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Abstract Diabetes is caused by the inability of electrically coupled, functionally heterogeneous 
β-cells within the pancreatic islet to provide adequate insulin secretion. Functional networks have 
been used to represent synchronized oscillatory [Ca2+] dynamics and to study β-cell subpopulations, 
which play an important role in driving islet function. The mechanism by which highly synchronized 
β-cell subpopulations drive islet function is unclear. We used experimental and computational 
techniques to investigate the relationship between functional networks, structural (gap junction) 
networks, and intrinsic β-cell dynamics in slow and fast oscillating islets. Highly synchronized 
subpopulations in the functional network were differentiated by intrinsic dynamics, including meta-
bolic activity and KATP channel conductance, more than structural coupling. Consistent with this, 
intrinsic dynamics were more predictive of high synchronization in the islet functional network as 
compared to high levels of structural coupling. Finally, dysfunction of gap junctions, which can 
occur in diabetes, caused decreases in the efficiency and clustering of the functional network. These 
results indicate that intrinsic dynamics rather than structure drive connections in the functional 
network and highly synchronized subpopulations, but gap junctions are still essential for overall 
network efficiency. These findings deepen our interpretation of functional networks and the forma-
tion of functional subpopulations in dynamic tissues such as the islet.

Editor's evaluation
The paper uses both computational and laboratory approaches to test the hypothesis that connec-
tivity in β cells within the islet is due to metabolic rather than gap junctional coupling efficacy. This 
will be an important advance for understanding the role of heterogeneous β cell populations in 
driving synchronized oscillations by islets and by extension the oscillatory insulin secretion observed 
in vivo. There will be implications of the work for understanding the mechanisms of type 2 diabetics 
and β cell function in general.

Introduction
Diabetes mellitus is a global epidemic afflicting >500M adults world-wide (Sun et al., 2022) and is 
associated with dysfunction or death of insulin-producing β-cells within pancreatic islets. β-cells are 
electrically coupled through connexin36 (Cx36) gap junctions (Benninger et al., 2008; Serre-Beinier 
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et al., 2000; Ravier et al., 2005), and are functionally heterogeneous. Electrical coupling and hetero-
geneity are both central to regulating the homeostasis of glucose and other nutrients (Benninger and 
Kravets, 2022; Pørksen et al., 2002; Matveyenko et al., 2012; Bratusch-Marrain et al., 1986). Gap 
junction electrical coupling is essential for synchronizing β-cell electrical dynamics and allowing insulin 
to be released in robust coordinated pulses (Benninger et al., 2008; Benninger and Kravets, 2022; 
Weitz et al., 2021; Head et al., 2012). Functional heterogeneity allows improved islet robustness 
(Dwulet et al., 2021) and control of islet pulsatile dynamics (Benninger and Kravets, 2022; Dwulet 
et al., 2021; Dwulet et al., 2019). In diabetes, there can be a lack of intra-islet β-cell communication 
(Matveyenko et al., 2012; Satin et al., 2015; Farnsworth and Benninger, 2014) and an insufficient 
number of adequately functioning β-cells (Matveyenko et al., 2012; Bratusch-Marrain et al., 1986; 
Weitz et al., 2021; Head et al., 2012). Therefore, the role of islet communication, β-cell heteroge-
neity, and collective synchronization is fundamental to understanding islet dysfunction in diabetes.

Network analysis is a tool used to quantify relationships between interacting parts of a system 
(Koutrouli et  al., 2020; Strogatz, 2001; Newman, 2003; Watts and Strogatz, 1998; Lynn and 
Bassett, 2019), represented by its entities (nodes) and their interactions (edges). The islet can be 
studied using structural or functional networks. In a structural network, edges represent physical 
conduits for communication (Lynn and Bassett, 2019; Bullmore and Sporns, 2009; Gansterer et al., 

Table 1. Essential network statistics and types.
Left: Five network statistics used to quantify the network in this paper. Representative networks show an example of the statistic 
in red and the rest of the network in blue. Right: Five network types referred to in this paper. Regular, small world, and random 
networks are all made with the same number of nodes and edges, but different configurations of edges. Scale free network shows 
three “hub” nodes where node size is proportional to degree.

Network essentials

Network statistics Network types

Degree Number of edges for a given node

‍ ‍

Regular
A network with ordered connections: high 
clustering coefficient and long average path 
length

‍ ‍

Degree 
distribution

The distribution of the network’s 
degrees

Small 
world

A regular network with a few rewired edges: 
high clustering coefficient and short average 
path length

‍ ‍

Clustering 
coefficient

Likelihood of how often neighbors of 
a node share connections with each 
other

‍

3
(
# of triangles

)
(
# of connected triples

)
‍
 

 
‍ ‍

Random
A network with random connections has low 
clustering coefficient and short average path 
length

‍ ‍

Shortest 
path

Shortest distance between any two 
nodes

‍ ‍

Scale-free
A network whose degree distribution follows a 
power law, such that there are a few very highly 
connected nodes called hubs

‍ ‍

Efficiency Inverse of the shortest path Weighted A network whose edges are weighted by some 
edge property

‍ ‍

https://doi.org/10.7554/eLife.83147
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2019; Rings et al., 2022), which include gap junctions in the islet. However, islet networks are often 
studied using a functional network representation, where edges connect β-cell pairs that have highly 
correlated [Ca2+] dynamics (Lynn and Bassett, 2019; Chialvo, 2010; Stožer et al., 2013; Johnston 
et  al., 2016). β-Cell functional networks have been suggested to follow a scale-free distribution 
(Stožer et al., 2013) with high clustering (Gosak et al., 2018; Markovič et al., 2015) and ‘small-
world-like qualities’ (see Table 1). In small world networks, there exists a subset of highly synchronized 
nodes (referred to as ‘β-cell hubs’ in the islet; Bullmore and Sporns, 2009; Johnston et al., 2016), 
which have stronger than average influence over network dynamics. Optogenetic-mediated hyper-
polarization of these β-cell hubs has been demonstrated to perturb overall islet coordination, and 
these hubs are disrupted under diabetogenic conditions (Johnston et al., 2016). Therefore, in theory, 
preferential removal of these hubs will stop the network from functioning. However, it has been ques-
tioned whether this small world topology is possible in the islet, as individual cells (or small subpopu-
lations of cells) do not have enough electrical influence to control the entire islet (Dwulet et al., 2021; 
Satin et al., 2020; Rutter et al., 2020).

Oscillations of [Ca2+] in β-cells are driven by the activity of glucokinase, closure of ATP-sensitive K+ 
(KATP) channels, and subsequent bursts of action potentials. Therefore, synchronized [Ca2+] dynamics, 
and the corresponding functional network, may be influenced by both gap junction communication 
and factors influencing intrinsic cell dynamics such as glucokinase and KATP activity. Because debate 
exists over the topology of the islet network and whether β-cell subpopulations can dictate islet 
dynamics, an important question is how the functional network and β-cell hubs are driven by structural 
communication compared to intrinsic cell dynamics. This question is important in our understanding 
of islet dynamics in diabetes because both the gap junctions (e.g. the structural network) (St. Clair 
et  al., 2020; Corezola do Amaral et  al., 2020; Farnsworth et  al., 2022; Hodson et  al., 2013; 
Carvalho et al., 2012; Farnsworth et al., 2016) and synchronization (e.g. the functional network) 
(Pørksen et al., 2002; Satin et al., 2015; Corezola do Amaral et al., 2020; Hodson et al., 2013; 
Haefliger et al., 2013) can be impaired in diabetic conditions.

To investigate the relationship between functional networks, structural networks, and the intrinsic 
dynamics of the β-cells, we framed our study around three questions. Our first question asks, are highly 
correlated subpopulations (β-cell hubs) within the functional network differentiated with respect to 
the structural network or by their intrinsic properties? While sometimes assumed, it is unclear whether 
β-cell hubs show significantly greater structural connections or whether they are differentiated by their 
intrinsic dynamics. Our second question asks: what does the islet functional network indicate about 
its underlying structure or the intrinsic dynamics of individual cells? That is, are edges within the func-
tional network representing strong structural connections or pathways between β-cell nodes? Finally, 
as gap junctions may become dysfunctional in diabetic conditions, our third question asks: how do 
changes to the structural network influence the islet functional network? By answering these ques-
tions, we provide insight into the relationship between structure, function, and intrinsic cell dynamics 
in the pancreatic islet.

Results
Simulations of fast Ca2+ oscillations reveal that β-cell hubs have a more 
pronounced difference in metabolic activity than gap junction coupling
To investigate the relationships between functional and structural networks, we first analyzed a simu-
lated β-cell network. We used a well-validated multi-cellular coupled ODE model, which describes the 
electrophysiological properties of the β-cells (Dwulet et al., 2019; Notary et al., 2016; Hraha et al., 
2014; Westacott et al., 2017) and results in fast calcium oscillations (<2 min). This model is based on 
the Cha-Noma model (Cha et al., 2011) and contains detailed kinetics of the main ion channels in the 
islet that affect membrane potential, including the voltage-gated Ca2+ channels (CaV), KATP channels, 
or store-operated currents. We include heterogeneity in parameters underlying cellular excitability, 
such as the rate of glucokinase (kglyc) and maximum KATP conductance (gKATP). We also included hetero-
geneity in the gap junction electrical coupling (gcoup) (Figure 1a). The model was simulated at 11 mM 
glucose.

