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Abstract Brains are not engineered solutions to a well-defined problem but arose through 
selective pressure acting on random variation. It is therefore unclear how well a model chosen by 
an experimenter can relate neural activity to experimental conditions. Here, we developed ‘model 
identification of neural encoding (MINE).’ MINE is an accessible framework using convolutional 
neural networks (CNNs) to discover and characterize a model that relates aspects of tasks to neural 
activity. Although flexible, CNNs are difficult to interpret. We use Taylor decomposition approaches 
to understand the discovered model and how it maps task features to activity. We apply MINE to 
a published cortical dataset as well as experiments designed to probe thermoregulatory circuits 
in zebrafish. Here, MINE allowed us to characterize neurons according to their receptive field and 
computational complexity, features that anatomically segregate in the brain. We also identified a 
new class of neurons that integrate thermosensory and behavioral information that eluded us previ-
ously when using traditional clustering and regression-based approaches.

Editor's evaluation
This useful article describes a sensitive method for identifying the contributions of different behav-
ioral and stimulus parameters to neural activity. The method has been convincingly validated using 
simulated data and applied to example state-of-the-art datasets from mouse and zebrafish. The 
method could be productively applied to a wide range of experiments in behavioral and systems 
neuroscience.

Introduction
Contemporary neuroscience generates large datasets of neural activity in behaving animals (Engert, 
2014; Musall et al., 2019b; Urai et al., 2022). To gain insight from these large-scale recordings, it is 
desirable to identify neurons with activity related to the behavioral task at hand. A common approach 
to this problem is to intuit a functional form (‘a model’) that relates predictors such as sensory stimuli, 
motor actions, and internal states to neural activity. Neurons can subsequently be classified into those 
with activity explained by features of the task and the chosen model and those with activity likely to be 
unrelated or background noise. A simple yet powerful approach is to use linear regression to explain 
neural activity as the weighted sum of sensory and motor features recorded during the experiment 
(Miri et al., 2011; Harvey et al., 2012; Portugues et al., 2014; Musall et al., 2019a). Since linear 
regression can accommodate nonlinear transformations of input variables, this technique can encom-
pass diverse relationships between predictors and neural activity. Similarly, more flexible solutions 
using basis functions (Poggio, 1990; Hastie et al., 2009) can be used to identify task-related neurons. 
However, brains are not engineered solutions to a well-defined problem but arose through selective 
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pressure acting on random variation (Eliasmith and Anderson, 2002; Niven and Laughlin, 2008; 
Zabihi et al., 2021). It is therefore unclear how well neural activity can be captured by a well-defined 
function chosen by the experimenter as the test model.

Artificial neural networks (ANNs) can in principle accommodate any mapping of predictors to neural 
activity (Hornik et al., 1989; Gorban and Wunsch, 1998). At the same time, they can be designed 
to generalize well to untrained inputs (Anders and John, 1991; Srivastava et al., 2014) often over-
coming problems related to explosion of variance and overfitting to training data associated with 
other solutions incorporating large numbers of parameters (Hastie et al., 2009; James et al., 2013). 
Due to this flexibility, insights into nonlinear receptive fields of visual and auditory neurons (Lehky 
et al., 1992; Lau et al., 2002; Prenger et al., 2004; Ukita et al., 2019; Keshishian et al., 2020) 
and into the encoding of limb motion in somatosensory cortex have been gained using ANNs (Lucas 
et al., 2019). However, an obvious drawback of ANNs is that they are much harder to interpret than 
models based on intuition and data exploration.

Here, we introduce ‘model identification of neural encoding’ (MINE). MINE combines convolutional 
neural networks (CNNs) to learn mappings from predictors (stimuli, behavioral actions, internal states) 
to neural activity (Figure 1) with a deep characterization of this relationship. This allows discovering a 
model or functional form from the data that relates predictors to activity and to subsequently describe 
this model, thereby inverting the usual approach. Using Taylor expansion approaches, MINE reveals 
the computational complexity such as the nonlinearity of the relationship (Figure 2), characterizes 
receptive fields as indicators of processing (Figure 3), and reveals on which specific predictors or their 
interactions the neural activity depends (Figure 4). By incorporating a convolutional layer, temporal 
or spatial transformations of inputs introduced by the technique (such as calcium indicator effects) or 
by the brain (such as differentiation of a signal, edge detection) will be learned seamlessly by MINE. 
These transformations therefore do not have to be captured through a priori transformations of the 
task variables. While the architecture and hyper-parameters of the CNN used by MINE impose limits 
on which relationships can be modeled, we consider the convolutional network largely ‘model-free’ 
because it does not make any explicit assumptions about the underlying probability distributions or 
functional forms of the data.

Here, we demonstrate the utility of MINE using a ground-truth dataset (Figures 1–4) and a cortical 
mouse widefield imaging dataset (Figure 5). We then designed a set of experiments to exhaustively 
probe thermoregulatory circuits in larval zebrafish (Figures 6 and 7). Specifically, we exploit the flex-
ibility of MINE to provide randomly varied temperature stimuli across zebrafish and imaging planes 
while maintaining the ability to identify functional groups of neurons based on features of the trained 
CNNs. Using MINE, we discover a new functional class of neurons integrating thermosensory with 
behavioral information. Combining MINE with anatomical analysis, we also map functional features 
derived with MINE to a standard zebrafish brain.

Results
A model discovery approach to identify task-relevant neurons
MINE uses CNNs to overcome the challenges with predefined models while maintaining interpret-
ability. Feed-forward ANNs are capable of approximating any function (Cybenko, 1989; Hornik 
et  al., 1989; Gorban and Wunsch, 1998) and therefore afford great flexibility in capturing the 
relationship between ‘predictors’ (sensory stimuli, behavioral actions, internal states, etc.) and the 
activity of individual neurons. We designed a simple three-layered network architecture (Figure 1A). 
It consists of a linear convolutional layer (to accommodate temporal transformations such as calcium 
indicator effects) and two dense layers that capture nonlinear transformations. The architecture’s 
simplicity speeds up training and eases interpretation while capturing transformations across time (i.e. 
the convolutional layers) and nonlinear effects (i.e. dense layers with nonlinear activations functions). 
We chose a continuously differentiable activation function for our dense network layers. Unlike the 
popular ReLu nonlinearity, this allows us to calculate higher-order derivatives that capture interaction 
effects and that allow us to quantify the computational complexity of transformations. Most network 
hyperparameters including the specific activation function (‘swish,’ Ramachandran et al., 2017) were 
determined by minimizing test error on a small dataset (see ‘Methods’). We chose a fixed length of 

https://doi.org/10.7554/eLife.83289
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Figure 1. Model identification of neural encoding (MINE) accommodates a large set of predictor–activity relationships. (A) Schematic of the 
convolutional neural network (CNN) used. (B) The predictors that make up the ground-truth dataset. S1 and S2 are continuously variable predictors 
akin to sensory variables while M1 and M2 are discrete in time, akin to motor or decision variables. Dashed lines indicate a third each of the data with 
the first two-thirds used for training of models and the last third used for testing. (C) Schematic representation of ground-truth response generation. 
(D) Example responses in the ground-truth dataset. Labels on the right refer to the response types shown in (C). (E) The model predicts activity at time ‍t ‍ 
using predictors across time ‍t −∆t‍ to ‍t ‍ as inputs. The schematic shows how this is related to the generation of training and test data. Top inset shows 
development of training and test error across training epochs for 20 models trained on the R(S1) × R(S2) response type. Bottom inset shows example 
prediction (orange) overlaid on response (dark green). (F) Squared correlation to test data for a simple linear regression model (blue), a linear regression 
model including first-order interaction terms and calcium kernel convolution (red), as well as the CNN fit by MINE (orange). Each dot represents the 
average across 20 models. While the standard deviation is represented by a dash, it is smaller than the dot size in all cases and therefore not visible in 
the graph.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Model identification of neural encoding (MINE) accommodates a large set of predictor–activity relationships.

https://doi.org/10.7554/eLife.83289
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10 s for our convolutional filters, which can be adjusted as needed, to capture temporal effects in all 
subsequent experiments.

To test MINE’s ability to capture neural transformations and encoding of predictors, we generated 
a ground-truth dataset. This dataset consists of four randomly generated predictors (Figure 1B). Two 
of these, S1 and S2, vary continuously in time mimicking sensory stimuli. The other two, M1 and M2, 
are discrete like motor or decision variables. From these predictors, we generated ‘neural responses’ 
that depend on single predictors or interactions with and without intervening nonlinear transfor-
mations (Figure 1C and Figure 1—figure supplement 1A). We added Gaussian noise to all neural 
responses after convolution with a calcium kernel to approach conditions that might be observed in 
functional calcium imaging experiments (Figure 1D). For each neuron in our ground-truth dataset, 
we subsequently trained a CNN to predict the activity from the predictors (Figure 1E). To assess 
generalization, we split our dataset into a training set (two-thirds of the data) and a validation set 
(last third) (Figure 1B and D). Training for 100 epochs led to excellent predictions of ‘neural activity’ 
while maintaining generalizability as assessed by the squared correlation (‍r2‍ value) to the test data 
(Figure 1E and F).

We sought to compare our ANN-based approach to another widespread approach to model 
single-neuron activity, linear regression. Using the four predictors (Figure 1B) as inputs, a simple linear 
regression model fails to explain activity in most cases (Figure 1F and Figure 1—figure supplement 
1C). This is expected since the chosen type of linear regression model cannot learn the dynamics 
of the calcium indicator unlike the CNN. We therefore constructed an alternative model in which 
we convolved the predictors with the known ‘calcium kernel’ (Figure  1—figure supplement 1B). 
In this expanded linear model, we also included all first-order interaction terms by including pair-
wise products between predictors (Figure 1—figure supplement 1B). This type of model, capturing 
interactions and accounting for an estimated indicator effect, is popular in the analysis of large-scale 
calcium imaging datasets (Miri et  al., 2011; Ahrens et  al., 2012; Portugues et  al., 2014; Chen 
et al., 2018; Stringer et al., 2019). As expected, this model matches the performance of the CNN in 
more response categories including nonlinear interactions (Figure 1F). However, the function of this 
model was designed using a posteriori knowledge about the responses. Nonetheless, the expanded 
linear model is poor in capturing some nonlinear transformations of predictors and fails to capture 
responses that relate to the time derivative of an input, for example, as expected in adapting neurons 
(Figure 1F). While other models could clearly be designed to overcome these challenges, this further 
illustrates the point that a model-based approach is limited to the constraints of the chosen model.

