIM in dopamine 
axons
In previous studies, we found that several active zone proteins are present in release site- like structures 
of striatal dopamine axons, including Bassoon, RIM, Munc13, and ELKS. Using dopamine- neuron- 
specific knockout, we established that RIM and Munc13 are essential for evoked axonal dopamine 
release, while ELKS and RIM- BP are dispensable. RIM removal also induced deficits in Bassoon clus-
tering in striatal dopamine axons. We proposed the model of active zone- like release sites for action 
potential- evoked dopamine release (Banerjee et al., 2022; Liu et al., 2021a; Liu et al., 2018; Liu and 
Kaeser, 2019). We here used iBioID to generate a list of putative components of these sites. We found 
that active zone proteins, synaptic vesicle proteins, Ca2+ regulatory proteins, and many additional 
proteins are present. RIM was enriched across datasets, perhaps indicating a role for RIM in dopamine 
active zone assembly. RIM ablation from dopamine axons indeed resulted in a strong reduction in 
the number of proteins identified as release site components with iBioID. This loss of material was 
observed more strongly with ELKS2β-BirA and CaVβ4- BirA than with RIMPPCP- BirA, suggesting that 
RIMPPCP- BirA partially restored release site composition. Together with previous data, these findings 
establish a key scaffolding role for RIM at dopamine release sites. The overall reduced number of hits 
in RIM cKODA mice also suggests that many hits in the control proteome are specific.

Reductions in hit numbers in RIM cKODA mice might at least in part arise from mislocalized BirA 
baits in their dopamine axons. However, aberrant bait localization likely does not explain all effects. 
Twenty- two proteins were enriched with all three baits in RIM cKODA mice, indicating overlapping 
labeling radii with a resulting proteome relying on bait colocalization (Figure 3—figure supplement 
1A, Figure 5). In a previous study, overall dopamine axon morphology was not strongly disrupted in 
RIM cKODA mice apart from changes in Bassoon clustering (Liu et al., 2018). Here, the general axonal 
proteome identified by BirA- tdTomato was similar between RIM cKODA and control mice (Figure 3B), 
arguing for a generally intact axonal arbor in these mice. Together, these points make it unlikely that 
bait mislocalization fully accounts for the disruption observed in RIM cKODA mice. Even if some of the 
bait protein is mislocalized, the main conclusion that RIM ablation disrupts release site structure in 
dopamine axons is supported through this mislocalization.

An active zone-like site for dopamine release
Two recent studies have assessed the composition of dopamine axons or of dopamine varicosities using 
different methodologies (Hobson et al., 2022; Paget- Blanc et al., 2022). Neither of the studies was 
designed to enrich for release site proteins over other proteins in dopamine axons. One used mass spec-
trometry to analyze dopaminergic synaptosomes obtained through fluorescent sorting (Paget- Blanc 
et  al., 2022) and identified 57 proteins associated with these synaptosomes, which contain release 

and ***p<0.001. Two- way ANOVA was used in (A–C) (A: genotype ***, bait ***, interaction ***; B: genotype ***, bait **, interaction ***; C: genotype ***, 
bait *, interaction not significant), and Bonferroni post- hoc tests (p- values indicated in figure) were used to compare each genotype to control for each 
BirA bait. For analyses as in (A–C) but for proteins with a synaptic vesicle or postsynaptic SynGO annotation, see Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Analyses of enrichment of synaptic vesicle and postsynaptic proteins across genotypes.

Figure 4 continued
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Figure 5. STRING diagrams illustrate functional categories of release site proteins and their disruption in RIM 
cKODA mice. (A) STRING diagram of the enriched proteins that have a synaptic SynGO annotation in the control 
dataset. Physical or functional interactions determined by either empirical data or predictive modeling are 
illustrated as lines between proteins (Snel et al., 2000; Szklarczyk et al., 2019). The BirA bait proteins are color- 
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sites, vesicles, mitochondria, cytoskeletal elements, and many other components. A second study used 
proximity proteomics with APEX2 to identify axonal proteins (Hobson et al., 2022), similar to the BirA- 
tdTomato condition used for normalization in our experiments. Indeed, there is good overlap between 
the axonal proteins identified with BirA- tdTomato in our experiments with those in Hobson et al., 2022, 
with 65% of the proteins identified here also present with the APEX2- based method.

We here used an approach to determine enrichment at release sites over these axonal proteomes. 
RIM1 (Rims1), Bassoon (Bsn), and ELKS1 (Erc1), ELKS2 (Erc2), and P/Q- type (CaV2.1, Cacna1a) and 
N- type Ca2+ channels (CaV2.2, Cacna1b) were all detected, consistent with previous studies that 
assessed roles and/or localization of these proteins in dopamine neurons (Banerjee et  al., 2022; 
Brimblecombe et al., 2015; Daniel et al., 2009; Ducrot et al., 2021; Liu et al., 2022; Liu et al., 
2018; Uchigashima et al., 2016), and overlapping with a proteomic study that determined release 
site composition at synapses via purifying proteins associated with docked synaptic vesicles (Boyken 
et al., 2013). The active zone proteins Liprin-α and RIM- BP were not present in the 2.0- fold enriched 
dataset. We found that Liprin-α2 and -α3 knockout has less severe effects on dopamine release 
compared to RIM knockout, while removal of RIM- BP leaves dopamine release unimpaired (Banerjee 
et al., 2022; Liu et al., 2018). Thus, the presence of active zone proteins in iBioID generally correlates 
with their known functional roles in dopamine release. One exception to this correlation is Munc13. 
Striatal dopamine release is strongly impaired after Munc13 ablation (Banerjee et al., 2022), but only 
enriched in some cases with iBioID (Figures 2 and 5, Figure 3—figure supplements 1 and 2). At 
synapses, some Munc13 may be more broadly distributed than just at active zones (Tan et al., 2022a; 
Tan et al., 2022b), but this does not explain its nonenrichment here because in the BirA- tdTomato 
dataset, Munc13 was not strongly detected either. Hence, Munc13 may either be overall sparse 
despite its requirement for evoked dopamine release or may be difficult to detect, for example, 
because it is poorly biotinylated or not easily affinity- purified. Notably, Munc13 was also absent in the 
release site proteome assessed via docked vesicles (Boyken et al., 2013). Overall, while a saturated 
proteome is challenging to obtain, many of the proteins previously shown to mediate dopamine 
release were detected with iBioID.

