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Abstract Gamma oscillations are believed to underlie cognitive processes by shaping the forma-
tion of transient neuronal partnerships on a millisecond scale. These oscillations are coupled to 
the phase of breathing cycles in several brain areas, possibly reflecting local computations driven 
by sensory inputs sampled at each breath. Here, we investigated the mechanisms and functions of 
gamma oscillations in the piriform (olfactory) cortex of awake mice to understand their dependence 
on breathing and how they relate to local spiking activity. Mechanistically, we find that respiration 
drives gamma oscillations in the piriform cortex, which correlate with local feedback inhibition and 
result from recurrent connections between local excitatory and inhibitory neuronal populations. 
Moreover, respiration-driven gamma oscillations are triggered by the activation of mitral/tufted 
cells in the olfactory bulb and are abolished during ketamine/xylazine anesthesia. Functionally, we 
demonstrate that they locally segregate neuronal assemblies through a winner-take-all computation 
leading to sparse odor coding during each breathing cycle. Our results shed new light on the mech-
anisms of gamma oscillations, bridging computation, cognition, and physiology.

Editor's evaluation
This fundamental study employs a publicly available dataset to examine the role of γ oscillations 
in the coding of olfactory information in the mouse piriform cortex. The authors convincingly show 
that γ originates in the piriform cortex, is driven by feedback inhibition, and that the time course of 
odour decoding is most accurate when γ oscillations are strongest. This work is relevant to a wide 
audience interested in the mechanisms and role of oscillations in the brain, and nicely demonstrates 
the benefits of well-curated, publicly available datasets.

Introduction
Since the pioneer works of Adrian, 1942 and Bressler and Freeman, 1980, gamma oscillations have 
been one of the most studied brain rhythms (Bastos et al., 2020; Bastos et al., 2015; Bragin et al., 
1995; Buzsáki and Wang, 2012; Csicsvari et al., 2003; Fries et al., 2007; Gray et al., 1989; Sirota 
et al., 2008; Vinck et al., 2010; Womelsdorf et al., 2012; Womelsdorf et al., 2006). Gamma is 
believed to be critical for a variety of cognitive functions such as sensory processing (Fries et al., 2001), 
memory (Fernández-Ruiz et al., 2021), navigation (Colgin et al., 2009), and conscious awareness 
(Rodriguez et al., 1999). At the cellular scale, gamma rhythms modulate spiking activity, shaping the 
formation of transient neuronal partnerships, the so-called cell assemblies (Buzsáki, 2010). Computa-
tional models show that gamma depends on local inhibitory-inhibitory or excitatory-inhibitory interac-
tions (Tort et al., 2007; Wang and Rinzel, 1992) and ultimately emerges from synchronous inhibitory 
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postsynaptic potentials (Buzsáki and Wang, 2012). However, despite the initial evidence for their 
underlying principles being general, gamma oscillations are not a monolithic entity but actually 
encompass a diversity of rhythms observed experimentally (Lopes-Dos-Santos et al., 2018; Scheffer-
Teixeira et al., 2012; Schomburg et al., 2014; Zhong et al., 2017). This warrants studying the mech-
anisms and functions of these oscillations in specific brain regions in vivo.

Gamma oscillations usually appear nested within slower rhythms, a phenomenon known as cross-
frequency coupling, in which the amplitude of gamma waxes and wanes depending on the phase of a 
slow oscillation (Canolty and Knight, 2010; Lisman and Jensen, 2013). Important examples are the 
coupling of specific gamma sub-bands to the hippocampal theta rhythm (Cavelli et al., 2020; Sirota 
et al., 2008; Tort et al., 2009; Tort et al., 2008) or to the phase of breathing cycles (Cavelli et al., 
2018; Ito et al., 2014; Zhong et al., 2017). Regarding the latter, it is worth noting that respiration-
entrained brain rhythms depend on nasal airflow and are not a consequence of the respiratory pattern 
generation in the brainstem (Lockmann et al., 2016; Moberly et al., 2018; Yanovsky et al., 2014). 
Therefore, it seems likely that respiration-entrained gamma activity arises from local computations 
driven by sensory inputs sampled at each breath and thus plays a major role in cognition.

A promising area to study this hypothesis is the piriform cortex (PCx), which constitutes the 
primary olfactory area in the rodent brain (Bolding and Franks, 2018a; Stettler and Axel, 2009) 
and exhibits prominent gamma oscillations (Bressler and Freeman, 1980; Courtiol et al., 2019; 
Freeman, 1960; Freeman and Skarda, 1985; Kay et al., 2009; Kay and Freeman, 1998; Litaudon 
et al., 2008; Mori et al., 2013; Vanderwolf, 2000). Most of our understanding of piriform oscilla-
tions comes from the studies of Walter Freeman in the 20th century (Barrie et al., 1996; Eeckman 
and Freeman, 1990; Freeman, 1968; Freeman, 1960; Freeman, 1959). Freeman characterized 
gamma activity in terms of its topography, frequency range, and relationship to unitary activity and 
behavior. These observations led him to hypothesize that these oscillations constitute a fundamental 
sensory processing component that emerges from an excitatory-inhibitory feedback loop. However, 
despite his influential insights, Freeman’s conjectures could not be conclusively tested due to the 
technological limitations of his time. Thus, we still lack compelling experimental demonstrations 

eLife digest The cerebral cortex is the most recently evolved region of the mammalian brain. 
There, millions of neurons can synchronize their activity to create brain waves, a series of electric 
rhythms associated with various cognitive functions. Gamma waves, for example, are thought to be 
linked to brain processes which require distributed networks of neurons to communicate and inte-
grate information.

These waves were first discovered in the 1940s by researchers investigating brain areas involved in 
olfaction, and they are thought to be important for detecting and recognizing smells. Yet, scientists 
still do not understand how these waves are generated or what role they play in sensing odors.

To investigate these questions, González et al. used a battery of computational approaches to 
analyze a large dataset of brain activity from awake mice. This revealed that, in the cortical region 
dedicated to olfaction, gamma waves arose each time the animals completed a breathing cycle – 
that is, after they had sampled the air by breathing in. Each breath was followed by certain neurons 
relaying olfactory information to the cortex to activate complex cell networks; this included circuits of 
cells known as feedback interneurons, which can switch off weakly activated neurons, including ones 
that participated in activating them in the first place. The respiration-driven gamma waves derived 
from this ‘feedback inhibition’ mechanism.

Further work then examined the role of the waves in olfaction. Smell identification relies on each 
odor activating a unique set of cortical neurons. The analyses showed that gamma waves acted to 
select and amplify the best set of neurons for representing the odor sensed during a sniff, and to 
quieten less relevant neurons.

Loss of smell is associated with many conditions which affect the brain, such as Alzheimer’s disease 
or COVID-19. By shedding light on the neuronal mechanisms that underpin olfaction, the work by 
González et al. could help to better understand how these impairments emerge, and how the brain 
processes other types of complex information.

https://doi.org/10.7554/eLife.83044
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of how gamma generation depends on the interactions between the different piriform neuronal 
subpopulations or how gamma relates to odor representations encoded as cell assemblies. There-
fore, the mechanisms of gamma oscillations in the PCx and their functional role in olfaction need to 
be studied under the lens of modern experimental and analytical tools (Courtiol et al., 2019; Kay 
et al., 2009; Mori et al., 2013).

In this report, we study gamma oscillations in the PCx of the awake mouse. We took advantage of 
modern genetic tools, which accurately identify neuronal populations and precisely modify the local 
connectivity of the PCx, thus enabling an unprecedented study of the mechanisms and functions of 
its oscillatory activity. We found that respiration drives gamma oscillations in this region, which derive 
from feedback inhibition and depend on recurrent connections between local excitatory and feedback 
inhibitory populations. This loop is triggered by the projection of mitral/tufted cells in the olfactory 
bulb onto the principal cells of the PCx. As functional consequences, we show that respiration-driven 
gamma oscillations determine odor-assembly representations through a winner-take-all computation 
taking place within breathing cycles.

Results
Respiration drives gamma oscillations in the piriform cortex
To understand the mechanisms and functions of gamma oscillations and their relationship with respira-
tion in the mouse brain, we analyzed local field potentials (LFP) from the PCx recorded simultaneously 
with the respiration signal (Figure 1A) during odorless cycles, hereafter referred to as ‘spontaneous’ 
activity. The dataset was collected by Bolding and Franks, 2018a and generously made available 
through CRCNS (http://crcns.org, pcx-1 dataset). Figure 1B depicts the LFP and respiration signal 
from a representative animal; notice that low-gamma oscillations (30–60 Hz) emerge following inha-
lation start. These low-gamma oscillations, already evident in raw recordings, are part of a larger 
gamma peak (30–100 Hz) in the LFP power spectrum (Figure 1C), reflecting a true oscillation (Yuval-
Greenberg et al., 2008). Consistent with Figure 1B, only the low-gamma sub-band couples to the 
respiration cycle across animals, as its amplitude is modulated by both a 2–3 Hz LFP rhythm coherent 
to respiration (Figure 1D top panel; see also Figure 1—figure supplements 1–3) and by respiration 
itself (Figure 1D bottom panel). Thus, respiration entrains low-gamma oscillations in the PCx.

To further characterize the interaction between respiration and low-gamma oscillations in the PCx, 
we performed directionality analyses (Figure 1E and Figure 1—figure supplement 4). The gamma 
amplitude envelope showed a peak ~200 ms following the inhalation start, coinciding with a large 
positive cross-correlation peak between these signals, which suggests that respiration causes gamma. 
Consistent with these results, time-domain Granger causality was significantly higher in the respira-
tion→gamma direction than in the opposite one (t(12) = 9.82, p<10–6). Together, these results show 
that respiration drives low-gamma oscillations in the PCx.

We analyzed the contribution of the different PCx neuronal populations to network low-gamma 
oscillations. First, we performed a current source density analysis (Figure 1F), which revealed that 
these oscillations are generated locally within the piriform circuit and show a phase reversal near layer 
2 (where pyramidal cells are located). Next, we classified single units according to the expression of 
a light-sensitive channelrhodopsin coupled to the vesicular GABA transporter (VGAT). This allowed 
us to discriminate between VGAT- principal cells and VGAT+ inhibitory interneurons. Additionally, 
VGAT+ neurons were further classified into feedback inhibitory interneurons (FBI) and feedforward 
interneurons (FFI) according to their location relative to the principal cell layer (FFI are located at layer 
1 while FBI tend to be located within the cell layer 2/3; Bolding and Franks, 2018a; Figure 1—figure 
supplement 5). Upon averaging the activity of each neuronal subpopulation, we found that the time 
course of FBI firing rate changes correlates with the amplitude of low-gamma oscillations in time 
(Figure 1G). In contrast, principal cells and FFI spike earlier within the respiratory cycle and return to 
baseline during the gamma amplitude peak (Figure 1G). Notice further that the gamma peak coin-
cides with principal cell inhibition, as evidenced by their firing rate decrease. Moreover, by computing 
spike-triggered gamma envelope averages, we confirmed that gamma oscillations closely follow FBI 
spiking (Figure 1G inset). Therefore, we conclude that respiration-driven low-gamma oscillations in 
the PCx arise from feedback inhibition.

https://doi.org/10.7554/eLife.83044
http://crcns.org
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Figure 1. Respiration drives feedback inhibition-based gamma oscillations in the piriform cortex. (A) Experimental scheme, probe localization, 
and diagram of the local piriform circuit (modified from Bolding and Franks, 2018a). (B) Example of simultaneously recorded local field potentials 
(LFP) (top) and respiration (middle) signals, along with the LFP wavelet spectrogram (bottom). Notice prominent rhythmical appearance of gamma 
oscillations. (C) Average LFP power spectrum (± 2*SEM; n=13 recording sessions from 12 mice). The spectrum was whitened by multiplying each 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.83044
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Respiration-driven gamma oscillations depend on recurrent connections 
within the piriform cortex
We next studied the circuit mechanisms responsible for the respiration-driven gamma oscillations in 
the PCx. To that end, we analyzed spontaneous PCx LFPs following the selective expression of the 
tetanus toxin light chain in principal cells of a targeted hemisphere (TeLC ipsi; Figure 2A). Under 
this approach, TeLC expression blocks excitatory synaptic transmission without affecting cellular 

