An armoured marine reptile from the Early Triassic of South China and its phylogenetic and evolutionary implications

Andrzej S. Wolniewicz1,2, Yuefeng Shen1, Qiang Li1,3, Yuanyuan Sun4, Yu Qiao1, Yajie Chen1, Yi-Wei Hu1 and Jun Liu1*

1 School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
2 Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
3 Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany
4 Chengdu Center, China Geological Survey, Chengdu, China

* Corresponding author

Abstract Sauropsygy was a taxonomically and ecomorphologically diverse clade of Mesozoic marine reptiles spanning the Early Triassic to the Late Cretaceous. Sauropsygyans are traditionally divided into two groups representing two markedly different body plans – the short-necked, durophagous Placodontia and the long-necked Eosauropterygia – whereas Sauropsphargidae, a small clade of armoured marine reptiles, is generally considered as the sauropterygian sister-group. However, the early evolutionary history of sauropsygyans and their phylogenetic relationships with other groups within Diapsida are still incompletely understood. Here, we report a new sauropsphargid from the Early Triassic (Olenekian) of South China – Prosaurosphargis yingzishanensis gen. et sp. nov. – representing the earliest known occurrence of the clade. An updated phylogenetic analysis focusing on the interrelationships among diapsid reptiles recovers sauropsphargids as nested within
sauropterygians, forming a clade with eosauropods to the exclusion of placodonts. Furthermore, a clade comprising *Eusaurosphargis* and *Palatodonta* is recovered as the sauropterygian sister-group within *Sauropterygimorpha* tax. nov. The phylogenetic position of several Early and Middle Triassic sauropterygians of previously uncertain phylogenetic affinity, such as *Atopodentatus*, *Hanosaurus*, *Majianosaurus* and *Corosaurus*, is also clarified, elucidating the early evolutionary assembly of the sauropterygian body plan. Finally, our phylogenetic analysis supports the placement of *Testudinata* and *Archosauromorpha* within Archelosauria, a result strongly corroborated by molecular data, but only recently recovered in a phylogenetic analysis using a morphology-only dataset. Our study provides evidence for the rapid diversification of sauropterygians in the aftermath of the Permo-Triassic mass extinction event and emphasises the importance of broad taxonomic sampling in reconstructing phylogenetic relationships among extinct taxa.

Introduction

Several groups of reptiles invaded the marine realm in the aftermath of the Permo-Triassic mass extinction (PTME), the largest extinction event in Earth’s history (Benton 2015). This phenomenon was likely a result of the scarcity of marine competitors and predators caused by the PTME and high productivity in the incipient shallow marine environment (Vermeij and Motani 2018). Triassic marine reptiles, including the iconic Ichthyosauropterygia and Sauropthygia, as well as some other smaller and lesser known groups, achieved high taxonomic and ecological diversity rapidly after their emergence in the late Early Triassic and played a pivotal role in the reorganisation of marine food webs following the PTME (Scheyer et al. 2014; Kelley and Pyenson 2015; Motani et al. 2015, 2017; Jiang et al. 2016; Stubbs and Benton 2016; Cheng et al. 2019; Moon and Stubbs 2020; Li and Liu 2020; Sander et al. 2021;
Qiao et al. 2022). Because Mesozoic marine reptiles represent likely several independent transitions from a terrestrial to an aquatic lifestyle, they also provide an ideal system to analyse the roles of function and constraint in determining evolutionary pathways (Motani 2009; Benson 2013).

Sauropoterygia was a diverse clade of Mesozoic marine reptiles that first appeared in the late Early Triassic (Jiang et al. 2014; Li and Liu 2020) and its members remained important predators in marine ecosystems until their extinction at the end of the Late Cretaceous (Bardet 1994; Rieppel 2000a; Benson and Druckenmiller 2014). Sauropoterygia is traditionally divided into two major lineages, representing two markedly different body plans — the Placodontia and the Eosauropterygia, the latter comprising Pachypleurosauria, Nothosauroidea and Pistosauroidae (which includes the iconic Plesiosauria) (Rieppel 2000a).

Placodonts were characterised by the presence of short necks and short skulls and possessed crushing palatal dentition almost certainly used for feeding on hard-shelled invertebrates (Rieppel 2002; Crofts et al. 2017). Some early-diverging placodonts had a limited covering of osteoderms on their backs and possibly limbs (Jiang et al. 2008; Klein and Scheyer 2013), but derived forms evolved extensive dorsal armour superficially similar to that of turtles (Scheyer 2007; Wang et al. 2020). Eosauropterygians, on the other hand, had elongated necks and elongated skulls with pointed dentition suitable for capturing fast-moving prey (Rieppel 2000a, 2002). Placodonts remained restricted to shallow marine environments until their extinction in the Late Triassic, whereas eosauropterygians evolved a suite of adaptations for a pelagic lifestyle and became one of the dominant groups of marine reptiles in the Jurassic and Cretaceous (Kelley et al. 2014).

Even though sauropterygians have a rich fossil record and a long history of scientific research, the early evolution of the group is still incompletely understood. In a broad phylogenetic context, sauropterygians have been consistently recovered within Diapsida, but
their exact phylogenetic position relative to other diapsid groups remains unresolved. Several diapsid clades, including Saurosphargidae (Chen et al. 2014; Li et al. 2014, 2018; Neenan et al. 2015; Wang et al. 2022), Testudinata (de Braga and Rieppel 1997; Schoch and Sues 2015), Ichthyosauroomorpha (Martínez et al. 2021), Thalattosauria (Simões et al. 2022) and the armoured reptile *Eusaurosphargis dalsassoi* (Scheyer et al. 2017) were previously proposed to be the sauropterygian sister-group, but its exact identity is still a matter of debate. Because sauropterygians were suggested as being closely related not only to turtles, but also to archosauromorphs (Chen et al. 2014; Neenan et al. 2015; Martínez et al. 2021; Simões et al. 2022), resolving their phylogenetic placement within diapsids is of crucial importance for solving the phylogenetic uncertainty surrounding Archelosauria – a clade comprising turtles and archosauromorphs strongly supported by molecular data (Crawford et al. 2015; Lyson and Bever 2020) but only recently recovered in a phylogenetic analysis using a morphology-only dataset (Simões et al. 2022).

Saurosphargids are a small clade of Mesozoic marine reptiles characterised by the presence of body armour comprising broadened dorsal ribs, forming a closed ‘rib-basket’, and a moderately- to well-developed osteoderm covering (Li et al. 2011, 2014). Saurosphargids are known from the Middle Triassic of Europe and South China, although recent evidence suggests they could have survived as late as the Late Triassic (Scheyer et al. 2022). Saurosphargids comprise as many as four taxa – *Saurosphargis volzi* (considered a nomen dubium by some authors) (Huene 1936; Nosotti and Rieppel 2003; Scheyer et al. 2017), the heavily armoured *Sinosaurosphargis yunguiensis* (Li et al. 2011; Hirasawa et al. 2013), and two species in the genus *Largocephalosaurus* (*L. polycarpon* and *L. qianensis*) (Cheng et al. 2012; Li et al. 2014). Saurosphargids are one of the reptile groups proposed as the sister-group of sauropterygians (see above), but some recent phylogenetic analyses have suggested their placement within sauropterygians instead, as either the sister-group to
placodonts (Schoch and Sues 2015; Simões et al. 2018; Martínez et al. 2021) or
eosauropterygians (Scheyer et al. 2017; Wang et al. 2019; Simões et al. 2022).

Our understanding of the early evolution of the sauropterygian body plan is also
hindered by the uncertain phylogenetic position of several Early and Middle Triassic taxa.
Hanosaurus hupehensis (Young 1972; Rieppel 1998a; Wang et al. 2022) and
Majiashanosaurus discocoracoidis (Jiang et al. 2014) from the Early Triassic of South China
are variably recovered as either lying outside of the clade comprising Saurosphargidae +
Sauropterygia (*Hanosaurus*; Wang et al. 2022), as pachypleurosaurs (Jiang et al. 2014;
Neenan et al. 2015; Lin et al. 2021; Wang et al. 2022) or as outgroups to a clade comprising
nothosauroids and pachypleurosaurs to the exclusion of pistosauroids (Li and Liu 2020). The
phylogenetic placement of *Corosaurus alcovensis* from the Early–Middle Triassic of
Wyoming, USA, is also unresolved, with different authors arguing for its early-diverging
eosauropterygian (Rieppel 1994; Li and Liu 2020), eusauropterygian (more closely related to
nothosauroids and pistosauroids than to pachypleurosaurs) (Neenan et al. 2015; Lin et al.
2021) or pistosauroid (Rieppel 1998b; Wang et al. 2022) affinity. The phylogenetic position
of the herbivorous hammer-headed sauropterygian *Atopodentatus unicus* from the Middle
Triassic of South China relative to placodonts and eosauropterygians also remains uncertain
(Cheng et al. 2014; Li et al. 2016; Wang et al. 2022). These conflicting phylogenetic
placements are likely the result of inadequate sampling of Early and Middle Triassic
sauropterygian ingroup taxa, as well as the inclusion of only a limited number of diapsid
reptile clades, including potential sauropterygian outgroups, in previous phylogenetic
analyses.

Here, we report an Early Triassic saurosphargid from South China, representing the
earliest recorded occurrence of the group. We also present an updated phylogenetic hypothesis
for Diapsida with a particular focus on Sauropterygia, which we use as context for discussing
the early evolutionary assembly of the sauropterygian body plan.