coded. Functional categories identified by STRING analyses are labeled close to the corresponding clusters. (B) 
Same as (A), but for the RIM cKODA dataset. The proteins that are enriched only in the RIMPPCP- BirA bait are shown 
in lighter gray. (C) Same as (A), but for the Syt- 1 cKODA dataset. Number of proteins: (A) 194; (B) 79; (C) 163.
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Figure 6. Genes associated with Parkinson’s disease in the dopamine release site proteomes. (A) Enrichment of proteins associated with monogenic 
forms of Parkinson’s disease (Blauwendraat et al., 2020; Day and Mullin, 2021; Marras et al., 2016) in the control dataset. Hits above the 2.0- fold 
enrichment threshold are shown in saturated colors, and those below the threshold in light colors; control, 4 independent repeats per bait condition. 
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Figure 1), RIM cKODA, 2 (as described in Figure 3); Syt- 1 cKODA, 2 (as described in Figure 3).
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Dopamine neurons corelease glutamate and GABA (Hnasko et al., 2010; Stuber et al., 2010; 
Tritsch et al., 2012). While GABA is loaded into vesicles via VMAT2 (Melani and Tritsch, 2022; Tritsch 
et al., 2012), glutamate corelease may or may not originate from the same vesicular compartment 
(Hnasko et al., 2010; Silm et al., 2019; Zhang et al., 2015) and it is currently not possible to deter-
mine whether some iBioID hits might be from dedicated release sites for glutamate. Overall, however, 
our results fit with candidate approaches on dopamine release (Banerjee et  al., 2022; Liu et  al., 
2018), suggesting that the proteome we describe might in general represent dopamine release sites.

Postsynaptic, unknown, and unexpected proteins in the dopamine 
release site proteome
There were 87 proteins with postsynaptic SynGO annotations in the release site proteome. Apart from 
experimental noise, multiple possibilities may account for this. First, SynGO may not have enough 
empirical evidence to designate any given protein as presynaptic. Some proteins with only postsyn-
aptic annotations may be genuinely present in the dopamine release machinery. Second, dopamine 
axons receive input from cholinergic interneurons (Cachope et al., 2012; Threlfell et al., 2012; Zhou 
et  al., 2001), and activation of nicotinic receptors triggers dopamine axon action potential firing 
(Liu et al., 2022). The structure and organization of this cholinergic input are commonly considered 
nonsynaptic (Chang, 1988; Jones et al., 2001), but synaptic- like transmission exists (Kramer et al., 
2022). Hence, dopamine varicosities may in principle contain postsynaptic scaffolds, although nicotinic 
acetylcholine receptors were not detected with iBioID. Third, the estimated labeling radius of iBioID is 
up to 50 nm (Kim et al., 2014; Roux et al., 2012). Striatal dopamine axons make sparse synaptic- like 
connections with medium spiny neurons that contain the GABAergic postsynaptic scaffold Gephyrin 
(Uchigashima et al., 2016; Wildenberg et al., 2021). Gephyrin (Gphn) was indeed enriched with 
ELKS2β-BirA and RIMPPCP- BirA (Figure 2). Biotinylation across membranes may be common in iBioID, 
and detection of intramitochondrial proteins and of synaptic vesicle proteins with postsynaptic baits 
has been observed (Uezu et al., 2016). It is noteworthy that in our experiments dopamine receptors 
were not enriched, consistent with their localization outside of the postsynaptic scaffolds in target 
neurons (Uchigashima et al., 2016).

The proteome presented in Figure 2 contains 63% proteins that are not annotated in SynGO. 
Some of these proteins may be real hits that are not included in SynGO, while others may be experi-
mental noise. Cend1, for example, a protein associated with cell cycle exit, appears both in our data 
and a previous vesicle docking proteome, and electron microscopic studies suggested that it might be 
present at the presynaptic plasma membrane (Boyken et al., 2013; Patsavoudi et al., 1995; Politis 
et al., 2007). It is surprising that Hist1h1d and Hist1h4a, genes encoding for the histone proteins H1.3 
and H4, were robustly enriched (Figure 2A). These hits might be entirely unspecific or their co- puri-
fication could be due to biotinylation of H1 and H4 proteins (Stanley et al., 2001). It is also possible 
that there are unidentified synaptic functions of some of the unexpected proteins. An example for 
recently identified synaptic functions of nuclear proteins are those of the kinetochore complex (Zhao 
et al., 2019).

Some hits might arise because the BirA baits are not exclusively at release sites. Localization away 
from release sites is in part expected because a fraction of any release site protein will be away from 
its endogenous target localization. It might also be caused or amplified by the approach, for example, 
through viral bait expression and/or modification of protein sequences through bait design. The baits 
are made in the soma and transported along the axon. Some hits could reflect activity during protein 
trafficking that occurs within the 7- day time window for biotinylation. Transport complexes may be 
distinct between the baits and BirA- tdTomato and thus show as enriched. Indeed, several kinesins 
(Kif21a, Kif21b, Kif5a, Kif5b) were enriched, possibly reflecting transport packets. The synaptic ribo-
somes (Figure 5) that reached the 2.0- fold threshold across conditions may also reflect hits by non- 
active zone- localized bait proteins.