Our first question asks whether subpopulations that emerge from the β-cell functional network are 
driven by the structural network or by intrinsic properties of the cells. We extracted the islet functional 

https://doi.org/10.7554/eLife.83147
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network by assigning a node to each cell and an edge between any cell pair for which the intracel-
lular free Ca2+ ([Ca2+]) time course showed a correlation coefficient greater than a threshold (Rth). The 
degree was defined as the number of edges a given node possesses (Table 1). In order to study similar 
subpopulations as in previous studies, we set the threshold Rth to match previous studies which show 
a normalized degree distribution that includes many cells with a low degree and few cells with a high 
degree (Stožer et al., 2013; Johnston et al., 2016) (see Methods) (Figure 1b and Table 1). We then 
identified β-cell hubs as cells in which the normalized functional network degree was greater than 

Figure 1. Analysis of parameters underlying functionally connected cells from the Cha-Noma model, representing 
fast oscillations. (a) Schematic of 1000 β-cell computational model, with cells false-colored by heterogeneity in rate 
of glucokinase, kglyc (left) and gap junction conductance, gcoup (right) parameter values. (b) Distribution of functional 
connections (edges), determined from functional network analysis. Colors show five simulated islets. Hub cells 
(red outline) are any cell with >60% of maximum number of links. (c) Two-dimensional slice of the simulated islet, 
with lines (edges) representing functional connections between synchronized cells. Hub cells indicated in red. 
Slice is taken from middle of islet (see inset). (d) Representative [Ca2+] time course of a hub (red) and non-hub 
(blue). (e) Average rate of glucose metabolism (kglyc) values compared between hubs and non-hubs in a Cha-Noma 
simulated islet. Each data point represents the averaged values for a single islet. Effect size was 2.85. (f) As in e for 
maximum conductance of ATP-sensitive potassium channel (gKATP). Effect size was 0.31. (g) As in e for gap junction 
conductance (gcoup). Effect size was 0.82. (h) Pearson correlation coefficient between duty cycle and kglyc, gKATP, and 
gcoup for all cells. Significance in e–g was determined by paired Student’s t-test. *p ≤ 0.05 and ***p ≤ 0.001. In e–g 
each data point corresponds to the average value over a single simulated islet. Error bars represent s.e.m.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Functional network sensitivity to threshold in Cha-Noma model.

Figure supplement 2. Functional network dependence with alternative hub cell definition in Cha-Noma model.

https://doi.org/10.7554/eLife.83147
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60%, in accordance with prior studies that identified β-cell hubs (Johnston et al., 2016; Figure 1b–d). 
β-Cell hubs made up 5–12% of the coupled Cha-Noma model.

We examined the relationship between functional network-derived β-cell hubs and parameters 
impacting their intrinsic dynamics. Glucokinase conversion of glucose to glucose 6-phosphate is 
the rate-limiting step in glycolysis, therefore the rate of glucokinase activity (kglyc) is a proxy for the 
metabolic activity in the cell. The maximal open-channel KATP conductance (gKATP) is equivalent to the 
number of KATP channels, which also influences β-cell dynamics. β-Cell hubs had a significantly higher 
kglyc than non-hubs (mean± SD 0.14±0.0007 ms–1 vs 0.12±0.0017 ms–1, p<0.001) (Figure 1e) but did 
not differ in gKATP (2.27±0.05 nS vs. 2.31±0.01 nS, p=0.18) (Figure 1f). These results indicate that in 
the coupled Cha-Noma model, β-cell hubs are determined by their metabolic activity more than solely 
the number of KATP channels. Interestingly, β-cell hubs had only a slightly higher gcoup than non-hubs 
(0.74±0.07 pS vs. 0.63±0.01 pS, p=0.032) (Figure 1g). To investigate the influence of these parame-
ters on Ca2+ dynamics in this model, we correlated the parameter values with [Ca2+] oscillation duty 
cycle for each simulated islet. In the coupled Cha-Noma model, kglyc was more strongly correlated 
with duty cycle than gKATP (p<0.0001) and gcoup (p<0.0001) (Figure 1h). Therefore, β-cell hubs were 
most strongly differentiated by kglyc, which in turn was strongly correlated with the [Ca2+] oscillation 
duty cycle.

To ensure consistency in our findings, we repeated the analysis with several thresholds (Rth) 
(Figure  1—figure supplement 1a). For all thresholds analyzed, the difference between hubs and 
non-hubs was greater for kglyc than for gcoup (Figure 1—figure supplement 1b and c), with kglyc being 
significantly higher in hubs for all five thresholds and gcoup being significantly higher in hubs for only 
two thresholds. We also used an alternative method to identify β-cell hubs, as the 10% of cells with the 
highest network degree. With this alternative definition, β-cell hubs still had a significantly higher kglyc, 
a slightly higher gcoup and similar gKATP as compared to non-hubs (Figure 1—figure supplement 2).

These results indicate that both rate of glucokinase activity and gap junction coupling correlate with 
high cellular synchronization, where the rate of glucokinase activity has a much stronger correlation.

Simulations of slow Ca2+ oscillations reveal that KATP channel 
conductance and gap junction coupling are distinct features of β-cell 
hubs
In addition to fast oscillations modeled in Figure 1, β-cells exhibit slow Ca2+ oscillations with periods 
greater than 2 min (Liu et  al., 1998). We next used the integrated oscillator model (IOM) (Mari-
nelli et  al., 2021; Marinelli et  al., 2022) that describes details of the metabolic oscillations that 
underlie slow Ca2+ oscillations to test whether β-cell hubs emerging from a model of slow oscillations 
were differentiated by their gap junction coupling or intrinsic dynamics. Unlike the Cha-Noma model 
(Figure  1), the IOM has not previously been coupled using more than two cells, which is neces-
sary for studying heterogeneity. We formed a coupled IOM, again with heterogeneity in parameters 
describing the rate of glucokinase activity (kglyc) (referred to as vGK in previous manuscripts; Marinelli 
et al., 2021; Marinelli et al., 2022), maximum KATP conductance (gKATP), and structural gap junction 
electrical coupling (gcoup) and simulated at 11 mM glucose. Due to limitations in computational power, 
we limited the islets to 260 cells (Figure 2a). We again chose a threshold to obtain a ‘scale-free-like’ 
distribution (Figure 2b and c). β-Cell hubs made up 3–7% of the coupled IOM.
β-Cell hubs did not differ in kglyc compared to non-hubs (mean ± SD 3.67±0.47 ms–1 vs 3.36±0.07 

ms–1, p=0.19) (Figure  2d). However, β-cell hubs had significantly lower gKATP (20.1±0.3  nS vs. 
20.4±0.1 nS, p=0.04) (Figure 2e) and significantly higher gcoup (9.5±1.2 pS vs. 6.0±0.1 pS, p=0.0028) 
(Figure 2f). These findings were less stable than the Cha-Noma model when the threshold Rth was 
altered (Figure 2—figure supplement 1). When identifying β-cell hubs as the 10% of cells with the 
highest network degree, hubs still had significantly higher gcoup but similar gKATP and kglyc compared to 
non-hubs (Figure 2—figure supplement 2).

To test why hubs in the coupled IOM were determined by gKATP more than kglyc (as in the Cha-Noma 
model), we again correlated duty cycle with parameter value. As opposed to the coupled Cha-Noma 
model (Figure 1h), in the coupled IOM, duty cycle was strongly negatively correlated with gKATP and 
weakly positively correlated with kglyc (gKATP vs. kglyc: p<0.0001 and gcoup vs kglyc: p=0.0002) (Figure 2g). 
Therefore, independent of oscillation type and computational model, the parameter that was most 
correlated with duty cycle was also most influential in determining hubs in the functional network.

https://doi.org/10.7554/eLife.83147
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To enable direct comparisons between the coupled Cha-Noma and coupled IOM, we re-simu-
lated the coupled Cha-Noma model with similar numbers of cells as the IOM. In the smaller coupled 
Cha-Noma model, the influence of kglyc on β-cell hubs became more similar to the influence of gcoup 
(Figure  2h and j). There was still no significant difference in gKATP for β-cell hubs and non-hubs 
(Figure 2i). These results suggest that as the islet becomes smaller, the influence of gap junction 
coupling in determining β-cell hubs grows to be comparable to the intrinsic dynamics (kglyc, gKATP) that 
drive Ca2+ oscillation duty cycle.

Elevated metabolic activity, but not elevated gap junction permeability, 
is observed experimentally in highly synchronized cells
We next applied experimental approaches to investigate the β-cell functional network and the prop-
erties of highly synchronized cells. We performed time-lapse imaging of [Ca2+] within islets isolated 
from Mip-CreER;Rosa-LSL-GCamP6s mice that express GCamP6s in β-cells (β-GCamP6s mice, see 
Methods). We identified β-cells that showed synchronous slow oscillations in [Ca2+] (Figure 3a and b). 
We extracted the functional network from [Ca2+] oscillations in the second phase using a threshold of 
Rth = 0.9 for all islets analyzed (Figure 3c), where this threshold was chosen to reflect a scale-free-like 

Figure 2. Analysis of parameters underlying functionally connected cells from the integrated oscillator model, representing slow oscillations. (a) Two-
dimensional slice of the simulated islet from slow simulation, with lines (edges) representing functional connections between synchronized cells. Hub 
cells indicated in red. Slice is taken from middle of islet (see inset). (b) Distribution of functional connections (edges), determined from functional 
network analysis. Colors show five simulated islets. Hub cells (red outline) are any cell with >60% of maximum number of links. (c) Representative [Ca2+] 
time course of a hub (red) and non-hub (blue) from slow islet simulation. (d) Average rate of glucokinase (kglyc) values compared between hubs and non-
hubs in a slow simulated islet, retrospectively analyzed. Each data point represents the averaged values for a whole islet. Effect size was 0.65. (e) As in 
d for maximum conductance of ATP-sensitive potassium channel (gKATP). Effect size was 1.27. (f) As in d for gap junction conductance (gcoup). Effect size 
was 2.94. (g) Pearson correlation coefficient between duty cycle and kglyc, gKATP, and gcoup for all cells. (h) As in d but for fast model with 260 cells. (i) As in 
e but for fast model with 260 cells. (j) As in f but for fast model with 260 cells. Significance in d–j was determined by paired Student’s t-test. *p≤0.05 and 
**p≤0.01. In d–j each data point corresponds to the average value over a single simulated islet. Error bars represent s.e.m.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Functional network sensitivity to threshold in integrated oscillator model (IOM).