Results

Geological background

Yingzishan quarry, where the new specimen (HFUT YZSB-19-109) was collected, is
located on the northern boundary of the Yangtze Platform (Figure 1A) (Li and Liu 2020). The
new specimen represents the Early Triassic Nanzhang-Yuan’an fauna (Li and Liu 2020) and
originates from the upper part of the third member of the Jialingjiang Formation (Figure 1B).
Traditionally, the Jialingjiang Formation has been divided into four members by most authors
studying the region (Li et al. 2002; Zhao et al. 2008; Cheng et al. 2015). From base to top, the
first member consists of thick-bedded to massive dolostone, the second member consists of
vermicular limestone intercalated with dolostone, the third member consists of laminated
thin- to medium-bedded limestone to dolostone, whereas the fourth member is composed of
dolostone and karstified breccia. Thus, in the four-member division of the Jialingjiang
Formation, the thick volcanic ash (Figure 1B) marks the bottom of the fourth member.
However, recent geological mapping in the region (Chen et al. 2016a, b) proposed that the
fourth member of the Jialingjiang Formation should be included in the Middle Triassic
Badong Formation, indicating a three-member division of the Jialingjiang Formation. This
division is consistent with the lithology of the Jianlingjiang and Badong formations as
defined by the official geological guide of Hubei Province (Bureau of Geology and Mineral
Resources of Hubei Province 1990). The division of the Lower and Middle Triassic in the
region is also consistent with the widespread thick volcanic ash as a marker of the Lower–
Middle Triassic boundary in the Yangtze Platform (Chen et al. 2020). Consequently, this
three-member division was followed by Cheng et al. (2019), Li and Liu (2020), Qiao et al. (2020) and is also followed in this study.

However, the second and third members of the Jialingjiang Formation were recently redefined by Yan et al. (2021), who regarded the lowermost base of the thick vitric tuff as the boundary between the second and third members (contra Chen et al. 2016a, b; Cheng et al. 2019). As a consequence, the Nanzhang-Yuan’an fauna was placed into the newly defined second member of the Jialingjiang Formation (Cheng et al. 2022; Zhao et al. 2022). We argue that this new definition and division of different members of the Jialingjiang Formation contradicts the official geological guide (Bureau of Geology and Mineral Resources of Hubei Province 1990) and causes confusion. Therefore, we prefer to maintain the definition of the thick vitric tuff as the boundary between the second and third members of the Jialingjiang Formation in the Nanzhang-Yuan’an region (Figure 1B), pending future updates of the official geological guide of Hubei Province.

The new specimen is buried in dark grey, laminated, and thin-bedded carbonate mudstone (Figure 1B) with some carbonaceous interactions. There are also some peloids, replacive dolomites, and microbial mats in the fossiliferous levels (Chen et al. 2022). Based on the published sedimentological accounts (Wang et al. 2011; Chen et al. 2016b; Yan et al. 2018, 2021; Li et al. 2020; Zhao et al. 2022) and field observations, a restricted, stagnant, and hypersaline lagoon within a tidal flat environment is inferred as the burial setting of the marine reptiles of the Nanzhang-Yuan’an fauna (Chen et al. 2022).

Systematic palaeontology

- Reptilia Laurenti, 1768
- Diapsida Osborn, 1903
Archelosauria Crawford et al., 2015

Sauropterygliceroma tax. nov.

urn:lsid:zoobank.org:pub:[...] (taxon will be registered in ZooBank after paper acceptance)

Definition: The most recent common ancestor of *Eusaurosphargis dalsassoi* and *Pistosaurus longaevus*, and all of its descendants.

Diagnosis: Osteoderms present (ch. 143.1), body strongly flattened dorso-ventrally (ch. 144.1), clavicle applied to the medial surface of scapula (ch. 148.1), metatarsal V long and slender (ch. 186.0), metatarsal I less than 50% the length of metatarsal IV (ch. 189.1).

Sauropterygia Owen, 1860

Saurosphargidae Li et al., 2011

Prosaurosphargis yingzishanensis gen. et sp. nov.

urn:lsid:zoobank.org:pub:[...] (taxon will be registered in ZooBank after paper acceptance)

Holotype: HFUT YZSB-19-109, a partial postcranial skeleton (*Figure 2*). The specimen is housed in the Geological Museum of Hefei University of Technology, Hefei, Anhui Province, China (HFUT).

Etymology: Genus name from the Greek preposition πρό (pró), meaning before, and *Saurosphargis*, the name of the type genus of the family Saurosphargidae (Li et al. 2011). The specific epithet refers to the type locality (see above).

Horizon and locality: Third Member of the Jialingjiang Formation (uppermost Spathian, Olenekian, Lower Triassic), Yingzishan quarry, Yuan’an County, Hubei Province, China.
Diagnosis: A saurosphargid characterised by the following combination of character states: 1) spaces between dorsal transverse processes anteroposteriorly shorter than the anteroposterior widths of the transverse processes (like in *Saurosphargis* and *Sinosaurosphargis*, but different from *Largocephalosaurus*, in which the spaces between the dorsal transverse processes are wider than the transverse processes); 2) ribs without uncinate processes (like in *Sinosaurosphargis*, but unlike in *Saurosphargis* and *Largocephalosaurus*, in which uncinate processes are present); 3) osteoderms forming a median, parasagittal and lateral rows (similar to *Largocephalosaurus polycarpon*, but different from *L. qianensis*, in which additional, small osteoderms more extensively cover the lateral sides of the body, and different from *Sinosaurosphargis*, in which the osteoderms form an extensive dorsal armour); 4) ectepicondylar groove on humerus present (like in *Largocephalosaurus qianensis*, absent in *L. polycarpon*); 5) entepicondylar foramen in humerus absent (as in *Largocephalosaurus*) (details of humerus morphology unknown in *Sinosaurosphargis*); 6) radius short relative to humerus compared with other saurosphargids; 7) presence of a single distal tarsal (distal tarsal IV) (different from *Largocephalosaurus*, which possesses two distal tarsals – III and IV) (number of tarsals unknown in *Sinosaurosphargis*).

Description and comparisons

HFUT YZSB-19-109 comprises three blocks (Figure 2). The first large block contains mostly disarticulated parts from the anterior right portion of the postcranial skeleton – two cervical neural arches and five cervical ribs, one dorsal centrum and two dorsal neural arches (all three preserved in articulation), nine dorsal ribs, one median, 11 lateral and 13 lateralmost gastral elements, a single parasagittal osteoderm, the right scapula, right coracoid, right
humerus, and right radius (Figure 3). The second small block contains the distal ends of the six most anterior dorsal ribs, five lateralmost gastral elements, as many as eight osteoderms, a partial left coracoid, and a left humerus (Figure 4). The third large block preserves the articulated posterior part of the body, including five posterior dorsal neural arches and associated ribs, four posterior dorsal/sacral vertebrae and ribs, an articulated series of 11 anterior caudals with associated ribs, chevrons and osteoderms, 14 lateralmost gastralia, a single parasaggital osteoderm, a partial right and a complete left pelvic girdle, and a complete left hindlimb (Figures 5 and 6). Based on the humerus:total body length and femur:total body length ratios of the type specimen of *Largocephalosaurus qianensis* (specimen IVPP V 15638, total body length = 2317 mm; Li et al. 2014), the only completely preserved saurosphargid specimen discovered to date, the total length of HFUT YZSB-19-109 is estimated to have reached between 1468 mm to 1583 mm, respectively. Selected measurements of HFUT YZSB-19-109 are available in Table 1.

Axial skeleton

Vertebrae: The vertebral column of HFUT YZSB-19-109 is represented by two disarticulated cervical neural arches, a single anterior dorsal centrum and two anterior dorsal neural arches (all three preserved in articulation), and an articulated series of 20 vertebrae comprising five posterior dorsal neural arches, four complete posterior dorsal/sacral vertebrae and 11 complete caudal vertebrae.

Two cervical neural arches are preserved in HFUT YZSB-19-109 (Figure 3). Only the left side of a small neural arch, representing one of the anterior post-axial cervicals, is preserved in dorsal view, whereas a larger neural arch, belonging to one of the posterior cervicals, is completely preserved and exposed in ventral view, but it is partially obscured by an overlying cervical rib and is rotated by approximately 180 degrees, so that its anterior end
faces posteriorly. The transverse processes of the cervical neural arches extend posterolaterally and are proportionally shorter than the transverse processes of the dorsal neural arches. A well-developed prezygapophysis is clearly visible in the smaller neural arch. Well-developed postzygapophyses are preserved in both the anterior and posterior cervical neural arches, where they are visible protruding from just underneath the overlying cervical rib in the latter. Approximately oval, anteroposteriorly elongate facets for articulation with the centrum are exposed in the posterior cervical neural arch.

The only preserved dorsal centrum is exposed in ventral view (Figure 3). It is mediolaterally constricted at its anteroposterior mid-length, resembling the dorsal centra of other saurosphargids (Huene 1936; Li et al. 2011; Li et al. 2014). The pedicels of the neural arches are anteroposteriorly elongate and mediolaterally narrow, resembling those preserved in *Saurosphargis* (Huene 1936). The transverse processes are straight and mediolaterally elongate. The maximum width of the transverse process is greater than the maximum width of the space between the transverse processes of adjacent neural arches (Figure 3), a condition similar to that exhibited by *Saurosphargis* (Huene 1936) and *Sinosaurosphargis* (Li et al. 2011), but different from *Largocephalosaurus* (Li et al. 2014) and *Eusaurosphargis* (Scheyer et al. 2017), in which the widths of the spaces between the dorsal transverse processes are approximately equal or greater than the widths of the transverse processes.

Five posterior dorsal neural arches are preserved in articulation in HFUT YZSB-19-109 and are exposed in ventral view. In addition, a fragmentary centrum is associated with the second preserved posterior dorsal neural arch. The articulation surfaces for the centra located on the pedicels of the posterior dorsal neural arches are anteroposteriorly elongate, but seem mediolaterally broader and not as well demarcated from the transverse processes as those in the more anterior dorsal neural arches. The posterior dorsal transverse processes gradually become mediolaterally shorter and anteroposteriorly broader posteriorly. Well-developed
prezygapophysis-postzygapophysis articulations are preserved and exposed between the second and fifth posterior dorsal neural arches. Articulated anterior and posterior dorsal neural arches preserved without their respective centra indicate a lack of fusion of the neurocentral suture, a paedomorphic feature characteristic for Sauropterygia (Rieppel 2000a) and also present in *Saurophargis* (Huene 1936) and *Largocephalosaurus* (Li et al. 2014).