Summary of conclusions and limitations
Altogether, we present an assessment of dopamine release site content. Each protein will require vali-
dation through morphological and functional characterization before an unequivocal assignment to 
dopamine release sites is possible. As discussed, some hits may be noise, viral expression of tagged and 
modified bait proteins may influence the results, and thresholding strongly affects the overall number 
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of proteins included in the release site proteome. We note that iBioID does not identify direct interac-
tion partners. Instead, the defining property is proximity to the bait. The estimated ~50 nm labeling 
radius goes beyond the radius of protein interactions for most proteins. Despite these limitations, 
we have made progress. The presented data support a model of active zone- like dopamine release 
sites for rapid and efficient dopamine secretion. The disruption of the iBioID- generated proteome 
when RIM is removed establishes a scaffolding role for RIM. This role appears more pronounced in 
dopamine axons compared to classical synapses. Although similar proteomic approaches were not 
performed, RIM ablation does not severely disrupt release site structure at classical synapses when 
assessed with microscopy, but redundant scaffolds might maintain the sites instead (Acuna et al., 
2016; de Jong et al., 2018; Emperador- Melero and Kaeser, 2020; Kaeser et al., 2011; Kushibiki 
et al., 2019; Oh et al., 2021; Tan et al., 2022a; Tan et al., 2022b; Wang et al., 2016). Overall, our 
work supports the model that dopamine release site scaffolding may have less redundancy and rely 
heavily on RIM (Banerjee et al., 2022; Liu et al., 2018).

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent (Mus 
musculus)

B6.SJL- Slc6a3tm1.1(Cre)Bkmm/J 
(DATIRES- Cre) Bäckman et al., 2006 RRID:IMSR_JAX:006660

Genetic reagent (M. 
musculus)

Rims1tm3Sud/J
(RIM1αβfl/fl) Kaeser et al., 2008 RRID:IMSR_JAX:015832

Genetic reagent (M. 
musculus)

Rims2tm1.1Sud/J
(RIM2αβγfl/fl) Kaeser et al., 2011 RRID:IMSR_JAX:015833

Genetic reagent (M. 
musculus)

C57BL/6Ntac- Syt1tm1a(EUCOMM)Wtsi/
WtsiCnrm
(Syt- 1fl/fl) Zhou et al., 2015 RRID:IMSR_EM:06829

The identifier refers to the line before 
flp recombination

Cell line (Homo 
sapiens) HEK293T cells ATCC

Cat#: CRL- 3216; 
RRID:CVCL_0063

Recombinant DNA 
reagent

pAAV2/5- syn- DIO- RIM- PRM- 
PDZ- PxxP- C2A- BirA This study

LK18005; lab plasmid code 
(LPC) p864

This reagent was used to generate AAV 
viruses and can be obtained from the 
corresponding author

Recombinant DNA 
reagent pAAV2/5- syn- DIO- ELKS2β-BirA This study LK17008; LPC p857

This reagent was used to generate AAV 
viruses and can be obtained from the 
corresponding author

Recombinant DNA 
reagent AAV2/5- syn- DIO- CaVβ4- BirA This study LK19004; LPC p868

This reagent was used to generate AAV 
viruses and can be obtained from the 
corresponding author

Recombinant DNA 
reagent AAV2/5- syn- DIO- BirA- tdTomato This study LK17011; LPC p860

This reagent was used to generate AAV 
viruses and can be obtained from the 
corresponding author

Antibody Anti- HA (rabbit polyclonal)
Cell Signaling 
Technology

CAT# 5017; 
RRID:AB_10693385,
lab antibody code (LAC) A40 Immunofluorescence (IF) (1:500)

Antibody Anti- HA (mouse monoclonal) BioLegend

CAT# 901501;
RRID:AB_2565006,
LAC A12

IF (1:500)
Western blot (WB) 1:500

Antibody
Anti- tyrosine hydroxylase 
(guinea pig polyclonal) SySy

CAT# 213 104;
RRID:AB_2619897,
LAC A111 IF (1:1000)

Antibody
Anti- Bassoon (mouse 
monoclonal) Millipore

CAT# ADI- VAM- PS003- F; 
RRID:AB_11181058, LAC A85 IF (1:500)

Antibody
Anti- Neuroplastin (goat 
polyclonal) R&D Systems

CAT# AF5360;
RRID:AB_2155920,
LAC A253 IF (1:500)

https://doi.org/10.7554/eLife.83018
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https://identifiers.org/RRID/RRID:AB_10693385
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody
Anti- red fluorescent protein 
(rabbit polyclonal) Rockland

CAT#600- 401- 379; 
RRID:AB_2209751, LAC A81 WB (1:1000)

Antibody Anti-β-actin (mouse monoclonal) Sigma- Aldrich

CAT# A1978;
RRID:AB_476692,
LAC A127 WB (1:10,000)

Antibody
Anti- pyruvate carboxylase (rabbit 
polyclonal) Novus

CAT# NBP1- 49536G; 
RRID:AB_11016707, LAC 
A252

This antibody was used for depletion 
as described in the 'Materials and 
methods'

Software, algorithm Prism9 GraphPad

RRID:SCR002798;
https://www.graphpad.com/ 
scientific-software/prism

Software, algorithm Cytoscape v 3.8.2 Cytoscape
RRID:SCR003032;
http://cytoscape.org/

Software, algorithm SEQUEST PRO Thermo Fisher
https://scicrunch.org/ 
resolver/SCR_014594

Software, algorithm MATLAB code for object analysis Liu, 2021

https://github.com/ 
kaeserlab/3DSIM_Analysis_ 
CL

 Continued

Mouse lines
Expression via AAVs and ablation of active zone proteins in dopamine neurons was performed in 
mice with Cre recombinase specifically expressed in these neurons (Bäckman et al., 2006) (Jackson 
Laboratories; RRID:IMSR_JAX:006660, B6.SJL- Slc6a3tm1.1(Cre)Bkmm/J, also called DATIRES- Cre mice). iBioID 
to generate the control proteome was performed in mice heterozygote for this allele. Conditional 
ablation of RIM in dopamine neurons (RIM cKODA) was performed as described (Liu et al., 2018). 
Mice with floxed alleles for Rims1 (to remove RIM1α and RIM1β, RRID:IMSR_JAX:015832, Rims1tm-