Figure 2. Respiration-driven gamma oscillations depend on recurrent connections within the piriform cortex. (A) Schematic of circuit changes after TeLC 
expression in principal cells (PCs) of the piriform circuit (MTCs: mitral cells; FFIs: feedforward interneurons; FBIs: feedback interneurons). Recordings 
were made both ipsi- and contralaterally to the TeLC expression (modified from Bolding and Franks, 2018a). (B) Average (± 2*SEM) power spectra 
for control and TeLC-infected animals (Control, n=13 recording sessions from 12 mice; TeLC ipsi, n=8 recording sessions from eight mice; TeLC contra, 
n=6 recording sessions from 6 mice). Notice that local TeLC expression abolishes ipsilateral gamma oscillations in the PCx. (C) Average respiration-LFP 
comodulograms for control and TeLC-infected animals. Respiration power and LFP-respiration coherence are shown superimposed (same scale across 
plots). (D) Boxplots showing gamma power (top) and the Resp-low gamma modulation index (bottom) for control and TeLC-infected animals.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Ketamine/xylazine anesthesia abolishes spontaneous low-gamma oscillations in the piriform cortex.

value by the associated frequency. Average LFP-Respiration coherence is superimposed in blue. (D) Average phase-amplitude comodulogram using 
either the LFP (left) or the respiration (Resp; middle) phase. Superimposed white lines show the LFP or Resp power spectrum (solid) and the LFP-Resp 
coherence (dashed). The right panel shows the normalized amplitude for LFP-filtered frequency components as a function of the Resp phase (average 
over n=13 recording sessions from 12 mice). (E) Directionality analyses between Resp and the gamma envelope (30–60 Hz). Shown are the average 
(± SEM, n=13 recording sessions from 12 mice) gamma envelope triggered by inhalation start (top), and the Granger causality for the Resp→gamma 
and gamma→Resp directions (bottom; boxplots show the median, 1st, 3rd quartiles, and the distribution range; each dot shows an individual mouse). 
(F) Average current source density for the gamma band (n=13 recording sessions from 12 mice). Superimposed black lines show the average gamma 
waveforms for each recording site. Bar plots depict statistical comparisons against a zero-current distribution (mean ± SEM; n=13 recording sessions 
from 12 mice). (G) Respiration-evoked LFP responses. Top: average inhalation-triggered whitened spectrogram (n=15 recording sessions from nine 
mice). Bottom: Normalized spike rate (mean ± SEM) of excitatory (EXC; VGAT-, 858 neurons), feedback inhibitory (FBI; VGAT+, 40 neurons), and 
feedforward inhibitory (FFI; VGAT+, 13 neurons) neuronal populations triggered by inhalation. Inset shows the normalized spike-triggered gamma 
amplitude envelope for each neuronal subpopulation (mean ± SEM). Normalization consisted of dividing the triggered gamma amplitude values by the 
mean amplitude 500 ms before each spike.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Similar respiratory frequency ranges across mice.

Figure supplement 2. The 1–3 Hz local field potentials (LFP) band is entrained by respiration.

Figure supplement 3. Respiration-driven gamma oscillations in the piriform cortex are evident across recording sites.

Figure supplement 4. Respiration leads low-gamma oscillations in the piriform cortex.

Figure supplement 5. Position and average waveform of neuronal subtypes.

Figure 1 continued

https://doi.org/10.7554/eLife.83044
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excitability (Bolding and Franks, 2018a), allowing us to study the local computations underlying the 
respiration-driven gamma. Figure 2B shows that TeLC ipsi LFPs had a large significant reduction in 
low-gamma oscillations with respect to either control mice (t(19) = 4.11, p<0.001) or the contralat-
eral PCx (TeLC contra, not infected; t(12) = 2.99, p=0.0055). Moreover, TeLC ipsi LFPs also showed a 
significant decrease in respiration-gamma coupling compared to control (t(19) = 5.87, p<10–5) or TeLC 
contra LFPs (t(12) = 3.10, p=0.0045) (Figure 2C and D), despite the respiration signal still reaching the 
PCx (note the dotted white traces in Figure 2C showing LFP-Resp coherence). These results demon-
strate that gamma oscillations and their coupling to respiration depend on local recurrent excitatory 
connections within the PCx. Noteworthy, respiration-driven low-gamma oscillations also depend on 
the cognitive state since ketamine/xylazine anesthesia abolishes them (Figure 2—figure supplement 
1, Appendix 1).

Olfactory bulb mitral-cell projections trigger feedback inhibition-based 
gamma oscillations in the piriform cortex
After confirming that respiration-driven gamma oscillations depend on recurrent connections formed 
by principal cells, we asked how PCx inputs affect gamma generation. We expected mitral/tufted cell 
activation in the olfactory bulb (OB) to trigger similar low-gamma oscillations since these projections 
convey the respiratory inputs to the PCx (Pashkovski et al., 2020). Consistently, optogenetic acti-
vation of the OB (Thy-Control) triggered piriform low-gamma oscillations, which matched the laser 
time course (Figure 3A, top panel). Interestingly, TeLC ipsi LFPs showed almost no gamma activity 
following laser onset (Figure 3A, middle panel), while TeLC contra LFPs still exhibited gamma activity 

Figure 3. Piriform recurrent connections are necessary for olfactory bulb (OB) mitral/tufted cells to trigger low-gamma oscillations. (A) Left: 
experimental conditions for each group. Right: Average piriform cortex (PCx) spectrograms during optogenetic stimulation of the olfactory bulb (OB). 
(B) Average gamma power during OB stimulation for the control (n=5 recording sessions from five mice), TeLC ipsi (n=14 recording sessions from eight 
mice) and contralateral recordings (n=7 recording sessions from five mice). Note that a logarithmic y-axis is employed here while subsequent plots use 
a linear scale. (C) Boxplots showing the gamma power difference between the laser and pre-laser periods. (D) Gamma power as a function of the laser 
intensity for each experimental condition (mean ± SEM).

https://doi.org/10.7554/eLife.83044
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upon stimulation of the OB (Figure 3A, bottom panel). Analyzing the group response, we found a 
significant reduction of low-gamma activity following the laser onset in TeLC ipsi LFPs compared to 
control (t(17) = 5.12, p<0.0001) or TeLC contra LFPs (t(19) = 3.38, p=0.0015) (Figure 3B and C), further 
confirming the importance of recurrent connections for gamma generation. Moreover, low-gamma 
power in control and TeLC contra LFPs increased with laser intensity, while it remained constant in 
TeLC ipsi LFPs (Figure 3D). Nevertheless, it should be noted that the contralateral TeLC hemisphere 
showed lower amplitude gamma oscillations following light stimulation than control recordings, 
though whether this gamma difference is related to an impaired network interplay between both 
hemispheres or to genetic differences between mouse lines remains to be determined. In any event, 
these results experimentally prove two critical facts about respiration-driven piriform gamma oscil-
lations. First, that respiration drives PCx low-gamma oscillations mediated by OB projections from 
mitral/tufted cells. Second, feedforward interneurons do not generate low gamma, which necessarily 
requires the principal cells to excite local feedback interneurons.

Figure 4. Odor delivery evokes beta and induces longer lasting gamma oscillations. (A) Average whitened local field potentials (LFP) power spectrum 
for odor and odorless respiration cycles (± 2*SEM; n=13 recording sessions from 12 mice). (B) Top: Average beta (top) and gamma (bottom) amplitude 
for odorless respiratory cycles (blue) and for cycles with odor delivery (orange). (C) Filtered beta (10–20 Hz) and gamma (30–60 Hz) oscillations during 
odor delivery. (D) Top: Phase-resetting index for each oscillation. Middle: Normalized induced (green) and evoked (purple) beta (middle) and gamma 
(bottom) amplitude triggered by inhalation. The normalization consisted of removing the average amplitude across time. All results obtained during 
odor delivery. Traces show mean ± SEM. (E) Average beta (left) and gamma (right) amplitude during odor cycles. Top panels show the average 
amplitude for different odorants at the same concentration (0.3% v./v., n=13 recording sessions from 12 mice). Bottom panels show the response to 
increasing odor concentrations (amplitudes averaged for ethyl butyrate and hexanal odorants; n=5 recording sessions from fivemice). (F) Amplitude 
envelopes during odor cycles for beta (left) and gamma oscillations (right) in TeLC experiments. Shades represent the mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Longer breaths do not account for prolonged gamma activity in response to odors.

https://doi.org/10.7554/eLife.83044
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Odors induce long-lived gamma oscillations
Having studied the mechanisms of spontaneous respiration-driven low-gamma oscillations in awake 
mice, we next analyzed their behavior during odor sampling (Figure 4). First, we noted that odors elic-
ited large beta oscillations (10–30 Hz), which have been widely associated with olfactory processing 
(Lepousez and Lledo, 2013; Martin et al., 2006; Poo and Isaacson, 2009). Interestingly, the ampli-
tude of gamma oscillations was not affected by odor delivery, but the duration of gamma activity 
increased notoriously (Figure 4B). Of note, the increase in gamma duration specifically depended 
on odor stimulation and not on longer breaths as previously suggested by Vanderwolf, 2000, since 
longer odorless cycles did not prolong the induced gamma activity (Figure 4—figure supplement 1).

Notably, beta oscillations occurred 100 ms before gamma onset, and, moreover, showed a consis-
tent phase resetting during each sniff cycle (Figure 4C and D top), resulting in a large amplitude enve-
lope of the inhalation-trigged average of beta-filtered LFPs (Figure 4D middle), which is to say that 
beta was evoked at each cycle. The unfamiliar reader is referred to Tallon-Baudry and Bertrand, 1999 
for a discussion about evoked vs. induced oscillations. In short, an oscillatory activity that shows up 
in the average filtered trace is said to be evoked since this requires phase consistency (or ‘resetting’) 
following each stimulus. On the other hand, oscillations that increase in amplitude following each 
stimulus (in our case, an inhalation), but that exhibit phase jitters from trial to trial, cannot be prop-
erly detected in the averaged trace due to peak-trough cancellations across trials. Such oscillations, 
referred to as ‘induced,’ can only be detected by inspecting the average across all individual trial 
amplitudes (or spectrogram; see Tallon-Baudry and Bertrand, 1999). This is the case of piriform low-
gamma oscillations (Figure 4D bottom) since they increase following each inhalation but exhibit time 
jitters in peak activity from cycle to cycle and no phase resetting (Figure 4D top). That is, our results 
show that gamma oscillations are not evoked but induced at each sniff cycle, contrasting therefore, 
with the evoked beta oscillations.

We also investigated how beta and gamma responses depended on odor identity and concen-
tration (Figure 4E). Different odorants triggered similar beta and gamma responses (Figure 4E top). 
The amplitude of beta oscillations depended on concentration (F(3,12)=5.84, p=0.01), while gamma 
amplitude did not though its variability increased (F(3,12)=2.89, p=0.079; Figure 4E bottom). Impor-
tantly, when comparing TeLC-infected hemispheres with the contralateral ones during odor delivery, 
we found that only odor-induced gamma oscillations depended on the local piriform recurrent connec-
tions, while beta oscillations were still present in infected animals (Figure 4F). These results suggest 
that beta oscillations do not relate to local piriform computations and are likely of OB postsynaptic 
origin.

Respiration-driven gamma oscillations determine odor-assembly 
representations through a winner-take-all computation
Next, we studied how gamma oscillations influenced piriform spiking patterns during odor processing. 
First, we compared the firing rate of each piriform neuronal subtype during odorless and odor cycles 
(Figure  5A). Notably, feedback interneurons showed the most pronounced changes during odor 
cycles, substantially increasing their firing rate and prolonging their spiking period above baseline, 
thus mirroring the increase in gamma duration. Nonetheless, we observed that the increased FBI 
spiking (~100 ms) preceded gamma amplitude increase (~200 ms; c.f. Figures  4B and 5A). This 
result may be related to the time required for different FBIs to synchronize their activity and generate 
gamma, as observed in computational models of gamma generation (Wang and Buzsáki, 1996).

We then studied how gamma oscillations influence principal cell spiking during odor delivery, 
pooling together all recorded principal cells and analyzing their spiking as a function of the respi-
ration phase. We found that the respiration phase modulated principal cell spiking within breathing 
cycles (Figure 5B), though the preferred spiking phase differed across neurons. Interestingly, while 
a large proportion of cells were inhibited during the same respiration phase as the maximal gamma 
amplitude, some cells increased their spiking coincidently with the gamma peak. The respiratory 
phase preference was stable throughout the recording session (Figure 5C, top panel; t(857) = –0.18, 
p=0.57), and respiratory modulation of principal cell spiking did not change between odor and odor-
less cycles (Figure 5C, middle panel; t(857) = –0.57, p=0.71).