As shown, MINE can identify responses that depend on predictors independent of the linearity 
of these relationships. The underlying CNN is able to learn temporal transformations of inputs such 
as shifts in time or convolutions. Otherwise these transformations have to be explicitly provided to a 
regression model or the predictor matrix has to be augmented for the model to implicitly learn them 
(see the comparison model used in the analysis of zebrafish data below) (Miri et al., 2011; Musall 
et  al., 2019a). MINE removes the requirement of estimating calcium response kernels that might 
differ across different neurons and can also identify responses that depend on derivatives of the input. 
This means that one predictor such as position can be used to identify neurons that depend on the 
velocity or acceleration of a stimulus, without the need of augmenting the predictor matrix.

MINE characterizes computational complexity
Linear computations are limited in their expressivity, and it is generally believed that the computa-
tional power of the nervous system depends on nonlinear computation (Hubel and Wiesel, 1968; 
Churchland et al., 1994; Carandini et al., 2005). In spite of this, the responses of many neurons 
tend to depend almost linearly on sensory or behavioral features (Miri et al., 2011; Thompson et al., 
2016; Pho et al., 2018; Musall et al., 2019a). The latter idea aligns with the hypothesis that infor-
mation important to the animal should be linearly decodable by neural circuits (Marder and Abbott, 
1995; Eliasmith and Anderson, 2002; Shamir and Sompolinsky, 2006). Disambiguating linear from 
nonlinear processing therefore provides important insight into circuit structure and function. Once fit 
to neural data, our CNNs model the transformations from predictors to neural activity (or from neural 
activity to action). We therefore set out to quantify the complexity of the function these networks 
implement as a proxy to classifying the actual transformations between stimuli, neural activity, and 
behavior.

https://doi.org/10.7554/eLife.83289
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To arrive at a metric of ‘computational complexity,’ we used Taylor expansion to approximate 
the function implemented by the CNN. The Taylor expansion approximates a function, such as the 
CNN, around a specific input by a polynomial of up to infinite order. The weights of individual terms 
in this polynomial are determined by the values of the derivatives of the CNN output with respect to 
each input element (in our case predictors and timepoints). These derivatives describe the expected 
change in the output of the CNN given a small change in the predictor input. Calculating derivatives 
of increasing order at the point of expansion allows predicting the value of the CNN output at other 
points (akin to predicting the position of a car in the near future based on its current location, velocity, 
and acceleration). We specifically compute the first- and second-order partial derivatives of the CNN 
output with respect to each feature (predictor and timepoint) in the input at the average of the 
training data. This allows formulating the Taylor expansion of the network around the data mean. It is 
then possible to compare the quality of Taylor expansions with variable numbers of terms in predicting 
the true network output. If the network were to implement a linear function, the first-order term (the 
gradient ‍J ‍ of the function with respect to the input) should suffice to explain a large fraction of the 
variance in the output (Figure 2A). Nonlinear functions should depend on higher-order terms such 
as the second-order partial derivatives, ‍H ‍. We chose to define ‘computational complexity’ based on 
the requirement of the second- or higher-order terms in the Taylor expansion (Figure 2A). Specifically, 
we assign complexity 0 if the linear term in the expansion is enough to explain the activity, 1 if the 
quadratic term is needed, and 2 if higher-order terms are required. Nonlinear neurons are therefore 
split into two categories, depending on the complexity of the transformation.

We tested these metrics on ground-truth data in the following manner: we mixed predictors to 
varying degrees with either linear (as a control) or nonlinear transformations of the same predictors. By 
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Figure 2. Truncations of the Taylor expansion assign computational complexity. (A) Schematic of the approach. At the data mean, the output of the 
network is differentiated with respect to the inputs. The first-order derivative (gradient J) and the second-order derivatives (Hessian H) are computed 
at this point. Comparing the output of truncations of the Taylor expansion can be used to assess the computational complexity of the function 
implemented by the convolutional neural network (CNN).For example, if the function is linear, it would be expected that a truncation after the linear 
term explains the vast majority of the variance in the true network output. (B) Mixing varying degrees of a nonlinear response function with a linear 
response (‘Nonlinear contribution’) and its effect on network performance (left, squared correlation to test data), the variance explained by truncation 
of the Taylor series after the linear term (middle) and the variance explained for a truncation after the second-order term (right). Colored dots relate to 
the plots of linear correlations in Figure 2—figure supplement 1. (C) As in (B) but mixing a linear function of a predictor with a linear transformation of 
the predictor, namely the first-order derivative. (D) As in (B) but mixing a linear function of a predictor with a rectified (nonlinear) version. (E) ROC plot, 
revealing the performance of a classifier of nonlinearity that is based on the variance explained by the truncation of the Taylor series after the linear term 
across 500 independent generations of linear/nonlinear mixing.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Truncations of the Taylor expansion assign computational complexity.

https://doi.org/10.7554/eLife.83289
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increasing the contribution of the transformed predictor, we thereby inject varying amounts of nonlin-
earity into the response. We then applied MINE, training a CNN to learn the transformation between 
the predictor and the mixed output and calculating the coefficients of determination (‍R2‍) for trunca-
tions of the Taylor series after the linear as well as the second-order term. Increasing the contribution 
of an arbitrary nonlinear function (i.e. ‍tanh2(x3)‍) leads to a marked decrease in both of these ‍R2‍ values 
(Figure 2B). Importantly, these metrics do not simply quantify a loss of linear correlation. Calculating 
the derivative of a function is a linear operation, and increasing the contribution of a derivative of the 
predictor indeed does not decrease either ‍R2‍ value in spite of reducing linear correlation between the 
predictor and the response (Figure 2C and Figure 2—figure supplement 1A–C). When increasing 
the contribution of a rectified linear version of the predictor, the amount of variance explained by 
the linear truncation drops while this is not the case for the truncation after the second-order term 
(Figure 2D). This is in contrast to the contribution of ‍tanh2(x3)‍ above and justifies our interpretation of 
computational complexity as a metric for how much a relationship diverges from linearity.

To quantify its usefulness to distinguish linear and nonlinear transformations, we systematically 
evaluated the classification performance of the fraction of variance explained by the linear truncation 
of the Taylor expansion. To this end, we generated random linear and nonlinear transformations of 
the predictors (see ‘Methods’), trained the CNN, and calculated the ‍R2‍ value of the linear truncation. 
We compared this ‍R2‍ value to two other metrics of nonlinearity: the curvature of the function imple-
mented by the network and the nonlinearity coefficient Philipp and Carbonell, 2018; Philipp, 2021 
of the network (see ‘Methods’). Notably, a decrease in the explained variance by the linear truncation 
led on average to increases in both these metrics of nonlinearity (Figure 2—figure supplement 1D 
and E). To quantify classification performance, we used ROC analysis. This analysis revealed that the 
‍R2‍ value ranks a nonlinear transformation lower than a linear one in 99% of cases (Figure 2E). Impor-
tantly, this metric allows disambiguating linear and nonlinear processing with acceptable false-positive 
and false-negative rates (‍< 0.05‍) at a cutoff of ‍R2 < 0.8‍ as a nonlinearity threshold Figure 2—figure 
supplement 1F; a feature that is highly desirable when applying the classification to real-world data.

In summary, MINE increases the interpretability of the CNN model and classifies the transforma-
tions the model encapsulates according to their computational complexity. Since the CNN encap-
sulates the transformations that are enacted by neural circuits between stimuli and neural activity or 
neural activity and behavior, this information provides important insight into the computations that 
give rise to neural activity.

MINE characterizes neural receptive fields
Receptive fields compactly describe stimulus features that drive a neuron’s response (Dayan and 
Abbott, 2001). They reveal integration times (those times over which coefficients of the recep-
tive field are different from zero) and zero-crossings within the receptive field signal adapting 
responses that indicate that a neuron encodes the derivative of a stimulus across time (e.g. velocity 
encoding neurons) or that it detects edges across space. It is therefore desirable to use MINE to 
extract receptive fields of the neurons fit by the CNN. Because of their descriptive nature, different 
methods have been developed to extract receptive fields, commonly referred to as ‘system iden-
tification’ approaches. The Wiener/Volterra expansion of functions provides a powerful framework 
for system identification (Poggio and Reichardt, 1973; Aertsen and Johannesma, 1981; Friston 
et al., 1998; Mammano, 1990; Marmarelis, 2004; Mitsis et al., 2007; Mitsis, 2011). Since the 
input to the CNN at the heart of MINE contains information about each predictor across time, 
the Taylor expansion introduced in the previous section (Figure  2A) is equivalent to the Volt-
erra expansion of a system processing information across time equal to the history length of the 
CNN. We were therefore wondering whether we could extract receptive fields from the gradient 
‍J ‍ and Hessian ‍H ‍ of the CNN in a manner similar to how they can be derived from the first- and 
second-order Volterra kernels (‍k1‍ and ‍k2‍ ; see ‘Methods’) (Marmarelis, 1997; Marmarelis, 2004; 
Mitsis et al., 2007). To this end, we simulated a system that uses two parallel receptive fields to 
process an input. The filtered responses are subsequently passed through two differently struc-
tured nonlinearities to yield the output (Figure 3A and ‘Methods’). Notably, due to the structure 
of the nonlinearities, we expect the first receptive field (here called ‘linear receptive field’) to be 
equivalent to ‍J ‍/‍k1‍ and the second receptive field (here called ‘nonlinear receptive field’) to appear 
as an eigenvector of ‍H ‍ and ‍k2‍.