Figure supplement 2. Functional network dependence with alternative hub cell definition in integrated oscillator model.

https://doi.org/10.7554/eLife.83147
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Figure 3. Experimental comparison between the functional network from slow β-cell oscillations, NAD(P)H activity, and coupling conductance. 
(a) Mouse pancreatic islet expressing fluorescent calcium indicator GCaMP6s in β-cells. Glucose level 11 mM. (b) GCamp6s time traces recorded 
at 2 and 11 mM glucose. Red curves represent dynamics of the most coordinated cells. These cells had highest number of edges, i.e., normalized 
degree >0.9. Green curves represent dynamics of the least coordinated cells, i.e., normalized degree <0.1, the rest of the cells are shown in gray. 
Only second phase (shown in black box) was used for functional network analysis. (c) Ca2+-based functional network of the islet shown in (e). Red 
dots represent most coordinated cells, and green dots – least coordinated cells which had at least 1 edge. (d) Degree distribution of all 11 analyzed 
islets. Threshold of Rth = 0.9 was used to filter the Pearson-based coordination matrix and obtain the functional network. (e) Left: Mouse pancreatic 
islet expressing fluorescent calcium indicator GCaMP6s. Glucose level 11 mM. Middle: NAD(P)H autofluorescence of the islet and the same cell layer, 
recorded at 2 mM glucose. Right: NAD(P)H autofluorescence recorded at 11 mM glucose. (f) Change of the NAD(P)H levels in each cell in response 
to glucose elevation, with respect to the islet average change. Metabolic activity here is compared between β-cell hubs and non-hubs. (g) Change in 
NAD(P)H levels in response to glucose elevation, with respect to the islet average change: here comparison is made for the most coordinated cells 
(normalized degree >0.9) with the less coordinated cells (normalized degree >0.8, >0.7, >0.6, …,<0.2, <0.1). Linear regression resulted in a trending 
relationship between normalized degree and NAD(P)H with slope of –0.126 (p=0.079). (f, g) represent n=5 islets with a total of 131 cells. Each dot 
represents the average NAD(P)H level for cells with respective degrees in an islet. (h) Rhodamine-123 fluorescence of the islet and the same cell layer as 
in (a), recorded immediately before photobleaching of the top half of each islet (left, red), immediately after photobleaching (middle, yellow) and 360 s 
after the photobleaching (right, green). (i) Fluorescence recovery after photobleaching (FRAP) recovery rate (s–1) between β-cell hubs and non-hubs. 
(j) FRAP recovery rate (s–1) in each of the photobleached cells: here the comparison is made for the most coordinated cells (normalized degree >90%) 
with the less coordinated cells (normalized degree >80, >70, >60, …<20,<10%). Linear regression resulted in a non-significant relationship between 
normalized degree and recovery rate (p=0.29). (i, j) shows results from 9 islets. Data points represent the average recovery rate for cells with respective 
degrees in an islet. **p≤0.01. In all panels, error bars represent s.e.m.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Experimental results for fast and mixed oscillations reveal no relationship between gap junction conductance and functional 
degree.

Figure supplement 2. Experimental results with alternative hub cell definition.

https://doi.org/10.7554/eLife.83147
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distribution for most islets (Figure 3d). Our results showed no correlation between network degree 
and mean GCamP6 fluorescence intensity (p>0.8). β-Cell hubs (>60% of max degree) made up 3–40% 
of islets.

To test whether metabolic activity was correlated with the functional network degree, we measured 
two-photon excited NAD(P)H autofluorescence in conjunction with time-lapse imaging of [Ca2+] 
dynamics at 2 mM and 11 mM glucose (Figure 3e). The metabolic response of individual β-cells in the 
islet was calculated as the difference between NAD(P)H autofluorescence at high glucose compared 
to low glucose (NAD(P)H11-2), with the islet average subtracted to account for inter-islet variability 
(NAD(P)H11-2 -NAD(P)H 11av-2av). This metric was 0 if the NAD(P)H response of a cell was the same 
as the islet average, >0 if a cell showed an elevated metabolic response, and <0 if a cell showed a 
reduced metabolic response. β-Cell hubs (>60% of max degree) had a significantly higher NAD(P)
H autofluorescence than in non-hubs (<60% of max degree) (p=0.0061) (Figure  3f). Similarly, the 
NAD(P)H response trended toward a relationship with cell’s normalized degree (p=0.079) (Figure 3g). 
When identifying β-cell hubs as the 10% of cells with the highest network degree, hubs (top 10% by 
degree) also had a significantly higher NAD(P)H autofluorescence than in non-hubs (bottom 90% by 
degree) (Figure 3—figure supplement 2a). This indicates that highly synchronized cells are more 
metabolically active than less synchronized cells, in agreement with findings from simulated islets in 
the coupled Cha-Noma model (Figure 1).

The relationship between gap junction coupling and the functional network is not known. Fluores-
cence recovery after photobleaching (FRAP) measurements of dye transfer kinetics can quantify gap 
junction permeability (Farnsworth et al., 2014). We performed FRAP measurements in conjunction 
with time-lapse imaging of [Ca2+] dynamics, to map cellular gap junction connections in the same cell 

Figure 4. Comparison of functional connections, gap junctions, and glucose metabolism in the simulated islet. (a) Functional connections and structural 
connections for a representative highly connected β-cell hub, average cell, and low connected cell. Blue cells and edges indicate cells determined 
as ‘synchronized’ via functional network analysis. Red cells are GJ coupled. Black cells are both GJ coupled and synchronized. (b) Probability that 
a cell is synchronized given it is gap junction coupled, or vice versa, that a cell is gap junction coupled given it is synchronized. (c) Venn diagram 
showing overlap between the synchronized cells and gap junction coupled cells within the simulated islet. (d) Functional connections and metabolic 
connections for a β-cell hub and a cell with averaged synchronization. Blue cells and edges indicate cells determined as ‘synchronized’ via functional 
network analysis. Green cells and edges indicate cells that have similar kglyc and are within 15% islet from each other. Black cells and edges indicate both 
synchronized and similar kglyc. (e) Probability that a cell pair is synchronized given it shares a gap junction has similar kglyc. (f) Probability that the cell pair is 
gap junction coupled has similar kglyc and within 15% of islet distance (Pr=0.0052) , respectively, given the pair is synchronized. (g) Venn diagram showing 
overlap between the synchronized cells and metabolically similar cells. Shaded area in c and g is proportional to indicated probability. Significance in e 
and f was determined by a repeated measures one-way ANOVA with Tukey’s multiple comparisons **p≤0.01. In b, e, f each data point corresponds to 
the average value over a single simulated islet.

https://doi.org/10.7554/eLife.83147
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layer as the functional network (Figure 3h). There was no difference in the rate of recovery for β-cell 
hubs and non-hubs (p=0.15) (Figure 3i). Similarly, the rate of recovery, which assesses gap junction 
permeability, was not statistically related to the normalized degree (p=0.37) (Figure 3j). The lack of 
relationship between rate of recovery and normalized degree was maintained over different functional 
network synchronization thresholds (Figure 3—figure supplement 1a and b). We also repeated these 
analyses in islets that showed fast oscillations or mixed oscillations. Irrespective of oscillation type, 
there was no difference between the rate of recovery for β-cell hubs and non-hubs, nor was there an 
association between functional network degree and the rate of recovery (Figure 3—figure supple-
ment 1c–h). When identifying β-cell hubs as the 10% of cells with the highest network degree, there 
was also no difference between the rate of recovery for β-cell hubs and non-hubs (Figure 3—figure 
supplement 2b). These results indicate that cell synchronization is not correlated with gap junction 
permeability, as measured by FRAP. Therefore, the functional network is not strongly related to the 
structural network.

Synchronization between a cell pair more likely indicates shared 
intrinsic properties than elevated gap junction coupling in simulated 
islets
We next used the coupled Cha-Noma simulated islet to investigate the second question: what does 
the islet functional network indicate about its underlying structure or intrinsic properties, on an indi-
vidual cell basis? Irrespective of the functional network degree of a cell, it was rare for a cell pair to 
be connected in both the functional and structural networks (Figure 4a). The probability that two 
cells were synchronized in the functional network, given that they shared a gap junction in the struc-
tural network, was Pr(Sync│GJ)=0.39 (Figure 4b). Therefore, the presence of a structural edge does 
not imply a functional edge. Importantly, when the threshold Rth was decreased, the probability of 
synchronization given gap junction increased to almost 1.0 (Figure 1—figure supplement 1d and 
e). This indicates, as expected, that gap junctions are required for synchronizing cell pairs. However, 
additional similarities are required for a cell pair to be synchronized enough to surpass a threshold 
large enough to cause the functional network to appear ‘scale-free-like’ that is demonstrated in prior 
studies (Stožer et al., 2013; Johnston et al., 2016).

The alternative probability of a structural edge given a functional edge was Pr(GJ |Sync)=0.04 
(Figure  4b), indicating that very few functionally coupled cells are connected by gap junctions. 
These findings indicate that structurally connected cells and functionally connected cells are two 
distinct groups with little overlap (Figure 4c). We analyzed the sensitivity of these measures to the 
synchronization threshold Rth. Tautologically, as the threshold was increased, the number of function-
ally connected cells decreased (Figure 1—figure supplement 1d), causing Pr(GJ│Sync) to increase 
(Figure 1—figure supplement 1f). However, the ‘overlap’ between the functional network and struc-
tural network did not increase (Figure 1—figure supplement 1g). Our findings that the functional and 
structural networks are two distinct groups with little overlap is consistent across thresholds.

These data corroborate with initial findings showing the functional network is not strongly correlated 
with the structural network. To investigate whether kglyc was associated with edges in the functional 
network, we created a new network where edges were drawn between cells with similar kglyc rates (see 
Methods) (Figure 4d). Parameters were chosen such that there was no difference between Pr(Sync│-
Similar kglyc) and Pr(Sync│GJ) (Figure 4e), allowing for a direct comparison between probabilities. The 
alternative probability Pr(Similar kglyc|Sync) was significantly higher than Pr(GJ│Sync) (Figure 4f). If two 
cells have synchronized Ca2+ oscillations, they are more likely to contain shared rate of glucokinase 
activity than to be gap junction coupled. This is further indicated by the increased overlap between 
the [Ca2+] synchronization-derived functional network and the intrinsic rate of glucokinase activity-
derived network (Figure 4g). These results further indicate that intrinsic cell dynamics is a greater 
driving factor than gap junction connections for cells to show high [Ca2+] synchronization and influence 
the functional network.