Remarkably, spike-gamma phase coupling increased during the processing of odors (Figure 5C, 
bottom panel; t(857) = 9.49, p<10–19), suggesting that these prolonged oscillations play a role in 

https://doi.org/10.7554/eLife.83044
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shaping odor coding. Consistently, we found that odor context determined which cells fired during 
the gamma oscillation (Figure 5D). We further confirmed this observation by measuring the spiking 
specificity to odors, which closely followed the gamma envelope (Figure  5E). Thus, these results 
demonstrate that gamma inhibition shapes single-cell responses during olfaction.

The gamma spiking specificity supports the conjecture that respiration-driven gamma oscilla-
tions could mediate odor assembly representations. To further study this possibility, we analyzed cell 
assembly compositions for each odor by measuring the contribution of each principal cell to the first 
independent component (IC) of the population response (El-Gaby et al., 2021; Lopes-dos-Santos 
et al., 2013; Trouche et al., 2016). We found highly skewed distributions for each odor, where only 
a small fraction of neurons showed a strong positive contribution to the 1st IC, hereafter referred 
to as winner cells, while the vast majority showed low weights, referred to as loser cells (Figure 6A 
and B). Notably, the few winning neurons determining the 1st IC activity changed from odor to odor 
(Figure 6A); in other words, there was strong orthogonality in the 1st IC weight distribution across 
different odors. Consistent with this, the 1st IC weights were not significantly correlated between 
odors (corrected by multiple comparisons) (Figure 6C). We note that a similar odor separation was 
achieved when computing ICA on all odors together and analyzing the top six independent compo-
nents (Figure 6—figure supplement 1).

Interestingly, the losing cells were significantly more phase-locked to the gamma phase (Figure 6D 
top; t(14) = 5.88, p<10–4), consistent with them being actively inhibited during the oscillation. There 

Figure 5. Respiration-driven gamma oscillations relate to single-cell spiking specificity to odors. (A) Neuronal firing rates (mean ± 0.5*SEM, n=858 EXC, 
40 FBI, 13 FFI) during odorless (top) and odor cycles (bottom). (B) Principal cell spiking during each phase bin of the respiration cycle (bottom; 0 degree 
corresponds to the start of the inhalation); neurons are sorted according to the normalized firing rate in the first bin. Gamma power is shown on top 
(mean ± SEM, n=15 recording sessions from nine mice). (C) Top: preferred respiratory phase differences between the first and last thirds of the recording 
session (n=858 neurons). Middle: Spike-Resp coupling during odor and odorless cycles (n=858 neurons). Bottom: Spike-gamma coupling during odor 
and odorless cycles (n=858 neurons). (D) Z-scored firing rate at the gamma peak in response to different odors for a representative mouse. Columns 
show the firing rates of each principal cell. The bottom panel shows a zoom-in view of the differential spiking activity across odors. (E) Odor specificity 
index and normalized gamma amplitude following inhalation start (mean ± SEM, n=15 recording sessions from nine mice exposed to six different 
odorants at 0.3% v./v. concentration; gamma traces were rescaled to fit the plot).
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were no differences between the preferred gamma phase for winners and losers (Figure 6D bottom; 
t(14) = 0.05, p=0.95). Moreover, when analyzing the spiking time course of winner and loser cells, 
we found that both groups tended to spike immediately following inhalation start; nevertheless, 
once feedback inhibition was recruited, loser cells spiked below their average while the winner cells 
continued spiking above baseline (Figure 6E). Notably, loser cell inhibition correlated with gamma 
activity, which suggests that sparse odor assembly representations emerge from a winner-take-all 
process mediated by inhibitory gamma oscillations.

Figure 6. Gamma inhibition determines sparse odor-assembly representations through a winner-take-all computation. (A) Assembly weights for the 1st 
independent component (1st IC) in a representative mouse during the presentation of odorants. Notice different assembly compositions for the different 
odors. (B) Distribution of assembly weights for the 1st IC of each odor (all principal cell weights across sessions pooled together). Inset: Boxplots 
showing the distribution skewness for each animal and odorant. (C) Correlation among 1st IC weights. No pairwise odorant combination was significantly 
above chance (corrected for multiple comparisons). (D) Boxplots showing the mean-vector length of the spiking gamma phase for winning and losing 
neurons (top) and their preferred gamma phase (bottom). (E) Average z-scored spiking activity for winners, losers, feedback inhibitory neurons (top), and 
average z-scored gamma amplitude envelope (middle). The bottom panel shows a y-axis zoom-in view of the spiking time course of the loser neurons. 
n=259 winner-odor pairs, 3875 loser-odor pairs, and 40 FBI; 15 recording sessions from nine mice. (F) Distribution of assembly weights for the 1st IC 
in TeLC experiments. Each line shows the distribution average across odorants. (G) Percentage of losers in the infected (TeLC ipsi) and contralateral 
hemisphere (TeLC contra). Thresholds for defining losers were the same as employed in control recordings. (H) Correlation among 1st IC weights in TeLC 
experiments.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. ICA performed on all odors simultaneously.

https://doi.org/10.7554/eLife.83044


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 11 of 23

Because loser cell inhibition correlated with low gamma activity, we expected the winner-take-all 
process to be affected in TeLC recordings. Thus, we analyzed cell assemblies in both infected and 
contralateral hemispheres. We found that the TeLC-infected piriform cortex showed significantly less 
skewed distributions (t(5) = –3.08, p=0.013) with a decreased number of losing cells (t(5) = –2.10, 
p=0.044), which were significantly less inhibited than their contralateral counterparts (t(5) = –2.22, 
p=0.038; Figure 6F and G). Furthermore, the reduced inhibition of losing cells was associated with a 
high correlation of assembly weights across odors for the affected hemisphere (t(5) = 2.63, p=0.023; 
Figure 6H), suggesting that gamma oscillations are necessary for the segregation of odor-selective 
assemblies.

Because a winner-take-all process selects a single odor representation while actively suppressing 
others, it effectively implements an XOR logic gate. As a consequence, we would expect odor 
decoding accuracy to increase during gamma inhibition. Following this reasoning, we first analyzed 
the correlation of population spiking vectors in response to different odorants and found that correla-
tions significantly dropped during the gamma peak (Gamma vs. Pre: t(14) = –3.32, p=0.002; Gamma 
vs. Post: t(14) = –3.73, p=0.001; Figure 7A), confirming that odor representations diverge the most 
during gamma inhibition. We next tested odor decoding from the principal cell activity by training a 
supervised linear classifier using population spiking (i.e. spike vectors) at different respiratory cycle 
phases. Consistent with a winner-take-all mechanism, we found that variations in odor decoding accu-
racy matched the low-gamma activity time course (Figure 7B and C); there was a significant correla-
tion between these variables (r=0.45, p<10–12). Importantly, decoding accuracy significantly increased 
around the gamma peak compared to time windows before or after it (Gamma vs. Pre: t(14) = 9.47, 

Figure 7. Gamma oscillations provide a privileged window for odor decoding. (A) Population vector correlations between odor responses during 100 
ms time windows before, during and after the gamma peak (the bottom panel shows results for overlapping time windows). Only principal cells were 
employed for this analysis. (B) Odor decoding accuracy following inhalation start employing 100 ms time bins (mean ± SEM, n=15 recording sessions 
from nine mice). The mean accuracy across mice is shown by the black line; for comparison, the orange line shows the average gamma amplitude 
(arbitrary scale). The inset plot shows the correlation between gamma amplitude and odor decoding accuracy. (C) Odor decoding accuracy (black) and 
gamma amplitude (orange) time courses for each mouse. The colored rectangles underneath the traces show mouse identity. (D) Top: normalized odor 
decoding accuracy as a function of the gamma phase (mean ± SEM; n=15 recording sessions from nine mice). For each session, the normalization was 
obtained by subtracting the mean accuracy. Bottom: modulation index of the average decoding accuracy within the gamma cycle (Real MI) compared 
to a surrogate distribution (Surr MI, obtained by circularly shifting the gamma phases within each session by a random amount; n=10,000 surrogate MI 
values). (E) Odor decoding accuracy during the 150–250 times window following inhalation start in TeLC experiments (n=5 recording sessions from five 
mice). Boxplots show the decoding difference (delta) to the contralateral hemisphere.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Odor decoding increases during the low-gamma peak.

https://doi.org/10.7554/eLife.83044
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p<10–7; Gamma vs. Post: t(14) = 7.56, p<10–5; see also Figure 7—figure supplement 1). This result 
was robust among different classification algorithms (Figure 7—figure supplement 1). In addition, 
odor decoding accuracy significantly fluctuated within the gamma cycle (Figure 7D), confirming that 
gamma inhibition directly modulates odor processing. Finally, when analyzing the TeLC experiments, 
we found that decoding accuracy significantly decreased in the 150–250 ms ‘gamma’ time window in 
the infected hemisphere compared to the contralateral one (t(5) = –2.41, p=0.03). In all, these find-
ings demonstrate that respiration-driven gamma oscillations provide an optimal temporal window for 
olfaction.

Discussion
The present report demonstrates the mechanisms and functions of gamma oscillations in the PCx 
of awake mice. We show that respiratory inputs to this cortex elicit large feedback inhibitory low-
gamma oscillations that aid odor coding. Our work provides critical information for understanding 
gamma oscillations in the olfactory system. First, the results support the excitatory-inhibitory models 
of gamma generation (Buzsáki and Wang, 2012; Fisahn et al., 1998; Freeman, 1964), highlighting 
the role of excitatory neurons in initiating the gamma cycle by driving feedback interneuron spiking. 
Our findings thus experimentally demonstrate several of Walter Freeman’s hypotheses regarding 
gamma generation (Bressler and Freeman, 1980; Eeckman and Freeman, 1990; Freeman, 1968), 
and reveal similarities with the mechanisms generating gamma in the OB (Fukunaga et al., 2014; 
Fukunaga et al., 2012; Kay et al., 2009; Lepousez and Lledo, 2013; Mori et al., 2013). Second, we 
demonstrate that the PCx low-gamma oscillations are the extracellular correlates of a winner-take-all 
process, thus confirming previous theoretical conjectures (de Almeida et al., 2009) and linking this 
brain oscillation to an algorithmic operation (an XOR logic gate). Third, the winner-take-all interpreta-
tion provides a direct relationship between gamma oscillations and cell assemblies.

Under this scenario, the low-gamma feedback inhibition is critical for segregating cell assemblies 
and generating a sparse, orthogonal odor representation. Concomitantly, the assembly recruitment 
would depend on OB projections determining which winner cells ‘escape’ gamma inhibition, high-
lighting the relevance of the OB-PCx interplay for olfaction (Chae et al., 2022; Otazu et al., 2015). An 
important feature of the respiration-driven low-gamma oscillations is that the winners triggering them 
change according to odor context (Figure 6A), a process likely dependent on odor-encoding mitral 
cell assemblies from the OB (Chae et al., 2022). Thus, the involvement of different cells and spiking 
dynamics would make the recruitment of feedback inhibition a non-homogenous process across respi-
ration cycles, leading to small time jitters in peak gamma activity.

As an empirical end result, the observed low-gamma oscillations are not phase-locked from cycle 
to cycle; in other words, PCx low-gamma power is induced, but not evoked (Tallon-Baudry and 
Bertrand, 1999), at each respiratory cycle. Our results, nonetheless, do not exclude a role for OB 
gamma in triggering piriform oscillations, as the OB output may arise from similar gamma-dependent 
winner-take-all processes in that area. Nevertheless, our results make it less likely that piriform gamma 
is simply inherited from the OB, given that we observe (1) a local current source, (2) a tight correla-
tion with FBI spiking, and (3) that gamma disappears when local recurrent connections are abolished, 
despite the OB remaining intact.

In contrast, beta oscillations were evoked by the respiratory input to the PCx, leading to a prom-
inent phase resetting  ~100 ms after the inhalation start (Figure  4). Further consistent with these 
results, respiration-triggered beta oscillations did not disappear in the TeLC condition and were close 
in time to excitatory and FFI spiking (c.f. Figures 1, 4 and 5). Interestingly, a previous report showed 
that odors evoke PCx beta oscillations under urethane anesthesia, which, as here, occurred before 
global inhibition (Poo and Isaacson, 2009). Based on this, a role for piriform beta in odor representa-
tions has been proposed; nevertheless, here we show that beta oscillations are likely inherited and do 
not require local computations in the PCx, i.e., they are not locally generated.