3Sud/J) (Kaeser et al., 2008) and Rims2 (to remove RIM2α, RIM2β and RIM2γ, RRID:IMSR_JAX:015833, 
Rims2tm1.1Sud/J) (Kaeser et al., 2011) were crossed to DATIRES- Cre mice. Conditional ablation of Syt- 1 
in dopamine neurons (Syt- 1 cKODA) was performed as described (Banerjee et al., 2020). Mice with 
floxed alleles for Syt- 1 (RRID:IMSR_EM:06829, C57BL/6Ntac- Syt1tm1a(EUCOMM)Wtsi/WtsiCnrm) (Skarnes 
et al., 2011) were flp- recombined and analyzed before (Kochubey et al., 2016; Zhou et al., 2015). 
They were crossed to DATIRES- Cre mice as described in Banerjee et al., 2020. For generating cohorts 
of mice for iBioID, the floxed alleles were homozygote in both parents and one parent contained a 
heterozygote DATIRES- Cre allele. Male and female mice were used in all experiments irrespective of sex. 
All animal experiments were approved by the Harvard University Animal Care and Use Committee 
(protocol number IS00000049).

Plasmids, cell lines, and AAVs
AAVs were generated to express BirA fusion proteins in dopamine neurons. The following cDNAs 
were produced by standard techniques (for sequences, see source data tables): LK18005- AAV2/5- 
syn- DIO- RIMPPCP- BirA (also called LK18005- AAV2/5- syn- DIO- RIM- PRM- PDZ- PxxP- C2A- BirA, p864), 
LK17008- AAV2/5- syn- DIO- ELKS2β-BirA (p857), LK19004- AAV2/5- syn- DIO- CaVβ4- BirA (p868), and 
LK17011- AAV2/5- syn- DIO- BirA- tdTomato (p860). A cDNA encoding a promiscuous version of BirA (also 
called BirA*) was provided by S. Soderling and A. Uezu (Roux et al., 2012; Uezu et al., 2016). p864 to 
express RIMPPCP- BirA was generated based on a RIM full- length cDNA (de Jong et al., 2018; Kaeser 
et al., 2011; Tan et al., 2022b), and it contained endogenous proline- rich motifs (PRMs, also called 
PxxP motifs), the PDZ and C2A domains, and corresponding endogenous linkers, with BirA flanked by 
HA- tags added at the C- terminus. The RIMPPCP- BirA protein had the following sequence (numbered 
in subscript according to amino acid sequences of XM_039084276.1 for RIM and of UVH36278.1 
for BirA): M-RIM1,524RPSP...GSIEQ1120- AAAYPYDVPDYA-BirA,154DNTV...SAEK472- AYPYDVPDYA. p857 to 
express ELKS2β-BirA was produced based on previously published N- terminally tagged ELKS2β 
(Kaeser et al., 2009) with removal of most of the N- terminal tag and insertion of BirA flanked by 
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HA sequences between the coiled- coil regions CCC and CCD. The ELKS2β-BirA protein had the 
following sequence (numbered in subscript according to amino acid sequences of NM_170787.3 for 
ELKS2 and of UVH36278.1 for BirA):  MGAA LNRS VQTC FCSR MPCE QQICSH-ELKS2,367ELHRR…NIED657- 
AAAYPYDVPDYA-BirA,154DNTV….SAEK472- AYPYDVPDYAISRWRA-ELKS2,658DSRMN….GIWA921. p868 to 
express CaVβ4- BirA was produced from a previously used plasmid that was generated from a cDNA 
obtained from Annette Dolphin through Addgene (Addgene #107426; https://www.addgene.org/ 
107426/; RRID:Addgene_107426; Brodbeck et al., 2002; Tan et al., 2022b) with addition of a linker 
sequence and an HA- flanked BirA protein at the C- terminus. The CaVβ4- BirA protein had the following 
sequence (numbered in subscript according to amino acid sequences of NM_001399143.1 for CaVβ4 
and of UVH36278.1 for BirA): CaVβ4,1MSSS...RHRL519- VYNPAHNIEDAAAYPYDVPDYA-BirA,154DNTV...
SAEK472- AYPYDVPDYA. p860 to express BirA- tdTomato was generated by fusing the BirA protein with 
tdTomato connected with a linker sequence that included an HA- tag. The BirA- tdTomato protein had 
the following sequence (numbered in subscript according to amino acid sequences of UVH36278.1 for 
BirA and of AJP62580.1 for tdTomato): M-BirA,154DNTV...SAEK472- AYPYDVPDYAGAPAS-tdTomtato,2VSKG...
ELYK476. AAVs were made in HEK293T cells (purchased mycoplasma free from ATCC, CRL- 3216, 
RRID:CVCL_0063, immortalized human cell line of female origin) using Ca2+ phosphate transfection 
and were of the serotype 2/5. Three days after transfection, HEK293T cells were collected and stored 
in freezing buffer (150 mM NaCl, 20 mM Tris- Cl, 2 mM MgCl2, pH 8.0) at –20°C until the virus was 
purified. For purification of AAVs, cells were lysed by three freeze- thaw cycles with dry ice/ethanol 
and a 37°C incubator. After 1 hr benzonase nuclease treatment at 37°C, cells were loaded onto an 
iodixanol gradient (5 ml each, 15%, 25%, 40%, 60%) and ultra- centrifuged at 208,000 × g for 4 hr. Viral 
particles were then purified from the 40% layer of the gradient. Quantitative reverse transcriptase PCR 
was used to determine viral titers, and viruses were used at concentrations ranging from 4.0 × 1011 to 
9.6 × 1012 viral genome copies/ml.