Elevated metabolic activity is a greater driver of long-range functional 
connections in simulated islets
In accordance with the islet cytoarchitecture, gap junction connections only exist between highly prox-
imal cells. However, there is no distance constraint on [Ca2+] oscillation synchronization (Figure 5a). 

https://doi.org/10.7554/eLife.83147
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Figure 5. Comparison of long-range functional synchronization, gap junction network, and glucose metabolism in the simulated islet. (a) Functional 
connections and gap junction connections for a representative cell (black). Synchronized cells in blue, gap junction coupled cells in red. Inset shows 
the entire structural network (gray) with functional connections for the same cell shown in blue. (b) Two representative cells (black) and the shortest 
path to a synchronized cell (blue) and a non-synchronized cell (green). Path is weighted (shown by edge thickness) by gcoup. For the cell on the top 
panel, the synchronized path has a higher cumulative gap junction conductivity (0.68 nS) than the non-synchronized path (0.43 nS). For the cell on the 
bottom panel, the synchronized path has a lower cumulative gap junction conductance (0.74 nS) than the non-synchronized path (1.02 nS). (c) Probability 
distribution of total gcoup for synchronized cells (blue) and non-synchronized cells (green) that are directly connected by gap junctions. (d) As in c for cells 
pairs that are 7 cells apart. (e) Comparison of the total gcoup, normalized by distance for synchronized cells (blue) and non-synchronized cells (green). 
Each dot indicates the average resistance for a single simulated islet. (f) As in c but with connections weighted by rate of glucokinase activity (kglyc). 
(g) As in d but with connections weighted by kglyc. (h) As in e but with connections weighted by kglyc. (i) Total gcoup for synchronized and non-synchronized 

Figure 5 continued on next page
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To determine whether this spatial constraint was responsible for the low correspondence between 
the functional and structural networks, we asked whether a series of highly conductive gap junction 
connections could predict long-range functional connections. We weighted the structural network 
by gcoup and calculated the path which maximized conductance (see Methods) (Figure 5b). Not all 
synchronized cell pairs had chains of larger total gcoup than non-synchronized cell pairs (Figure 5b). 
The probability distributions of total gcoup for synchronized cells highly overlapped with those for 
non-synchronized cells, irrespective of distance (Figure 5c and d, and Figure 5—figure supplement 
1a). However, the total conductance normalized by separation distance was significantly less for non-
synchronized cells than for synchronized cells (Figure 5e). Thus, on average, long-range functional 
connections traverse cells that are connected by higher gap junction conductance.

To examine how the intrinsic rate of glucokinase activity influences long-range functional connec-
tions, we repeated this procedure but weighted graph edges by kglyc rather than gcoup. Again, the prob-
ability distributions of the total kglyc for synchronized cells overlapped with those for non-synchronized 
cells, irrespective of distance (Figure 5f and g and Figure 5—figure supplement 2). The total rate of 
glucokinase activity, normalized by the separation distance, was significantly less for non-synchronized 
cells than for synchronized cells (Figure 5h). Thus, on average, long-range functional connections also 
traverse cells with higher metabolic activity.

To test whether there was a spatial relationship for rate of glucokinase activity or gap junction 
conductance-controlled synchronization, we analyzed the total conductance or total rate of glucose 
metabolism for different separation distances and between synchronized or non-synchronized cell 
pairs. Total gcoup was significantly higher for synchronized cells 4–7 cells apart (Figure 5i). Total kglyc was 
significantly higher for synchronized cells 1–5 cells apart, with the significance larger than that of total 
gcoup (Figure 5j). Thus, cell pairs with similar kglyc can strongly influence functional connections up to 
5 cells apart, while high gcoup is necessary for influencing functional connections over longer distances 
(5–7 cells apart).

Decreasing gap junction conductance in the structural network 
decreases the average network degree in the functional network 
constructed based on the experimental and simulated data
Our third question asks how changes to the structural network influence the islet functional network. 
Reducing Cx36 gap junction coupling via genetic or pharmacological means reduces overall islet Ca2+ 
oscillation synchronization (Benninger et al., 2008; Farnsworth and Benninger, 2014). We performed 
functional network analysis on islets from wild-type (WT) mice (Cx36+/+), heterozygous Cx36 knockout 
mice with ~50% reduced gap junction coupling (Cx36+/-), and homozygous Cx36 knockout mice with 
no gap junction coupling (Cx36-/-) (Benninger et al., 2008; Figure 6a–b). We used a single synchro-
nization threshold Rth across all genotypes so the average degree distribution of WT islets roughly 
followed a scale-free-like distribution (Stožer et al., 2013) and had an average of between 5 and 15 
connections (see Methods) (Figure 6—figure supplement 1). Cx36+/- islets demonstrated decreased 
average network degree compared to WT Cx36+/+ islets (Figure 6c), and homozygous Cx36-/- demon-
strated further decreased degree compared to both WT Cx36+/+ islets and Cx36+/- islets (Figure 6c). 
Therefore, the functional network becomes highly sparse as edges in the structural network decrease.

We next quantified how the removal of edges in the structural network influences the functional 
network topology (Table 1). Network topology statistics can provide insight into how the network 
functions, and how it changes with specific perturbations. Clustering coefficient (Cavg) quantifies the 
proportion of nodes connected to a given node that are also connected with each other (Table 1). 

cells organized by cell distance. (j) As in i but for the network weighted by kglyc. Significance in e, h was assessed by a two-tailed paired t-test, with 
p-value indicated. Significance in i and j was assessed by paired t-tests with Bonferroni correction. Reported p-values are adjusted. *p≤0.05, **p≤0.01, 
***p≤0.001. In (e, h, i, j) each data point corresponds to the average value for synchronized/non-synchronized cell pairs (e, h) or respective number of 
cells apart over a single simulated islet.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Paths that maximized gap junction conductivity.

Figure supplement 2. Paths that maximized metabolic rate.

Figure 5 continued
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A high clustering coefficient indicates that cells tend to synchronize with other cells that share some 
property, such as proximity or intrinsic dynamics. The clustering coefficient significantly decreased as 
gap junction coupling decreased (Figure 6d). To quantify whether the functional network topology 
was a result of random edge generation, we compared each metric with that determined from 1000 
Erdos-Renyi random networks (Watts and Strogatz, 1998; Gansterer et al., 2019; Stožer et al., 
2013; Table 1). If gap junctions are the property that gives the functional network a high clustering 
coefficient, then reducing gap junction coupling should result in a clustering coefficient that shows 
greater overlap with the random graph. For all levels of Cx36, the clustering coefficient of the islet 
functional network was greater than that of a random network (Figure 6d, box and whisker plot). 
Similar to our previous findings, this further suggests that something other than the structural network 
contributes to the functional network topology. Global efficiency is defined as the inverse of the 
average smallest number of nodes required to traverse between any cell pair (Table 1). High global 

Figure 6. Experimental islet functional networks are influenced by changes in the structural network. (a) Representative images of Cx36+/+ islet (left), 
heterozygous Cx36+/- islet (middle), and homozygous islet (right), overlaid with a synchronization network. Dot signifies a cell, blue lines represent 
functional network edges that connect synchronized cells. Red cells are β-cell hubs. (b) Oscillations in [Ca2+] of corresponding islet in a. Gray lines 
represent time course for each cell, colored line represents mean islet time course. (c) Normalized degree of functional network between cell pairs 
for each islet in the Cx36+/+, Cx36+/-, Cx36-/- mice. (d) Clustering coefficient of the functional network for each islet in the Cx36+/+, Cx36+/-, Cx36-/- mice. 
Overlaid is the box and whisker plot of 1000 random networks per islet. (e) As in d for global efficiency. (f) Average distance between synchronized cells 
normalized to average distance between all cells in islet. Dashed line shows average distance between cells. Adjusted p-values: *p≤0.05, **p≤0.01, 
***p≤0.001 For c–d, each dot represents an islet.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Alternative network metrics for calcium islets from Cx36KO (Cx36 knockout) mice.

https://doi.org/10.7554/eLife.83147
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efficiency can occur in a random network, or in a regular network (Table 1) with a few edges randomly 
moved (Watts and Strogatz, 1998). The global efficiency significantly decreased as gap junction 
coupling decreased (Figure 6e). For Cx36+/+ islets, the global efficiency was less than that of a random 
network. As gap junction coupling decreased, the global efficiency showed a larger intersection with 
that of a random network. For Cx36-/- islets all measurements intersected with and thus could be 
explained by a random network. For each genotype, the distance between synchronized cells was less 
than the average distance between all cells (Figure 6f). These results suggest that the gap junction 
structural network contributes to whole islet global properties (global efficiency) of the functional 
network topology, but not immediate local properties (clustering), similar to our previous findings 
(Figure 5).

We next asked how changes to the structural network influence the islet functional network in the 
coupled Cha-Noma model. We decreased coupling conductance (gcoup) (Figure 7a). Similar to exper-
imental findings, as average gap junction conductance decreased, the average degree and average 
correlation also decreased (Figure 7c, Figure 7—figure supplement 1b). Pr(Sync│GJ) also decreased 
significantly as gap junction conductance was decreased (Figure 7b and d). This indicates that as 
the gap junction conductance decreases, the probability that two structurally connected cells are 
also functionally connected decreases. We then quantified the functional network topology in the 

Figure 7. Simulated islet functional networks are influenced by changes in the structural network. (a) Functional connections and structural connections 
in simulated islets of hub cells for high and low gap junction conductance. Blue cells and edges indicate cells determined as ‘synchronized’ via 
functional network analysis. Red cells are GJ coupled. Black cells are both GJ coupled and synchronized. (b) Venn diagrams of the probability of 
synchronization and probability of gap junction with the probability of both synchronization and gap junction as the overlapped area. (c) Average 
degree in the functional network. (d) Probability that two cells are synchronized given they share a gap junction connection. (e) Clustering coefficient for 
0.12nS, 0.06nS, 0.03nS , for each simulated islet. Overlaid is the box and whisker plot of 1000 random networks per simulated islet. (f) As in e for global 
efficiency for 0.12nS, 0.06nS, 0.03nS, for each simulated islet. Adjusted p-values: *p≤0.05 , **p≤0.01, ***p≤0.001. For c–f, each dot represents a simulated 
islet.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Alternative network metrics for simulated islet with gap junction coupling change.
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coupled Cha-Noma model upon reduced gap junction conductance. The clustering coefficient (Cavg) 
progressively decreased with decreasing gap junction conductance and was always greater than that 
determined from a random network (Figure 7e). Global efficiency also progressively decreased with 
decreased gap junction conductance (Figure 7f) and was always less than that of a random network. 
These trends are similar to our experimental observations.