The study of the role of the PCx in olfaction has recently been boosted by selective genetic tech-
niques, allowing researchers to examine how the individual cellular components relate to olfaction 
(Franks et al., 2011; Nagappan and Franks, 2021). The PCx, also known as the olfactory cortex, 
receives inputs from the OB and constructs a robust odor representation (Bolding et al., 2020). This 
representation can be inferred from the population activity and has two major features. On the one 
hand, it separates odor identity from its concentration (Bolding and Franks, 2018a; Bolding and 
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Franks, 2017; Roland et al., 2017). This process depends on large-scale piriform inhibition (Bolding 
and Franks, 2018a) and thus correlates with low-gamma oscillations. On the other hand, the repre-
sentation groups odors into perceptual categories, not necessarily related to the physical structure of 
the odor molecules (Pashkovski et al., 2020). Surprisingly, these odor assembly representations are 
not fixed but change with time (Schoonover et al., 2021), which might be a particular property of 
unstructured cortices such as the piriform cortex (Stettler and Axel, 2009). In light of this evidence, 
spike-field synchronization might be an essential coding strategy, as neural oscillations might provide 
an internal signal in which assembly representations can be organized and structured. Thus, we 
hypothesize that low-gamma oscillations provide a critical time window for odor assembly represen-
tations to be formed and modified through winner-take-all computations.

The role of neuronal oscillations in shaping spiking patterns has been widely discussed (Buzsáki, 
2010). Among other functions, oscillations are thought to provide syntactical blocks in which spiking 
activity can be parsed into meaningful words. A reader (receiver) area can then decode such neuronal 
representations by following these syntactic rules. In favor of this hypothesis, our decoding anal-
ysis shows that, for a reader neuron, optimal odor decoding occurs during the gamma peak within 
breathing cycles. A likely explanation for this scenario – based on our results – is that by suppressing 
the activity of competing representations, gamma oscillations increase the signal-to-background 
ratio and allow for optimal decoding. Under this framework, maximal decoding occurs after and not 
during the peak firing rate, coinciding with peak gamma activity and synchronous inhibition. Thus, the 
inhibited neurons, despite being the most phase-locked to gamma, would not directly encode odor 
information, while the neurons that escape gamma inhibition would do. Interestingly, and further 
consistent with our results, a recent study in humans showed that the accurate perception and identi-
fication of odors depend on piriform gamma oscillations (Yang et al., 2022). Moreover, the behavioral 
response to odors also seems to depend on piriform gamma, and its suppression induces depressive-
like behaviors in mice (Li et  al., 2022). Therefore, respiratory-triggered gamma oscillations might 
constitute a fundamental building block for neuronal communication in the olfactory system.

Several reports show that the PCx is the source of gamma activity for widespread brain regions, 
including the striatum (Carmichael et al., 2017) and the anterior limbic system (Carmichael et al., 
2019). Although the authors largely attribute such oscillations to piriform volume conduction, recent 
evidence shows that olfactory gamma synchronizes distant regions as well (Li et al., 2022). Based 
on our results, we postulate that genuine respiration-entrained gamma oscillations in downstream 
regions are triggered by the output of the winning piriform assemblies, leading to new local gamma 
winner-take-all processes. This provides a new look into long-range gamma synchronization, emerging 
naturally if winners generating gamma in one area consistently trigger winners generating gamma in 
a downstream area. Such a mechanism closely agrees with the theory and experiments reported by 
Schneider et al., 2021, which suggest that oscillatory power and connectivity are the main drivers 
underlying inter-areal coherence.

A central element to this directional view of interregional synchronization is gamma coupling to 
respiration, as the slow oscillation ensures a flow of information from the most primary olfactory 
areas (OB, PCx) to the higher limbic areas (prefrontal cortex, amygdala). In accordance, a recent 
report showed that respiration-related brain oscillations drive sparse assemblies in the prefrontal 
cortex (Folschweiller and Sauer, 2022). Notably, these authors also found that inhibitory recruitment 
by assembly members was key for assembly segregation, suggesting a potential role for gamma in 
that area. Hence, the directional view of synchronization across regions places a major role in cross-
frequency interactions driving communication, highlighting the relevance of interregional synchrony 
modulation by slower rhythms, for instance, theta (González et al., 2020) or respiration itself (Cavelli 
et al., 2020; González et al., 2023).

In light of our findings, we propose the following model to understand the relationship between 
spiking activity, neural oscillations, and odor coding in the piriform cortex: (1) Following each sniff, 
olfactory information is processed in the OB and is transmitted to the piriform circuit through mitral/
tufted cell spiking. These synchronous postsynaptic potentials cause the field beta oscillation, whose 
amplitude depends on the afferent volley. (2) The principal cells that better encode the olfactory 
stimulus excite feedback interneurons. (3) Feedback interneurons inhibit competing principal cells, 
causing the field gamma oscillation. (4) This winner-take-all process segregates cell assemblies and 
dictates a sparse piriform odor representation. Note that because the piriform cortex normalized 
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odorant concentration (Bolding and Franks, 2018a), the amplitude of gamma oscillations does not 
change. Hence, gamma oscillations provide an optimal temporal window to decode odor.

Materials and methods
Datasets
We analyzed recordings of the PCx generously made available by Bolding and Franks through the 
Collaborative Research in Computational Neuroscience data-sharing website (http://crcns.org, pcx-1 
dataset). The SIMUL, TeLC-PCx, THY, TeLC-THY, and VGAT experiments were used. Detailed descrip-
tions of the experimental procedures can be found in previous publications (Bolding et al., 2020; 
Bolding and Franks, 2018a; Bolding and Franks, 2017). All protocols were approved by the Institu-
tional Animal Care and Use Committee of Duke University. Below we describe the analytical methods 
employed by us, and, for convenience, also the relevant experimental procedures from the original 
publications.

Animals
Adult mice were employed (>P60, 20–24  g), and housed in single cages on a normal light-dark 
cycle. For the Cre-dependent TeLC group, offspring of Emx1Cre/Cre breeding pairs were obtained 
from The Jackson Laboratory (005628). For the optogenetic experiments, the mice employed were: 
adult Thy1ChR2/ChR2-YFP, line 18 (Thy1-COP4/EYFP, Jackson Laboratory, 007612) and VGAT ChR2/+, line 8 
(Slc32a1-COP4*H134R/EYFP, Jackson Laboratory, 014548). For the combined optogenetics and TeLC 
expression experiments, adult offspring of Emx1Cre/Cre mice crossed with Thy1ChR2/ChR2-YFP mice were 
employed.

Adeno-associated viral vectors
For the TeLC experiments, AAV5-DIO-TeLC-GFP was expressed under CBA control (6/7  mice) or 
synapsin (1/7 mice), whose effects were similar and pooled together. Three 500 nL injections in the 
PCx (AP, ML, DV:+1.8, 2.7, 3.85;+0.5, 3.5, 3.8; –1.5, 3.9, 4.2; DV measured from brain surface) were 
employed to achieve TeLC expression. All recordings took place ~14 days after the promoter injec-
tion. All viruses were obtained from the University of North Carolina-Chapel Hill (UNC Vector Core).

Data acquisition
The electrophysiological signals were recorded using 32-site polytrode acute probes (A1x32-
Poly3-5mm- 25  s-177, Neuronexus) with an A32-OM32 adaptor (Neuronexus) through a Cereplex 
digital headstage (Blackrock Microsystems). For the optogenetic identification of GABAergic cells, 
a fiber-attached polytrode probe was employed (A1x32-Poly3-5mm-25s-177-OA32LP, Neuronexus). 
Data were acquired at 30 kHz, unfiltered, employing a Cerebus multichannel data acquisition system 
(BlackRock Microsystems). Respiration and experimental events were acquired at 2 kHz by analog 
inputs of the Cerebus system. The respiration signal was measured employing a microbridge mass 
airflow sensor (Honeywell AWM3300V), which was positioned opposite to the animal’s nose. Inha-
lation generated a negative airflow and thus negative changes in the voltage of the sensor output.

Electrode and optic fiber placement
A Patchstar Micromanipulator (Scientifica) was employed to position the recording probe in the ante-
rior PCx (1.32 mm anterior and 3.8 mm lateral from bregma). Recordings were targeted 3.5–4 mm 
ventral from the brain surface at this position, and were further adjusted according to the LFP and 
spiking activity monitored online. The electrode sites spanned 275 µm along the dorsal-ventral axis. 
The probe was lowered until an intense spiking band was found, which covered 30–40% of electrode 
sites near the correct ventral coordinate, thus reflecting the piriform layer II. For the optogenetic 
experiments stimulating OB cells in Thy1ChR2/ChR2-YFP mice, the optic fiber was placed <500 µm above 
the OB dorsal surface.

Spike sorting and waveform characteristics
Spyking-Circus software was employed to isolate individual units (https://github.com/spyking-circus). 
All clusters which had more than 1% of ISIs violating the refractory period (<2 ms) or appearing 

https://doi.org/10.7554/eLife.83044
http://crcns.org
https://github.com/spyking-circus


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 15 of 23

contaminated were manually removed. Units that showed both similar waveforms and coordinated 
refractory periods were merged into a single cluster. The unit position was characterized as the mean 
electrode position (across electrodes) weighted by the amplitude of the unit waveform on each 
electrode.

Odor delivery
Stimuli consisted of monomolecular odorants diluted in mineral oil. These were hexanal, ethyl butyrate, 
ethyl acetate, 2-hexanone, isoamyl acetate, and ethyl tiglate. Odors were presented for one second 
through an olfactometer controlled by MATLAB scripts and repeated every ten seconds.

Analytical Methods
For all analyses, we used Python 3 with numpy (https://numpy.org/), scipy (https://docs.scipy.​
org/), matplotlib (https://matplotlib.org/), sklearn (https://scikit-learn.org/stable/), and statsmodel 
(https://www.statsmodels.org/stable/index.html) libraries. The codes to reproduce all seven figures 
are freely available at: https://github.com/joaqgonzar/Gamma_Oscillations_PCx; (copy archived at 
swh:1:rev:3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5) (Gonzalez, 2023).

LFP Preprocessing
Raw LFPs were decimated to a sampling rate of 2000 Hz to match the respiration signal sampling rate, 
employing the decimate scipy function. This function first low-pass filters the 30 kHz raw data and 
then downsamples it, avoiding aliasing. For each animal, we used the same channel (either channel 
17 or 16 depending on the headstage configuration) for all analyses in the SIMUL and TeLC-PCx data-
sets, though similar results are obtained for the rest of the channels given their high LFP redundancy 
(Figure 1—figure supplement 3). Channel 28 was employed for the VGAT datasets. We analyzed 
both odor-related and spontaneous activity; for the former, we selected all inhalations occurring 
within one-second following odor delivery, and the latter was obtained as all awake periods without 
odor delivery.

Power spectrum
To analyze the LFP spectra, we computed Welch’s modified periodogram using welch scipy function. 
Specifically, we employed a 1 s moving window with half a window overlap, setting the numerical 
frequency resolution to 0.1 Hz (by setting the nfft parameter to 10 times the sampling rate). All spectra 
were whitened by multiplying each power value by its associated frequency, thus eliminating the 1 /f 
trend. For Figure 1B, we computed the wavelet transform (cwt scipy function) of the LFP signal using 
a Morlet wavelet with 0.1 Hz resolution.

The triggered spectrograms were obtained first by selecting all 500 ms LFP windows following 
inhalation start (time stamps provided in the dataset, see Bolding and Franks, 2018a for further 
details) and then computing the spectrogram using the spectrogram scipy function. We used 40 ms 
windows with 82% overlap and a frequency resolution of 0.1 Hz. After computing each individual 
spectrogram, we whitened (i.e. multiplied by f) and averaged them to yield the mean spectrogram 
shown in Figures 1G and 3A.