Four complete posterior dorsal/sacral vertebrae are preserved and exposed in left ventrolateral view. Two sacral vertebrae can be identified by the presence of associated sacral ribs with clearly expanded distal ends. However, the distal ends of the first two ribs lying immediately posterior to the last unambiguous dorsal rib are obscured by the overlying ilium and ischium, so it is not possible to confidently determine whether they represent the last two dorsal ribs or the first two sacral ribs (Figure 6A). A series of 11 articulated and complete caudal vertebrae is also preserved, with two anterior caudals exposed in left ventrolateral view and the remaining caudals exposed in lateral view (Figure 6). The sacral and caudal centra have concave lateral and ventral surfaces and are likely amphicoelus, as evidenced by the concave anterior articular surface of the second caudal centrum, but in most cases the articular surfaces are obscured by matrix or adjacent centra, giving a false impression of procoely or amphiplaty. The caudal centra are dorsoventrally taller than anteroposteriorly long and gradually decrease in size posteriorly. The caudal neural arches bear well-developed, anterodorsally inclined prezygapophyses. The neural spines of some caudal neural arches are exposed in lateral view (Figure 6B). They are dorsoventrally short, anteroposteriorly broad and possess a convex dorsal margin. A slightly rugose/striated dorsal surface, reminiscent of a similar surface present in the dorsal neural spines of *Helveticosaurus* (Rieppel 1989a), *Augustasaurus* (Sander et al. 1997), *Nothosaurus* (Klein et al. 2022) and *Pomoliospondylus* (Cheng et al. 2022), is preserved in some of the anterior caudal neural spines. Rib facets are visible from the second sacral to the penultimate
preserved caudal vertebra (Figure 6). The dorsal portions of the rib facets are located on the ventrolateral surfaces of the neural arches, whereas their ventral portions are located on the dorsolateral surfaces of the centra and are demarcated by a prominent, ventrally arcuate ridge (Figure 6B). The surface of the rib facets is rugose. The last visible minute caudal rib is preserved in articulation with the seventh caudal vertebra, but small rib facets are also preserved in the following three vertebrae (Figure 6C). It is not clear, however, if small ossified caudal ribs were associated with these vertebrae in life.

Ribs: Six cervical ribs are preserved in HFUT YZSB-19-109 (Figures 3 and 4). Three anterior cervical ribs are approximately straight and possess a single, expanded head and narrow distal ends. Two posterior cervical ribs are also preserved, but their proximal portions are obscured by the overlying coracoid and scapula. These ribs are much longer than the anterior cervical ribs and possess slightly curved shafts and relatively broad distal ends. HFUT YZSB-19-109 also preserves 16 dorsal ribs, but most of them are incomplete and/or obscured by overlying skeletal elements, such as gastralia or other ribs (Figures 3, 4 and 6A). The anterior dorsal ribs are much more robust than the posterior cervical ribs, being proximodistally longer and anteroposteriorly much broader (Figures 3 and 4). They have a single head and greatly expanded distal portions that abut against each other, forming a characteristic ‘rib-basket’ also present in other saurosphargids (Huene 1936; Li et al. 2011, 2014), but differ from the dorsal ribs of Eusaurosphargis, which are narrow and widely spaced (Scheyer et al. 2017). The dorsal ribs do not bear a distinct uncinate process, being similar in this respect to the dorsal ribs of Sinosaurosphargis (Li et al. 2011), but differ from the dorsal ribs of Largocephalosaurus, Saurosphargis, Eusaurosphargis and a possible isolated saurosphargid rib from the Late Triassic of Switzerland, all of which possess uncinate processes (Li et al. 2014; Scheyer et al. 2017; Scheyer et al. 2022).
Five to seven posterior dorsal ribs are preserved in HFUT YZSB-19-109; they have an expanded head, a narrow distal end and are much shorter and slender in comparison with the more anterior dorsal ribs. As a consequence, they did not form part of the closed ‘rib-basket’. Two to four pairs of sacral ribs are preserved in HFUT YZSB-19-109, although the right sacral ribs are damaged and partially preserved as impressions (see above regarding the uncertainty in establishing the correct number of sacral vertebrae/rib pairs) (Figure 6A). Two unambiguous sacral ribs are proximodistally slightly longer than the last evident dorsal rib and possess clearly expanded distal ends. The penultimate left sacral rib bears a small posteroproximal process. The caudal ribs are proximodistally short, possess a broad head and taper distally (Figure 6). They are not fused with the caudal centra. The anterior caudal ribs in HFUT YZSB-19-109 are shorter than the sacral ribs, in contrast to Largocephalosaurus, in which the anterior caudal ribs are longer than the sacral ribs (Li et al. 2014). The caudal ribs decrease in size posteriorly and extended at least to the level of the seventh caudal centrum, although it is not clear if caudal ribs extended posteriorly beyond the seventh caudal (see above). In Largocephalosaurus, the caudal ribs extend to the level of the 10th or 11th caudal centrum (Li et al. 2014).

Chevrons: Eight chevrons are preserved in HFUT YZSB-19-109 in association with some of the posterior caudal vertebrae (Figure 6A, C). In lateral view, the chevrons are slender and straight or display a gentle ventral curvature. The chevrons have a proximal end that is approximately equal in size or only slightly expanded relative to the distal end.

Gastralia: The gastral rib basket is partially preserved in HFUT YZSB-19-109 (Figures 3–5). Like in Eusaurosphargis, Placodus and eosauropterygians (Drevermann 1933; Rieppel 1989b; Nosotti and Rieppel 2003; Shang et al. 2011), each gastral rib was composed of five elements – a median element, two lateral (first lateral) elements and two lateralmost (second lateral) elements. Gastral ribs comprising five elements were also inferred for Saurosphargis
(Huene 1936), whereas in *Sinosaurosphargis* the gastral ribs were described as comprising three elements – one median and two lateral elements (Li et al. 2011), and the number of gastral rib elements was not specified for *Largocephalosaurus* (Li et al. 2014). A single anterior median gastral element, 11 lateral and 33 lateralmost elements are preserved in HFUT YZSB-19-109. The median element is weakly angulated anteriorly, whereas the first lateral elements form proportionally short rods with a blunt medial end and a pointed lateral end (Figure 3) and closely resemble the first lateral gastral elements of *Placodus* (Drevermann 1933). The lateralmost elements are concentrated into two articulated series comprising 13 (anterior block; Figure 3) and 14 (posterior block; Figure 5) elements each. They form mediolaterally elongate rods which are approximately straight or gently angulated posteriorly. The medial end of the second lateral element is narrow and tapers into a pointed apex, whereas the lateral end is broadened and blunt with a distinctly rugose/granulated surface. One anteriorly positioned first lateral element seems to bifurcate laterally, forming two lateral prongs (Figure 3).

Osteoderms

Several osteoderms are preserved in HFUT YZSB-19-109. A single osteoderm is preserved in the anterior block between the anterior dorsal ribs (Figure 3) and a second isolated osteoderm is preserved in the posterior block between the posterior gastral elements (Figure 5). In addition, two possible osteoderms are also preserved in association with the proximal end of the left humerus (Figure 4). These osteoderms are approximately oval in outline and likely represent osteoderms forming parasagittal rows similar to those in *Largocephalosaurus* (Li et al. 2014; Scheyer et al. 2022). A partial series comprising six osteoderms is preserved along the distal ends of a series of partially preserved left dorsal ribs (Figure 4). These osteoderms represent the left lateral osteoderm row and are anteroposteriorly elongate, have an irregular, sub-oval or sub-rectangular outline, and a
densely pitted surface. One of the posterior elements in this series bears a prominent ridge extending along the midline of its exposed surface. In all these features, these osteoderms closely resemble the lateral osteoderms reported for *Saurosphargis* (Huene 1936) and *Largocephalosaurus polycarpon* (Li et al. 2014).

Another partial series of small osteoderms is preserved lateral to the distal ends of the right sacral and anterior caudal ribs, indicating that the lateral osteoderm rows extended to the level of the seventh caudal vertebra (Figure 6A). A few small osteoderms are also preserved in close association with the anterior caudal neural spines and seem to have formed a median row along the dorsal midline (Figure 6B), likely overlying the caudal neural spines in a manner similar to that in *Largocephalosaurus* (Li et al. 2014) and *Placodus* (Jiang et al. 2008). In *L. qianensis*, a dense covering of small osteoderms is present on the dorsal surface of the neck, trunk and caudal region (Li et al. 2014), but no such osteoderms were found in association with HFUT YSZB-19-109. A dense covering of osteoderms is also absent in *L. polycarpon* (Cheng et al. 2012; Li et al. 2014).

Pectoral girdle

Scapula: The right scapula is completely preserved in HFUT YZSB-19-109 (Figure 3). In addition, a large and broad broken bone fragment likely representing the left scapula is visible lying anterodorsally to the left coracoid (Figure 4). The scapula possesses an anteroproximally expanded glenoid portion and a much narrower, straight, and posterodorsally projecting scapular blade. The glenoid portion forms a low acromion process proximodorsally. The coracoid facet is relatively broad and convex, whereas the glenoid facet is straight and short and oriented nearly parallel to the long axis of the scapular blade. The scapular blade is separated from the glenoid portion by a deep posteroverentral notch. The scapular blade is straight, with gently concave anterodorsal and posteroverentral margins and
an approximately straight posterior margin. In general shape and proportions, the scapula of HFUT YZSB-19-109 closely resembles the scapula of *Largocephalosaurus* (Cheng et al. 2012; Li et al. 2014) and *Corosaurus* (Storrs 1991), although the notch separating the glenoid portion from the scapular blade is much deeper and narrower in the latter.

Coracoid: The coracoids are only partially visible in HFUT YZSB-19-109 – the right coracoid is almost entirely covered by the right scapula (Figure 3), whereas the proximal portion of the left coracoid is broken (Figure 4). The preserved parts of both coracoids indicate that it was a dorsoventrally flat, plate-like element, approximately sub-circular in outline, closely resembling the coracoid of *Largocephalosaurs* (Li et al. 2014) (Figure 7). The coracoid of HFUT YZSB-19-109 differs, however, from the coracoids of *Helveticosaurus* (Rieppel 1989), *Eusaurosphargis*, *Atopodentatus*, early diverging placodonts, *Majiashanosaurus*, a referred specimen of *Hanosaurus*, and *Lariosaurus sanxiaensis*, in which the coracoid is proximodistally more elongate and approximately sub-oval in outline (Figure 7). It also differs from the coracoids of eosauropterygians, which possess weakly- or well-developed anterior and posterior emarginations (Figure 7). A small notch in the proximal part of the right coracoid, seen just above the anterior margin of the right scapula, likely represents the coracoid foramen. The exposed ventral surface of the left coracoid bears numerous radial striations extending from the centre of the bone towards its outer margins.