https://doi.org/10.7554/eLife.83289
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As a comparison, we used regression to directly fit the Volterra kernels (see ‘Methods’). Notably, 
just like MINE, apart from the truncation of the series after the second term, the Volterra analysis is 
highly flexible since most scalar-valued functions can be approximated using an infinite Volterra series 
(Volterra, 1959). System identification often employs specifically designed stimuli such as Gaussian 
white noise (Marmarelis and Marmarelis, 1978; Korenberg and Hunter, 1990; Rieke et al., 1999; 
Schwartz et al., 2006; Gollisch and Meister, 2008), which are difficult to realize in practice and severely 
restrict experimental conditions. Nonetheless, we first benchmarked both approaches using Gaussian 
white noise as input (Figure 3—figure supplement 1A). As expected, both MINE and directly fitting 
the Volterra kernels yielded receptive fields that were nearly indistinguishable from the ground truth 
(Figure 3—figure supplement 1B). This demonstrates that our simulation indeed results in receptive 
fields that can be discovered using MINE or a second-order Volterra model. However, for the analysis 
to be useful it is critical that receptive fields can be extracted on arbitrary and slowly varying stimuli as 
expected, for example, during naturalistic behavior. We therefore repeated the analysis using slowly 
varying stimuli (Figure 3—figure supplement 1A). Under these more naturalistic conditions, MINE 
still yielded well-fitting receptive fields (Figure 3B and Figure 3—figure supplement 1C and D). An 
ordinary regression fit of the Volterra kernels, on the other hand, failed to recover the receptive fields 
(Figure 3B), which is in line with the observation that ANNs form an efficient route to Volterra analysis 
(Wray and Green, 1994). We assumed that this failure was due to a lack of constraints, which meant 
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Figure 3. Model identification of neural encoding (MINE) characterizes linear and nonlinear receptive fields. 
(A) Schematic of the test response generation. Inputs S (either white-noise or slow fluctuating) are convolved in 
parallel with two receptive fields acting as filters. The result of one convolution is transformed by an asymmetric 
nonlinearity (top), the other through a symmetric one (bottom). The results of these transformations are summed 
to create the response R that is a stand-in for a neural response that depends on one linear and one nonlinear 
receptive field. (B) When presenting a slowly varying stimulus, the quality of receptive fields extracted by MINE 
(expressed as the cosine similarity between the true receptive fields and the respective receptive fields obtained 
by the analysis), as well as direct fitting of first- and second-order Volterra kernels through linear regression (OLS) 
as well as Ridge regression. Listed ‍α‍ indicates the strength of the Ridge penalty term. Linear receptive field blue, 
nonlinear orange. Dashed lines indicate median cosine similarity of the receptive fields extracted using MINE. 
(C) Correlation to validation data presented to the fit models as a means to assess generalization. Dashed lines 
indicate correlation to test data of the MINE model. (D–F) Same as (A–C) but with smoothly varying receptive 
fields. All data is across 100 indepedent simulations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Model identification of neural encoding (MINE) characterizes linear and nonlinear receptive 
fields.

https://doi.org/10.7554/eLife.83289
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that the ordinary regression model could not handle the departure from Gaussian white noise stimuli. 
We therefore refit the Volterra kernels using Ridge regression (Hastie et al., 2009) with increasing 
penalties. Indeed, for high penalties, the direct fit of the Volterra kernels yielded receptive fields of 
almost comparable quality to MINE (Figure 3B and Figure 3—figure supplement 1E–H). The CNN 
model fit by MINE also had slightly higher predictive power compared to the best-fit Volterra model 
as indicated by higher correlations of predicted activity on a test dataset (Figure 3C). Repeating the 
same analysis with a second set of filters yielded similar results: MINE proved to be a slightly superior 
approach to extract the receptive fields (Figure 3D–F). This is not to say that no other way could be 
found to extract the receptive fields, but it underlines the fact that MINE is a practical solution to this 
problem, which yields high-quality receptive fields in addition to other information about the relation-
ship between predictors and neural responses.

We used the same simulation to assess how the predictive power of the different models (MINE 
and Ridge regression), as well as the quality of extracted receptive fields, depends on the amount 
of training data. As expected, predictive power on a validation set increases with the number of 
training samples for all methods. The Ridge model with the lower penalty outperforms MINE for lower 
numbers of training samples (Figure 3—figure supplement 1I). However, this model does not yield 
usable receptive fields and in fact both Ridge models show a deterioration of extracted receptive 
fields for large numbers of training samples (Figure 3—figure supplement 1J). This is likely a result 
of the competition between the regularization penalty and the overall error of the fit. MINE appears 
more robust to this effect, but for very long sample lengths it may be required to adjust the CNNs 
regularization as well (Figure 3—figure supplement 1J).

Since Ridge regression constrains linear regression models, we were wondering how the effective 
degrees of freedom of the CNN and the different models would compare. Interestingly, in spite of 
having nearly 14,000 parameters, the effective degrees of freedom of the CNN model are <50 and the 
Ridge regression models that are successful in identifying the receptive fields approach similar effec-
tive degrees of freedom (Figure 3—figure supplement 1K). This is in line with successful approaches 
to system identification employing constraints such as Laguerre basis functions (Friston et al., 1998; 
Marmarelis, 2004; Mitsis et al., 2007). In the case of the CNN used by MINE, the effective degrees 
of freedom are limited by the L1 penalty on the weights (sparsity constraint), the Dropout, and the 
limited number of training epochs (Figure 3—figure supplement 1L).

Overall these results suggest that MINE can recover the types of receptive fields of neurons that 
can be obtained with system identification approaches under a broader set of biologically relevant 
stimulus conditions.

Taylor analysis identifies predictors driving the response
Compared to regression models, the CNNs seemingly have a drawback: a lack of interpretability. 
Statistical methods can identify the factors that significantly contribute to a regression model’s output. 
Similarly, the magnitude of individual weights in models fit to data can give an idea of the importance 
of specific predictors. Corresponding overt parameters do not exist in the CNN model. In principle, 
the extracted receptive fields could be used to identify contributing predictors since it would be 
expected that they are ‘unstructured’ for unimportant inputs. However, what to consider as ‘unstruc-
tured’ is not clearly defined. Theoretically, it would be possible to refit successful CNN models in a 
stepwise manner, leaving out or adding in specific predictors (Benjamin et al., 2018). However, since 
we are interested in uncovering the relationships between predictors, this could only succeed if all 
individual combinations between inputs are tested. This would be prohibitive for large sets of sensory 
and behavioral predictors as it would require repeatedly retraining all networks.

We therefore again utilized Taylor expansion. To account for the relationships that cannot be suffi-
ciently explained by the second-order Taylor expansion shown in Figure 2A, we perform local expan-
sions at various points instead of one expansion around the data average (Figure 4A). This allows 
for variation in the network gradient ‍J ‍ and Hessian ‍H ‍ in cases of high computational complexity. 
Since the Taylor decomposition is a sum of terms that depend on individual inputs or their combina-
tions, we can use it to determine how important individual predictors, such as sensory stimuli, are in 
shaping the neural response (Figure 4A and Figure 4—figure supplement 1A). Across our ground-
truth dataset, we find a high correlation between the change in output of the Taylor expansion and 
the true change in network output (Figure 4B, left panel), indicating that the local expansions using 

https://doi.org/10.7554/eLife.83289
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first- and second-order derivatives sufficiently capture the relationship between predictors and neural 
activity. Importantly, decomposition is a way to efficiently test the importance of different predictors 
in contributing to network output and hence neural activity. We calculate a ‘Taylor metric’ score, which 
measures the fraction of explained variance of the response that is lost when terms are removed from 
the full Taylor expansion (Figure 4B).

On our ground-truth dataset, the Taylor metric correctly identifies the contributing predictors and 
their interactions. Sorting individual terms by this metric consistently ranks those that we expect to 
contribute (Figure 4C–E, red bars) higher than those that should not (Figure 4C–E, blue bars). This is 
true both for individual predictors and interaction terms in the case where the response depends on 
the product of inputs (Figure 4C–E and Figure 4—figure supplement 1B-H).

In summary, MINE was able to correctly identify contributions of predictors, such as sensory 
stimuli or behavioral actions, to neural responses by local expansions of the trained CNNs. MINE 
also correctly identifies nonlinear interactions in generating the neural responses on our ground-truth 
dataset. This indicates that we can further reduce the lack of interpretability of the CNN models and 
approach the expressivity of linear regression models while maintaining the ability to model nonlinear 
transformations and interactions of task variables.

MINE characterizes cortical sensorimotor processing
Encouraged by MINE’s ability to identify responses related to behavior and stimuli and its ability to char-
acterize the nature of that relationship, we wanted to test the method on biological data. We applied 
MINE to a publicly available widefield calcium imaging dataset recorded in the mouse cortex (Musall 
et al., 2019a). The dataset consists of 22 task-related predictors (stimuli, reward states, instructed, 
and noninstructed movements) and calcium activity time series across 200 temporal components that 
were used to compress each session’s widefield imaging data Musall et al., 2019a from 13 mice. It 
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Figure 4. Taylor decomposition reveals contributing single factors and interactions. (A) The neural model translates predictors into neural activity. By 
Taylor decomposition, the function implemented by the convolutional neural network (CNN) can be linearized locally. Relating changes in predictors 
to changes in activity for full and partial linearizations reveals those predictors and interactions that contribute to neural activity. (B) Example of Taylor 
metric computation. Left: relationship between the CNN output and the full Taylor approximation. Middle: after removal of the term that contains 
the S1 predictor. Right: after removal of the term that describes the interaction between S1 and S2. (C–E) Three example responses and associated 
Taylor metrics. Red bars indicate predictors that are expected to contribute, blue bars those that should not contribute. Error bars are 95% bootstrap 
confidence intervals across N=20 independent simulations. (C) M2 response type. (D) R(S1) × R(S2) response type. Arrowheads indicate the metrics that 
are shown in the example (right and middle) of (B). (E) Response type encoding the absolute value of S1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Taylor decomposition reveals contributing single factors and interactions.