Phase-amplitude coupling
We computed phase-amplitude comodulograms following the methods proposed by Tort et  al., 
2010. We first band-pass filtered the LFP/respiration signal using the eegfilt function (Delorme and 
Makeig, 2004) adapted for Python 3 (available at https://github.com/joaqgonzar/Gamma_Oscilla-
tions_PCx (copy archived at swh:1:rev:3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5), Gonzalez, 
2023). We filtered between 20–130 Hz in 10 Hz steps to obtain the higher frequency components, 
and between 1 and 8 Hz in 1 Hz steps to obtain the slower frequency components. The phase (angle) 
and amplitude time series of the filtered signals were estimated from their analytical representation 
based on the Hilbert transform. We then binned the phase time series into 18 bins and computed 
the mean amplitude of the fast signal for each bin. The amount of phase-amplitude coupling was 
estimated through the modulation index (MI) metric (Tort et al., 2010), MI = (Hmax-H)/Hmax, where 
Hmax is the maximum possible Shannon entropy for a given distribution (log(number of phase bins)) 
and H is the actual entropy of the amplitude distribution.
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Directionality analysis
To study the directionality between the gamma envelope and respiration signal, we employed three 
different strategies: (1) we averaged the gamma envelope using the inhalation start as a trigger; (2) we 
computed the cross-correlogram, using the correlate scipy function, between the gamma envelope 
and the respiration signal; (3) we computed Granger Causality estimates, using the grangercausali-
tytest stats model function, with a 10-order VAR model and employing the log(F-stat) as the Granger 
Causality magnitude (Geweke, 1982).

Current-source density analysis
We first obtained gamma averages by filtering the LFP signal between 30–50 Hz; the amplitude peaks 
were then identified and used for averaging 100 ms epochs surrounding these timestamps. CSD anal-
ysis was obtained by -A+2B-C for adjacent probe sites.

Induced power, evoked power, and phase-resetting index
To study induced power, we (1) filtered the recordings (beta: 10–20 Hz, low gamma: 30–60 Hz), (2) 
obtained their amplitude through the Hilbert transform, and (3) computed the inhalation-triggered 
average. To study evoked power, we (1) filtered the recordings, (2) obtained the inhalation-triggered 
average, and then (3) estimated the amplitude of the average signal through the Hilbert transform. 
For obtaining the phase-resetting index of the filtered signals, we used the same procedure as for 
computing the inter-trial coherence (Makeig et al., 2004) using 500 ms windows following inhalation 
start as a ‘trial.’

Individual cell spiking responses to inhalation
All cells were classified de-novo following the protocol described by Bolding and Franks, 2018a. 
A Wilcoxon rank-sum test was employed to determine laser responsiveness; p<0.001 was used to 
detect VGAT+ neurons. The distinction between FFI and FBI was made according to their location on 
the probe relative to the principal cell layer (FFI are located at layer 1 while FBI tend to be located 
within the cell layer 2/3; Bolding and Franks, 2018a; Figure 1—figure supplement 5). The spike 
times were rounded to match the LFP resolution (0.5 ms or 2000 Hz sampling rate). After that, we 
convolved the spike times of each unit with a 10 ms standard deviation Gaussian kernel employing the 
convolve scipy function, in close similarity with the original publication, which gave rise to a smoothed 
spiking activity. For the normalized responses (Figure 1G), the spiking response of a neuronal subpop-
ulation (i.e. excitatory, FFI, or FBI neurons) was normalized by dividing the firing rate by its average 
across time bins.

Odor specificity index
We defined the odor specificity index for single cell responses following McNaughton et al., 1983 
as SI = max(Fx)/(Fa +Fb + Fc +Fd + Fe +Ff), where F represents firing rate, the subscripts a-f represent 
different odors, and max(Fx) is the firing rate for the odor that generates the largest response. The 
specificity index time course was obtained using 100 ms sliding windows (62.5% overlap) following 
inhalation start.

Independent component analysis
We employed the ICA sklearn function on concatenated time series of the smoothed principal 
cell spiking activity using all 1000 ms windows following inhalation start during odor presentation 
(0.3% v./v. concentration). Each odor was treated separately. We analyzed only the first independent 
component, setting n_components = 1. Winners and losers were identified according to the weight 
each neuron exerted on the 1st principal component. Namely, neurons with a weight above the 95th 
percentile were labeled as winners, while neurons with a more negative weight than the IC mean as 
losers. For representation purposes (Figure 6B), large positive and negative weights were truncated 
at 0.15 and –0.05, respectively. The same procedures were employed for the assembly analyses on 
TeLC recordings, except that all cells were employed due to the lack of opto-tagging. We note that 
similar results were obtained in control recordings if all available neurons were included, likely due to 
excitatory cells far outnumbering inhibitory interneurons.

https://doi.org/10.7554/eLife.83044
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Gamma phase-locking and preferred spiking phase
To assess the coupling between spikes and the gamma phase, the mean-vector length of the spiking 
gamma phases was calculated as ‍MVL = ∥ 1

Nk

∑Nk
k=1 e

√
−1φk∥‍, where ‍φk‍ is the gamma phase associ-

ated to the k-th spike, and Nk is the total number of spikes. The average gamma spiking angle (stats.
circmean) was computed to obtain the preferred phase. For the spike-triggered amplitude envelope 
averages, we first obtained the gamma amplitude envelope using the Hilbert transform, and then we 
computed the averages using –150–300 ms windows surrounding each spike.

Population vector correlations
To infer the similarity/dissimilarity in the population response to the different odors, we analyzed the 
population vector correlations, defined as the Pearson correlation (pearsonr scipy function) measured 
using paired data from the same neurons to two odors. Correlations were computed between spiking 
vectors for each odor; the correlation time course shown in Figure 7A bottom was obtained using 
100 ms sliding windows (62.5% overlap) following inhalation start. For statistics, we averaged the 
correlation across odors and compared them among three-time windows of interest: from 0 to 100 ms 
(Pre), from 150 to 250 ms (Gamma), and from 525 to 625 ms (Post).

Odor decoding
We employed a supervised linear classifier to decode the odor identity (0.3% v./v. concentration) from 
the population spiking vectors. The classification algorithm was supplied with the average spiking of 
each principal cell in 100 ms sliding windows following the inhalation start. The classification algo-
rithm was a linear support vector machine with a stochastic gradient descent optimization, imple-
mented using the sgdclassifier sklearn function. Each mouse was trained and tested separately; for 
each time window, the training sample consisted of 2/3 of the data, and the test sample consisted of 
the remaining third. The division of training/test samples was randomized in order to avoid odor bias, 
repeated 100 times, and the results of the repetitions averaged to obtain the final decoding value. 
For the statistical comparisons, we used the same 100 ms time windows employed in the popula-
tion vector correlations (i.e. Pre, Gamma, and Post). To verify the robustness of the results, we also 
employed a linear discriminant analysis and a k-nearest neighbor classifier, which rendered similar 
results to the sgdclassifier algorithm (Figure 7—figure supplement 1).

Statistics
We show data as either mean ± SEM or regular boxplots showing the median, 1st, 3rd quartiles, and 
the distribution range without outliers. We employed paired and unpaired t-test to compare between 
groups. To compare among odor concentrations, we employed repeated measures ANOVA. We set 
p<0.05 to be considered significant (in the figure panels, *, ** and *** denote p<0.05, p<0.01, and 
p<0.001, respectively). For the 1st IC weight correlations, we employed Pearson r correlation and 
corrected the statistical threshold through the Bonferroni method for multiple comparisons.

Data availability
All the data employed is freely available at http://dx.doi.org/10.6080/K00C4SZB. Previously Published 
Datasets: Bolding and Franks, 2018b Collaborative Research in Computational Neuroscience (http://​
crcns.org/). ‘Simultaneous extracellular recordings from mice OB and PCx and respiration data in 
response to odor stimuli and optogenetic stimulation of OB (https://crcns.org/data-sets/pcx/pcx-1).’

Acknowledgements
We thank Kevin Bolding and Kevin Franks for making their data available and for their insightful 
comments on our manuscript. We also thank Diego Laplagne for comments on the manuscript. JG 
was supported by Comision Academica de Posgrado (CAP), Programa de Desarrollo de Ciencias 
Básicas (PEDECIBA), and Comisión Sectorial de Investigación Científica (CSIC). PT was supported by 
PEDECIBA and CSIC. ABLT was supported by Conselho Nacional de Desenvolvimento Científico e 
Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), 
Brazil.

https://doi.org/10.7554/eLife.83044
http://dx.doi.org/10.6080/K00C4SZB
http://crcns.org/
http://crcns.org/
https://crcns.org/data-sets/pcx/pcx-1


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 18 of 23

Additional information

Funding

Funder Grant reference number Author

Conselho Nacional 
de Desenvolvimento 
Científico e Tecnológico

Adriano BL Tort

Coordenação de 
Aperfeiçoamento de 
Pessoal de Nível Superior

Adriano BL Tort

Comisión Sectorial de 
Investigación Científica

I+D grupos 2022- group 
ID-883465

Joaquin Gonzalez
Pablo Torterolo

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Joaquin Gonzalez, Conceptualization, Software, Formal analysis, Visualization, Methodology, Writing 
– original draft, Writing – review and editing; Pablo Torterolo, Supervision, Funding acquisition, 
Writing – review and editing; Adriano BL Tort, Supervision, Funding acquisition, Project administra-
tion, Writing – review and editing

Author ORCIDs
Joaquin Gonzalez ‍ ‍ http://orcid.org/0000-0002-8721-4292
Adriano BL Tort ‍ ‍ http://orcid.org/0000-0002-9877-7816

Ethics
The present study used a third-party dataset and required no ethical permit for the performed compu-
tational analyses. The experimental protocols of the original data source (Bolding and Franks, 2018) 
were approved by Duke University Institutional Animal Care and Use Committee (protocol A220-15-08).

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.83044.sa1
Author response https://doi.org/10.7554/eLife.83044.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
All the data employed is freely available at: http://crcns.org, pcx-1 dataset: https://doi.org/10.6080/​
K00C4SZB.

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Franks K, Bolding K 2018 Simultaneous extracellular 
recordings from mice 
olfactory bulb (OB) and 
piriform cortex (PCx) and 
respiration data in response 
to odor stimuli and 
optogenetic stimulation 
of OB

https://​crcns.​org/​
data-​sets/​pcx/​pcx-1

​CRCNS.​org, pcx-1

https://doi.org/10.7554/eLife.83044
http://orcid.org/0000-0002-8721-4292
http://orcid.org/0000-0002-9877-7816
https://doi.org/10.7554/eLife.83044.sa1
https://doi.org/10.7554/eLife.83044.sa2
http://crcns.org
https://doi.org/10.6080/K00C4SZB
https://doi.org/10.6080/K00C4SZB
https://crcns.org/data-sets/pcx/pcx-1
https://crcns.org/data-sets/pcx/pcx-1


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 19 of 23

References
Adrian ED. 1942. Olfactory reactions in the brain of the hedgehog. The Journal of Physiology 100:459–473. 

DOI: https://doi.org/10.1113/jphysiol.1942.sp003955, PMID: 16991539
Barrie JM, Freeman WJ, Lenhart MD. 1996. Spatiotemporal analysis of prepyriform, visual, auditory, and 

somesthetic surface eegs in trained rabbits. Journal of Neurophysiology 76:520–539. DOI: https://doi.org/10.​
1152/jn.1996.76.1.520, PMID: 8836241

Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P. 
2015. Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels. bioRxiv. 
DOI: https://doi.org/10.1101/004804

Bastos AM, Lundqvist M, Waite AS, Kopell N, Miller EK. 2020. Layer and rhythm specificity for predictive 
routing. PNAS 117:31459–31469. DOI: https://doi.org/10.1073/pnas.2014868117, PMID: 33229572

Bolding KA, Franks KM. 2017. Complementary codes for odor identity and intensity in olfactory cortex. eLife 
6:e22630. DOI: https://doi.org/10.7554/eLife.22630, PMID: 28379135

Bolding KA, Franks KM. 2018a. Recurrent cortical circuits implement concentration-invariant odor coding. 
Science 361:eaat6904. DOI: https://doi.org/10.1126/science.aat6904, PMID: 30213885

Bolding KA, Franks KM. 2018b. Simultaneous extracellular recordings from mice olfactory bulb (OB) and piriform 
cortex (pcx) and respiration data in response to odor stimuli and optogenetic stimulation of OB. CRCNS.
Org.DOI: https://doi.org/10.6080/K00C4SZB

Bolding KA, Nagappan S, Han BX, Wang F, Franks KM. 2020. Recurrent circuitry is required to stabilize piriform 
cortex odor representations across brain states. eLife 9:e53125. DOI: https://doi.org/10.7554/eLife.53125, 
PMID: 32662420

Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G. 1995. Gamma (40-100 Hz) oscillation in the 
hippocampus of the behaving rat. The Journal of Neuroscience 15:47–60. DOI: https://doi.org/10.1523/​
JNEUROSCI.15-01-00047.1995, PMID: 7823151

Bressler SL, Freeman WJ. 1980. Frequency analysis of olfactory system EEG in cat, rabbit, and rat. 
Electroencephalography and Clinical Neurophysiology 50:19–24. DOI: https://doi.org/10.1016/0013-4694(80)​
90319-3, PMID: 6159187