Overall, our findings from experimental and simulated islets both indicate that the gap junction 
structural network influences overall islet synchronization, as expected. However, while it influences 
the global functional network topology, it has less influence on the local functional network topology.

Discussion
The islet of Langerhans is central to glucose homeostasis and dysfunction of the islet underlies 
diabetes. Heterogeneity among β-cells in the islet plays a key role in islet function (Benninger and 
Kravets, 2022; Johnston et al., 2016; Salem et al., 2019; Kravets et al., 2022). Functional network 
analysis enables the investigation of β-cell heterogeneity and how subpopulations of β-cells influence 
islet dynamics, over which there is currently a debate (Dwulet et al., 2021; Satin et al., 2020; Rutter 
et al., 2020; Peercy and Sherman, 2022). To correctly interpret the β-cell functional network and its 
implications in diabetes, we must understand what drives edges and subpopulations such as β-cell 

Figure 8. Graphical summary of results. Graphical summary of results from data. Inset shows how structural gap junctions are translated to structural 
network and synchronized calcium oscillations are translated to functional network. To answer question 1 we show that subpopulations of β-cells in the 
functional network are driven by intrinsic properties more than gap junction coupling (top). To answer question 2, we show that intrinsic properties of 
the β-cells drive synchronization in the functional network (right). To answer question 3, we show that removal of gap junctions in the structural network 
decreases global communication efficiency and local connectivity (bottom).

https://doi.org/10.7554/eLife.83147
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hubs. While it is known that gap junctions are essential for whole islet synchronization, it is unclear 
how the functional network relates to the gap junction structural network. Our aim was to investigate 
the relationship between functional networks, structural networks, and underlying β-cell dynamics in 
the pancreatic islets. We framed our study around three questions. (1) Are highly correlated subpop-
ulations (β-cell hubs) that emerge from the β-cell functional network differentiated by their unique 
qualities with respect to the structural network or by intrinsic properties of the cells? (2) What does 
the islet functional network indicate about its underlying structure or intrinsic cell properties on an 
individual cell basis? (3) How do changes in the structural network affect the islet’s functional network? 
Figure 8 shows a graphical representation of the answers to these questions. By understanding the 
formation of islet functional networks, we can understand how β-cell subpopulations drive islet func-
tion. Knowledge about the role of β-cell subpopulations will also be useful when developing new 
treatments, such as identifying and preserving functional subpopulations in diabetes and generating 
stem cell-derived insulin-secreting cells for restoring insulin secretion.

Highly connected β-cells are driven by intrinsic cell dynamics
Our computational and experimental results show a subpopulation of highly synchronized cells, 
known as β-cell hubs (Johnston et al., 2016; Benninger and Hodson, 2018). In the coupled Cha-
Noma model of fast β-cell oscillations, the elevated rate of glucokinase kglyc (which indicates meta-
bolic activity), was most strongly associated with β-cell hubs and duty cycle of the [Ca2+] oscillations 
(Figure 1). gKATP showed little association with duty cycle, which is consistent with the greater influence 
of ATP production (primarily controlled by kglyc) and ATP-driven KATP closure on membrane potential, 
compared to KATP open-channel conductance (Notary et al., 2016). In the coupled IOM of slow β-cell 
oscillations, β-cell hubs were associated with both gKATP and gap junction conductance (Figure 2). In 
this case, the gKATP parameter showed a high association with oscillation duty cycle, as shown previ-
ously in uncoupled β-cell simulations (Marinelli et  al., 2022). Thus, results from two independent 
models show that the cell intrinsic properties that influence oscillation duty cycle are associated with 
driving β-cell hubs, regardless of β-cell oscillation type. Notably an association between network 
degree and oscillation duty cycle has recently been demonstrated (Šterk et al., 2023; Stožer et al., 
2021; Gosak et al., 2022).

A key difference between the two coupled models is the strong association between β-cell hubs 
and gap junction coupling in the coupled IOM and the weak association in the coupled Cha-Noma 
model. While there was an ~15% difference in gcoup between hubs and non-hubs in the Cha-Noma 
model (compared to ~10% difference in kglyc), this difference was subject to high variability and not 
observed for all thresholds used. This study represents one of the first uses of a coupled IOM to study 
β-cell heterogeneity. The Cha-Noma model, which has been used extensively to study β-cell hetero-
geneity (Dwulet et al., 2021; Dwulet et al., 2019; Notary et al., 2016; Westacott et al., 2017; 
Silva et al., 2014), is simulated with 1000 β-cells to roughly match experimental observations (Pisania 
et al., 2010; Steiner et al., 2010). However, we simulated the coupled IOM as a smaller islet model 
due to model stiffness and computational limits. When the coupled Cha-Noma model was simulated 
with a similarly small number of cells, gap junction conductance had a higher association with β-cell 
hubs (Figure 2). Therefore, we attribute the increased contribution of gap junction coupling to β-cell 
hubs in the coupled IOM to be partially influenced by islet size. We predict if the coupled IOM could 
be simulated with a larger number of cells, β-cell hubs would become more strongly associated with 
gKATP than gap junction coupling.

Our experimental measurements showed that β-cell hubs were associated with elevated meta-
bolic activity, quantified by NAD(P)H fluorescence. In contrast, there was no association between 
β-cell hubs and gap junction permeability (Figure 3). Previous studies have shown that the functional 
network topology of β-cells is highly dependent on whether the β-cell oscillation is fast, slow, or 
plateau (Zmazek et al., 2021; Stožer et al., 2022). However, the relationship between β-cell hubs and 
gap junction permeability was not influenced by [Ca2+] oscillations type: slow, fast, and mixed. These 
results further illustrate how subpopulations of β-cell hubs in the functional network are likely emerge 
due to their intrinsic properties such as metabolic activity, rather than gap junction conductance. 
Importantly, we are unable to spatially resolve KATP channel conductance or channel number, thus we 
cannot also exclude that β-cell hubs may show decreased KATP conductance. Further, the variability 
that we observe comparing metabolic activity between hubs and non-hubs in both experiments and 
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simulated islets suggests other factors (including KATP conductance) may potentially play some addi-
tional role in determining β-cell hubs.

Our findings also agree with previous evidence that β-cell hubs have elevated metabolic activity. 
Semi-quantitative immunofluorescence demonstrated elevated glucokinase protein in β-cell hubs, 
suggesting elevated glycolytic activity and increased accumulation of tetramethylrhodamine ethyl 
ester in β-cell hubs was indicative of increased oxidative phosphorylation (Johnston et al., 2016). 
However, evidence for elevated gap junction coupling in β-cell hubs was argued either on the basis 
of [Ca2+] synchronization analysis which we show is not necessarily indicative of gap junction coupling 
(Figures 1–5) or a global knockdown of GJD2 (which codes for Cx36) (Johnston et al., 2016) which 
will influence both β-cell hubs and non-hubs, as we also observe (Figures 6–7). Further supporting our 
findings here, prior experiments have shown that cells that are preferentially activated by optogenetic 
ChR2 stimulation, which indicates function, were more metabolically active, but not preferentially gap 
junction coupled (Westacott et al., 2017).

In answering our first question, we conclude that gap junctions are not the primary distinguishing 
factor in determining variations in oscillation synchronization between cells. Rather cell intrinsic prop-
erties including metabolic activity distinguish variations in synchronization between cells because of 
their influence on [Ca2+] oscillation duty cycle.

Functional network edges primarily reflect variations in intrinsic cellular 
properties
To compare the entire islet functional network with its structural network (instead of hubs and non-
hubs in question 1), we analyzed the coupled Cha-Noma model, and generated conditional proba-
bilities that quantify the relationship between structural and functional networks at an individual cell 
basis (Figure 4). We found the probability of a gap junction connection given a synchronized cell 
pair (Pr(GJ|Sync)) was <5%, indicating that high [Ca2+] synchronization rarely implies a gap junction 
connection. However, the probability that two synchronized cells had similar metabolic activity was 
significantly larger (~20%). Therefore, the functional network primarily reflects variations in cellular 
metabolic activity rather than structural gap junction connections.

Importantly the overlap in cellular metabolic activity with the functional network refers to cells 
sharing some intrinsic metabolic properties (kglyc) that drives duty cycle and functional network edges. 
It has been suggested that β-cells may be metabolically coupled, where metabolites diffuse between 
cells via gap junctions (Rao and Rizzo, 2020; Tsaneva-Atanasova et al., 2006). However, our findings 
regarding metabolic activity or intrinsic dynamics driving the functional network are not referring to 
metabolic coupling, but rather the fact that intrinsically similar cells will appear more synchronized, 
and therefore will be more likely to be connected in the functional network.