Stereotaxic surgery and biotin injections
Mice (at postnatal days 30–55) were anesthetized in a 5% isoflurane induction chamber and then 
mounted on a stereotaxic frame; anesthesia was maintained with 1.5–2% isoflurane for the length of 
the surgery with a nose cone. The scalp was cut open and a hole was drilled in the skull and 1 µl of 
AAV viral solution was injected in the substantia nigra pars compacta (right or bilaterally depending 
on the experiment, 0.6 mm anterior, ±1.3 mm lateral of Lambda and 4.2 mm below the surface of the 
brain) using a microinjector pump (PHD ULTRA, Harvard Apparatus) at 100 nl/min. Mice were treated 
with post- surgical analgesia and were allowed to recover for at least 28 days prior to biotin injections 
(for iBioID) or transcardial perfusion (for morphological experiments). Biotin injections were started 
4–6 weeks after stereotaxic AAV injection. Mice were subcutaneously injected for seven consecutive 
days with 500 µl of 5 mM biotin dissolved in phosphate- buffered saline (PBS).

Immunostaining and confocal imaging of brain sections
At least 4 weeks after stereotaxic injection of BirA viruses, mice (58–100 days old) were deeply anes-
thetized with isoflurane. Transcardial perfusion was performed with 30–50 ml ice- cold PBS followed 
by 50 ml of 4% paraformaldehyde in PBS (4% PFA) at 4°C. Brains were then dissected out and incu-
bated in 4% PFA for overnight at 4°C. Fixed brains were sliced on a vibratome (Leica, VT1000s) at 
100 μm thickness. Coronal sections containing the midbrain and striatum were collected in ice- cold 
PBS. Sections were blocked in PBS containing 0.25% Triton X- 100 and 10% goat serum (PBST) for 
1 hr at room temperature. Slices were incubated overnight in primary antibody in PBST at 4°C. The 
following primary antibodies were used: rabbit polyclonal anti- HA (1:500, A40, RRID:AB_10693385) 
or mouse monoclonal anti- HA (1:500, A12, RRID:AB_2565006), and guinea pig polyclonal anti- TH 
(1:1000, A111, RRID:AB_2619897). Slices were washed three times in PBST followed by 2 hr incu-
bation with secondary antibody in PBST for 2  hr at room temperature in the dark. The following 
secondary antibodies were used: goat anti- rabbit IgG Alexa 488 (1:500, S5, RRID:AB_2576217), 
goat anti- mouse IgG1 Alexa 488 (1:500, S7, RRID:AB_2535764), and goat anti- guinea pig IgG Alexa 
633 (1:500, S34, RRID:AB_2535757). Slices were washed again three times with PBST before being 
mounted on glass slides with Fluoromount- G (Southern Biotech 0100- 01). Stained slices were then 
imaged on an Olympus FV1000 confocal microscope with a 60× objective. Images were pseudo- 
colored in ImageJ for display. All image acquisition was done in comparison to an uninfected control 
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imaged at the same time to assess background fluorescence. Representative images were brightness 
and contrast adjusted to facilitate inspection, and these adjustments were made identically for images 
within the same experiment. All images in Figure 1C except for those of mice expressing ELKS2β-
BirA were taken at the same time. Images of mice expressing ELKS2β-BirA were taken in a separate 
session and compared to their own uninfected control to confirm signal specificity (Figure 1—figure 
supplement 1). Three to five images per virus condition were taken during each imaging session, and 
the experiment was repeated in at least three mice per condition.

Biotin affinity purification
Biotin affinity purifications were adapted from previously established methods (Uezu et al., 2016), 2 
(for pilot experiments, up to 4) to 12 mice (for mass spectrometry analyses) were used per experiment 
and condition. The mice were 65–100 days old and previously injected with AAVs for BirA fusion 
protein expression and subjected to subcutaneous biotin injections. They were deeply anesthetized 
with isoflurane and decapitated. Brains were collected in ice- cold PBS and striata were dissected 
out. Except for those used in pilot experiments, striata were then flash frozen and stored at –80°C 
until further processing. For pilot experiments, 2–4 dissected striata were immediately homoge-
nized. For mass spectrometry, 5–6 dissected striata were homogenized at a time. Homogenization 
was performed using a glass- Teflon homogenizer in 1 ml of homogenizing buffer (50 mM HEPES, 
150 mM NaCl, 1 mM EDTA+ mammalian protease inhibitor cocktail, Sigma Cat# P8340) with 30 slow 
strokes on ice. An appropriate volume of 5× lysis buffer (1% SDS, 5% Triton X- 100, 5% deoxycholate 
in homogenizing buffer) was added to the homogenized tissue (working concentration 0.2% SDS, 1% 
Triton X- 100, 1% deoxycholate) and incubated while rotating at 4°C for 1 hr. The mass spectrometry 
samples were split into two batches of 5–6 striata per condition for the initial homogenization, and 
the batches were combined after lysis into a single tube. Lysed samples were then sonicated twice for 
10 s each at 4°C with a Branson Sonifier 450. Sonicated samples were centrifuged at 15,000 × g for 
15 min at 4°C in a table- top centrifuge. The cleared supernatant was removed and added to open- top 
polycarbonate tubes (Beckman Cat# 343778), and centrifuged in a table- top ultracentrifuge (Beckman 
Rotor TLA120.2) for 1 hr at 100,000 × g. After ultracentrifugation, SDS from 0.4% and/or 5% SDS 
stock solutions was added to the cleared supernatant to adjust to an SDS concentration of 1% and a 
volume of 1.5 ml. The sample was boiled at 95°C for 5 min and allowed to cool to room temperature. 
Neutravidin agarose beads (Thermo Cat# 29200) were washed three times in binding buffer (1% SDS, 
1% Triton X- 100, 1% deoxycholate in homogenizing buffer). 20 µl washed neutravidin beads were 
added to each sample and the samples were incubated for 16 hr at 4°C on a rotator. After spinning 
at 500 × g for 2 min at 4°C, the supernatant was removed and the beads were transferred to Protein 
Lo- bind tubes (Eppendorf Cat# 022431081). Beads were washed twice with 500 µl 2% SDS in H2O, 
twice with 500 µl 1% Triton X- 100, 1% deoxycholate, 25 mM LiCl in H2O, and twice in 500 µl 1 M NaCl. 
For each washing step, beads were pelleted by spinning at 500 × g for 2 min in a table- top centrifuge 
at 4°C. Bead pellets were then washed five times in 500 µl 50 mM ammonium bicarbonate in water 
with spinning at 500 × g for 2 min between steps. After the final wash, the bead pellet was stored at 
–20°C until next steps (either Western blot or PC removal).