Buzsáki G. 2010. Neural SYNTAX: Cell assemblies, synapsembles, and readers. Neuron 68:362–385. DOI: 
https://doi.org/10.1016/j.neuron.2010.09.023, PMID: 21040841

Buzsáki G, Wang XJ. 2012. Mechanisms of gamma oscillations. Annual Review of Neuroscience 35:203–225. 
DOI: https://doi.org/10.1146/annurev-neuro-062111-150444, PMID: 22443509

Caixeta FV, Cornélio AM, Scheffer-Teixeira R, Ribeiro S, Tort ABL. 2013. Ketamine alters oscillatory coupling in 
the hippocampus. Scientific Reports 3:2348. DOI: https://doi.org/10.1038/srep02348, PMID: 23907109

Canolty RT, Knight RT. 2010. The functional role of cross-frequency coupling. Trends in Cognitive Sciences 
14:506–515. DOI: https://doi.org/10.1016/j.tics.2010.09.001, PMID: 20932795

Carmichael JE, Gmaz JM, van der Meer MAA. 2017. Gamma oscillations in the rat ventral striatum originate in 
the piriform cortex. The Journal of Neuroscience 37:7962–7974. DOI: https://doi.org/10.1523/JNEUROSCI.​
2944-15.2017, PMID: 28716962

Carmichael JE, Yuen MM, van der Meer MAA. 2019. Piriform Cortex Provides a Dominant Gamma LFP 
Oscillation in the Anterior Limbic System. bioRxiv. DOI: https://doi.org/10.1101/861021

Castro-Zaballa S, Cavelli ML, Gonzalez J, Nardi AE, Machado S, Scorza C, Torterolo P. 2018. Eeg 40 hz 
coherence decreases in REM sleep and ketamine model of psychosis. Frontiers in Psychiatry 9:766. DOI: 
https://doi.org/10.3389/fpsyt.2018.00766, PMID: 30705645

Cavelli M, Rojas-Líbano D, Schwarzkopf N, Castro-Zaballa S, Gonzalez J, Mondino A, Santana N, Benedetto L, 
Falconi A, Torterolo P. 2018. Power and coherence of cortical high-frequency oscillations during wakefulness 
and sleep. The European Journal of Neuroscience 48:2728–2737. DOI: https://doi.org/10.1111/ejn.13718, 
PMID: 28922535

Cavelli M, Castro-Zaballa S, Gonzalez J, Rojas-Líbano D, Rubido N, Velásquez N, Torterolo P. 2020. Nasal 
respiration entrains neocortical long-range gamma coherence during wakefulness. The European Journal of 
Neuroscience 51:1463–1477. DOI: https://doi.org/10.1111/ejn.14560, PMID: 31454438

Chae H, Banerjee A, Dussauze M, Albeanu DF. 2022. Long-Range functional loops in the mouse olfactory system 
and their roles in computing odor identity. Neuron 110:3970–3985.. DOI: https://doi.org/10.1016/j.neuron.​
2022.09.005, PMID: 36174573

Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI. 2009. Frequency of 
gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357. DOI: https://doi.org/​
10.1038/nature08573, PMID: 19924214

Courtiol E, Buonviso N, Litaudon P. 2019. Odorant features differentially modulate beta/gamma oscillatory 
patterns in anterior versus posterior piriform cortex. Neuroscience 409:26–34. DOI: https://doi.org/10.1016/j.​
neuroscience.2019.04.025, PMID: 31022464

Csicsvari J, Jamieson B, Wise KD, Buzsáki G. 2003. Mechanisms of gamma oscillations in the hippocampus of 
the behaving rat. Neuron 37:311–322. DOI: https://doi.org/10.1016/s0896-6273(02)01169-8, PMID: 
12546825

de Almeida L, Idiart M, Lisman JE. 2009. A second function of gamma frequency oscillations: An E % -max 
winner-take-all mechanism selects which cells fire. The Journal of Neuroscience 29:7497–7503. DOI: https://​
doi.org/10.1523/JNEUROSCI.6044-08.2009, PMID: 19515917

https://doi.org/10.7554/eLife.83044
https://doi.org/10.1113/jphysiol.1942.sp003955
http://www.ncbi.nlm.nih.gov/pubmed/16991539
https://doi.org/10.1152/jn.1996.76.1.520
https://doi.org/10.1152/jn.1996.76.1.520
http://www.ncbi.nlm.nih.gov/pubmed/8836241
https://doi.org/10.1101/004804
https://doi.org/10.1073/pnas.2014868117
http://www.ncbi.nlm.nih.gov/pubmed/33229572
https://doi.org/10.7554/eLife.22630
http://www.ncbi.nlm.nih.gov/pubmed/28379135
https://doi.org/10.1126/science.aat6904
http://www.ncbi.nlm.nih.gov/pubmed/30213885
https://doi.org/10.6080/K00C4SZB
https://doi.org/10.7554/eLife.53125
http://www.ncbi.nlm.nih.gov/pubmed/32662420
https://doi.org/10.1523/JNEUROSCI.15-01-00047.1995
https://doi.org/10.1523/JNEUROSCI.15-01-00047.1995
http://www.ncbi.nlm.nih.gov/pubmed/7823151
https://doi.org/10.1016/0013-4694(80)90319-3
https://doi.org/10.1016/0013-4694(80)90319-3
http://www.ncbi.nlm.nih.gov/pubmed/6159187
https://doi.org/10.1016/j.neuron.2010.09.023
http://www.ncbi.nlm.nih.gov/pubmed/21040841
https://doi.org/10.1146/annurev-neuro-062111-150444
http://www.ncbi.nlm.nih.gov/pubmed/22443509
https://doi.org/10.1038/srep02348
http://www.ncbi.nlm.nih.gov/pubmed/23907109
https://doi.org/10.1016/j.tics.2010.09.001
http://www.ncbi.nlm.nih.gov/pubmed/20932795
https://doi.org/10.1523/JNEUROSCI.2944-15.2017
https://doi.org/10.1523/JNEUROSCI.2944-15.2017
http://www.ncbi.nlm.nih.gov/pubmed/28716962
https://doi.org/10.1101/861021
https://doi.org/10.3389/fpsyt.2018.00766
http://www.ncbi.nlm.nih.gov/pubmed/30705645
https://doi.org/10.1111/ejn.13718
http://www.ncbi.nlm.nih.gov/pubmed/28922535
https://doi.org/10.1111/ejn.14560
http://www.ncbi.nlm.nih.gov/pubmed/31454438
https://doi.org/10.1016/j.neuron.2022.09.005
https://doi.org/10.1016/j.neuron.2022.09.005
http://www.ncbi.nlm.nih.gov/pubmed/36174573
https://doi.org/10.1038/nature08573
https://doi.org/10.1038/nature08573
http://www.ncbi.nlm.nih.gov/pubmed/19924214
https://doi.org/10.1016/j.neuroscience.2019.04.025
https://doi.org/10.1016/j.neuroscience.2019.04.025
http://www.ncbi.nlm.nih.gov/pubmed/31022464
https://doi.org/10.1016/s0896-6273(02)01169-8
http://www.ncbi.nlm.nih.gov/pubmed/12546825
https://doi.org/10.1523/JNEUROSCI.6044-08.2009
https://doi.org/10.1523/JNEUROSCI.6044-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19515917


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 20 of 23

Delorme A, Makeig S. 2004. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including 
independent component analysis. Journal of Neuroscience Methods 134:9–21. DOI: https://doi.org/10.1016/j.​
jneumeth.2003.10.009, PMID: 15102499

Eeckman FH, Freeman WJ. 1990. Correlations between unit firing and EEG in the rat olfactory system. Brain 
Research 528:238–244. DOI: https://doi.org/10.1016/0006-8993(90)91663-2, PMID: 2271924

El-Gaby M, Reeve HM, Lopes-Dos-Santos V, Campo-Urriza N, Perestenko PV, Morley A, Strickland LAM, 
Lukács IP, Paulsen O, Dupret D. 2021. An emergent neural coactivity code for dynamic memory. Nature 
Neuroscience 24:694–704. DOI: https://doi.org/10.1038/s41593-021-00820-w, PMID: 33782620

Fernández-Ruiz A, Oliva A, Soula M, Rocha-Almeida F, Nagy GA, Martin-Vazquez G, Buzsáki G. 2021. Gamma 
rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 
372:eabf3119. DOI: https://doi.org/10.1126/science.abf3119, PMID: 33795429

Fisahn A, Pike FG, Buhl EH, Paulsen O. 1998. Cholinergic induction of network oscillations at 40 Hz in the 
hippocampus in vitro. Nature 394:186–189.

Folschweiller S, Sauer J-F. 2022. Phase-specific pooling of sparse assembly activity by respiration-related brain 
oscillations. The Journal of Physiology 600:1991–2011. DOI: https://doi.org/10.1113/JP282631, PMID: 
35218015

Franks KM, Russo MJ, Sosulski DL, Mulligan AA, Siegelbaum SA, Axel R. 2011. Recurrent circuitry dynamically 
shapes the activation of piriform cortex. Neuron 72:49–56. DOI: https://doi.org/10.1016/j.neuron.2011.08.020

Freeman WJ. 1959. Distribution in time and space of prepyriform electrical activity. Journal of Neurophysiology 
22:644–665. DOI: https://doi.org/10.1152/jn.1959.22.6.644, PMID: 13824766

Freeman WJ. 1960. Correlation of elctrical activity of prepyriform cortex and behavior in cat. Journal of 
Neurophysiology 23:111–131. DOI: https://doi.org/10.1152/jn.1960.23.2.111, PMID: 13824765

Freeman WJ. 1964. A linear distributed feedback model for prepyriform cortex. Exp Neurol 10:525–547.
Freeman WJ. 1968. Relations between unit activity and evoked potentials in prepyriform cortex of cats. J 

Neurophysiol 31:337–348.
Freeman WJ, Skarda CA. 1985. Spatial EEG patterns, non-linear dynamics and perception: The neo-

sherringtonian view. Brain Research 357:147–175. DOI: https://doi.org/10.1016/0165-0173(85)90022-0, PMID: 
3006863

Fries P, Reynolds JH, Rorie AE, Desimone R. 2001. Modulation of oscillatory neuronal synchronization by 
selective visual attention. Science 291:1560–1563. DOI: https://doi.org/10.1126/science.1055465, PMID: 
11222864

Fries P, Nikolić D, Singer W. 2007. The gamma cycle. Trends in Neurosciences 30:309–316. DOI: https://doi.org/​
10.1016/j.tins.2007.05.005, PMID: 17555828

Fukunaga I, Berning M, Kollo M, Schmaltz A, Schaefer AT. 2012. Two distinct channels of olfactory bulb output. 
Neuron 75:320–329. DOI: https://doi.org/10.1016/j.neuron.2012.05.017, PMID: 22841316

Fukunaga I, Herb JT, Kollo M, Boyden ES, Schaefer AT. 2014. Independent control of gamma and theta activity 
by distinct interneuron networks in the olfactory bulb. Nature Neuroscience 17:1208–1216. DOI: https://doi.​
org/10.1038/nn.3760, PMID: 24997762

Geweke J. 1982. Measurement of linear dependence and feedback between multiple time series. Journal of the 
American Statistical Association 77:304–313. DOI: https://doi.org/10.1080/01621459.1982.10477803

González J, Cavelli M, Mondino A, Rubido N, Bl Tort A, Torterolo P. 2020. Communication through coherence by 
means of cross-frequency coupling. Neuroscience 449:157–164. DOI: https://doi.org/10.1016/j.neuroscience.​
2020.09.019, PMID: 32926953

Gonzalez J. 2023. Joaqgonzar / gamma_oscillations_pcx. 
swh:1:rev:3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5. Software Heritage. https://archive.softwareheritage.​
org/swh:1:dir:5d218d972db3b3181d75d9e4038a09285249cd45;origin=https://github.com/joaqgonzar/​
Gamma_Oscillations_PCx;visit=swh:1:snp:ebe78f49713bdeb5d4e17ceb4c3b74e89e61ceac;anchor=swh:1:rev:​
3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5

González J, Cavelli M, Mondino A, Castro-Zaballa S, Brankačk J, Draguhn A, Torterolo P, Tort ABL. 2023. 
Breathing modulates gamma synchronization across species. Pflugers Archiv 475:49–63. DOI: https://doi.org/​
10.1007/s00424-022-02753-0, PMID: 36190562