Forelimb

Humerus: Both humeri are preserved in HFUT YZSB-19-109 – the right humerus is complete, but partially overlapped by the right scapular blade (Figure 3), whereas the left humerus is slightly broken proximally (Figure 4). The humerus is proximodistally elongate; it is also posteriorly curved along its proximodistal axis, like the humerus of other
sauropsphargids (Li et al. 2011, 2014; Cheng et al. 2012), *Placodus* (Jiang et al. 2008), *Majiashanosaurus* (Jiang et al. 2014), *Lariosaurus sanxiaensis* (Li and Liu 2020), a referred specimen of *Hanousaurus* (Wang et al. 2022) and numerous eosauropterygians (Rieppel 1994). However, in contrast to *Largocephalosaurus*, the anterior margin of the humerus is not convex, but straight, making it more similar to the humeri of *Placodus* and *Nothosaurus* (Rieppel 1994). The shape of the anterior margin of the humerus is unknown in *Sinosaurosphargis*. The posterior margin of the humerus is concave. The proximal and distal ends of the humerus are expanded, but a distinct humeral head and distal condyles are not present. Anteriorly, the distal end of the humerus bears a shallow ectepicondylar groove (notch), like in *Largocephalosaurus qianensis* (Li et al. 2014), but unlike in *L. polycarpon* (Cheng et al. 2012), which possesses an entepicondylar foramen. Anteroproximally, the exposed surface of the right humerus bears a short, straight groove, which likely represents a muscle insertion site.

Radius: A disarticulated right radius is completely preserved in HFUT YZSB-19-109 in close proximity to the right humerus and right pectoral girdle (Figure 3). The radius is proximodistally elongate and anteriorly curved, with a convex anterior margin and a concave posterior margin. The proximal and distal ends of the radius are straight and slightly expanded, with the proximal end being anteroposteriorly broader than the distal end. The radius is similar in general shape to that in other saurosphargids (Li et al. 2011, 2014; Cheng et al. 2012), *Majiashanosaurus* (Jiang et al. 2014), *Placodus* (Jiang et al. 2008) and *Helveticosaurus* (Rieppel 1989), but differs from the straight and anteriorly and posteriorly concave radius of *Euasaurosphargis* (Scheyer et al. 2017). The radius/humerus proximodistal length ratio in HFUT YZSB-19-109 is ~0.55, in line with *Euasaurosphargis* (~0.51–0.57; Scheyer et al. 2017) and *Placodus* (~0.56; Jiang et al. 2008), but is significantly smaller than the ratio in *Sinosaurosphargis* (~0.66; Li et al. 2011), *Largocephalosaurus polycarpon*.
(~0.74; Cheng et al. 2012), *L. qianensis* (~0.67–0.72; Li et al. 2014), a referred specimen of *Hanosaurus* (~0.67; Wang et al. 2022), and *Majiashanosaurus* (~0.74; Jiang et al. 2014). This indicates that HFUT YZSB-19-109 had a proportionally shorter forearm compared with other saurophargids and early eosauropterygians.

Pelvic girdle

Ilium: The left ilium is completely preserved in HFUT YZSB-19-109 and is exposed in lateral or medial view (Figure 5). The ilium consists of a distally expanded acetabular portion and a posteriorly projecting iliac blade, which is largely obscured by the overlying ischium. The ilium of HFUT YZSB-19-109 is very similar to the ilia of *Largocephalosaurus* (Li et al. 2014), *Eusaurosphargis* (Nosotti and Rieppel 2003), *Placodus* (Rieppel 1995), and *Corosaurus* (Storrs 1991), which all possess a well-developed, posteriorly projecting iliac blade.

Pubis: The left pubis is completely preserved in HFUT YZSB-19-109 and exposed in ventral view, whereas only the distal portion of the right pubis is preserved (Figure 5). The pubis is approximately oval in outline, being proximodistally longer than anteroposteriorly broad and bears a posteroproximally positioned, open obturator foramen. The pubis of HFUT YZSB-19-109 resembles the pubis of *Largocephalosaurus* (Li et al. 2014) in outline and proportions. It is also similar to the pubis of the holotype and referred specimens of *Hanosaurus* (Rieppel 1998a; Wang et al. 2022) and *Pararcs diepenbroekii* (Klein and Scheyer 2013), which are however more circular in outline, being approximately as wide proximodistally as long anteroposteriorly. The pubis of HFUT YZSB-19-109 differs markedly from the anteriorly and posteriorly shallowly emarginated pubis of *Eusaurosphargis* (Scheyer et al. 2017) and *Placodus* (Drevermann 1933), and the deeply emarginated pubis of eosauropterygians (e.g. Rieppel 2000a).
Ischium: The left ischium of HFUT YZSB-19-109 is completely preserved, but is rotated 180° relative to its life position and is exposed in dorsal view, whereas only the distal portion of the right ischium is preserved (Figure 5). The ischium forms an anterodistally convex and posteroproximally concave plate, similar to that in *Largocephalosaurus* (Li et al. 2014), *Pararcus* (Klein and Scheyer 2013) and *Hanosaurus* (Rieppel 1998a; Wang et al. 2022), but differs markedly from the anteriorly emarginated ischium of *Eusaurosphargis* (Scheyer et al. 2017) and the anteriorly and posteriorly emarginated ischia of some placodonts and eosauropterygians (Rieppel 2000a).

Hindlimb

Femur: The left hindlimb is completely preserved in HFUT YZSB-19-109. The femur is exposed in posterior view (Figure 5). The shaft of the femur is straight and both the proximal and distal ends are expanded. The internal trochanter is well-developed and located proximally, as in *Largocephalosaurus* (Li et al. 2014), *Simosaurus*, and *Nothosaurus* (Rieppel 1994), but differs from the more distally located trochanter in the holotype of *Hanosaurus* (Rieppel 1998a). Distally, the femur produces weakly-developed but still distinct condyles for the tibia and fibula, separated ventrally by a shallow popliteal area. The humerus/femur ratio in HFUT YZSB-19-109 is ~1.19, which is similar to the ratio in *Largocephalosaurus* (~1.20; Li et al. 2014), but is significantly greater than the ratio in *Helveticosaurus* (~1.11; Rieppel 1989), *Placodus* (~1.05; Jiang et al. 2008) and *Eusaurosphargis* (~0.89; Scheyer et al. 2017).

Tibia and fibula: The tibia is proximodistally slightly longer than the fibula and possesses proximally and distally expanded ends, with the proximal end slightly broader than the distal end (Figure 5). Posteroproximally, the tibia bears a proximodistally elongate, shallow facet for the fibula. The anterior and posterior margins of the tibia are gently

20
The fibula possesses an approximately straight posterior margin and a concave anterior margin (Figure 5). The proximal and distal ends of the fibula are slightly expanded, with the distal end being slightly broader than the proximal end. This is in contrast to *Largocephalosaurus*, in which the proximal end of the fibula is markedly broader than the distal end (Li et al. 2014).

Tarsals: Three tarsals are present in the left hindlimb of HFUT YZSB-19-109 – the largest one being the astragalus, the medium-sized representing the calcaneum, and the smallest element interpreted here as distal tarsal IV (Figure 5). The tarsals are sub-circular in outline, with the astragalus possessing minute notches anteriorly and posteriorly, and their exposed ventral surfaces are weakly concave. The morphology of the tarsals of HFUT YZSB-19-109 is similar to that in *Largocephalosaurus*, which, however, possesses four tarsals instead of three (astragalus, calcaneum and distal tarsals III and IV; Li et al. 2014).

Metatarsals: All five metatarsals are preserved in the left hindlimb of HFUT YZSB-19-109 (Figure 5). Metatarsal I is the proximodistally shortest metatarsal, being much broader proximally than distally. It is also the most robust of the metatarsals. Metatarsals II–V are slender, approximately cylindrical in outline, with expanded proximal and distal ends. The proximodistal length of the metatarsals increases from metatarsal II–IV, with metatarsal IV being the longest of all metatarsals (similar to *Largocephalosaurus polycarpon*, but different from *L. qianensis*, in which metatarsal III is the longest; Li et al. 2014); the length of metatarsal V is comparable to that of metatarsal III. Metatarsal V is proportionally the most slender of the metatarsals (similar to the condition in *L. qianensis*, but unlike in *L. polycarpon*, in which metatarsal IV is the most slender; Li et al. 2014).

Phalanges: The pedal phalanges are completely preserved in the left pes of HFUT YZSB-19-109 (Figure 5). The proximal phalanges of digits 1 and 2 are sub-rectangular in
outline, whereas those of digits 3–5 are cylindrical and have expanded proximal and distal ends. Distally, the phalanges become proximodistally shorter and sub-rectangular in outline. The phalangeal formula is 2-3-4-5-5 (unguals 2 and 3 are slightly displaced).

Phylogenetic results

The phylogenetic analysis recovered 48 most parsimonious trees (MPTs) of 1008 steps each (CI = 0.272, RI = 0.620) (Figure 8). Prosaurophargis was recovered as a member of Saurosphargidae, forming a polytomy with Sinosaurosphargis and Largocephalosaurus. Saurosphargidae is supported by the following three unambiguous synapomorphies: dorsal ribs transversely broadened and in antero-posterior contact with each other, forming closed ‘rib-basket’ (char. 135.1); lateral gastralia expanded and flat (char. 141.1); distal end of ulna distinctly expanded (char. 167.1).

Saurosphargidae was recovered within Sauropterygia, as the sister-group to the lineage leading to Eosauropterygia. The saurosphargid-eosauropterygian clade is supported by six unambiguous synapomorphies: frontal, butterfly-shaped with antero- and postero-lateral processes absent (ch. 29.0); long postorbital posterior process contacting squamosal (ch. 32.0); mandibular articulations displaced to a level distinctly behind occipital condyle (ch. 87.1); neural canal evenly proportioned (ch. 122.0); three sacral ribs (ch. 130.1); total number of carpal ossifications more than three (ch. 194.0).