https://doi.org/10.7554/eLife.83289
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Figure 5. Model identification of neural encoding (MINE) identifies cortical features of sensorimotor processing 
during a learned task. (A) Simplified schematic of the widefield imaging experiment conducted in Musall et al., 
2019a. (B) MINE test data vs. training data correlations on 200 temporal components from 13 sessions across 
13 mice. Black dashed line is identity, red dashed line is the test correlation threshold to decide that a component 
had been identified by MINE. (C) In each of the 13 sessions, the fraction of identified components (dots) as well as 
the average (bar). (D) Across 200 components each in the 13 sessions, the distribution of the linear score computed 
by MINE (coefficient of variation for the truncation of the Taylor expansion after the linear term as in Figure 2). 
(E) Across all components from all 13 sessions that have been identified by MINE, the Taylor metrics that were 
significantly larger than 0. Components (rows) have been sorted according to the predictor with the maximal Taylor 
metric. (F) Per-pixel Taylor metric scores for the right visual stimulus (‘rVisStim’) subtracted from those of the left 
visual stimulus (‘lVisStim’). A, anterior; L, left; R, right. (G) As in (F) but the sum of the visual stimulus Taylor metrics 
(‘lVisStim+rVisStim’) has been subtracted from the Taylor metric of the whisking predictor (‘Whisk’). (H) As in (F) 
but the Taylor metric for the right grab predictor (“rGrab”) has been subtracted from the Taylor metric of the left 
grab predictor (‘lGrab’). (I) Clustering of per-pixel receptive fields, separating excitatory (bold lines) from inhibitory 
responses (pale lines). Pixels were selected to only include the top 10% Taylor metrics for visual (left plot) and 
grab (right plot) predictors; left blue, right red. Numbers in parentheses indicate cluster size. The gray dashed line 
indicates time 0, that is, the time at which calcium activity is measured. Note that the sensory receptive field (visual) 
is exclusively in the past (future stimuli do not drive the neurons) while the motor receptive fields (grab) slightly 
overlap with the future, indicating that neurons ramp up activity before the behavioral action.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Model identification of neural encoding (MINE) identifies cortical features of sensorimotor 
processing during a learned task.

https://doi.org/10.7554/eLife.83289
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had previously been analyzed using linear regression (Musall et al., 2019a). We analyzed one session 
from each of the 13 mice present in the dataset with MINE (Figure 5A). As in the ground-truth data, 
we split the data into a training set (first two-thirds of the session time) and a test-set (last third). To 
be able to capture not only the activity caused by past stimuli but also the preparatory activity leading 
up to movements, we shifted the predictor traces with respect to the activity trace (see ‘Methods’). 
As expected, correlations between MINE predictions and true activity on the test dataset are overall 
smaller than on the training set; however, in the majority of cases the CNN generalizes well to the new 
data (Figure 5B). Given that many individual neurons contribute to each pixel and temporal compo-
nent within this dataset, and that a lot of brain activity is likely unrelated to the behavioral task, we 
expect that a large fraction of variance in each component is likely unexplainable by any model that 
does not take internal brain states into account. We therefore chose a lenient correlation cutoff of 
‍r = 0.1‍ for the test data (red line in Figure 5B) to decide that a component had been successfully fit 
by MINE (Figure 5B and C). On average, this led to the identification of >91% of all components per 
session (Figure 5C) on which Taylor metric and complexity were computed. Notably, MINE assigns 
low complexity to the majority of components; only 3% of fit components have a linear approxima-
tion score <0.8. This means that the relationships between predictors and neural activity are largely 
linear (Figure 5D). While this may seem surprising given the high nonlinearity of cortical processing, 
it is likely caused by the low resolution of the data. Each component blends the activity of hundreds 
of thousands of neurons. Averaging across many individual neurons that each may have their own 
nonlinear responses likely obfuscates nonlinear effects.

Across all sessions, we found a broad representation of predictors (Figure 5E). As expected from 
the findings of Musall et al., 2019a, uninstructed movements appear overrepresented sporting the 
largest Taylor metric in more than half of the fit components. We next mapped the results of MINE 
back into acquisition space and recalculated the Taylor metrics for each imaging pixel for one example 
session. The obtained results further validate MINE’s utility on biological data. Specifically, visual stimuli 
are shown to contribute most strongly to responses in visual cortical areas with the expected left–right 
asymmetry (Figure 5F). At the same time, comparing visual sensory responses to whisk responses 
shows that cortical regions enhanced for whisking (Figure 5G) correspond very well to regions marked 
strongly with a whisk event kernel in Figure 2 of Musall et al., 2019a. Furthermore, instructed left 
and right grab events largely contribute to motor cortical regions, again with the expected left–right 
asymmetry (Figure 5H). Repeating this procedure on all sessions (Figure 5—figure supplement 1) 
reveals general agreement. But we note that not all sessions seem to have regions that are as clearly 
related to the chosen inputs according to Taylor analysis, which is especially apparent for left and right 
instructed grabs (Figure 5—figure supplement 1C).

We next sought to determine the receptive fields that govern stimulus processing in individual 
pixels (Lehky et al., 1992; Dayan and Abbott, 2001). We extracted the receptive fields across pixels 
that are strongly related to either left/right visual stimuli or left/right instructed grabs. We broadly 
clustered the receptive fields into two groups (see ‘Methods’) to separate excitatory and inhibitory 
effects. Receptive fields for left and right visual stimuli in contralateral brain regions are highly similar 
to each other (Figure 5I, left). The excitatory effect is stronger than the inhibitory effect (larger coef-
ficients in the positive receptive fields) and both are clearly biphasic. This indicates that the events 
around the time of the stimulus as well as ‍∼ 1.5 s‍ in the past strongly influence the activity of the visual 
neurons. We note that this biphasic structure mimics the linear regression kernel in Figure 3b of Musall 
et al., 2019a. The visual receptive fields have essentially zero weight after the current time, which is 
expected since future stimuli are unlikely to influence current neural activity. The receptive fields of left 
and right grab neurons, on the other hand, are much sharper, indicating that these neurons influence 
movement over short timescales (Figure  5I, right). Furthermore, the grab-related receptive fields 
contain coefficients different from baseline for up to 100 ms into the future. This suggests preparatory 
activity, that is, that future movements are reflected in current neural activity.

In summary, the results presented above demonstrate the applicability of our method to biological 
data and the potential for identifying diverse feature sets of sensorimotor processing.

Functional characterization of thermoregulatory circuits
Encouraged by MINE’s performance on ground-truth and mouse cortical data, we sought to use it to 
gain novel insight into zebrafish thermoregulatory circuits. Temporal transformations of stimuli are a 

https://doi.org/10.7554/eLife.83289
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notable feature of how zebrafish process temperature information. In previous research, we identified 
neurons and centers in the larval zebrafish brain that process temperature: specifically, neurons that 
compute the rate of change of the temperature stimulus (Haesemeyer et al., 2018) as well as neurons 
whose activity is consistent with integration of temperature fluctuations (Haesemeyer et al., 2019). 
Due to the nature of these transformations, which were unknown a priori, simple regression-based 
approaches failed to identify neurons involved in temperature processing. We therefore previously 
resorted to clustering to identify these neurons. However, because behavior is stochastic, one partic-
ular drawback of clustering was that it precluded identifying neurons that integrate thermosensory 
stimuli and behavioral actions. Since MINE can learn and capture both temporal transformations and 
interactions, we set out to gain deeper insight into thermoregulatory processing. To this end, we 
used MINE to identify and characterize neurons during a thermosensory task, revealing predictors 
contributing to their activity, extracting their receptive fields and characterizing their computational 
complexity.

To classify neurons by clustering either requires presenting the same stimulus to every animal and 
neuron while imaging or it requires a strategy of clustering event-triggered activity. With MINE we 
do not need to enforce any stimulus constraint. As a result, we were able to probe a wider variety 
of stimulus conditions. We imaged a total of 750 planes across 25 larval zebrafish that expressed 
the nuclear calcium indicator H2B:GCaMP6s Freeman et al., 2014 in all neurons and the excitatory 
neuron marker vglut2a-mCherry Satou et al., 2013 in presumed glutamatergic neurons. This dataset 
provided slightly more than fourfold coverage of the larval zebrafish brain. On each imaging plane, we 
presented a heat stimulus generated by randomly composing sine waves with frequencies between 
0.005 Hz and 0.075 Hz (Figure 6A and Figure 6—figure supplement 1A). We concurrently recorded 
elicited tail motion at 250 Hz. We segmented the imaging data using CaImAn (Giovannucci et al., 
2019), which identified ‍∼ 433, 000‍ active neurons across our dataset. From the tail motion data, we 
extracted (1) swim starts and (2) tail features that correlate with swim displacement (‘vigor’) and turn 
angle (‘direction’) in free swimming experiments (Figure 6A and Figure 6—figure supplement 1C).

We used the information about stimulus and elicited behaviors across time as inputs to MINE fitting 
CNNs to each neural calcium response (Figure 6B and C). The initial two-thirds of time served as 
training data and the last third as a test/validation set. Notably, due to the random nature of both our 
stimulus and the elicited behavior, test and training data were largely uncorrelated (Figure 6—figure 
supplement 1B). Predictive power over the test data therefore indicates that the neural network 
model generalizes and truly captures how stimulus and behavioral data are related to neural activity. 
We chose 50% of explained variance on the test data, corresponding to a correlation of ‍r =

√
0.5‍, as 

a stringent cutoff to determine whether a neuron can be modeled by MINE. A considerably higher 
threshold was used on this dataset compared with the cortical data since we recorded single-cell 
activity. It is therefore less likely that activity of a true responder is mixed with unrelated background 
activity. Using cyclic permutations of the data as a control revealed that this cutoff corresponds to a 
93-fold enrichment over control data (Figure 6—figure supplement 1D).