Gray CM, König P, Engel AK, Singer W. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar 
synchronization which reflects global stimulus properties. Nature 338:334–337. DOI: https://doi.org/10.1038/​
338334a0, PMID: 2922061

Hunt MJ, Adams NE, Średniawa W, Wójcik DK, Simon A, Kasicki S, Whittington MA. 2019. The olfactory bulb is a 
source of high-frequency oscillations (130-180 Hz) associated with a subanesthetic dose of ketamine in rodents. 
Neuropsychopharmacology 44:435–442. DOI: https://doi.org/10.1038/s41386-018-0173-y, PMID: 30140046

Ito J, Roy S, Liu Y, Cao Y, Fletcher M, Lu L, Boughter JD, Grün S, Heck DH. 2014. Whisker barrel cortex delta 
oscillations and gamma power in the awake mouse are linked to respiration. Nature Communications 5:3572. 
DOI: https://doi.org/10.1038/ncomms4572, PMID: 24686563

Kay LM, Freeman WJ. 1998. Bidirectional processing in the olfactory-limbic axis during olfactory behavior. 
Behavioral Neuroscience 112:541–553. DOI: https://doi.org/10.1037//0735-7044.112.3.541, PMID: 9676972

Kay LM, Beshel J, Brea J, Martin C, Rojas-Líbano D, Kopell N. 2009. Olfactory oscillations: the what, how and 
what for. Trends in Neurosciences 32:207–214. DOI: https://doi.org/10.1016/j.tins.2008.11.008, PMID: 
19243843

Lepousez G, Lledo PM. 2013. Odor discrimination requires proper olfactory fast oscillations in awake mice. 
Neuron 80:1010–1024. DOI: https://doi.org/10.1016/j.neuron.2013.07.025, PMID: 24139818

https://doi.org/10.7554/eLife.83044
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1016/0006-8993(90)91663-2
http://www.ncbi.nlm.nih.gov/pubmed/2271924
https://doi.org/10.1038/s41593-021-00820-w
http://www.ncbi.nlm.nih.gov/pubmed/33782620
https://doi.org/10.1126/science.abf3119
http://www.ncbi.nlm.nih.gov/pubmed/33795429
https://doi.org/10.1113/JP282631
http://www.ncbi.nlm.nih.gov/pubmed/35218015
https://doi.org/10.1016/j.neuron.2011.08.020
https://doi.org/10.1152/jn.1959.22.6.644
http://www.ncbi.nlm.nih.gov/pubmed/13824766
https://doi.org/10.1152/jn.1960.23.2.111
http://www.ncbi.nlm.nih.gov/pubmed/13824765
https://doi.org/10.1016/0165-0173(85)90022-0
http://www.ncbi.nlm.nih.gov/pubmed/3006863
https://doi.org/10.1126/science.1055465
http://www.ncbi.nlm.nih.gov/pubmed/11222864
https://doi.org/10.1016/j.tins.2007.05.005
https://doi.org/10.1016/j.tins.2007.05.005
http://www.ncbi.nlm.nih.gov/pubmed/17555828
https://doi.org/10.1016/j.neuron.2012.05.017
http://www.ncbi.nlm.nih.gov/pubmed/22841316
https://doi.org/10.1038/nn.3760
https://doi.org/10.1038/nn.3760
http://www.ncbi.nlm.nih.gov/pubmed/24997762
https://doi.org/10.1080/01621459.1982.10477803
https://doi.org/10.1016/j.neuroscience.2020.09.019
https://doi.org/10.1016/j.neuroscience.2020.09.019
http://www.ncbi.nlm.nih.gov/pubmed/32926953
https://archive.softwareheritage.org/swh:1:dir:5d218d972db3b3181d75d9e4038a09285249cd45;origin=https://github.com/joaqgonzar/Gamma_Oscillations_PCx;visit=swh:1:snp:ebe78f49713bdeb5d4e17ceb4c3b74e89e61ceac;anchor=swh:1:rev:3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5
https://archive.softwareheritage.org/swh:1:dir:5d218d972db3b3181d75d9e4038a09285249cd45;origin=https://github.com/joaqgonzar/Gamma_Oscillations_PCx;visit=swh:1:snp:ebe78f49713bdeb5d4e17ceb4c3b74e89e61ceac;anchor=swh:1:rev:3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5
https://archive.softwareheritage.org/swh:1:dir:5d218d972db3b3181d75d9e4038a09285249cd45;origin=https://github.com/joaqgonzar/Gamma_Oscillations_PCx;visit=swh:1:snp:ebe78f49713bdeb5d4e17ceb4c3b74e89e61ceac;anchor=swh:1:rev:3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5
https://archive.softwareheritage.org/swh:1:dir:5d218d972db3b3181d75d9e4038a09285249cd45;origin=https://github.com/joaqgonzar/Gamma_Oscillations_PCx;visit=swh:1:snp:ebe78f49713bdeb5d4e17ceb4c3b74e89e61ceac;anchor=swh:1:rev:3e01d6b0112e2739fbfb6d0fef2be95f2d48ebd5
https://doi.org/10.1007/s00424-022-02753-0
https://doi.org/10.1007/s00424-022-02753-0
http://www.ncbi.nlm.nih.gov/pubmed/36190562
https://doi.org/10.1038/338334a0
https://doi.org/10.1038/338334a0
http://www.ncbi.nlm.nih.gov/pubmed/2922061
https://doi.org/10.1038/s41386-018-0173-y
http://www.ncbi.nlm.nih.gov/pubmed/30140046
https://doi.org/10.1038/ncomms4572
http://www.ncbi.nlm.nih.gov/pubmed/24686563
https://doi.org/10.1037//0735-7044.112.3.541
http://www.ncbi.nlm.nih.gov/pubmed/9676972
https://doi.org/10.1016/j.tins.2008.11.008
http://www.ncbi.nlm.nih.gov/pubmed/19243843
https://doi.org/10.1016/j.neuron.2013.07.025
http://www.ncbi.nlm.nih.gov/pubmed/24139818


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 21 of 23

Li Q, Takeuchi Y, Wang J, Barcsai L, Pedraza LK, Kozák G, Nakai S, Kato S, Kobayashi K, Ohsawa M, Lőrincz ML, 
Devinsky O, Buzsaki G, Berényi A. 2022. Reinstating Olfactory Bulb Derived Limbic Gamma Oscillations 
Alleviates Depression. bioRxiv. DOI: https://doi.org/10.1101/2022.02.01.478683

Lisman JE, Jensen O. 2013. The theta-gamma neural code. Neuron 77:1002–1016. DOI: https://doi.org/10.​
1016/j.neuron.2013.03.007

Litaudon P, Garcia S, Buonviso N. 2008. Strong coupling between pyramidal cell activity and network oscillations 
in the olfactory cortex. Neuroscience 156:781–787. DOI: https://doi.org/10.1016/j.neuroscience.2008.07.077, 
PMID: 18790020

Lockmann ALV, Laplagne DA, Leão RN, Tort ABL. 2016. A respiration-coupled rhythm in the rat hippocampus 
independent of theta and slow oscillations. The Journal of Neuroscience 36:5338–5352. DOI: https://doi.org/​
10.1523/JNEUROSCI.3452-15.2016, PMID: 27170130

Lopes-dos-Santos V, Ribeiro S, Tort ABL. 2013. Detecting cell assemblies in large neuronal populations. Journal 
of Neuroscience Methods 220:149–166. DOI: https://doi.org/10.1016/j.jneumeth.2013.04.010, PMID: 
23639919

Lopes-Dos-Santos V, van de Ven GM, Morley A, Trouche S, Campo-Urriza N, Dupret D. 2018. Parsing 
hippocampal theta oscillations by nested spectral components during spatial exploration and memory-
guided behavior. Neuron 100:940–952.. DOI: https://doi.org/10.1016/j.neuron.2018.09.031, PMID: 
30344040

Makeig S, Debener S, Onton J, Delorme A. 2004. Mining event-related brain dynamics. Trends in Cognitive 
Sciences 8:204–210. DOI: https://doi.org/10.1016/j.tics.2004.03.008, PMID: 15120678

Martin C, Gervais R, Messaoudi B, Ravel N. 2006. Learning-Induced oscillatory activities correlated to odour 
recognition: a network activity. The European Journal of Neuroscience 23:1801–1810. DOI: https://doi.org/10.​
1111/j.1460-9568.2006.04711.x, PMID: 16623837

McNaughton BL, Barnes CA, O’Keefe J. 1983. The contributions of position, direction, and velocity to single unit 
activity in the hippocampus of freely-moving rats. Experimental Brain Research 52:41–49. DOI: https://doi.org/​
10.1007/BF00237147, PMID: 6628596

Moberly AH, Schreck M, Bhattarai JP, Zweifel LS, Luo W, Ma M. 2018. Olfactory inputs modulate respiration-
related rhythmic activity in the prefrontal cortex and freezing behavior. Nature Communications 9:1528. DOI: 
https://doi.org/10.1038/s41467-018-03988-1, PMID: 29670106

Mori K, Manabe H, Narikiyo K, Onisawa N. 2013. Olfactory consciousness and gamma oscillation couplings 
across the olfactory bulb, olfactory cortex, and orbitofrontal cortex. Frontiers in Psychology 4:743. DOI: https://​
doi.org/10.3389/fpsyg.2013.00743, PMID: 24137148

Nagappan S, Franks KM. 2021. Parallel processing by distinct classes of principal neurons in the olfactory cortex. 
eLife 10:e73668. DOI: https://doi.org/10.7554/eLife.73668, PMID: 34913870

Otazu GH, Chae H, Davis MB, Albeanu DF. 2015. Cortical feedback decorrelates olfactory bulb output in awake 
mice. Neuron 86:1461–1477. DOI: https://doi.org/10.1016/j.neuron.2015.05.023, PMID: 26051422

Pashkovski SL, Iurilli G, Brann D, Chicharro D, Drummey K, Franks KM, Panzeri S, Datta SR. 2020. Structure and 
flexibility in cortical representations of odour space. Nature 583:253–258. DOI: https://doi.org/10.1038/​
s41586-020-2451-1, PMID: 32612230

Poo C, Isaacson JS. 2009. Odor representations in olfactory cortex: “ sparse ” coding, global inhibition, and 
oscillations. Neuron 62:850–861. DOI: https://doi.org/10.1016/j.neuron.2009.05.022, PMID: 19555653

Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ. 1999. Perception’s shadow: long-distance 
synchronization of human brain activity. Nature 397:430–433. DOI: https://doi.org/10.1038/17120, PMID: 
9989408

Roland B, Deneux T, Franks KM, Bathellier B, Fleischmann A. 2017. Odor identity coding by distributed 
ensembles of neurons in the mouse olfactory cortex. eLife 6:e26337. DOI: https://doi.org/10.7554/eLife.26337, 
PMID: 28489003

Scheffer-Teixeira R, Belchior H, Caixeta FV, Souza BC, Ribeiro S, Tort ABL. 2012. Theta phase modulates multiple 
layer-specific oscillations in the CA1 region. Cerebral Cortex 22:2404–2414. DOI: https://doi.org/10.1093/​
cercor/bhr319, PMID: 22079925

Schneider M, Broggini AC, Dann B, Tzanou A, Uran C, Sheshadri S, Scherberger H, Vinck M. 2021. A mechanism 
for inter-areal coherence through communication based on connectivity and oscillatory power. Neuron 
109:4050–4067.. DOI: https://doi.org/10.1016/j.neuron.2021.09.037, PMID: 34637706

Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, Buzsáki G. 2014. Theta 
phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 84:470–485. 
DOI: https://doi.org/10.1016/j.neuron.2014.08.051, PMID: 25263753

Schoonover CE, Ohashi SN, Axel R, Fink AJP. 2021. Representational drift in primary olfactory cortex. Nature 
594:541–546. DOI: https://doi.org/10.1038/s41586-021-03628-7, PMID: 34108681

Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsáki G. 2008. Entrainment of neocortical neurons 
and gamma oscillations by the hippocampal theta rhythm. Neuron 60:683–697. DOI: https://doi.org/10.1016/j.​
neuron.2008.09.014, PMID: 19038224

Stettler DD, Axel R. 2009. Representations of odor in the piriform cortex. Neuron 63:854–864. DOI: https://doi.​
org/10.1016/j.neuron.2009.09.005, PMID: 19778513