Surprisingly, we found that gap junctions do not guarantee that [Ca2+] synchronization will be 
higher than the functional network threshold (Rth), as previously assumed (Markovič et al., 2015). 
The probability of high synchronization given gap junction connections (Pr(Sync|GJ)) was only ~40% 
(Figure  4). When threshold is reduced, Pr(Sync|GJ) increases to almost 100% (Figure  1—figure 
supplement 1e) but the functional degree distribution no longer appears scale-free-like, as indicated 
by previous studies (Stožer et al., 2013; Johnston et al., 2016). Gap junctions facilitate ion passage 
between β-cells and therefore play a primary role in synchronizing electrical oscillations across the 
islet (Figure 5). However, they are not the only factor contributing to the high synchronization seen 
between some β-cell pairs. The cell membrane potential is determined by cell metabolic activity, KATP 
conductance, and other ion channels. The membrane potential of 2  cells determines the electro-
chemical gradient along the gap junction, and thus the coupling current which drives synchronization 
(Dwulet et al., 2021; Plonsey et al., 2007). As such, high metabolic activity can drive a high coupling 
current. Furthermore, cells with similar intrinsic characteristics, such as metabolic activity, require less 
electrical coupling to be highly synchronized. Thus, while gap junctions are important for the overall 
synchronization of islet [Ca2+] dynamics, additional intrinsic β-cell factors are necessary for very strong 
synchronization between proximal β-cells.

https://doi.org/10.7554/eLife.83147
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Perturbing the gap junction structural network altered the islet 
functional network topology
Changes in gap junction coupling and [Ca2+] oscillation synchronization are observed in conditions 
associated with diabetes. Impaired [Ca2+] oscillation synchronization (representing a disrupted func-
tional network) and disrupted pulsatile insulin secretion have been observed in islets from rodent 
models of type 2 diabetes (Pørksen et al., 2002; Satin et al., 2015; Corezola do Amaral et al., 
2020), type 1 diabetes (Pørksen et al., 2002; O’Meara et al., 1995), human subjects with type 2 
diabetes (St. Clair et al., 2020) or obesity (Hodson et al., 2013), and when exposed to glucolipotox-
icity, or pro-inflammatory cytokines (Hodson et al., 2013; Farnsworth et al., 2016). Similarly, altered 
gap junction coupling (representing a disrupted structural network) has been observed in islets from 
mouse models of type 2 diabetes (St. Clair et al., 2020; Corezola do Amaral et al., 2020), type 1 
diabetes (Farnsworth et  al., 2022), prediabetes (Carvalho et  al., 2012), and exposure to hyper-
glycemia or pro-inflammatory cytokines (Farnsworth et  al., 2016; Haefliger et  al., 2013). When 
gap junction coupling and [Ca2+] synchronization are perturbed upon a genetic deletion of Cx36, 
first-phase insulin secretion and pulsatile second-phase secretion are diminished, causing glucose 
intolerance. Therefore, it is important to understand the relationship between altered [Ca2+] oscillation 
synchronization and gap junctions coupling.

Our computational and experimental results show that as structural edges were removed by 
reducing gap junction conductance, the functional network degree, efficiency, and clustering 
decreased (Figures 6 and 7). This implies that the islet loses efficient signal propagation and the ability 
to synchronize. This in part explains decreased islet function in diabetes. However, clustering could 
not be explained by randomness (Figures 6 and 7). If gap junctions were solely responsible for varia-
tions in islet synchronization, a decrease in gap junction coupling would cause the functional network 
to appear more random. Instead, our findings indicate that β-cells are preferentially, not randomly, 
synchronized even in the presence of low gap junction coupling. This is consistent with synchroniza-
tion between cell pairs being driven by intrinsic cellular dynamics, such as metabolic activity. Thus, 
while removal of gap junctions is detrimental to overall islet function, changes in synchronization 
are not directly indicative of only changes in structural connections. Perturbations in cellular meta-
bolic activity, which occurs in diabetes (Ostenson et al., 1993), will also significantly influence islet 
synchronization. Additionally, our results indicate that the relationship between the structural and 
functional network is not strongly influenced by β-cell oscillation type (Figure 3—figure supplement 
1), therefore, fast, slow, and mixed oscillations should show similar changes with decreased gap junc-
tion coupling.

Potential limitations
Our computational models are based on careful physiological recordings and have been previously 
validated (Dwulet et al., 2019; Hraha et al., 2014; Westacott et al., 2017; Bertram et al., 2018). 
Nevertheless, they will still be limited in describing β-cell dynamics. Because our results are internally 
derived, where the functional and structural networks were obtained from the same model, they are 
not dependent on the models’ ability to reflect islet dynamics. This fact also allows our methods to 
translate to any oscillatory network with similar characteristics – this is reflected by our use of two inde-
pendent coupled models. The choice of threshold (Rth) is influential in creating the functional network 
and should be carefully considered. We used thresholds to match that of the prior experimental 
results (Stožer et al., 2013; Johnston et al., 2016; Korošak et al., 2021). The computational thresh-
olds were higher in these prior experiments because the computational model did not include noise, 
so that synchronization was more acute. However, the trends in our results for the Cha-Noma model 
and experiment were consistent across thresholds and hub definition (Figure 1—figure supplements 
1 and 2, Figure 3—figure supplements 1 and 2). Within the coupled IOM, a very high threshold was 
required to generate a degree distribution that matched the coupled Cha-Noma model results. This 
was likely due to the small islet size, which was limited by model instability. Nevertheless, consistent 
results were found in terms of parameters that influence duty cycle associating with β-cell hubs.

FRAP measurements of gap junction conductance are likely less sensitive than gold-standard patch 
clamping, but it allows measurements in multiple cells in situ and subsequent calcium imaging, which 
was central to our study. Additionally, we cannot exclude that the Cx36 global deletion may influence 
β-cell specification. Thus, generating effective inducible and conditional Cx36 knockout models are 
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needed. However, studies have shown no significant change in NAD(P)H response and islet archi-
tecture in Cx36 knockout islets (Benninger et al., 2011). Dissociated β-cells of both Cx36 knockout 
and WT islets also show similar insulin secretion responses, indicating a Cx36 knockout islets has no 
significant defect in the intrinsic ability of a β-cell to release insulin.

Dynamic changes in the distribution of gap junction coupling can occur over time (Miranda et al., 
2022a), which is not accounted for in our computational models. However, since our experimental 
results indicate that β-cell hubs are more influenced by intrinsic activity, we do not predict that changes 
in the distribution of gap junction coupling over time would substantially impact β-cell hubs.

Due to propagating Ca2+ waves across the islet, there is a phase lag between [Ca2+] oscillation that 
is small for β-cells in close proximity and greater for β-cells far apart. A large phase lag will decrease 
the apparent [Ca2+] oscillation synchronization, thus influencing the functional network. Future work 
will be needed to examine ‘wave initiator’ like cells that lie at the origin of propagating Ca2+ waves, 
or cells located at the wave end, and determine their position and influence on the islet functional 
network. Indeed, prior work has shown that cells at the wave end likely influence the overall [Ca2+] 
oscillation dynamics (Dwulet et al., 2021).

The islet contains α-cells, δ-cells, and other cell types which can influence β-cell dynamics via para-
crine mechanisms (Henquin, 2021; Moede et al., 2020; van der Meulen et al., 2015). Our study only 
analyzes β-cells, as performed in other network studies which we compare (Stožer et al., 2013; John-
ston et al., 2016; Lei et al., 2018). However, we cannot exclude long-range structural projections 
from δ-cells (Arrojo E Drigo et al., 2019; Briant et al., 2018), and that δ-cells may be gap junction 
coupled (Miranda et al., 2022b). Additionally, β-cell oscillation types (slow, fast, or mixed) may be 
directly related to the number of α-cells present in the islet (Ren et al., 2022). Future analysis should 
include other cell types, which may provide valuable insight on how their interactions can shape 
the overall islet response. This is particularly important when translating our findings to human islets 
because α-cells, δ-cells, and β-cells are known to be more mixed in human islets (Kim et al., 2009), 
and there is experimental evidence that human islet functional networks may differ from mouse func-
tional networks (Gosak et al., 2022).

Overall summary
While it is well known that gap junctions allow for whole islet synchronization (Benninger et al., 2008), 
it is not clear whether the functional network directly reflects gap junction structural network or if 
the functional network is influenced by intrinsic β-cell characteristics. We investigated the relation-
ship between the synchronization-based functional network, the gap junction structural network, and 
β-cell intrinsic properties in the islets of Langerhans. We concluded with three major points. First, 
highly connected subpopulations of β-cells, including β-cell hubs, are defined by intrinsic proper-
ties more than gap junctions. Second, the functional network primarily reflects variations in intrinsic 
cellular properties. Third, removal of edges in the structural network upon decreasing gap junction 
conductance decreases global communication efficiency and local connectivity and causes the func-
tional network to become sparser. Our results also show that forming conclusions about structure 
using the functional network should be done with caution. Broadly, these results provide insight into 
the relationship between function and structure in biological networks and the understanding that 
synchronization can give insight into cellular properties that drive excitability of the cell can be useful 
in many systems.

Methods
Calcium imaging, FRAP, and NAD(P)H
Animal care
Male and female mice were used under protocols approved by the University of Colorado Institutional 
Animal Care and Use Committee. β-Cell-specific GCaMP6s expression (β-GCaMP6s) was achieved 
through crossing a MIP-CreER (The Jackson Laboratory) and a GCaMP6s line (The Jackson Laboratory) 
(Kravets et al., 2022). Genotype was verified through qPCR (Transetyx, Memphis, TN, USA). Mice 
were held in a temperature-controlled environment with a 12 hr light/dark cycle and given continuous 
access to food and water. CreER-mediated recombination was induced by 5 daily doses of tamoxifen 
(50 mg/kg bw in corn oil) delivered IP.

https://doi.org/10.7554/eLife.83147
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Islet isolation and culture
Islets were isolated from mice under ketamine/xylazine anesthesia (80 and 16  mg/kg) by collage-
nase delivery into the pancreas via injection into the bile duct. The collagenase-inflated pancreas was 
surgically removed and digested. Islets were handpicked and planted into the glass-bottom dishes 
(MatTek) using CellTak cell tissue adhesive (Sigma-Aldrich). Islets were cultured in RPMI medium 
(Corning, Tewksbury, MA, USA) containing 10% fetal bovine serum, 100 U/mL penicillin, and 100 mg/
mL streptomycin. Islets were incubated at 37°C, 5% CO2 for 24–72 hr before imaging.