Pomolispondylus, recently proposed as a sister-taxon of Saurosphargidae (Cheng et al. 2022), was recovered as the most basal member of the grade leading to Eosauropterygia (Pomolispondylus + eosauropterygian lineage supported by a single unambiguous synapomorphy: transverse processes of neural arches of the dorsal region relatively short [ch. 124.0]). The type (Rieppel 1998a) and referred (Wang et al. 2022) specimens of Hanosaurus
were not unambiguously recovered in a monophyletic group – both specimens were recovered alongside *Majiashanosaurus* in a polytomy at the base of Eosauropterygia (clade comprising *Hanosaurus*, *Majiashanosaurus*, and Eosauropterygia supported by a single unambiguous synapomorphy: osteoderms absent [ch. 143.0]). *Corosaurus* was recovered as the earliest-diverging member of Eosauropterygia, whereas *Wumengosaurus* was recovered outside of the clade comprising pachypleurosaurs, nothosaurs and pistosaurs.

The herbivorous sauropterygian *Atopodentatus* was recovered as the sister-taxon of placodonts (represented in our dataset by *Paraplacodus* and *Placodus*) within Placodontiformes, supported by four unambiguous synapomorphies: contact of the prefrontal and postfrontal excluding frontal from dorsal orbital margin (char. 21.1); interpterygoid vacuity absent (char. 81.1); splenial entering mandibular symphysis (char. 88.0); and femur internal trochanter well developed (char. 203.0).

Palatodonta was recovered as the sister-taxon of *Eusaurosphargis*. This clade is supported by one unambiguous synapomorphy – a small premaxilla (char. 196.1). The clade comprising *Palatodonta + Eusaurosphargis* was recovered as the sister-group to Sauropterygia within Sauropterygomorpha tax. nov. (see above). *Helveticosaurus* was recovered as the sister-group of Sauropterygomorpha; the clade comprising *Helveticosaurus + Sauropterygomorpha* is supported by the following six unambiguous synapomorphies: preorbital and postorbital regions of skull of subequal length (ch. 1.0); transverse processes of neural arches of the dorsal region distinctly elongated (ch. 124.1); scapula with a constriction separating a ventral glenoidal portion from a posteriorly directed dorsal wing (ch. 154.2); distal tarsal I absent (ch. 184.1); total number of tarsal ossifications less than four (ch. 192.1); total number of carpal ossifications two (char. 194.2).
Within Diapsida, the clade comprising *Helveticosaurus* + Sauropthygomorpha was recovered as forming a clade with Ichthyosauroomorpha, Thalattosauria and Archosauromorpha, a result similar to that recovered in some other recent broad-scale analyses of diapsid phylogenetic interrelationships (Neenan et al. 2015; Chen et al. 2014; Martínez et al. 2021; Simões et al. 2022). The three major marine reptile clades (Sauropthygomorpha, Ichthyosauroomorpha and Thalattosauria), Archosauromorpha, and Testudinata were recovered within a monophyletic Archelosauria supported by four unambiguous synapomorphies – frontal with distinct posterolateral processes (ch. 26.1), frontal anterior margins oblique, forming an angle of at least 30 degrees with long axis of the skull (ch. 27.1), interclavicle anterior process or triangle conspicuously present (ch. 157.0), and upper temporal fossae present and distinctly smaller than the orbit (ch. 207.3).

Discussion

Marine reptile diversity of the Early Triassic Nanzhang-Yuan’an Fauna

Prosaurosphargis represents the stratigraphically oldest occurrence of Saurosphargidae, extending their fossil record back by approximately 4.5 Ma from the Middle (Pelsonian) to the Early (Olenekian) Triassic (Figure 9). Saurosphargids are thus the fourth major marine reptile lineage known from the Early Triassic Nanzhang-Yuan’an fauna, which also includes as many as seven species of hupehsuchians (Chen et al. 2015; Qiao et al. 2020), one species of ichthyosauriforms (Chen et al. 2013), and four taxa representing the sauropterygian lineage leading to Eosauropterygia – *Hanosaurus*, *Keichousaurus yuanananensis*, *Lariosaurus sanxiaensis*, and *Pomolispondylus* (Young 1965; Rieppel 1998a; Li and Liu 2020; Cheng et al. 2022; Wang et al. 2022). Measuring approximately 1.5 m in total body length, *Prosaurosphargis* is one of the larger marine reptiles known from this ecosystem, smaller
only than *Lariosaurus sanxiaensis* (body length of 3–4 meters; Chen et al. 2014b, 2016) and an indeterminate hupehsuchian (body length of ~2.3 meters; Qiao et al. 2020). The presence in the Nazhang-Yuan’an fauna of several predatory reptiles representing a broad range of body sizes (~0.25–4.00 meters; Chen et al. 2014b; Qiao et al. 2020) and displaying various ecomorphological adaptations supports the view of a rapid diversification of predators in the immediate aftermath of the PTME and high predation pressure in shallow marine ecosystems in the Early Triassic (Chen et al., 2014b, 2015; Li and Liu, 2020).

Phylogeny of Sauropterygomorpha

A clade comprising *Palatodonta + Eusaurosphargis* and the lineage leading to *Helveticosaurus* are recovered as successive outgroups to Sauropterygia, with *Palatodonta + Eusaurosphargis* and Sauropterygia united within Sauropterygomorpha tax. nov. (see above) (Figure 9). The status of *Eusaurosphargis + Palatodonta* as the sister-group to Sauropterygia is corroborated by the presence in *Eusaurosphargis* of morphological features otherwise known exclusively in sauropterygians: a clavicle applied to the medial surface of the scapula and a pectoral fenestration (Scheyer et al. 2017). Furthermore, *Eusaurosphargis* and Sauropterygia also share a similar foot morphology with metatarsal I being proximodistally much shorter than metatarsal IV and metatarsal V being long and slender (see above). *Helveticosaurus* shares the presence of a skull with preorbital and postorbital regions subequal in length with *Eusaurosphargis* and *Palatodonta*, the presence of elongated dorsal neural spines with *Eusaurosphargis*, placodonts and saurosphargids and the presence of a scapular constriction with *Eusaurosphargis* and sauropterygians. However, other anatomical features uniting it with Sauropterygomorpha include details of carpal and tarsal anatomy, which likely represent aquatic adaptations that might have evolved convergently in *Helveticosaurus* and aquatic representatives of Sauropterygomorpha (Chen et al. 2014a). Furthermore, *Helveticosaurus* lacks osteoderms, a feature present in early members of all
major lineages within Sauropterygimorpha. Consequently, we interpret Helveticosaurus as a representative of a lineage closely related to Sauropterygimorpha but lying outside of it, that likely convergently evolved an aquatic lifestyle.

Our phylogenetic analysis does not recover Palatodonta from the Middle Triassic of the Netherlands as a sister-taxon of placodonts within Placodontiformes as was previously proposed (Neenan et al. 2013). Instead, Palatodonta is recovered as the sister-taxon of Eusaurosphargis. The Palatodonta + Eusaurosphargis clade recovered in our phylogenetic analysis is supported by one unambiguous synapomorphy – a small (anteroposteriorly short) premaxilla (ch. 196.0). In addition, both taxa also share anteriorly positioned external nares (ch. 197.0). Both of these character states are considered as typical for terrestrial taxa and contrast with the enlarged (anteroposteriorly elongate) premaxillae and posteriorly displaced external narial openings characteristic for marine reptiles (Chen et al. 2014a). A terrestrial lifestyle was previously proposed for Eusaurosphargis on the basis of manus and pes anatomy and bone microanatomy (Scheyer et al. 2017) and the femur of Eusaurosphargis is longer than its humerus (humerus:femur ratio ~0.89; Scheyer et al. 2017), which indicates hindlimb dominance characteristic of a terrestrial lifestyle (Motani and Vermeij 2021). All this evidence strongly suggests that Palatodonta and Eusaurosphargis were terrestrial reptiles, likely representing the morphology of the last common terrestrial ancestor of Sauropterygia. Palatodonta is known from a single isolated skull (Neenan et al. 2013), whereas Eusaurosphargis is represented by two specimens with well preserved and largely complete postcrania, but only partially preserved skulls (Nosotti and Rieppel 2003; Scheyer et al. 2017). Because postcranial remains referable to Eusaurosphargis were also reported from the type locality of Palatodonta, including a Palatodonta-like dentary preserved in close association with typical Eusaurosphargis-like vertebrae (Scheyer et al. 2019; Willemse et al. 2019), it is very likely that Palatodonta is a junior synonym of Eusaurosphargis, but the
discovery of well-preserved skulls with associated postcranial elements of both of these taxa are needed to further test this hypothesis.

Atopodentatus and placodonts are recovered within Placodontiformes and this grouping is supported by four unambiguous synapomorphies (see above). *Atopodentatus* and the early-diverging placodonts *Placodus* and *Paraplacodus* possess a humerus which is longer than the femur, indicating a high level of adaptation to an aquatic lifestyle (Motani and Vermeij 2021), but they also possess a massive femoral fourth trochanter and an ilium with a well-developed iliac blade (Jiang et al. 2008; Cheng et al. 2014a). These features indicate that the hindlimbs in both *Atopodentatus* and placodonts were likely still important in locomotion at the bottom of the sea floor and/or on shore in a marginal marine environment and suggest a slightly lower degree of adaptation to an aquatic lifestyle in placodontiforms than in saurosphargids and eosauropterygians, in which the fourth trochanter is more reduced (Rieppel 2000a; Li et al. 2014). The sister-group relationships of *Atopodentatus* and placodonts might also explain the absence of placodont fossils in Early Triassic fossil horizons worldwide. It is possible that the lineage leading to placodonts was represented in the Early Triassic by reptiles morphologically more similar to *Atopodentatus* than to placodonts and that the specialised placodont body plan did not evolve until the Middle Triassic. New discoveries of Early Triassic sauropterygians are likely to introduce new morphological data needed to test this hypothesis.