As a comparison, we fit a linear regression model to this dataset. The inputs included time-shifted 
versions of stimulus and behavioral variables to allow the model to learn temporal transformations 
Musall et al., 2019a and thereby put it on the same footing as the CNN model (Figure 6C). We used 
Ridge regression Hastie et al., 2009 to improve generalization of the linear model. At the designated 
cutoff, a total of ‍∼ 42, 000‍ neurons were identified using either MINE or regression. 40% of these 
neurons, however, were exclusively identified by MINE (Figure 6D), indicating the superiority of the 
model-discovery approach. In fact, MINE consistently identifies more neurons regardless of the cutoff 
imposed on test data (Figure 6—figure supplement 1E).

We used MINE to assign the identified neurons to functional types according to (1) whether their 
encoding of stimulus or behavioral features is linear or nonlinear (computational complexity) and 
(2) which stimulus and behavioral features drove their activity (Taylor analysis). As before, we deter-
mined nonlinearity when the truncation of the Taylor expansion after the linear term did not explain 
at least 80% of the variance of the CNN output. For the Taylor analysis, we chose a stringent cutoff, 
requiring the Taylor metric to be significantly >0.1 with a p-value ‍< 0.05‍ on the whole dataset (Bonfer-
roni correction; effective p-value ‍∼ 1.26 × 10−6‍), to determine whether a predictor influenced the 
activity of a neuron. Since interaction terms had very small Taylor metrics, we ignored them for neuron 
classification purposes. In total, we identified 33 functional neuron classes all of which were identified 

https://doi.org/10.7554/eLife.83289
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Figure 6. Using model identification of neural encoding (MINE) to probe larval zebrafish thermoregulatory 
circuits. (A) Experimental design. Larval zebrafish expressing nuclear GCaMP6s in all neurons and mCherry in 
glutamatergic neurons are imaged under a two-photon microscope while random heat stimuli are provided with a 
laser and behavior is inferred through tail motion, middle (inset shows a sum projection through the example trial 
depipcted on left and right and in (B) - edge-length = 400 microns). Left: example temperature trajectory during 
one trial. Right: behavioral responses recorded during the same trial. (B) Deconvolved calcium traces of all neurons 
identified in the plane imaged during the same trial as in (A) (heatmap), sorted by the test correlation achieved 
by the convolutional neural network (CNN) (plot on the left). Orange arrowheads mark the same timepoints as in 
(A) and (B). Orange dashed line indicates the fit cutoff used for deciding that a neuron was identified by MINE, 
blue line marks Pearson correlation of 0. (C) Illustration comparing MINE to the linear regression model. (D) Venn 
diagram illustrating fractions of CaImAn extracted neurons identified by MINE, the comparison LM model or both. 
(E) Plot of functional classes identified by Taylor analysis across 25 fish. Barplot at the top indicates total number 
of neurons in each class on a logarithmic scale. Dotplot marks the significant Taylor components identified in each 
functional class. Classes are sorted by size in descending order. Horizontal barplot on the right indicates the total 
number of neurons with activity depending on a given predictor. Orange filled bars mark classes only driven by 
the stimulus, green open bars those only driven by behavioral predictors while blue bars mark classes of mixed 
sensorimotor selectivity. Gray numbers in the row labeled ‘N-fish’ indicate the number of fish in which a given type 
was identified. The red arrowhead marks the functional type that is analyzed further in Figure 7D. (F) Classification 
of neurons labeled by reticulospinal backfills (inset shows example labeling) across six fish. Orange filled bars 

Figure 6 continued on next page
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across multiple fish (Figure 6E). As a control, we labeled reticulospinal neurons in six fish via spinal 
backfills and as expected the vast majority of these neurons were classified by MINE to be driven by 
behavioral features (Figure 6F). Across the brain, we identified multiple functional classes of neurons 
with mixed selectivity, that is, neurons with activity jointly driven by the temperature stimulus and 
behavioral outputs (Figure 6E, blue filled bars). These mark a previously unidentified class of neurons 
in the thermoregulatory circuit that might play a key role in behavioral thermoregulation: they could 
allow the animal to relate behavioral output to temperature changes and thereby characterize the 
thermal landscape. Analyzing the success of the linear comparison model according to functional class 
revealed a bias toward the identification of behavior-related activity and as expected low computa-
tional complexity. Stimulus or mixed-selectivity neurons, on the other hand, were underrepresented 
in the pool identified by the linear model (Figure 6G). This points to potential problems of bias when 
identifying neurons by means of such linear models.

We registered all our imaging data to a standard zebrafish reference brain (Z-Brain; Randlett et al., 
2015). This allowed us to assess the distribution of identified functional neuron types throughout 
the brain using two complementary methods. We performed anatomical clustering (see ‘Methods’) 
to visualize regions with high densities of each functional type (Figure 6H) and determined in which 
annotated anatomical regions a functional neuron type is enriched (Figure 6—figure supplement 
1G–I). While Stimulus-, Behavior- and Mixed-selectivity neurons are generally broadly distributed, 
they are enriched in specific brain regions (Figure 6H and Figure 6—figure supplement 1G-I). We 
found stimulus-driven neurons to be enriched in telencephalic regions, as well as the habenula and 
its output region the interpeduncular nucleus (Figure  6—figure supplement 1G). As expected, 
behavior-driven neurons are enriched in hindbrain regions and the midbrain nucleus of the medial 
longitudinal fasciculus (Figure 6—figure supplement 1H; Severi et al., 2014; Thiele et al., 2014). 
Mixed-selectivity neurons occupy some regions shared with stimulus-driven neurons such as telen-
cephalic area M4 and the interpeduncular nucleus but are also strongly enriched in the raphe superior 
as well as the caudal hypothalamus and the torus longitudinalis (Figure 6—figure supplement 1I). 
Our current dataset did not cover sensory ganglia well (especially not the trigeminal ganglion) with 
the exception of the olfactory epithelium where we found temperature-sensitive neurons in a medial 
zone (Figure 6—figure supplement 1I). This is in line with reports in mice and frogs that describe 
specific thermosensitive neurons in the olfactory epithelium of these species (Schmid et al., 2010; 
Kludt et  al., 2015; Fleischer, 2021). Overall these results demonstrate that functional cell types 
identified by MINE segregate spatially within the brain, likely forming organizational units within the 
thermoregulatory circuit.

Computational features of thermoregulatory circuits
We next sought to use MINE to analyze computational features of thermoregulatory circuits. We 
subdivided neural classes according to the behavioral features they control, the sensory features they 
extract (their receptive fields), and their computational complexity. In the case of mixed-selectivity 
neurons, we used the predictive power of MINE to gain insight into how they integrate thermosen-
sory and behavioral information. Mapping computational features to the zebrafish brain subsequently 
revealed the anatomical organization of computational features. Analyzing brain regions for enrich-
ment of encoding different behavioral features suggests a segregation in the control of swim starts, 
swim speed (vigor), and turn angle (directionality). Even though behavior-related neurons are enriched 

mark classes only driven by the stimulus, green open bars those only driven by behavioral predictors while blue 
bars mark classes of mixed sensorimotor selectivity. (G) For different functional neuron classes identified by MINE, 
the fraction also identified by the linear comparison model. Error-bars are bootstrap standard errors across N=25 
zebrafish larvae. (H) Anatomical clustering of stimulus driven (left), behavior driven (middle), and mixed-selectivity 
(right) neurons. Neurons were clustered based on spatial proximity, and clusters with fewer than 10 neurons were 
not plotted (see ‘Methods’). Asymmetric patterns for lower abundance classes likely do not point to asymmetry in 
brain function but rather reveal noise in the anatomical clustering approach.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Using model identification of neural encoding (MINE) to probe larval zebrafish 
thermoregulatory circuits.

Figure 6 continued
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in the hindbrain overall (Figure 6H), subdividing the neurons reveals a broader distribution (Figure 7A 
and Figure 7—figure supplement 1A–C). Swim start neurons are enriched in the dorsal thalamus as 
well as the medial hindbrain, while the ventral thalamus, the forebrain, and the locus coeruleus pref-
erentially encode swim speed (Figure 7 and Figure 7—figure supplement 1A and B). Neurons that 
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Figure 7. Functional subdivisions of thermoregulatory circuits. (A) Anatomical clustering of neurons encoding 
swim starts (left), swim vigor (middle), and swim direction (right). Neurons were clustered based on spatial 
proximity, and clusters with fewer than 10 neurons were not plotted (see ‘Methods’). Asymmetric patterns for lower 
abundance classes likely do not point to asymmetry in brain function but rather reveal noise in the anatomical 
clustering approach. (B) Subclustering of stimulus-selective neurons according to their temporal receptive field 
(left heatmap). Right: heatmap visualizes for each cluster what fraction of that cluster is present in the major four 
subdivisions of the zebrafish brain (Telen., telencephalon; Dien., diencephalon; Mesen., mesencephalon; Rhomb., 
rhombencephalon). Arrowheads indicate differentially distributed example clusters highlighted in (C). (C) Temporal 
receptive fields of example clusters. Each plot shows the influence of a change in temperature at the indicated 
timepoint on the activity (as measured by calcium) of a neuron within the cluster. Numbers reflect the number of 
neurons present in each given cluster. Dashed lines indicate 0 where the number of 0-crossings of each receptive 
field indicate if the neuron responds to absolute temperature value (no crossings, cluster 12), to the first derivative 
(velocity of temperature, increasing, cluster 1; decreasing cluster 4) or to the second derivative (acceleration of 
temperature, cluster 3). (D) Exemplars of two clusters (full set in Figure 7—figure supplement 1E) of nonlinear 
mixed-selectivity neurons that integrate thermosensory information with information about swim start. Heatmaps 
show predicted neural calcium response for varying levels of swim- and sensory drive (see ‘Methods’). Line plots 
show predicted calcium responses (Y-axis) to different sensory drives (X-axis) at different levels of swim drive 
(blue bar -5, black bar 0, orange bar +5). (E) Average complexity of each receptive field cluster shown in (B) (gray 
bars). Blue horizontal line reveals the total average complexity, and vertical blue lines indicate bootstrapped 95% 
confidence intervals around the average complexity based on the number of neurons contained within the cluster. 
If the gray bar is above or below that interval, the complexity within that cluster deviates significantly from the 
data average complexity. (F) As in (A) but clustering of neurons of complexity 0 (left), complexity 1 (middle), and 
complexity 2 (right).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Functional subdivisions of thermoregulatory circuits.
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encode turning are enriched in mid- and hindbrain regions (Figure 7 and Figure 7—figure supple-
ment 1C). Notably, these neurons could be involved in controlling these behavioral features or alter-
natively maintain efference copies of the motor commands for other purposes (Odstrcil et al., 2022).