Imaging
An hour prior to imaging nutrition media from the isolated islets was replaced by an imaging solution 
(125 mM NaCl, 5.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgCl2, 10 mM HEPES, and 0.1% BSA, pH 7.4) 
containing 2 mM glucose. During imaging the glucose level was raised to 11 mM. Islets were imaged 
using either an LSM780 system (Carl Zeiss, Oberkochen, Germany) with a 40×1.2 NA objective or with 
an LSM800 system (Carl Zeiss) with 20×0.8 NA PlanApochromat objective, or a 40×1.2 NA objective, 
with samples held at 37°C.

For [Ca2+] measurements GCaMP6s fluorescence was excited using a 488 nm laser. Images were 
acquired at 1 frame/s at 10–20 µm depth from the surface of the islet. Glucose was elevated 3 min 
after the start of recording, unless stated otherwise.

NAD(P)H autofluorescence and [Ca2+] dynamics were performed in the same z-position within the 
islet. NADH(P)H autofluorescence was imaged under two-photon excitation using a tunable mode-
locked Tisapphire laser (Chameleon; Coherent, Santa Clara, CA, USA) set to 710 nm. Fluorescence 
emission was detected at 400–450  nm using the internal detector. Z-stacks of 6–7 images were 
acquired spanning a depth of 5 μm. First NAD(P)H autofluorescence (1 z-stack) was recorded at 2 mM 
glucose, then the [Ca2+] dynamics was recorded at 2 mM and during transition to 11 mM glucose 
(~30 min). After measuring the oscillatory [Ca2+] time course, NAD(P)H autofluorescence (1 z-stack) 
was recorded at 11 mM glucose.

Cx36 gap junction permeability and [Ca2+] dynamics were performed in the same z-position within 
the islet, with gap junction permeability measured using FRAP, as previously described. After [Ca2+] 
imaging, islets were loaded with 12 mM Rhodamine-123 for 30 min at 37°C in imaging solution. Islets 
were then washed and FRAP performed at 11 mM glucose at room temperature. Room temperature 
was used because at this temperature the Rhodamine-123 travels between the cells only through the 
Cx36 gap junctions, versus at 37°C it can permeate a cell membrane. Rhodamine-123 was excited 
using a 488 nm laser line, and fluorescence emission was detected at 500–580 nm. Three baseline 
intensity images were initially recorded. A region of interest was then photobleached achieving, on 
average, a 50% decrease in fluorescence, and images were then acquired every 5–15 s for 15–30 min.

Analysis of [Ca2+] dynamics
Pearson-product-based network analysis presented in Figure 2 was performed as previously reported 
(Stožer et  al., 2013). [Ca2+] time courses were analyzed during the second-phase [Ca2+] response 
when the slow calcium wave was established. For fast oscillations, 400–500 s of [Ca2+] response was 
analyzed, matching the simulation time. For slow oscillations, 741–1000  s of [Ca2+] response was 
analyzed. This time period was chosen so at least 3 oscillations were completed. In mixed oscillations, 
858–1000 s of [Ca2+] response was analyzed.

The Pearson product for each cell pair islet was calculated over each time point, and the time-
average values were computed to construct a correlation matrix. An adjacency matrix was calculated 
by applying a threshold to the correlation matrix. The same threshold of 0.9 was applied to all islets. 
All cell pairs with a non-zero values in the adjacency matrix were considered to have a functional edge. 
The percent of edges was calculated with respect to the maximum number of edges per cell in each 
individual islet. For example, if a most connected cell possessed max = 10 edges, and other cells had 
1, 3, …, 7 edges – then the % were: 10%, 30%, …, 70%.

https://doi.org/10.7554/eLife.83147
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Prior calcium imaging first presented in (Benninger et al., 2008)
Islet isolation
Islets were isolated as described in Scharp et al., 1973, and Stefan et al., 1987, and maintained in 
Roswell Park Memorial. Institute medium containing 10% fetal bovine serum, 11 mM glucose at 37°C 
under humidified 5% CO2 for 24–48 hr before imaging.

Imaging islets
Isolated islets were stained with 4 mM Fluo-4 AM (Invitrogen, Carlsbad, CA, USA) in imaging medium 
(125 mM NaCl, 5.7 mM KCl, 2.5 CaCl2, 1.2 mM MgCl2, 10 mM HEPES, 2 mM glucose, 0.1% bovine 
serum albumin, pH 7.4) at room temperature for 1–3  hr before imaging. Islets were imaged in a 
polydimethylsiloxane microfluidic device, the fabrication of which has been previously described in 
Rocheleau et al. which holds the islet stable for imaging and allows rapid reagent change, such as 
varying glucose stimulation or adding gap junction inhibitors. Fluo-4 fluorescence is imaged 15 min 
after a step increase in glucose from low (2 mM) to high (11 mM). High-speed imaging is performed 
on an LSM5Live with a 203 0.8 NA Fluar Objective (Zeiss, Jena, Germany) using a 488 nm diode laser 
for excitation and a 495 nm long-pass filter to detect fluorescence emission. The microfluidic device 
is held on the microscope stage in a humidified temperature-controlled chamber, maintained at 37°C. 
Images were acquired at a rate of 4–6 frames/s, with average powers at the sample being minimized 
to 200 mW/cm2.

Analysis of Ca2+ imaging data
We present data from 11 islets from 6 WT mice, 11 islets from 11 heterozygous Cx36+/− knockout 
mice, and 14 islets from 3 homozygous Cx36-/- knockout mice. We extracted cell calcium dynamics by 
visually identifying and circling all cells islet. We assumed that the pixels within a cell should be well 
coordinated, so we removed any pixels whose dynamics were not within 5–10 STD of the average. 
This usually resulted in the removal of 1–5 pixels on the edge of the cell boundary.

Threshold
Previous studies have shown that WT islets should have a degree distribution that is roughly linear 
when plotted on a log-log plot and average degree of either 8 or between 5 and 15 (Stožer et al., 
2013; Johnston et al., 2016; Zmazek et al., 2021; Korošak et al., 2021). To determine Rth that 
best satisfied both of these findings, we utilized constrained optimization MATLAB (MathWorks Inc, 
Natick, MA, USA) algorithm fminsearchbnd (D’Errico, 2023) to find the optimal Rth that maximized the 
goodness of fit to a power law distribution, while forcing 5 ≤ kavg ≤ 15 for each WT islet constrained 
optimization. The average optimal threshold (Rth = 0.90).

Average distance between connected cells
The average distance between connected cells calculated the total number of pixels between the 
center of two connected cells. The average distance was expressed as the normalized distance 
between connected cells and the average distance between all cells in the islet to control for image 
and islet size.

Computational model
Coupled Cha-Noma model
This ordinary differential equation model has been described previously (Dwulet et al., 2021) and 
validated on experimental studies (Dwulet et al., 2019; Notary et al., 2016; Hraha et al., 2014; 
Westacott et al., 2017). This model has been shown to accurately describe experimental findings 
concerning spatial-temporal dynamics (Westacott et al., 2017), the relationship between electrical 
coupling and metabolic heterogeneity (Dwulet et  al., 2019), the relationship between electrical 
heterogeneity and electrical activity (Hraha et al., 2014), and the influence of excitability parameters 
such as rate of glucose metabolism (kglyc) and KATP channel opening kinetics on diabetes mutations 
(Dwulet et al., 2019; Notary et al., 2016). It is based on a single β-cell electrophysiological model 
(Cha et al., 2011), in which the membrane potential (Vi) for β-cellsi is solved for each time step using 
Equation 1a. We created a 1000 β-cell network and electrically coupled any cell pairs within a small 
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distance from each other. We chose 1000 β-cell because most species (including human and mouse) 
contain on average 1000 β-cells in an islet (Pisania et  al., 2010) and it is the number which has 
been validated experimentally. The coupling current, Icoup, is determined by the difference in voltage 
between the cell pair and the average coupling conductance (gcoup) between them (Equation 1b). All 
code was written in C++ and run on the SUMMIT supercomputer (University of Colorado Boulder). 
All simulations are run at 11 mMol glucose. The membrane potential (Vi) for β-cell i is solved for using 
the ODE:

	﻿‍
Cm

dVi
dt

= ICav + ITRPM + ISOC + IbNSC + IKDr + IKCa
(

SK
) + IKATP + INaCa + IPMCA + INaCa + Icoup‍�

(1a)

	﻿‍
Icoup =

∑
i

gij
coup

(
Vi − Vj

)
‍�

(1b)

The number of gap junction connections was given by a normal distribution mean 5.25, stan-
dard deviation 1.6, with the maximum of 12 and a minimum of 1 gap junction connections per cell. 
Cellular heterogeneity was introduced by assigning randomized metabolic and electrical parameter 
values to each cell based on their distributions previously determined by experimental studies. For 
example, glucokinase (kglyc), the rate-limiting step in glycolysis, was assigned using a normal distribu-
tion with mean 1.26*10–04 s–1 and standard deviation 3.15*10–05 s–1. Conductance of the KATP channel 
(gKATP) was given by a normal distribution with mean 2.31 pA/mV and standard deviation 0.57 pA/
mV. The coupling conductance parameter of a cell (gcoup

j) was assigned using a gamma distribution 
with k=4, θ=4 and then shifted so the islet average was gcoup

j =0.12 nS. This resulted in average σcoup 
=0.12 nS and standard deviation of 0.06 nS. We ran the simulation for 500 s and only the second 
phase was analyzed, in accordance with Johnston et al., 2016. All the results presented are based on 
five different islets, including all 1000 cells, with randomized parameter values. To explore the effects 
of coupling conductance on the functional network, we altered islet average coupling conductance of 
a single gap junction pair to gcoup

j =0.06 nS and gcoup
ij =0.03 nS, and then assigned each cell a random-

ized gcoup
j based on the new target average. The total gap junction conductance (gcoup) for any cell was 

calculated as the sum of the average conductance between the cell of interest and any cells it shares 
a gap junction connection with:

	﻿‍
gcoup =

m∑
i=1

1
2

(
gi

coup + gj
coup

)

‍�
(2)

The coupled IOM
The ordinary differential equations for the IOM have been extensively described in previous works 
(Marinelli et al., 2021; Marinelli et al., 2022). The model simulates the dynamics within a single β-cell 
and it has been shown to be able to account for key experimental findings (Bertram et al., 2018; 
Marinelli et al., 2018), including both slow and fast bursting regimes. Allowing this achievement is 
the interaction of the three modules that make up the model: one module to describe the cellular 
electrical activity, a second to describe the glycolysis, and a third to describe the mitochondrial metab-
olism. The change in the membrane potential (Vi) for β-celli is described by Equation 3.