Pomolispondylus is not recovered as a sister-taxon of Saurosphargidae within Saurosphargiformes (contra Cheng et al. 2022), but as the most basal member of a grade of sauropterygians leading to Eosauropterygia. Such a phylogenetic position is supported by the presence in *Pomolispondylus* of dorsal transverse processes that are relatively short mediolaterally and broad anteroposteriorly, more similar in proportions to the dorsal transverse processes of *Lariosaurus sanxiaensis* (Li and Liu 2020) and *Hanosaurus* (Wang et
al. 2022) – two other representatives of the grade leading to Eosauropterygia – than to the mediolaterally broad and anteroposteriorly narrow dorsal neural spines of saurosphargids (Figure 3; Li et al. 2011, 2014). Furthermore, Pomolodysplalus possesses rows of rudimentary osteoderms on its body flanks, which are much more reduced than those present in Eusaurosphargis, early-diverging placodonts and saurosphargids (Klein and Scheyer 2013; Li et al. 2014; Scheyer et al. 2017). Therefore, the osteoderms in Pomolodysplalus likely represent a late stage of osteoderm reduction in the lineage leading to Eosauropterygia, rather than the first stages of osteoderm development in the saurosphargid lineage.

The type (Young 1972; Rieppel 1998a) and referred (Wang et al. 2022) specimens of Hanosaurus and Majiashanosaurus (Jiang et al. 2014) are also recovered in the paraphyletic grade leading to Eosauropterygia, but in a position more derived than Pomolodysplalus. This result is in contrast to previous studies which recovered these taxa as either the outgroup to Saurosphargidae + Sauropterygia (Hanosaurus; Wang et al. 2022), pachypleurosaurs (Rieppel 1998a; Neenan et al. 2015; Lin et al. 2021) or successive outgroups to a clade comprising Pachypleurosauria + Nothosauroidea to the exclusion of Pistosauroidea (Li and Liu 2020). Suprisingly, the type specimen of Hanosaurus is not unambiguously recovered in a clade with the referred specimen. Taxonomic distinction of both specimens is supported by the fact that the anteriorly and posteriorly weakly emarginated coracoid of the type specimen of Hanosaurus (Figure 7G, H; Rieppel 1998a; pers. obs. of IVPP V 3231) more closely resembles that of Corosaurus than the sub-oval coracoid present in the referred specimen of Hanosaurus (Figure 7I; Wang et al. 2022), which likely does not represent Hanosaurus, but is probably closely related to or even referable to Lariosaurus sanxiaensis (Figure 7J; Cheng et al. 2016b; Li and Liu 2020). Corosaurus is recovered as the earliest-diverging eosauropterygian, a result similar to that obtained by Rieppel (1994) and Li and Liu (2020), but in contrast to some other phylogenetic analyses, which recovered it as a pistosauroid.
(Rieppel 1998b; Wang et al. 2022) or the earliest-diverging eusauropod (Lin et al. 2021). *Wumengosaurus* is recovered as the sister-taxon of the clade comprising pachypleurosaurs, nothosaurs and pistosaurs, in contrast to a recent phylogenetic analyses which recovered it within pachypleurosaurs (Xu et al. 2022), but similar to the phylogenetic results obtained by Wu et al. (2011) that recovered *Wumengosaurus* as the outgroup to a clade comprising pachypleurosaurs and nothosaurs.

The results of our phylogenetic analysis differ significantly from the results of a phylogenetic analysis recently published by Wang et al. (2022), in which *Hanosaurus* was recovered as the sister-group to a clade comprising Saurosphargidae + Sauropterygia within a monophyletic Sauropterygiformes. However, we believe that our phylogenetic analysis presents a more accurate topology of sauropterygians and their relatives for the following reasons. Wang et al. (2022) used 16 outgroup (non-sauropod) taxa (15 marine reptiles and a single terrestrial reptile), representing five major reptile lineages, whereas our study included 40 outgroup (non-sauropod) taxa (19 terrestrial and 21 aquatic reptiles), representing 23 major reptile lineages. The inclusion of only a single terrestrial outgroup taxon – *Youngina* – in the analysis of Wang et al. (2022) is problematic because *Youngina* likely represents a taxon rather distantly related to the Mesozoic marine reptile clade which includes Sauropterygia (Figure 8; see also Simões et al. 2022). Distantly related taxa likely share fewer character states with derived taxa (homoplasy accumulation through time), so a phylogenetic analysis containing a single, distantly related outgroup taxon will likely fail to adequately capture important character transformation sequences, in contrast to a phylogenetic analysis in which outgroups are more comprehensively sampled (Wilberg 2015). Furthermore, the phylogenetic analysis of Wang et al. (2022) used 181 morphological characters, in contrast to 221 characters included in our study. Greater character sampling has
been demonstrated as an important factor increasing the accuracy of phylogenetic reconstructions (Wiens 2006), which also favours the results obtained by our analysis.

The different topologies recovered by both studies are likely also partially a consequence of differences in character scoring. For example, Wang et al. (2022) scored the humerus of Hanosaurus as ‘rather straight’ (plesiomorphic state), similar to the humerus of Youngina and other non-sauropterygiform marine reptiles. However, in our opinion, the humerus morphology of Hanosaurus matches the typical ‘curved’ morphology (derived state) characteristic of sauroshargids, placodonts and the majority of eosauropterygians (Rieppel 2000a). Wang et al. (2022) also scored Hanosaurus into an updated version of the phylogenetic matrix of Neenan et al. (2013). Hanosaurus was recovered as the earliest-diverging sauropterygiform in this analysis as well, but its humerus was also scored as plesiomorphic (‘rather straight’) in the character-taxon matrix. Interestingly, this updated analysis of Neenan et al. (2013) included a more comprehensive outgroup (non-sauropterygiform) sample (12 terrestrial and 5 aquatic taxa, representing 12 major reptile lineages) than the analysis of Wang et al. (2022) and recovered Eusaurosphargis and Helveticosaurus as successive sister-groups to Sauropterygia – a result similar to the one obtained in this study (Figure 9).

The early evolutionary assembly of the sauropterygian body plan

Our phylogenetic analysis suggests that Eusaurosphargis and Palatodonta likely represent the morphology of the last common terrestrial ancestor of sauropterygians, indicating it possessed well-developed dermal armour and the characteristic pectoral girdle and pes morphology that underwent further modifications in Sauropterygia. The topology recovered by our phylogenetic analysis demonstrates that the early evolution of sauropterygians first involved diversification within a shallow marine environment and
exploration of various food resources, as evidenced by the disparate ecologies exhibited by
Atopodentatus (herbivore), placodonts (durophages), saurosphargids and early-diverging
members of the eosauropterygian lineage (likely feeding on fish and invertebrates). Three key
episodes can be identified in the evolution of the eosauropterygian body plan (Figure 10).
The first, represented by Pomoliponphylus, involved a reduction of osteoderms and
shortening of the transverse processes of the dorsal neural spines, features well-developed in
Eusaurosphargis, placodonts and saurosphargids. Majiashanosaurus and the referred
specimen of Hanosaurus exemplify the second episode, in which osteoderms underwent
complete reduction. The type specimen of Hanosaurus represents the earliest stage of the
evolution of the characteristic eosauropterygian pectoral girdle morphology with an anteriorly
and posteriorly emarginated coracoid that ultimately allowed eosauropterygians to become
efficient, paraxial swimmers. The presence of the stratigraphically oldest saurosphargid
(Prosaurosphargis), stratigraphically oldest representatives of the lineage leading to
Eosauropterygia (Pomoliponphylus, Hanosaurus, Majiashanosaurus), and the earliest-
diverging placodontiform Atopodentatus in the Early–Middle Triassic of South China (Figure
9) indicates that sauropterygians likely originated and underwent rapid diversification in
South China in the aftermath of the end-Smithian extinction, similar to ichthyosauromorphs
(Motani et al. 2017; Moon and Stubbs 2020), but well-constrained stratigraphic data for early
sauropterygians are needed to further test this hypothesis.

Our phylogenetic analysis indicates the important role of body armour in sauropterygian
evolution (Figure 10). Dermal armour was likely an important preadaptation that allowed
colonisation of the shallow marine realm by a Eusaurosphargis-like ancestor, enabling it to
counteract buoyancy and walk on the bottom of the shallow sea in search of food (Houssaye
2009). Elaboration of the dermal armour occurred in the shallow marine placodonts and
saurosphargids, perhaps as a response to predation pressure (Liu et al. 2014; Chen et al.
The reduction and complete loss of dermal armour then occurred in the lineage leading to Eosauropterygia, and was likely involved with the evolution of active predation, an efficient swimming style and increasing adaptation to a pelagic lifestyle. The evolution of the sauropterygian body plan demonstrates striking parallels with the evolution of the body plan of another important group of Mesozoic marine reptiles – the ichthyosaurs. Early-diverging representatives of Ichthyosaurophora – hupehsuchians and omphalosaurids – also possessed a covering of osteoderms superficially similar to that present in *Eusaurosphargis*, early-diverging placodonts, and saurophargids (Chen et al. 2014b; Motani et al. 2016; Qiao et al. 2022). In the ichthyosaurophor lineage, the osteoderm covering was completely lost in *Chaohusaurus*, a basal ichthyosauriform that evolved an anguilliform mode of swimming and most likely a pelagic lifestyle (Motani et al. 1996; Nakajima et al. 2014; Huang et al. 2019; Qiao et al. 2022). This indicates that the evolutionary reduction of dermal armour in both sauropthygians and ichthyosauromorphs followed a similar pattern, probably in response to increasing adaptation to an aquatic lifestyle. These evolutionary parallels seem to demonstrate that the dermal body armour could have been a possible prerequisite (preadaptation) for the invasion of the shallow marine realm in different diapsid clades, which allowed for buoyancy reduction and exploration of the shallow marine environment in search of food. Fossils of terrestrial ancestors of ichthyosauromorphs and thalattosaurs are needed to further test this evolutionary scenario.

Phylogenetic interrelationships within Diapsida

Our phylogenetic analysis is thus far one of only two phylogenetic analyses based on a morphology-only dataset of Diapsida that recovers a close relationship between Archosauromorpha and Testudinata within a monophyletic Archelosauria (Figure 8) (see also Simões et al. 2022). A close phylogenetic relationship between Archosauromorpha and Testudinata has been strongly supported by molecular data for the last twenty years, but was
until recently not recovered by any phylogenetic analysis based entirely on morphological data, in which turtles were usually recovered as more closely related to lepidosauromorphs than archosauromorphs (reviewed in Lyson and Bever 2020). Furthermore, our analysis recovers *Eunotosaurus* from the Permian of South Africa outside of Sauria (Figure 8), which is in agreement with the results obtained by Simões et al. (2022), but in contrast to all other recent phylogenetic analyses focusing on the phylogenetic interrelationships among Reptilia, which recovered *Eunotosaurus* as a stem turtle (Lyson et al. 2013; Bever et al. 2015; Li et al. 2018; Schoch and Sues 2018). This indicates that the characteristic morphological features of the skull and postcranial skeleton shared between *Eunotosaurus* and early turtles, such as elongate vertebrae and broadened ribs, evolved convergently in both taxa. Archelosauria are supported in our analysis by four unambiguous synapomorphies associated with the morphology of the skull and shoulder girdle (see above). This demonstrates that innovations of the cranium linked with the evolution of sensory organs and the feeding apparatus, as well as changes in locomotion, perhaps underlie the evolutionary success of archelosaurian reptiles.