Tallon-Baudry C, Bertrand O. 1999. Oscillatory gamma activity in humans and its role in object representation. 
Trends in Cognitive Sciences 3:151–162. DOI: https://doi.org/10.1016/s1364-6613(99)01299-1, PMID: 
10322469

https://doi.org/10.7554/eLife.83044
https://doi.org/10.1101/2022.02.01.478683
https://doi.org/10.1016/j.neuron.2013.03.007
https://doi.org/10.1016/j.neuron.2013.03.007
https://doi.org/10.1016/j.neuroscience.2008.07.077
http://www.ncbi.nlm.nih.gov/pubmed/18790020
https://doi.org/10.1523/JNEUROSCI.3452-15.2016
https://doi.org/10.1523/JNEUROSCI.3452-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27170130
https://doi.org/10.1016/j.jneumeth.2013.04.010
http://www.ncbi.nlm.nih.gov/pubmed/23639919
https://doi.org/10.1016/j.neuron.2018.09.031
http://www.ncbi.nlm.nih.gov/pubmed/30344040
https://doi.org/10.1016/j.tics.2004.03.008
http://www.ncbi.nlm.nih.gov/pubmed/15120678
https://doi.org/10.1111/j.1460-9568.2006.04711.x
https://doi.org/10.1111/j.1460-9568.2006.04711.x
http://www.ncbi.nlm.nih.gov/pubmed/16623837
https://doi.org/10.1007/BF00237147
https://doi.org/10.1007/BF00237147
http://www.ncbi.nlm.nih.gov/pubmed/6628596
https://doi.org/10.1038/s41467-018-03988-1
http://www.ncbi.nlm.nih.gov/pubmed/29670106
https://doi.org/10.3389/fpsyg.2013.00743
https://doi.org/10.3389/fpsyg.2013.00743
http://www.ncbi.nlm.nih.gov/pubmed/24137148
https://doi.org/10.7554/eLife.73668
http://www.ncbi.nlm.nih.gov/pubmed/34913870
https://doi.org/10.1016/j.neuron.2015.05.023
http://www.ncbi.nlm.nih.gov/pubmed/26051422
https://doi.org/10.1038/s41586-020-2451-1
https://doi.org/10.1038/s41586-020-2451-1
http://www.ncbi.nlm.nih.gov/pubmed/32612230
https://doi.org/10.1016/j.neuron.2009.05.022
http://www.ncbi.nlm.nih.gov/pubmed/19555653
https://doi.org/10.1038/17120
http://www.ncbi.nlm.nih.gov/pubmed/9989408
https://doi.org/10.7554/eLife.26337
http://www.ncbi.nlm.nih.gov/pubmed/28489003
https://doi.org/10.1093/cercor/bhr319
https://doi.org/10.1093/cercor/bhr319
http://www.ncbi.nlm.nih.gov/pubmed/22079925
https://doi.org/10.1016/j.neuron.2021.09.037
http://www.ncbi.nlm.nih.gov/pubmed/34637706
https://doi.org/10.1016/j.neuron.2014.08.051
http://www.ncbi.nlm.nih.gov/pubmed/25263753
https://doi.org/10.1038/s41586-021-03628-7
http://www.ncbi.nlm.nih.gov/pubmed/34108681
https://doi.org/10.1016/j.neuron.2008.09.014
https://doi.org/10.1016/j.neuron.2008.09.014
http://www.ncbi.nlm.nih.gov/pubmed/19038224
https://doi.org/10.1016/j.neuron.2009.09.005
https://doi.org/10.1016/j.neuron.2009.09.005
http://www.ncbi.nlm.nih.gov/pubmed/19778513
https://doi.org/10.1016/s1364-6613(99)01299-1
http://www.ncbi.nlm.nih.gov/pubmed/10322469


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 22 of 23

Tort ABL, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. 2007. On the formation of gamma-coherent cell 
assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. PNAS 104:13490–13495. DOI: 
https://doi.org/10.1073/pnas.0705708104, PMID: 17679692

Tort ABL, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ. 2008. Dynamic cross-frequency 
couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze 
task. PNAS 105:20517–20522. DOI: https://doi.org/10.1073/pnas.0810524105, PMID: 19074268

Tort ABL, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H. 2009. Theta-gamma coupling increases during 
the learning of item-context associations. PNAS 106:20942–20947. DOI: https://doi.org/10.1073/pnas.​
0911331106, PMID: 19934062

Tort ABL, Komorowski R, Eichenbaum H, Kopell N. 2010. Measuring phase-amplitude coupling between 
neuronal oscillations of different frequencies. Journal of Neurophysiology 104:1195–1210. DOI: https://doi.​
org/10.1152/jn.00106.2010, PMID: 20463205

Tort ABL, Brankačk J, Draguhn A. 2018. Respiration-entrained brain rhythms are global but often overlooked. 
Trends in Neurosciences 41:186–197. DOI: https://doi.org/10.1016/j.tins.2018.01.007, PMID: 29429805

Trouche S, Perestenko PV, van de Ven GM, Bratley CT, McNamara CG, Campo-Urriza N, Black SL, Reijmers LG, 
Dupret D. 2016. Recoding a cocaine-place memory engram to a neutral engram in the hippocampus. Nature 
Neuroscience 19:564–567. DOI: https://doi.org/10.1038/nn.4250, PMID: 26900924

Vanderwolf CH. 2000. What is the significance of gamma wave activity in the pyriform cortex? Brain Research 
877:125–133. DOI: https://doi.org/10.1016/s0006-8993(00)02568-3, PMID: 10986324

Vinck M, Lima B, Womelsdorf T, Oostenveld R, Singer W, Neuenschwander S, Fries P. 2010. Gamma-phase 
shifting in awake monkey visual cortex. The Journal of Neuroscience 30:1250–1257. DOI: https://doi.org/10.​
1523/JNEUROSCI.1623-09.2010, PMID: 20107053

Wang XJ, Rinzel J. 1992. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural 
Computation 4:84–97. DOI: https://doi.org/10.1162/neco.1992.4.1.84

Wang XJ, Buzsáki G. 1996. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network 
model. The Journal of Neuroscience 16:6402–6413. DOI: https://doi.org/10.1523/JNEUROSCI.16-20-06402.​
1996, PMID: 8815919

Womelsdorf T, Fries P, Mitra PP, Desimone R. 2006. Gamma-Band synchronization in visual cortex predicts speed 
of change detection. Nature 439:733–736. DOI: https://doi.org/10.1038/nature04258, PMID: 16372022

Womelsdorf T, Lima B, Vinck M, Oostenveld R, Singer W, Neuenschwander S, Fries P. 2012. Orientation 
selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle. PNAS 
109:4302–4307. DOI: https://doi.org/10.1073/pnas.1114223109, PMID: 22371570

Yang Q, Zhou G, Noto T, Templer JW, Schuele SU, Rosenow JM, Lane G, Zelano C. 2022. Smell-induced gamma 
oscillations in human olfactory cortex are required for accurate perception of odor identity. PLOS Biology 
20:e3001509. DOI: https://doi.org/10.1371/journal.pbio.3001509, PMID: 34986157

Yanovsky Y, Ciatipis M, Draguhn A, Tort ABL, Brankačk J. 2014. Slow oscillations in the mouse hippocampus 
entrained by nasal respiration. The Journal of Neuroscience 34:5949–5964. DOI: https://doi.org/10.1523/​
JNEUROSCI.5287-13.2014, PMID: 24760854

Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY. 2008. Transient induced gamma-band response in 
EEG as a manifestation of miniature saccades. Neuron 58:429–441. DOI: https://doi.org/10.1016/j.neuron.​
2008.03.027, PMID: 18466752

Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Müller C, Ponsel S, Yanovsky Y, Brankačk J, Tort ABL, 
Draguhn A. 2017. Selective entrainment of gamma subbands by different slow network oscillations. PNAS 
114:4519–4524. DOI: https://doi.org/10.1073/pnas.1617249114, PMID: 28396398

https://doi.org/10.7554/eLife.83044
https://doi.org/10.1073/pnas.0705708104
http://www.ncbi.nlm.nih.gov/pubmed/17679692
https://doi.org/10.1073/pnas.0810524105
http://www.ncbi.nlm.nih.gov/pubmed/19074268
https://doi.org/10.1073/pnas.0911331106
https://doi.org/10.1073/pnas.0911331106
http://www.ncbi.nlm.nih.gov/pubmed/19934062
https://doi.org/10.1152/jn.00106.2010
https://doi.org/10.1152/jn.00106.2010
http://www.ncbi.nlm.nih.gov/pubmed/20463205
https://doi.org/10.1016/j.tins.2018.01.007
http://www.ncbi.nlm.nih.gov/pubmed/29429805
https://doi.org/10.1038/nn.4250
http://www.ncbi.nlm.nih.gov/pubmed/26900924
https://doi.org/10.1016/s0006-8993(00)02568-3
http://www.ncbi.nlm.nih.gov/pubmed/10986324
https://doi.org/10.1523/JNEUROSCI.1623-09.2010
https://doi.org/10.1523/JNEUROSCI.1623-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20107053
https://doi.org/10.1162/neco.1992.4.1.84
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
http://www.ncbi.nlm.nih.gov/pubmed/8815919
https://doi.org/10.1038/nature04258
http://www.ncbi.nlm.nih.gov/pubmed/16372022
https://doi.org/10.1073/pnas.1114223109
http://www.ncbi.nlm.nih.gov/pubmed/22371570
https://doi.org/10.1371/journal.pbio.3001509
http://www.ncbi.nlm.nih.gov/pubmed/34986157
https://doi.org/10.1523/JNEUROSCI.5287-13.2014
https://doi.org/10.1523/JNEUROSCI.5287-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24760854
https://doi.org/10.1016/j.neuron.2008.03.027
https://doi.org/10.1016/j.neuron.2008.03.027
http://www.ncbi.nlm.nih.gov/pubmed/18466752
https://doi.org/10.1073/pnas.1617249114
http://www.ncbi.nlm.nih.gov/pubmed/28396398


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gonzalez et al. eLife 2023;12:e83044. DOI: https://doi.org/10.7554/eLife.83044 � 23 of 23

Appendix 1
Respiration-driven low-gamma oscillations fade under anesthesia
After unveiling the mechanisms responsible for the respiration-driven low-gamma activity in the 
PCx, we investigated whether these oscillations are state-dependent. To that end, we analyzed PCx 
LFP recordings during ketamine/xylazine anesthesia. Figure  2—figure supplement 1 shows the 
LFP spectrogram before and after ketamine/xylazine administration. Anesthesia promoted large-
amplitude, slow LFP oscillations while greatly reducing gamma power, an effect that lasted ~30 min 
(Figure 2—figure supplement 1A). These results can also be readily seen in the average power 
spectra of awake vs. anesthetized animals (Figure 2—figure supplement 1B), thus confirming that 
PCx low-gamma oscillations depend on the brain state. Next, we investigated if ketamine/xylazine 
anesthesia alters gamma coupling to respiration by analyzing respiration-LFP phase-amplitude 
comodulograms. We found that low-gamma oscillations are no longer coupled to respiration 
during general anesthesia (Figure  2—figure supplement 1C), despite the respiration-entrained 
rhythm being still present in the PCx LFP (Figure 2—figure supplement 1D and E). Intriguingly, 
the respiration-LFP comodulogram revealed coupling to a faster gamma activity (>80  Hz) under 
anesthesia (Figure 2—figure supplement 1C), which we deem likely to relate to the high-frequency 
oscillations evoked by sub-anesthetic doses of ketamine (Caixeta et  al., 2013; Castro-Zaballa 
et al., 2018; Hunt et al., 2019), though it exhibited no power spectrum peak (Figure 2—figure 
supplement 1B).

Methods
Ketamine/xylazine anesthesia
Ketamine/xylazine (100/10  mg/kg) was administered intraperitoneally in 11 of the 13  mice from 
the control dataset, inducing stable anesthesia during a 30–45 min time period. A heating pad was 
used to maintain body temperature during this time. For all analyses, we employed the first 30 min 
following the slow-oscillation onset. A single animal was discarded since no electrophysiological 
markers of anesthesia were observed.

Independent component analysis on all odors
We employed the ICA sklearn function on concatenated time series of smoothed principal cell spiking 
activity using all 100–400 ms windows following inhalation start during odor presentation for all six 
odors (0.3% v./v.). We analyzed the first six independent components, setting n_components = 6. Of 
note, the choice of the time window was motivated by inspecting the time period of peak gamma 
activity following inhalation. For comparison, we also calculated single-odor ICA decompositions 
using the same time window.

https://doi.org/10.7554/eLife.83044
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