Western blot after biotin pulldown
Neutravidin bead pellets were incubated in 60  µl of 1× SDS- PAGE loading buffer and boiled for 
10 min at 95°C. The sample was spun at 13,000 × g in a table- top centrifuge for 1 min to pellet the 
beads. 15 µl of the supernatant were loaded on an SDS- PAGE gel, and 1% of the total input used for 
the binding reaction (cleared lysate just before addition of the neutravidin beads) was also loaded 
onto the gel. After gel electrophoresis, proteins were transferred onto a nitrocellulose membrane. 
Membranes were blocked in 10% milk, 5% goat serum in Tris- buffered saline + 0.1% Tween- 20 (TBST) 
for 1 hr at room temperature and then incubated overnight at 4°C in primary antibody diluted in 
antibody binding solution (blocking solution diluted 1:1 with TBST). Primary antibodies used: mouse 
monoclonal anti- HA (1:500, LAC A12, RRID:AB_2565006), rabbit polyclonal anti- red fluorescent 
protein (RFP) (1: 500, LAC A81, RRID:AB_2209751), rabbit polyclonal anti- pyruvate carboxylase 
(1:500, LAC A252, RRID:AB_11016707), and mouse monoclonal anti-β-actin (1:10,000, LAC A127, 
RRID:AB_476692). Membranes were washed three times with TBST and incubated in HRP- conjugated 

https://doi.org/10.7554/eLife.83018
https://identifiers.org/RRID/RRID:AB_2565006
https://identifiers.org/RRID/RRID:AB_2209751
https://identifiers.org/RRID/RRID:AB_11016707
https://identifiers.org/RRID/RRID:AB_476692


 Research article Cell Biology | Neuroscience

Kershberg et al. eLife 2022;11:e83018. DOI: https://doi.org/10.7554/eLife.83018  20 of 29

secondary antibodies for 1 hr at room temperature. Membranes were washed three times in TBST 
and enhanced chemiluminescence followed by exposure to film was used to visualize protein bands.

Pyruvate carboxylase depletion
For samples being submitted to mass spectrometry, frozen neutravidin bead pellets were thawed 
on ice. Proteins were eluted by incubation in 500 µl RapiGest elution buffer (0.1% RapiGest, Waters 
Cat# 1866001861, in 2 mM biotin, 50 mM ammonium bicarbonate) for 2 hr at 60°C, while shaking. 
Neutravidin beads were pelleted by spinning at 18,000 × g for 5 min at 4°C and the supernatant was 
moved to a new tube. To prepare anti- pyruvate carboxylase (PC) antibody- conjugated beads, Protein 
G Sepharose beads (GE Healthcare Cat#17- 0618- 01) were washed three times in RapiGest elution 
buffer and conjugated to anti- PC antibodies (Novus, A252, RRID:AB_11016707) by incubating 3 μl 
of antibody per 20 µl of beads for 1 hr at 4°C on a rotator. Conjugated beads were spun down at 
1000 × g for 2 min, the supernatant was removed, and beads were diluted 1:1 with fresh RapiGest 
elution buffer to make a 50% slurry. 20 µl sepharose beads (40 µl of a 50% slurry) were added to 
the 500 µl of eluted protein solution of the biotin affinity purification and incubated for 1 hr at 4°C 
on a rotator. PC- conjugated beads were pelleted by spinning the sample at 18,000 × g for 5 min. 
The proteins in the PC- depleted supernatant were then precipitated with trichloroacetic acid (TCA). 
One volume of 100% TCA was added to four volumes of the PC- depleted supernatant and inverted 
several times before incubation on ice for 10 min. Tubes were then spun at 20,000 × g for 10 min 
at 4°C. The supernatant was removed leaving behind a protein pellet. The pellet was air dried and 
stored at –20°C until analysis by mass spectrometry. In pilot experiments, we assessed the efficiency 
of PC depletion. Before PC depletion, 28% and 10% of the detected peptides were from PC and the 
related protein propionyl- CoA carboxylase (PCCA), respectively. After depletion, 3% and 1.7% of the 
detected peptides were from PC and PCCA, respectively.

Mass spectrometry
Liquid chromatography tandem mass spectrometry (LC- MS/MS) was performed by the Taplin Mass 
Spectrometry Facility of the Department of Cell Biology at Harvard Medical School. Either the neutra-
vidin bead pellet (some pilot experiments) or the TCA- precipitated protein pellet after PC depletion 
(all experiments to assess release site composition) were submitted to the facility. The pellet was 
subjected to 5 ng/µl trypsin digest overnight at 37°C and dried until further analysis. On the day 
of analysis, the samples were reconstituted in 2.5% acetonitrile, 0.1% formic acid, and loaded via a 
Famos auto sampler (LC Packings, San Francisco, CA) onto the column after column equilibration. 
Peptides were eluted with increasing concentrations of 97.5% acetonitrile and 0.1% formic acid. As 
peptides were eluted, they were subjected to electrospray ionization and added to an LTQ Orbitrap 
Velos Pro ion- trap mass spectrometer (Thermo Fisher Scientific). Peptides were detected, isolated, 
and fragmented to produce a tandem mass spectrum of specific fragment ions for each peptide. 
Peptide sequences (and hence protein identity) were determined by matching protein databases with 
the acquired fragmentation pattern by the SEQUEST software program (Thermo Fisher Scientific). The 
data were filtered to establish a false discovery rate between 1% and 2% using a database of mouse 
protein sequences made up of half real protein sequences and half reversed sequences. Independent 
of whether the results were run against a mouse or a rat database, the number of peptides identified 
for bait proteins (which were made from rat cDNA) was similar.