Conclusions

The new saurophargid *Prosaurosphargis yingzishanensis* gen. et sp. nov. from the Early Triassic of South China (Figure 11) represents the earliest reported occurrence of Saurosphargidae, extending their temporal range back by 4.5 Ma. An updated phylogenetic analysis of Diapsida recovers saurosphargids as nested within Sauropterygia, forming a clade with Eosauropterygia to the exclusion of Placodontia. A clade comprising *Eusaurosphargis* nov. and *Palatodonta* forms the sister-group to Sauropterygia within Sauropterygomorpha tax. and their morphology likely represents the morphology of the last common terrestrial
ancestor of Sauropterygia. The herbivorous sauropterygian *Atopodentaus* is recovered within Placodontiformes, whereas *Pomolispersydylus*, *Hanosaurs* and *Majishanosaurus* form a grade at the base of Eosauropterygia, with the type and referred specimens of *Hanosaurs* likely representing distinct taxa. Our new phylogenetic hypothesis indicates sauropterygians originated and diversified in South China in the aftermath of the Permo-Triassic mass extinction event and suggests an important role of dermal armour in their early evolutionary history. Three major marine reptile clades – Sauropterygina, Ichthyosaurina and Thalattosauria – are recovered within Archelosauria, together with Archosauromorpha and Testudinata. Our study demonstrates the importance of including not only a broad sample of outgroup taxa in phylogenetic analyses, but also choosing their stratigraphically oldest and/or anatomically most plesiomorphic representatives as operational taxonomic units, in order to accurately reconstruct the phylogenetic relationships between major extant and extinct reptilian lineages.

Materials and Methods

In order to investigate the phylogenetic position of *Prosaurosphargis yingzishanensis*, specimen HFUT YZSB-19-109 was scored into a modified version of a data matrix focusing on the phylogenetic interrelationships between the major groups of diapsid reptiles published by Qiao et al. (2022), which in itself is a modified version of the data matrix previously published by Jiang et al. (2016) and Chen et al. (2014a). The data matrix contains 57 OTUs (Operational Taxonomic Units) scored for a total of 221 characters – characters 1–220 are the original characters of Qiao et al. (2022) and character 221 was adapted from Li et al. 2014 (ch. 88) (Source Data File 1). In addition to *Prosaurosphargis*, 10 OTUs were added to the original dataset of Qiao et al. (2022): *Eunotosaurus africanus* (scored after Cox 1969; Gow
1997; Lyson et al. 2013, 2016; Bever et al. 2015), *Pappochelys rosinae* (Schoch and Sues 2015, 2018); *Hanosaursaurus hupehensis* (type specimen) (Rieppel 1998a and personal observation of specimen IVPP V 3231), *Hanosaursaurus hupehensis* (referred specimen) (Wang et al. 2022), *Majiahanosaurus discocoracoidis* (Jiang et al. 2014), *Corosaurus alcovensis* (Storrs 1991; Rieppel 1998b), *Atopodentatus unicus* (Cheng et al. 2014; Li et al. 2016), *Palatodonta bleekeri* (Neenan et al. 2013), *Paraplacodus broilii* (Peyer 1935; Rieppel 2000b), and *Pomolispondylus biani* (Cheng et al. 2022). This was done in order to include all currently known Early Triassic sauropterygians in the data matrix and increase the sampling of early-diverging representatives of the main sauropterygian lineages, as well as their potential sister-groups. Furthermore, the holotype and referred specimen of *Sclerocormus*, included as separate OTUs in the dataset of Qiao et al. (2022), were merged into a single OTU in the current analysis.

Parsimony analysis of the data matrix was performed in TNT 1.5 (Goloboff and Catalano 2016) using a Traditional Search algorithm (random seed = 1, replications of Wagner trees = 1000, number of trees saved per replication = 10), followed by an additional round of TBR branch-swapping. All characters were treated as equally weighted and unordered.

Acknowledgements

We thank P.M. Sander for early discussions, W. Lin for sharing photographs of the *Hanosaursaurus* holotype, B.Y. Xiang, X.J. Liu and other HFUT Paleontology Lab members for assistance in the field, and the Willi Hennig Society for making the programme TNT publicly available. F. Huang, L. Li and T. Sato skilfully prepared the fossil specimen, T. Hollman produced the skeletal reconstruction in Fig. 2B and the sauropterygian cartoons in Figs. 9 and
10, and Z. Han provided the life reconstruction in Fig. 11. The senior editor G. Perry, reviewing editor
N. Ibrahim, reviewer M.J. Benton and another anonymous reviewer provided constructive comments that help to improve the manuscript.

Competing interests: The authors declare that no competing interests exist.

Data availability
Specimen HFUT YZSB-19-109 is housed in the collections of the Geological Museum, Hefei University of Technology, Hefei, China and available for examination upon request to J.L. The phylogenetic data matrix used in this study is available in Source Data File 1.

References

Jiang, D.Y., Motani, R., Huang, J.D., Tintori, A., Hu, Y.C., Rieppel, O., Fraser, N.C., Ji, C.,
Kelley, N.P., Fu, W.L. and Zhang, R. 2016. A large aberrant stem ichthyosauriform
indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian

of Triassic marine reptiles during long-term sea-level changes illuminated by seawater

Ketchum, H.F., and Benson, R.B.J. 2010. Global interrelationships of Plesiosauria (Reptilia,
Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of

Klein, N., 2009. Skull morphology of *Anarosaurus heterodontus* (Reptilia: Sauropterygia:
Pachypleurosauria) from the Lower Muschelkalk of the Germanic Basin (Winterswijk, The

Klein, N., 2012. Postcranial morphology and growth of the pachypleurosaur *Anarosaurus
heterodontus* (Sauropterygia) from the Lower Muschelkalk of Winterswijk, The

Klein, N. and Scheyer, T.M. 2013. A new placodont sauropterygian from the Middle Triassic

Klein, N., Eggmaier, S., & Hagdorn, H. 2022. The redescription of the holotype of
Nothosaurus mirabilis (Diapsida, Eosauropterygia)—a historical skeleton from the
Muschelkalk (Middle Triassic, Anisian) near Bayreuth (southern Germany). PeerJ, 10, e13818.

Li, Q. and Liu, J. 2020. An Early Triassic sauropthygian and associated fauna from South China provide insights into Triassic ecosystem health. Communications Biology, 3(1), 63.

Qiao, Y. Liu, J., Wolniewicz, A.S., Iijima, M., Shen, Y., Wintrich, T., Li, Q. and Sander, P.M. 2022. A globally distributed durophagous marine reptile clade supports the rapid recovery of
pelagic ecosystems after the Permo-Triassic mass extinction. *Communications Biology* 5(1), 1242.

Rieppel, O., and Lin, K. 1995. Pachypleurosaurids (Reptilia: Sauropterygia) from the Lower Muschelkalk, and a review of the Pachypleurosauridae. *Fieldiana (Geology)*, n.s. 32, 1–44.

Figure 1. Locality and horizon of *Prosaurosphargis yingzishanensis* (HFUT YZSB-19-109). (A) The geological map of the Nanzhang-Yuan’an region showing Yingzishan quarry, where HFUT YZSB-19-109 was collected; inset is a paleogeographic map of the South China Block in the Triassic showing the location of the Nanzhang-Yuan’an fauna (after Qiao et al. 2020). (B) Stratigraphic column showing the horizon from which HFUT YZSB-19-109 was collected. Abbreviations: C-S, Cambrian–Silurian; D-P, Devonian–Permian; F., Formation; K-Q, Cretaceous–Quaternary; M., Middle; T1d, Daye Formation, Lower Triassic; T1f, Jialingjiang Formation, Lower Triassic; T2b, Badong Formation, Middle Triassic; T3-J, Upper Triassic–Jurassic.

Figure 2. Holotype of *Prosaurosphargis yingzishanensis* (HFUT YZSB-19-109) (A) and skeletal reconstruction with known elements highlighted in white (gastralia removed for clarity) (B).

Figure 3. Anterior vertebral column, right pectoral girdle, and right forelimb elements of *Prosaurosphargis yingzishanensis*. Abbreviations: 1lg, first lateral gastral element; 2lg, second lateral gastral element; cna, cervical neural arch; cor, coracoid; cr, cervical rib; dc, dorsal centrum; dna, dorsal neural arch; dr, dorsal rib; hum, humerus; mg, median gastral element; os, osteoderm; rad, radius; sc, scapula. Scale bar = 5 cm.

Figure 4. Dorsal ribs, osteoderms, coracoid, and humerus from the left side of the body of *Prosaurosphargis yingzishanensis* (A) and detail of lateral osteoderms (B). Abbreviations:
2lg, second lateral gastral element; cor, coracoid; dr, dorsal rib; eg, ectepicondylar groove; hum, humerus; os, osteoderm, ?sc, ?scapula. Scale bar = 5 cm in (A) and 1 cm in (B).

Figure 5. Pelvic girdle and hindlimb of *Prosaurosphargis yingzishanensis*. Abbreviations: 2lg, second lateral gastral element; ast, astragalus; cal, calcaneum; dt4, distal tarsal IV; fem, femur; fib, fibula; ili, ilium; int, internal trochanter; isc, ischium; mt1, metatarsal I; mt5, metatarsal V; os, osteoderm; p1, phalanx 1; p5, phalanx 5; pub, pubis; prz, prezygapophysis; tib, tibia. Scale bar = 3 cm.