To investigate the stimulus features that drive temperature encoding neurons, we performed clus-
tering on their receptive fields that we retrieved using MINE as described above (Figure 7B and C and 
Figure 7—figure supplement 1D). A clustering approach based on the cosine similarity of receptive 
fields (see ‘Methods’) resulted in 15 clusters. For each of these clusters, neurons came from at least 
15 fish across our dataset. Each cluster represents a functional neuron class that extracts specific 
features of the temperature stimulus (Figure 7B, left). Localizing different clusters in the brain reveals 
an anatomical organization of processing. Clusters 1 and 4 are enriched in the forebrain (Figure 7B, 
right), and their receptive fields suggest that they are most responsive to heating and cooling stimuli 
over slow timescales, respectively (Figure 7C). Their response to temperature increases or decreases 
is evidenced by the zero-crossing of their receptive fields while the slow rise/fall of the coefficients 
suggests computation over longer timescales. Cluster 3, on the other hand, computes the rate of 
heating over shorter timescales (Figure  7C) and is almost exclusively localized to the hindbrain 
(Figure 7B, right). Cluster 12 represents neurons that are excited by colder temperatures since the 
receptive field exclusively has negative coefficients (Figure 7C). This neuron type is found predomi-
nantly in hind- and midbrain regions (Figure 7B, right). We note that some of the uncovered receptive 
fields (e.g. clusters 1 and 4) have the largest departures from 0 at the start and end of the receptive 
fields. This might indicate that the chosen history length (here 10  s) is too short and does not cover 
the entire timescale of processing, which could be a result of the rather slow nuclear calcium indicator 
we chose for this study.

Mixed-selectivity neurons could provide zebrafish with important information about the thermal 
environment such as the slope of temperature gradients the fish can use to thermoregulate. We there-
fore wondered how these neurons combine thermosensory and behavioral information by visualizing 
response landscapes (akin to Heras et al., 2019). Here, we specifically focused on neurons that are 
driven by both swim starts and temperature inputs and that were classified as nonlinear (indicated by 
a red arrowhead in Figure 6E). We extracted the neurons’ receptive fields for these quantities and 
analyzed predicted responses of the CNN fit by MINE to combinations of swim- and sensory drive. We 
defined ‘drive’ as scaled versions of the receptive field since it represents the ideal stimulus driving a 
neuron (Dayan and Abbott, 2001) (see ‘Methods’). Clustering neurons according to these response 
landscapes (Figure 7D and Figure 7—figure supplement 1E) revealed diverse modes of integra-
tion across 10 clusters. Some neurons appear to add behavioral inputs linearly with thermosensory 
inputs (Figure 7 and Figure 7—figure supplement 1E, clusters 8 and 9). Other neurons, however, 
show gating (Figure 7D, left, and Figure 7—figure supplement 1E, clusters 0 and 1). Here swim 
drive effectively scales the sensory responsiveness. Importantly, since these are temporal receptive 
fields, the swim drive input will scale with relative timing of swims, being the strongest when behavior 
occurs within the time window of the receptive field. These neurons could therefore act as coincidence 
detectors that inform larval zebrafish that temperature changes are linked to behavior as expected in 
a temperature gradient. We also found a cluster of neurons that display more complex integration of 
sensory and motor information (Figure 7D, right). At lower-than-average swim drive, these neurons 
symmetrically respond to both low and high sensory drive. However, at high swim drive, the response 
to positive sensory drive is enhanced, making the response of the neuron to temperature asymmetric 
in this regime.

Lastly, we sought to gain insight into computational features themselves, that is, those that occur 
between the sensory input and the observed activity of the neurons. Specifically, we used MINE to 
analyze the complexity of these computations according to truncations of the Taylor expansion after 
the linear and second-order terms (Figure 2A). We scored linear neurons as having complexity 0, 
those for which the linear truncation explains <80% of variance (nonlinear) but where the second-
order expansion explains at least 50% of variance as having complexity 1 and the remainder requiring 
higher-order terms of the expansion as complexity 2. We found that complexity is mapped onto both 
functional (Figure 7E) and anatomical features (Figure 7F), indicating that this division is not arbitrary 
but rather indicates a meaningful difference in neuron function. Specifically, averaging the complexity 
score for different receptive field clusters reveals that three of these clusters have lower complexity 
than expected, indicating that most neurons in these clusters have responses that linearly depend 

https://doi.org/10.7554/eLife.83289
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on the temperature stimulus (Figure 7E). One cluster (cluster 6) had an average complexity score 
>1, indicating that the majority of neurons in this cluster compute highly nonlinear transformations 
of the stimulus. Anatomical clustering of neurons by computational complexity reveals that different 
complexity classes are generally intermingled (Figure 7G). However, there appears to be some region-
alization. Within the hindbrain, neurons of complexity class 2 are found medially in rhombomeres 1 
and 2. We previously found that neurons in this region carry little information about ongoing behavior, 
which might indicate that they process thermosensory stimuli for other functions (Haesemeyer et al., 
2018). Prominent clusters of complexity 2 neurons can also be found in the habenula and dorsal telen-
cephalon consistent with the idea that these structures are involved in higher-order computations 
rather than the short-time control of thermoregulatory behaviors. Linear neurons, on the other hand, 
are enriched in the posterior and medial hindbrain.

In summary, these data reveal the power of MINE to identify computational features leading to a 
detailed classification of neurons into functional types. This automated, unbiased, and highly flexible 
analysis framework has the potential to greatly aid the analysis of large-scale neural data. To facilitate 
the adoption of MINE, we expose its functionality through a simple Python interface. This interface 
allows fitting the corresponding CNN to neural data and extracting all metrics (Table 1).

Discussion
A common goal in analyzing neural data is to relate the activity of neurons to sensory stimuli, behav-
ioral actions, internal states, or other features observed during ongoing behavior. To explore this 
connection, we neuroscientists often define a model dictating the structure of this relationship. When 
well thought-out, these defined models have the great advantage that their parameters can be inter-
preted in a biologically meaningful manner. However, even flexible models, if defined a priori, run the 
risk of not being able to match transformations occurring in the less than intuitive biological brain. 
Model-selection based on probabilistic programs overcomes some of these challenges, allowing for a 
model-free and flexible approach while maintaining predictive power (Saad et al., 2019). One draw-
back of this approach however is reduced interpretability of the nature of the relationship between 
inputs (in our case, stimuli, behaviors, etc.) and the output (in our case, neural activity). Here, we 
have presented MINE to overcome some of these challenges and offer an accessible framework for 
comprehensive analysis. Despite MINE’s increased flexibility over predefined models, it maintains 
interpretability: through Taylor decomposition approaches, MINE (1) characterizes the computational 
complexity of neural processing giving rise to the activity of an individual neuron, (2) extracts linear 
and nonlinear receptive fields that define the ideal inputs driving a neuron, and (c) yields information 
about which predictors are most important in driving the neural response.

Discovering encoding of information by neurons
Different paradigms are used to interpret neural activity. MINE specifically supports an encoding view, 
inspecting which information is encoded by the neurons of interest. ANNs have, however, also been 
used from a decoding perspective, probing what information can be gleaned about ongoing behavior 
from neural activity (Frey et al., 2021; Schneider et al., 2022). Here, we restricted the question of 
information encoding to individual neurons. Nonetheless, MINE could easily be extended to model 
joint population encoding. The most straightforward approach to this problem would be to decom-
pose the population activity through methods such as principal or independent component anal-
ysis. These components would then be fit by MINE instead of single-neuron activity. Similarly, we 
only demonstrate the relationship of neural activity to external features (stimuli, behavioral actions) 
but neural population activity or local field potentials could be used as predictors. We currently do 
not exploit or characterize joint processing strategies. The efficiency of model-fitting could likely be 
improved by having the CNN model the relationships of multiple neurons (network outputs) to the 
same predictor inputs. Given the general applicability of the Taylor decomposition strategies, such 
networks could be analyzed in the same way as the current simpler CNN underlying MINE.

ANNs have been used extensively as models of brains to identify the principles underlying neural 
processing (McClelland et al., 1987). In the present work, CNNs exclusively serve as tools to find 
the relationships between features of interest and the activity of individual neurons. The network is 
a stand-in for the circuits transforming these features upstream (for sensation) or downstream (for 

https://doi.org/10.7554/eLife.83289
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Table 1. The programmatic interface to model identification of neural encoding (MINE).
Details and example usage of the programmatic interface to MINE.

class MineData class Mine

correlations_trained (n_neurons x 1) train_fraction (float)

Correlation of CNN prediction and activity on training 
portion of data

Which fraction of the data is used for training with 
remainder used for testing

correlations_test (n_neurons x 1) model_history (integer)

Correlation of CNN prediction and activity on test 
portion of data Number of timepoints the model receives as input

taylor_scores (n_neurons x n_components x 2) corr_cut (float)

Taylor metric for each component (predictor and first 
-order interaction terms). The first entry along the last 
dimension is the mean score, the second entry is the 
bootstrap standard error.

If test correlation is less than this value for a neuron, it 
is considered ‘not fit.’

model_lin_approx_scores (n_neurons x 1) compute_taylor (bool)

Goodness of fit of linear Taylor model around the data 
mean to determine nonlinearity.

If true, compute Taylor metrics and complexity analysis 
(linear and second-order approximations).

mean_exp_scores (n_neurons x 1) return_jacobians (bool)

Goodness of fit of second-order Taylor model around the 
data mean to derive complexity. If true, return linear receptive fields.

jacobians (n_fit_neurons x (n_timepoints x n_predictors)) taylor_look_ahead (integer)

For each fit neuron, the receptive field of each predictor 
across time.