Analyses of mass spectrometry data
The control dataset consists of four repeats that stem from two separate mass spectrometry sessions 
(repeats 1 and 2 were run first, repeats 3 and 4 were run ~1 year later). Each mutant dataset (RIM 
cKODA and Syt- 1 cKODA) consists of two repeats that were assessed in the same mass spectrom-
etry session together with repeats 3 and 4 of the control dataset. Mitochondrial proteins were 
removed from the analyses using MitoCarta3.0 (Pagliarini et al., 2008; Rath et al., 2021), except 
for Figures 3B and 6. PC and PCCA were also removed from the analyses along with neutravidin 
and IgGs. Peptide counts for each protein in each BirA condition (RIMPPCP- BirA, ELKS2β-BirA, CaVβ4- 
BirA, BirA- tdTomato) were first averaged for the two repeats that were acquired in the same mass 
spectrometry session. If the peptide count averaged from the two repeats was zero, it was assigned 
a value of 0.5 such that we could calculate circle size for Figure 2 and more generally enrichment or 
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depletion for all analyses. This assignment warranted that for a protein to be included, it had to be 
detected more than once with a single peptide. The average peptide count for a given protein for 
each of the three BirA baits was divided by the average peptide count for the same protein in the 
BirA- tdTomato condition. This is referred to as the fold change (FC) value. For the control dataset, 
the average fold change values of each mass spectrometry session were then averaged together 
to generate a final fold change value for every protein shown in Figure 2 and Figure 2—figure 
supplements 1 and 2; in the mutant datasets, this final averaging was not performed as all data 
stem from a single mass spectrometry session. Proteins with at least 2.0- fold enrichment over BirA- 
tdTomato in any release site- BirA condition were considered 'hits' in Figure 2 and alternate thresh-
olds of 1.5- fold and 2.5- fold enrichment are shown in Figure 2—figure supplements 1 and 2. The 
Venn diagrams were constructed using Cytoscape (v3.8.2) (Shannon et al., 2003) to map the circle 
size to fold change value. Circle size reflects average enrichment across repeats of an individual 
bait. For proteins enriched in multiple bait conditions, circle size corresponds to the condition with 
the largest average enrichment value. The log2 of the fold change was calculated for any protein 
that had at least a single peptide found for any of the BirA fusion proteins. To sort proteins for 
synaptic localization, either the enriched proteins (Figures 2B and 5, Figure 2—figure supplement 
3, Figure 3—figure supplements 1 and 2) or all proteins (Figure 4A–C, Figure 4—figure supple-
ment 1) were run through the SynGO database (https://www.syngoportal.org; Koopmans et al., 
2019) and selected by their cellular component annotation. For Figure 4A–C and Figure 4—figure 
supplement 1, the self- biotinylated protein was removed from its own release site- BirA condition 
(e.g., RIM was removed from analysis in the RIMPPCP- BirA dataset but not in the CaVβ4- or ELKS2β-
BirA datasets). For Figure 5, the enriched proteins that possessed SynGO annotations were run 
through the STRING database (v11) (https://string-db.org; Szklarczyk et al., 2019) to generate a 
STRING network diagram of enriched synaptic proteins.

Synaptosome preparation and staining
Synaptosome experiments were performed according to previously established protocols (Banerjee 
et al., 2022; Liu et al., 2018). Mice (30–60 days old) were deeply anesthetized with isoflurane and 
decapitated. The brain was collected in ice- cold PBS, and the striatum was dissected out. The striatal 
sections were homogenized in 1 ml of synaptosome homogenizing buffer (320 mM sucrose, 4 mM 
HEPES, 1× Sigma protease inhibitor cocktail [Cat# P8340], pH 7.4), with 12 slow strokes using a 
glass- Teflon homogenizer. One ml of homogenizing buffer was then added to the homogenate. The 
homogenate was spun at 1000 × g for 10 min at 4°C, the supernatant was pipetted into a new tube, 
and spun again at 12,500 × g for 15 min at 4°C. The pellet ('P2 fraction') was resuspended in 1 ml 
homogenizing buffer and homogenized again with six slow strokes. An additional 1 ml of homoge-
nizing buffer was added, and the sample (~1.5 ml) was loaded onto a sucrose gradient made up of 
5 ml 1.2 M sucrose on the bottom and 5 ml of 0.8 M sucrose at the top in thin wall ultracentrifugation 
tubes (Beckman Coulter, Cat# 344059). The loaded gradient was ultracentrifuged at 69,150 × g for 
1 hr at 4°C (SW 41 Ti Swinging- Bucket Rotor, Beckman Coulter, Cat# 331362) and the synaptosome 
fraction was harvested from the interface between the two sucrose layers. The synaptosome fraction 
was diluted 20- to 40- fold in homogenizing buffer and 1 ml was added to a poly- D- lysine- coated 
coverslip (neuVitro Cat# GG- 18- 1.5) in a 12- well plate and spun for 15 min at 4000 × g. The buffer was 
removed and the synaptosomes adhering to the coverslips were fixed with 4% PFA in PBS for 10 min. 
The PFA was removed, and a solution with 3% bovine serum albumin and 0.1% Triton X- 100 in PBS 
(TBP) was used for blocking and permeabilization for 1 hr at room temperature. The following primary 
antibodies were used (diluted in TBP) overnight at 4°C: goat polyclonal anti- NPTN (1:500, A253, 
RRID:AB_2155920), mouse monoclonal IgG2a anti- Bassoon (1:1000, A85, RRID:AB_11181058), and 
guinea pig polyclonal anti- TH (1:1000, A111, RRID:AB_2619897). After primary antibody incubation, 
the coverslips were washed three times in TBP and then incubated in secondary antibodies for 2 hr at 
room temperature in the dark. Secondary antibodies used were donkey anti- goat Alexa 488 (1:500, 
S6, RRID:AB_2534102), donkey anti- mouse Alexa 555 (1:500, S48, RRID:AB_2534013), and donkey 
anti- guinea pig Alexa 647 (1:500, S59, RRID:AB_2340476). The stained synaptosomes were washed 
three more times in TBP before mounting on glass slides with Fluoromount- G (Southern Biotech 
0100- 01).
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Confocal microscopy and image analyses of stained synaptosomes
Coverslips with fixed synaptosomes were imaged with an oil immersion 60× objective and a 1.5× 
optical zoom on an Olympus FV1000 confocal microscope. Raw confocal images were analyzed in a 
custom MATLAB program as described before (Banerjee et al., 2022; Liu et al., 2018) and the code 
was deposited on GitHub (https://github.com/kaeserlab/3DSIM_Analysis_CL; Liu, 2021). 1000–2000 
synaptosomes per image were detected using Otsu intensity thresholds and size thresholds (0.2–1 
µm2 for TH and 0.15–2 µm2 for Neuroplastin and Bassoon). These threshold settings were identical 
for every image analyzed and used to detect Bassoon- positive (Bassoon+) ROIs, TH- positive (TH+) 
ROIs, and double- positive ROIs (Bassoon+/TH+). TH+ ROIs that had a Bassoon signal less than 1× the 
average intensity of all pixels in the image were designated as Bassoon- negative (Bassoon-). Neuro-
plastin antibody signal intensities within Bassoon+ TH+ or Bassoon- TH+ ROIs were quantified and 
a frequency histogram was plotted. The experimenter was blind to which group a specific particle 
belonged to during image acquisition and analyses.