Figure 6. Sacral and caudal vertebrae of *Prosaurosphargis yingzishanensis* (A), close-up of anterior caudal vertebrae (B), and close-up of more posterior caudal vertebrae (C). Abbreviations: ch, chevron; cr2, second caudal rib; cr3, third caudal rib; crs6-7, sixth and seventh caudal ribs; dr, dorsal rib; ns, neural spine; os, osteoderm; prz, prezygapophysis; rf, rib facet; rgs, rugose surface; sr, sacral rib. Scale bar = 5 cm in (A) and 1 cm in (B) and (C).

Figure 7. Coracoids of selected Early and Middle Triassic sauropterygians: A - *Prosaurosphargis* (based on specimen HFUT YZSB-19-109); B - *Largocephalosaurus* (after Li et al. 2014); C - *Eusaurosphargis* (after Scheyer et al. 2017); D - *Atopodentatus* (after Cheng et al. 2014); E - *Placodus* (after Drevermann 1933); F - *Paraplacodus* (after Rieppel 2000b); G (photo) and H (outline) - *Hanosaurus* (holotype, based on specimen IVPP V3231); I - *Hanosaurus* (referred specimen; after Wang et al. 2022); J - *Lariosaurus sanxiaensis* (after Li and Liu 2020); K – *Majiashanosaurus* (after Jiang et al. 2014), L – *Corosaurus* (after Storrs 1991); M - *Wumengosaurus* (after Wu et al. 2011); N – *Anarosaurus* (after Klein et al. 2012); O – *Nothosaurus* (after Ji et al. 2014).
Figure 8. Phylogenetic relationships of *Prosaurosphargis yingzishanensis* within Diapsida. The 50% majority rule consensus of 48 most parsimonious trees (MPTs) obtained from analysis of the updated dataset of Qiao et al. (2022). Numbers below nodes indicate proportion of MPTs in which the node is recovered if it is lower than 1. Abbreviations: Archosauro., Archosauromorpha; E, Eosauropterygia; Ichothyosauro., Ichthyosauropterygia; Lepidosauro., Lepidosauromorpha; Pf, Placodontiformes; Pl, Placodontia; Sa, Sauropterygia; Sr, Saurosphargidae; T., Testudinata; Thala., Thalattosauria. All silhouettes are from Phylopic (http://phylopic.org). *Ticinosuchus, Askeptosaurus, Utatsusaurus* and *Paraplacodus* silhouettes were drawn by N. Tamura. *Keichousaurus* silhouette was drawn by G. Monger. Used with permission under license CC BY-NC 3.0 (https://creativecommons.org/licenses/by-nc/3.0/).

Figure 9. Time-scaled phylogenetic tree of Sauropterygiformes. Abbreviations: E, Eosauropterygia; Pf, Placodontiformes; Pl, Placodontia; Sa, Sauropterygia; Sam, Sauropterygiformes; Sr, Saurosphargidae.

Figure 10. Evolution of the sauropterygian body plan. Simplified phylogeny of Sauropterygiformes with key anatomical traits (synapomorphies reconstructed from the phylogenetic analysis) indicated for important nodes.
Figure 11. Life reconstruction of *Prosaurosphargis yingzishanensis* depicted in the Early Triassic shallow marine environment of the Nanzhang-Yuan’an region, Hubei Province, South China.
Table 1. Selected measurements of HFUT YZSB-19-109, holotype of *Prosaurosphargis yingzishanensis* gen. et sp. nov.

Vertebral column

<table>
<thead>
<tr>
<th>Centrum position</th>
<th>Maximum anteroposterior length (measured along mid-dorsoventral height)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last dorsal</td>
<td>18.25 mm</td>
</tr>
<tr>
<td>1<sup>st</sup> sacral</td>
<td>19.45 mm</td>
</tr>
<tr>
<td>2<sup>nd</sup> sacral</td>
<td>20.49 mm</td>
</tr>
<tr>
<td>3<sup>rd</sup> sacral</td>
<td>20.50 mm</td>
</tr>
<tr>
<td>1<sup>st</sup> caudal</td>
<td>20.50 mm</td>
</tr>
<tr>
<td>2<sup>nd</sup> caudal</td>
<td>18.35 mm</td>
</tr>
<tr>
<td>3<sup>rd</sup> caudal</td>
<td>19.40 mm</td>
</tr>
<tr>
<td>4<sup>th</sup> caudal</td>
<td>20.14 mm</td>
</tr>
<tr>
<td>5<sup>th</sup> caudal</td>
<td>18.64 mm</td>
</tr>
<tr>
<td>6<sup>th</sup> caudal</td>
<td>19.10 mm</td>
</tr>
<tr>
<td>7<sup>th</sup> caudal</td>
<td>17.95 mm</td>
</tr>
<tr>
<td>8<sup>th</sup> caudal</td>
<td>18.84 mm</td>
</tr>
<tr>
<td>9<sup>th</sup> caudal</td>
<td>18.10 mm</td>
</tr>
<tr>
<td>10<sup>th</sup> caudal</td>
<td>17.86 mm</td>
</tr>
</tbody>
</table>

Pectoral girdle

<table>
<thead>
<tr>
<th>Right scapula</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>68.09 mm</td>
</tr>
<tr>
<td>Maximum proximal width</td>
<td>51.20 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right coracoid</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>51.65 mm</td>
</tr>
</tbody>
</table>
Forelimb

<table>
<thead>
<tr>
<th>Bone</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right humerus</td>
<td></td>
</tr>
<tr>
<td>Maximum proximodistal length</td>
<td>104.44 mm</td>
</tr>
<tr>
<td>Maximum proximal width</td>
<td>38.85 mm</td>
</tr>
<tr>
<td>Maximum distal width</td>
<td>27.80 mm</td>
</tr>
</tbody>
</table>

Left humerus	
Maximum anteroposterior length	104.24 mm
Minimum mediolateral width	20.10 mm
Maximum distal width	31.50 mm

Right radius	
Maximum proximodistal length (measured along proximodistal axis)	58.50 mm
Maximum proximodistal length (measured along anterior margin)	60.95 mm
Maximum proximodistal length (measured along posterior margin)	51.10 mm

Pelvic girdle

<table>
<thead>
<tr>
<th>Bone</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ilium</td>
<td></td>
</tr>
<tr>
<td>Maximum proximodistal length</td>
<td>23.20 mm</td>
</tr>
<tr>
<td>Maximum distal width</td>
<td>32.99 mm</td>
</tr>
</tbody>
</table>
Left ischium

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Measurement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum anteroposterior (proximodistal) length</td>
<td>51.44 mm</td>
</tr>
<tr>
<td>Maximum mediolateral width</td>
<td>36.59 mm</td>
</tr>
</tbody>
</table>

Left pubis

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Measurement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>43.25 mm</td>
</tr>
<tr>
<td>Maximum anteroposterior length</td>
<td>36.85 mm</td>
</tr>
</tbody>
</table>

Hindlimb

Left femur

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Measurement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>93.85 mm</td>
</tr>
<tr>
<td>Maximum proximal width</td>
<td>27.65 mm</td>
</tr>
<tr>
<td>Maximum distal width</td>
<td>23.40 mm</td>
</tr>
<tr>
<td>Minimum mediolateral (anteroposterior) width</td>
<td>14.25 mm</td>
</tr>
</tbody>
</table>

Left tibia

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Measurement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>60.35 mm</td>
</tr>
<tr>
<td>Maximum proximal width</td>
<td>18.29 mm</td>
</tr>
<tr>
<td>Maximum distal width</td>
<td>16.39 mm</td>
</tr>
<tr>
<td>Minimum mediolateral (anteroposterior) width</td>
<td>10.90 mm</td>
</tr>
</tbody>
</table>

Left fibula

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Measurement Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>55.59 mm</td>
</tr>
<tr>
<td>Maximum proximal width</td>
<td>12.90 mm</td>
</tr>
<tr>
<td>Maximum distal width</td>
<td>15.24 mm</td>
</tr>
<tr>
<td>Minimum mediolateral (anteroposterior) width</td>
<td>7.25 mm</td>
</tr>
</tbody>
</table>
Astragalus

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>18.45 mm</td>
</tr>
<tr>
<td>Maximum mediolateral (anteroposterior) width</td>
<td>18.20 mm</td>
</tr>
</tbody>
</table>

Calcaneum

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>14.25 mm</td>
</tr>
<tr>
<td>Maximum mediolateral (anteroposterior) width</td>
<td>13.55 mm</td>
</tr>
</tbody>
</table>

Distal tarsal IV

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum proximodistal length</td>
<td>9.49 mm</td>
</tr>
<tr>
<td>Maximum mediolateral (anteroposterior) width</td>
<td>8.95 mm</td>
</tr>
</tbody>
</table>

Metacarpals

<table>
<thead>
<tr>
<th>Metacarpal</th>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Maximum proximodistal length</td>
<td>13.44 mm</td>
</tr>
<tr>
<td>II</td>
<td>Maximum proximodistal length</td>
<td>20.89 mm</td>
</tr>
<tr>
<td>III</td>
<td>Maximum proximodistal length</td>
<td>25.89 mm</td>
</tr>
<tr>
<td>IV</td>
<td>Maximum proximodistal length</td>
<td>28.19 mm</td>
</tr>
<tr>
<td>V</td>
<td>Maximum proximodistal length</td>
<td>24.25 mm</td>
</tr>
</tbody>
</table>
PLACODONTIFORMES
1) frontal excluded from dorsal orbital margin
2) interpterygoid vacuity absent
3) splenial enters mandibular symphysis
4) femur internal trochanter well developed

EOSAURUPTERYGIA
1) squamosal descends to ventral margin of skull
2) quadrate covered with squamosal and quadratojugal in lateral view
3) pachyostosis present
4) posterior process on interclavicle reduced or absent
5) humerus ‘curved’
6) intertrochanteric fossa distinct but reduced

SAUROPHARGIDAE
1) dorsal ribs forming closed ‘rib-basket’
2) lateral gastralia expanded and flat
3) distal end of ulna distinctly expanded

SAUROPTERYGOMORPHA
1) osteoderms present
2) body strongly flattened dorso-ventrally
3) clavicle applied to medial surface of scapula
4) metatarsal v long and slender
5) metatarsal i less than half the length of metatarsal iv

EUSAURUPTERYGIA
1) femoral shaft slender and sigmoidally curved

OSTEODERMS absent

TRANSVERSE process of dorsal neural arch shortened