The number of timepoints to predict ahead when 
calculating Taylor metrics.

hessians (n_fit_neurons x (n_timepoints x n_predictors) x 
(n_timepoints x n_predictors)) taylor_pred_every (integer)

For each fit neuron, the matrix of second-order partial 
derivatives. Useful to extract second-order receptive 
fields.

Every how many frames a Taylor expansion should be 
performed to calculate Taylor metrics.

Additional settable properties:

return_hessians (bool, default False)
If true, return matrices of second-order derivatives
model_weight_store (hdf5 file or group, default None)
If set, trained model weights for all models will be 
organized and stored in the file/group
n_epochs (integer, default 100)
The number of training epochs.

save_to_hdf5(file_object, overwrite = False)
analyze_data(pred_data: List, response_data: Matrix) 
->MineData

Saves the result data to an hdf5 file or group

Takes a list of n_timepoints long predictors and a 
matrix of n_neurons x n_timepoints size and applies 
MINE iteratively to fit and characterize CNN relating all 
predictors to each individual neuron.

Example usage:

predictors = [Stimulus, Behavior, State]

responses = ca_data

# NOTE: If predictors and response are not z-scored,

# (mean = 0; standard deviation = 1) Mine will print

# a warning

miner = Mine (2/3, 50, 0.71, True, True, 25, 5)

miner.model_weight_store = h5py.File(“m_weights.h5”, 
‘a’)

Table 1 continued on next page
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behavior), as well as the computational properties of the analyzed neuron. We are therefore inter-
ested in the properties of the whole CNN instead of its individual units. Extracting the CNN prop-
erties aims to characterize the neuron of interest in terms of how it encodes the features. Such an 
approach has been used previously to characterize neural receptive fields, recognizing the power 
of ANNs in capturing nonlinear transformations. For example, characterizations of nonlinear visual 
receptive fields (Lehky et al., 1992; Lau et al., 2002; Prenger et al., 2004; Ukita et al., 2019) and 
nonlinear auditory receptive fields (Keshishian et al., 2020). In retinal processing, works by Baccus 
and Ganguli McIntosh et al., 2016; Tanaka et al., 2019 have used the increased flexibility of neural 
network models over classical linear–nonlinear models to characterize how retinal circuits process 
natural scene inputs. Internal neurons in the network matched retinal interneurons that were not used 
for data fitting and resulting models generalized better to novel data than linear–nonlinear models in 
spite of increased flexibility. Our comparison to Volterra analysis suggests that this might be because 
the effective degrees of freedom of CNN models are much lower than the total number of parameters 
but that the space in which these limited degrees of freedom act is better matched to neural data. 
We go beyond previous approaches in this study by combining modalities and providing an easily 
accessible framework for analysis of arbitrary neural data. MINE handles and disambiguates multiple 
different inputs originating from different domains (such as sensory stimuli and behavioral actions). 
MINE, furthermore, performs a more detailed characterization producing information about the 
linearity of the relationship of inputs and neural activity. These advances are made possible through 
mathematical analysis of the network.

Characterizing the model implemented by the CNN
Different techniques aim at understanding how ANNs arrive at their outputs given a set of inputs 
(Samek et al., 2019). These techniques are generally referred to as ‘explainable machine learning’ and 
are particularly important in understanding what features classifiers use to make their decisions. These 
include visualization techniques as well as layer-wise relevance propagation (Binder et al., 2016) that 
aims to identify important input features driving the output of a classifier. In our case, however, we 
were interested to know which inputs persistently (across experimental time) are involved in driving 
the output of the network, that is, the activity of the modeled neuron. Notably, once the network is 
trained the different inputs are not separable anymore. This means that there is no guarantee that 
leaving out an unimportant input will not affect the output of the trained network. A workaround 
would be to iteratively train the network with subsets of inputs (Benjamin et al., 2018). However, this 
becomes infeasible even with a moderate number of inputs since all combinations would need to be 
tested. We therefore chose a continuously differentiable activation function for our network layers. 
This enabled Taylor decomposition to transform the network, point-by-point, into a separable sum of 
terms depending on individual inputs. This approach allowed us to infer which specific inputs drive the 
network output and hence the activity recorded in the modeled neuron. Notably this technique can 
also identify multiplicative interactions, which indicate coincidence detection. Yet, while such interac-
tions were evident in our ground-truth dataset, we found little evidence of multiplicative interactions 
in the biological data. This is likely due to added noise obfuscating the contribution of these terms, 
which is comparatively small even on ground-truth data (Figure 4D). In fact, most information about a 
multiplicative interaction would be carried in the first derivative: namely the derivative with respect to 
one input would vary according to another input. While we did not directly exploit this insight in the 
present work, we do find evidence of multiplicative interactions in the mixed-selectivity neurons some 

class MineData class Mine

result_data = miner.analyze_data (predictors, responses)

all_fit = result_data.correlations_test >= 0.71

is_nonlinear = result_data.model_lin_approx_scores <0.8

is_stim_driven = (result_data.taylor_scores[:, 0, 0] – 3 x 
result_data.taylor_scores[:, 0, 1]) >0

Table 1 continued
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of which show gating of sensory responses by behavior (Figure 7D and Figure 7—figure supplement 
1E).

To characterize the complexity of the relationship between features (stimuli, behavior, etc.) and 
neural activity, we analyzed truncations of the Taylor expansion of the network around the data 
average. While not guaranteed for all functions, we expect that the Taylor series converges for our 
network and hence that given enough terms the expansion would fully characterize the computation 
performed by the CNN. The ANN fit by MINE must encapsulate the transformations between the 
chosen features and the neural activity in order to be able to predict the activity. The classification of 
linear versus nonlinear processing by the network should therefore apply to the neural transformations 
as well. Especially in the absence of connectomics data, the metric of computational complexity can 
serve to group neurons into functional circuits. One might specifically expect that sensory processing 
proceeds from representations of lower complexity to those of higher complexity, that is, further 
departures from a simple encoding of stimuli. This type of extraction of more and more complex 
features is, for example, observed in cortical processing of visual stimuli (Felleman and Van Essen, 
1991; D’Souza et al., 2022). We note, however, that computational complexity is not an absolute 
metric. Comparing the linearity for neurons responding to the same feature (e.g. a stimulus) is useful, 
but making the comparison across different features likely is not. In our zebrafish dataset, the majority 
of temperature-driven neurons were classified as nonlinear while most behavior-driven neurons were 
classified as linear. This, however, does not mean that the stimulus is processed less linearly than the 
behavior – it is likely a result of our stimulus feature being the raw temperature while our behavior 
features are removed from the nonlinear transformation that changes swim commands into appro-
priate tail motion.

We currently determine linear receptive fields (Dayan and Abbott, 2001; Schwartz et al., 2006) 
of fit neurons using the first-order derivatives of the network output with respect to the input. Similar 
to the analysis of higher-order Volterra kernels (Marmarelis, 2004; Sandler and Marmarelis, 2015), 
one could analyze eigenvectors of the matrix of second- or higher-order derivatives to get a deeper 
understanding of how this receptive field changes with stimuli in the case of neurons classified as 
nonlinear. Comparing direct fitting of Volterra kernels and extraction of first- and second-order kernels 
from MINE using Taylor analysis indeed highlights the feasibility of this approach (Figure 3). One 
crucial advantage of MINE is that it is considerably more robust to departures of stimuli from uncor-
related white noise with Gaussian distributed intensities, the ideal stimuli used for Volterra analysis 
(Marmarelis and Marmarelis, 1978; Paninski, 2002; Marmarelis, 2004; Schwartz et al., 2006). Such 
stimuli are impractical, especially when the goal is to study neural activity in freely behaving animals. 
However, our comparison to directly fitting the Volterra kernels also revealed that it is in fact possible 
to obtain the receptive fields this way. Volterra analysis, unlike MINE, could be fully unconstrained and 
therefore pose an advantage. While MINE is constrained by architecture and hyperparameters, our 
comparisons of extracting receptive fields with MINE versus an unconstrained fit of Volterra kernels 
revealed the limitations of not imposing any constraints (Figure 3 and Figure 3—figure supplement 
1). MINE offers a simple-to-use alternative that maintains flexibility while limiting effective degrees of 
freedom to allow for meaningful fits to real-world data. Independent of MINE, the structure of recep-
tive fields is influenced by the acquisition modality. For our zebrafish data, we used a nuclear localized 
GCaMP6s. This variant has a long decay time (Freeman et al., 2014), and since MINE is fit on calcium 
data, effects of this decay time will appear in the extracted receptive fields. This likely explains why the 
receptive fields shown for the zebrafish data extend over many seconds. This issue could be overcome 
by better deconvolution of the imaging data which would require a higher acquisition framerate.

Novel insight into biological circuits
Applying MINE to biological data revealed its potential to discover the relationships between 
stimuli and behaviors and neural activity across species and imaging modalities. On a mouse cortical 
widefield imaging dataset, MINE recovered previously published structure in the neural data. Task 
elements driving neural activity could be mapped to expected cortical regions and receptive field 
analysis revealed expected structure in visual receptive fields while the receptive fields associated 
with neurons encoding instructed movements showed preparatory activity. Performing two-photon 
calcium imaging in larval zebrafish while simultaneously presenting random temperature stimuli and 
recording behavior allowed a deeper dive into thermoregulatory circuits. MINE allowed us for the 
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first time to identify the neurons that integrate temperature stimuli and information about behavior. 
This was not possible previously since regression-based approaches failed to identify the neurons 
encoding temperature while clustering to identify these neurons relied on removing stochastic motor-
related activity (Haesemeyer et al., 2018). Neurons integrating stimuli and behavior might serve an 
important role in thermoregulation. Specifically, they might allow larval zebrafish to estimate thermal 
gradients by comparing behavioral actions and their consequences in terms of changes in environ-
mental temperature. While we have only begun to analyze the responses of these mixed-selectivity 
neurons, a simple clustering according to their response to combinations of sensory and motor drive 
revealed a variety of computed features (Figure 7D and Figure 7—figure supplement 1E). Combining 
receptive field analysis with the idea of computational complexity, on the other hand, provides a way 
to functionally subdivide temperature responsive neurons in great detail. This will greatly aid future 
studies trying to understand thermoregulatory circuits. Notably, the functional features we identified 
map to anatomical features in the brain pointing to structural subdivisions mirroring function. The 
ability to compare neurons, even though we used randomized stimuli, indicates another advantage 
of MINE. When recording neural activity during free exploration, across animals different neurons will 
be recorded under very different stimulus and behavior conditions. This means that their responses 
can usually be compared only by choosing different trigger events (certain behaviors, specific stimulus 
conditions) and analyzing neural activity around those. MINE, on the other hand, allows comparing 
networks fit on the whole activity time series removing the requirement and bias of choosing specific 
triggering events.