Statistics
Statistics were performed in GraphPad Prism 9. Data are displayed as individual data points, mean ± 
SEM, and/or frequency histograms. Significance is presented as *p<0.05, **p<0.01, and ***p<0.001. 
Sample sizes were determined based on previous studies, no statistical methods were used to prede-
termine sample size, and no outliers were excluded. An unpaired two- tailed Student’s t- tests was 
used in Figure 2—figure supplement 4B, a Kolmogorov–Smirnov test was used in Figure 2—figure 
supplement 4C, a two- way ANOVA test was used in Figure 3B, and two- way ANOVA tests followed 
by Bonferroni post- hoc tests were used in Figure 4A–C and Figure 4—figure supplement 1. In all 
figures, sample sizes and the specific tests used are stated in the figure legends.

Materials, data and code availability
Plasmids will be shared upon request within the limits of respective material transfer agreements. 
Mouse mutant alleles are publicly available as outlined in the Key Resources Table. The previously 
published code used for analyses of synaptosomes has been deposited to GitHub (https://github. 
com/kaeserlab/3DSIM_Analysis_CL; Liu, 2021) and is publicly available as listed in the Key Resources 
Table. All data generated or analyzed in this study are included in the figures and the source data 
tables. Source data files are provided for Figures 1–3, Figure 1—figure supplement 2, Figure 2—
figure supplements 1 and 2, and Figure 3—figure supplements 1 and 2. Requests for materials 
should be directed to the corresponding author ( kaeser@ hms. harvard. edu).
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average ≥2.0- fold number of peptides for a specific protein over the peptide count for the same 
protein in the BirA- tdTomato condition, calculated across biological repeats and mass spectrometry 
experiments as described in detail in the 'Materials and methods'. (D) Table of proteins for the Venn 
diagram in Figure 2—figure supplement 1. Genes encoding the bait proteins are shown in the first 
three rows. The table contains an alphabetical list ordered by enrichment group (enriched in all bait 
conditions, enriched in two bait conditions, enriched in one bait condition). To be included in the 
Venn diagram, enriched is defined as an average ≥1.5- fold number of peptides for a specific protein 
over the peptide count for the same protein in the BirA- tdTomato condition. (E) Table of proteins for 
the Venn diagram in Figure 2—figure supplement 2. Genes encoding the bait proteins are shown 
in the first three rows. The table contains an alphabetical list ordered by enrichment group (enriched 
in all bait conditions, enriched in two bait conditions, enriched in one bait condition). To be included 
in the Venn diagram, enriched is defined as an average ≥2.5- fold number of peptides for a specific 
protein over the peptide count for the same protein in the BirA- tdTomato condition. (F) Table of 
proteins detected in mass spectrometry in RIM cKODA mice. An alphabetical list of genes encoding 
the proteins identified by mass spectrometry and associated peptide counts in the RIM cKODA 
datasets is provided. (G) Table of proteins detected in mass spectrometry in Syt- 1 cKODA mice. An 
alphabetical list of genes encoding the proteins identified by mass spectrometry and associated 
peptide counts in the Syt- 1 cKODA datasets is provided. (H) Table of proteins in RIM cKODA mice for 
the Venn diagram in Figure 3—figure supplement 1. Genes encoding the bait proteins are shown 
in the first three rows. The table contains an alphabetical list ordered by enrichment group (enriched 
in all bait conditions, enriched in two bait conditions, enriched in one bait condition). To be included 
in the Venn diagram, enriched is defined as an average ≥2.0- fold number of peptides for a specific 
protein over the peptide count for the same protein in the BirA- tdTomato condition. (I) Table of 
proteins in Syt- 1 cKODA mice for the Venn diagram in Figure 3—figure supplement 2. Genes 
encoding the bait proteins are shown in the first three rows. The table contains an alphabetical 
list ordered by enrichment group (enriched in all bait conditions, enriched in two bait conditions, 
enriched in one bait condition). To be included in the Venn diagram, enriched is defined as an 
average ≥2.0- fold number of peptides for a specific protein over the peptide count for the same 
protein in the BirA- tdTomato condition.                                    

Data availability
All data generated or analyzed in this study are included in the figures and the source data tables. 
Source data files are provided for Figs. 1 to 3, Fig. 1 - figure supplement 2, Fig. 2 - figure supplements 
1 and 2, and Fig. 3 - figure supplements 1 and 2.
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