	﻿‍
Cm

dVi
dt

= ICa + IK(Ca) + IK(ATP) + IK‍�
(3)

Due to limitations of computational power and model stability, we created a 260 β-cell network 
(instead of the 1000 cells simulated with the coupled Cha-Noma model) where cells we coupled based 
on their proximity and through the coupling conductance, ‍Icoup‍ , defined in Equation 1b. The differ-
ential equations were integrated numerically using MATLAB and all simulations are run at 11 mMol 
glucose.

In this simulation, the average number of gap junction connections per cell was 6.01 with a stan-
dard deviation of 2.66, and with a maximum of 14 and a minimum of 1 gap junction connection per 
cell. Similar to the computation with the Cha-Noma model, cellular heterogeneity was achieved by 
allowing key metabolic and electrical parameters to range within a distribution. More precisely, the 
coupling conductance (gcoup) is assumed to be normally distributed with mean 1 pS and a standard 
deviation 0.5. We then assign the maximum rate through the glucokinase reaction (kglyc, referred to 
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previously as ‍vGK ‍; Marinelli et al., 2021; Marinelli et al., 2022) using a normal distribution with a 
mean 0.0037 µM/ms and standard deviation 0.0015 µM/ms, and extract the values for the maximum 
conductance of the KATP channel (gKATP) from a normal distribution with mean 19,700 pS and standard 
deviation 3940 pS. Once again, the total gap junction conductance (gcoup) for any cell was calculated 
as described in Equation 2.

Network analysis
Creating functional network from Cha-Noma simulated islet
The methodology was based on that previously defined in Stožer et  al., 2013. First, the correla-
tion coefficient between each cell was calculated using corr() function in MATLAB, which follows the 
equation:

	﻿‍

Rij =
∑[

xi
(
t
)
− x̄i

] [
xj
(
t
)
− x̄j

]
√∑

[xi
(
t
)
− x̄i]2 ∑[xi

(
t
)
− x̄i]2

‍�

Next, a threshold (Rth) was defined to determine whether each cell pair is ‘synchronized’ or ‘not 
synchronized’. For computational experiments, the threshold was chosen such that the network 
roughly followed a power law distribution, as predicted in Stožer et al., 2013; Johnston et al., 2016. 
Unless otherwise noted, Rth = 0.9995 for computational analysis.

Creating functional network from IOM simulated islet
To create the functional network from the IOM simulated islet, we repeated steps for the Cha-Noma 
model. However, due to small islet size and model stiffness, we were unable to achieve strong hetero-
geneity in the calcium oscillations (Figure 2a), requiring a threshold of Rth = 0.999999999 to obtain a 
scale-free-like distribution (Figure 2b and c).

Creating the metabolic network
Because gap junctions enforce localization onto the analysis, we looked at cell pairs whose Pythag-
orean distance was ≤15% within the islet. Within this sample space, we looked at cell pairs whose 
average kglyc was more similar than the islet average (Figure 4b).

We chose these parameters such that the Pr(Sync|GJ)=Pr(Sync|Met), which acts as a control allowing 
us to directly compare Pr(GJ|Sync) to Pr(Met|Sync).

Average degree
The degree ki was calculated by counting the number of connections for cell i and averaging k over 
all cells in the islet, then normalized to the islet size to remove any size dependence (kavg / n, where n 
= islet size).

Degree distribution
The degree distribution was calculated by first calculating the degree of each cell by taking the column 
sum of the adjacency matrix. Then each cell degree was normalized by dividing by the maximum 
degree of the islet. The histogram was then calculated using GraphPad Prism.

Hub identification
In accordance with Johnston et al., 2016, any cell with more than 60% islet, calculated by the degree 
distribution, was considered a hub cell.

Probabilities
We first created the functional network and structural (GJ-related probabilities) or metabolic network 
(metabolism). We then calculated the probability that two cells were synchronized by:

	﻿‍
Pr

(
sync

)
=

msync(
n − 1

)
∗ n

2 ‍�
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where  ‍msync‍ = number of edges in the synchronized network, and  ‍n‍ = number of nodes. Similarly, 
we calculated the probability that two cells were either gap junction coupled or metabolically related 
using

	﻿‍
Pr

(
GJ or kglyc

)
=

mGJ or kglyc(
n − 1

)
∗ n

2 ‍�

where ‍mGJ or kglyc‍ is the number of edges in the gap junction or metabolic network.
To find the probability that a cell pair was both synchronized and GJ or metabolically connected, 

we calculated using equation:

	﻿‍
Pr

(
both

)
=

mboth(
n − 1

)
∗ n

2 ‍�

where ‍mboth‍ is any edge that exists in both matrices.
Finally, we calculated conditional probabilities by:

	﻿‍
Pr

(
sync|GJ

)
=

Pr
(
both

)

Pr
(
GJ

)
‍�

	﻿‍
Pr

(
GJ|sync

)
=

Pr
(
both

)

Pr
(
sync

)
‍�

These quantities were calculated separately for each simulated islet and then averaged.

Duty cycle
We defined duty cycle as the proportion of time [Ca2+] was elevated above 50% of its maximum value.

Network topology analysis
Shortest weighted path length
The gap junction network was weighted using the inverse of gcoup or kglyc between cell i and cell j : 

‍
Wij = 1

1
2
(

gcoupi+gcoupj
)
‍
 or 

‍
Wij = 1

1
2
(

kglyci+kglycj
)
‍
 . This is done because the shortest path length algorithm views 

weights as ‘resistance’ and finds the path of least resistance. The shortest weighted path between 
every cell was calculated using Johnson’s algorithm (Johnson, 1977). Cell pairs were then categorized 
as synchronized or not synchronized if their correlation coefficient was <Rth . The average for synchro-
nized and non-synchronized cells was calculated over each islet for each distance. To normalize over 
distance, each data point was divided by the average of the non-synchronized and synchronized islets 
for the given distance.

Clustering coefficient
The clustering coefficient represents the ‘cliquishness’ of the network. This is defined by Stožer 
et al., 2013, as the ‘number of existing connections between all neighbors of a node, divided by the 
number of all possible connections between them’. This was calculated by making a subgraph of each 
cell’s connections and counting the number of connections between those cells. For example, if A is 
connected to B, C, and D, and B and C are connected but D is not connected to any other cell (see 
matrix). Then the clustering for cell A is ‍

2
3∗2 = 1

3‍ . Each node is assigned a clustering coefficient C such 
that:

Subgraph – A B C D

B 1 0

C 1 0

D 0 0

The average clustering coefficient is ‍Cavg‍ = 
‍
1
n

n∑
i

Ci
‍
 .
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Average shortest path length
Shortest path length was calculated with MATLAB function graphallshortestpaths(). This function uses 
the Johnson’s algorithm (Johnson, 1977) to find the shortest path between every pair of cell islet. 
For example, the path length between cell i and cell j is 1 if they are directly synchronized, or 2 if cell 
i is not synchronized with cell j but each is synchronized with cell k . To compensate for highly sparse 
network, any non-connected node was given a characteristic path length of n+1. Finally, the character-
istic path length (L), or average path length, was expressed as the sum of all path lengths normalized 
to total possible connections (size*(size-1)).

The normalized average shortest path length (Supplemental 2d) is therefore calculated as 

‍
Lavg = 1

n
1
n

n∑
i=1

n∑
j=1

Lij
‍
. To compensate for any non-connected cell, whose path length ‍Lix = ∞‍, where ‍x‍ 

is any cell islet, we set the path length for non-connected cells to ‍Lix → n + 1‍, where ‍n‍ is the number 
of cells islet.

Global efficiency
The global efficiency is related to the inverse of global path length (Latora and Marchiori, 2001).

	﻿‍
Eglobal = 1

Isletsize ∗
(
Isletsize − 1

) ∑
jk

1
Ljk ‍�

length using 
‍
Eglobal = 1

n
(

n−1
)

n∑
i=1

n∑
j=1

1
Lij

‍
 . Because ‍Eglobal = 0‍ for a non-connected cell, the disconnected 

network is naturally compensated for.

Random networks
Random networks were created using an Erodos Renyi approach (Lakens, 2013). For each islet, we 
created 1000 random networks with equal number of nodes, edges, and average degree as the islet 
of interest. The probability that two cells were connected was given by ‍p = kavg

n ‍. For each cell pair 
within the islet, a random number generator created a number from 0 to 1. If that number was below 
p, whose cells were connected by an edge.

Significance testing
Effect sizes were calculated using Cohen’s ‍dz = t/

√
n‍ which is appropriate for paired samples (Lakens, 

2013), where n=5.
Significance tests are done in Prism (GraphPad). α values are set to 0.5 unless otherwise mentioned.
Figure 1e–g, Figure 2d–f and h–j, Figure 4e, f and Figure 5e, h are paired two-tailed t-tests.
Figure 1h, Figure 2g, Figure 6c–f, and Figure 7c–f are repeated measures paired one-way ANOVA 

with multiple comparison using Tukey’s multiple comparison.
Figure 3f, i are unpaired two-tailed t-tests.
Figure 3g and j are linear regressions.
Figure  1—figure supplement 1b is repeated measures paired one-way ANOVA with multiple 

comparison using Tukey’s multiple comparison.
Figure 1—figure supplement 2a-c, Figure 2—figure supplement 1a-f, Figure 2—figure supple-

ment 2a-c, Figure 3—figure supplement 1d and g, Figure 3—figure supplement 2a-b, Figure 6—
figure supplement 1b, Figure 7—figure supplement 1b are two-tailed t-tests.

Figure 5—figure supplement 1b, Figure 5—figure supplement 2b are multiple paired t-tests 
with Bonferroni-Dunn adjustment. Since there were 15 cell distances, we set the significance threshold 
α=0.003. For convenience, we present asterisks next to significant p-values.
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