One surprising finding in comparing the cortical and zebrafish brain responses was the prevalence 
of nonlinear processing in zebrafish and the apparent lack of it in the cortical dataset. This is likely due 
to the different spatial resolution in the datasets. While the zebrafish data has single-neuron resolu-
tion, this is not the case for the cortical widefield data especially since we apply MINE not to individual 
pixels but activity components. Each of these components combines the activity of thousands of 
neurons. It is likely that this averaging obfuscates individual nonlinear effects.

In summary, MINE allows for flexible analysis of the relationship between measured quantities 
such as stimuli, behaviors, or internal states and neural activity. The flexibility comes from MINE 
turning analysis on its head: instead of predefining a model, MINE approximates the functional 
form that relates predictors to neural activity and subsequently discovers this functional form. This 
is possible since MINE does not make any assumptions about the probability distribution or func-
tional form underlying the data it models. This allows MINE to identify more neurons than regres-
sion approaches on our zebrafish dataset (Figure 6D) while doing so in a less biased manner. The 
regression approach especially failed on stimulus-driven units, leading to an overrepresentation of 
behavior-related activity (Figure 6G). Testing how many neurons in our receptive field clusters were 
also identified by the linear model (Figure 7 and Figure 7—figure supplement 1D) revealed that the 
linear model identified neurons belonging to each cluster. This argues that MINE increases sensitivity 
for identifying neurons, but at this level of analysis MINE did not necessarily identify functional types 
that were entirely missed by the linear model. However, in four clusters the linear model identified 
less than five neurons. This effectively means that the cluster would have been missed entirely when 
using the linear model data as the base for analysis. Accordingly, applying our clustering on the 
neurons identified by the linear model only recovers 4 instead of the 15 unique receptive field clus-
ters that are obtained with MINE.

We propose that the fit CNN models the computation of upstream or downstream circuits of the 
neuron in question but we do not think or investigate whether it models the circuitry itself. This could 
be investigated in the future, but given the simplicity of the CNN used in MINE it is unlikely to provide 
interesting details in this manner. Instead, bringing more advanced network-wide analysis methods 
to bear on the fit CNN could reveal other interesting features of the computation ‘surrounding’ the 
neuron in question.

Methods
Animal handling and experimental procedures were approved by the Ohio State University Institu-
tional Animal Care and Use Committee (IACUC protocol # 2019A00000137 and 2019A00000137-R1).

https://doi.org/10.7554/eLife.83289


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Costabile, Balakrishnan et al. eLife 2023;12:e83289. DOI: https://​doi.​org/​10.​7554/​eLife.​83289 � 22 of 36

Design and training of convolutional neural network
A network that was simple, and therefore quick to train, but maintained expressivity was sought for 
this study and a three-layer CNN was chosen. We note that the input to the network is a chunk of time 
equal to the size of the convolutional layers. A similar architecture could therefore be realized without 
separate convolutional layers by simply expanding the number of input nodes. The first layer was built 
to contain 80 convolutional filters. We do not expect that the network will have to learn 80 separate 
filters; however, the advantage is that these filters contain a large amount of pre-training variation. 
This eases learning of temporal features important for the generation of the neural response. The 
convolutional layer was kept linear and followed by two 64-unit-sized dense layers with swish activa-
tion function, which subsequently fed into a linear output unit. This in effect means that each unit in 
the first dense layer performs a convolution on the input data with a filter that is a weighted average 
of the 80 convolutional filters.

The ground-truth dataset as well as part of a previous zebrafish dataset (Haesemeyer et al., 2018) 
were used to optimize the following hyperparameters: a sparsity constraint to aid generalization, 
the learning rate, the number of training epochs, and the activation function. The activation function 
was to be continuously differentiable, a requirement for subsequent analyses. Dropout was added 
during training to further help with generalization; however, the rate was not optimized and set at 
50%. The history length (10  s) of the network input was set somewhat arbitrarily, but initial tests with 
shorter lengths led to problems of fitting the larval zebrafish dataset likely because of the slow calcium 
indicator time constant of nuclear GCaMP6s (Freeman et al., 2014). We note that we did not opti-
mize the overall architecture of the network. This could certainly be done and all subsequent analysis 
methods are architecture agnostic as long as the network is a feed-forward architecture. Related 
Python file in the repository: ​model.​py.

Characterizing the linearity and complexity of the transformation
To compute measures of the complexity of the relationship between the predictors and neural activity, 
a Taylor expansion across the predictor average ‍̄x‍ was performed and the predictions of truncations 
of this Taylor expansion were compared to the true model output, sampling predictors every second. 
The Jacobian (vector of first-order derivatives of the output with respect to the input) and the Hessian 
(matrix of second-order derivatives of the output with respect to the input) were computed using 
Tensorflow. We note that since our network has a single output, the Jacobian is not a matrix but simply 
the gradient vector of the output with respect to the input.

The Jacobian and Hessian were used to compute the following first- and second-order approxima-
tions of the network output using the Taylor expansion:

	﻿‍ f̂1st
x̄ (⃗x) = f(x̄) + (⃗x − x̄)TJ(x̄)‍� (1)

	﻿‍ f̂2nd
x̄ (⃗x) = f(x̄) + (⃗x − x̄)TJ(x̄) + 1

2 (⃗x − x̄)TH(⃗x − x̄)‍� (2)

These truncations were used to compute a ‘linear approximation score’ ‍LASf ‍ and a ‘second-order 
approximation score’ ‍SOSf ‍ as the coefficients of determination quantifying the variance explained by 
the truncation of the true network output.

	﻿‍ LASf = 1 −
∑

x⃗

(
f(⃗x)−̂f1st

x̄ (⃗x)
)2

var(f(⃗x)) ‍�
(3)

	﻿‍ SOSf = 1 −
∑

x⃗

(
f(⃗x)−̂f2nd

x̄ (⃗x)
)2

var(f(⃗x)) ‍�
(4)

We note that for a purely linear function we expect ‍LASf ‍ to be 1, and this score is therefore a 
measure of the linearity of the relationship between predictors and the neural response. ‍SOSf ‍, on the 
other hand, quantifies how good a second-order model is in predicting the neural response, and we 
therefore use it to further define the complexity of the relationship between the predictors and the 
neural activity.

Based on ROC analysis on ground-truth data, ‍LASf ‍ was thresholded at ‍R2 = 0.8‍. Neurons for 
which the linear expansion explained <80% of variance of the true network output were considered 
nonlinear (see ‘Results’). To assign complexity classes to zebrafish neurons, ‍SOSf ‍ was thresholded at 
‍R2 = 0.5‍; in other words, neurons for which the seccond-order expansion did not explain at least 50% 
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of the variance of the true network output were considered complex. Then neurons were assigned to 
one of three respective complexity classes: 0 for neurons for which the linear expansion ‍LASf ‍ indicated 
linearity, 1 if ‍LASf < 0.8‍ and ‍SOSf ≥ 0.5‍, or 2 if the neuron was deemed nonlinear and ‍SOSf < 0.5‍.

As a comparison, two metrics related to the nonlinearity of the function implemented by the CNN 
were calculated: a ‘curvature metric’ that quantifies the magnitude of the influence of the second-
order derivative, and the ‘nonlinearity coefficient’ that approximates the error made by linearizing the 
network. It is important to note that given random inputs that are unrelated to the training data, it is 
very likely that the CNN will produce outputs that nonlinearly depend on these inputs. Both metrics 
are therefore calculated with data that forms part of the training manifold (Raghu et al., 2023). We 
also note that the ‘curvature metric’ does not in fact compute the curvature of the multidimensional 
function implemented by the CNN. Instead, the average magnitude of the vector induced by the 
Hessian on a unit magnitude step in the data space is used as a proxy. With ‍x‍, ‍x′‍, and ‍f ‍ defined as 
in ‘Identifying contributing predictors by Taylor decomposition’, the curvature metric is calculated 
according to

	﻿‍
Cf = 1

n
∑
x⃗,x⃗′

H(⃗x)(x⃗′ − x⃗)
‍�

(5)

The nonlinearity coefficient (NLC) was computed according to Philipp and Carbonell, 2018 
quantifying

	﻿‍
NLCf,D =

���� E⃗x∼D

[
Tr

(
J(⃗x)TCov⃗xJ(⃗x)

) ]

Varf
=

���� E⃗x,x⃗′∼D

[
Tr

(
J(⃗x)T(x⃗′ − x⃗)(x⃗′ − x⃗)TJ(⃗x)

) ]

Varf ‍�
(6)

where ‍D‍ is the data distribution, ‍Tr‍ is the trace operator, and ‍Cov⃗x ‍ is the data covariance while 

‍Varf ‍ Varf is the output variance (since the output in the present case is a single value). The right form 
highlights that the NLC compares the variance of the linear approximation of the output (‍J(⃗x)T(x⃗′ − x⃗)‍) 
with the true output variance.

Related Python files in the repository: ​taylorDecomp.​py, ​perf_​nlc_​nonlin.​py and ​utilities.​py.

Comparison to Volterra analysis/determination of receptive fields
The discrete-time Volterra expansion with finite memory of a function up to order 2 is defined as

	﻿‍
r(t) = k0 +

T∑
τ1=0

k1(τ1)s(t − τ1) +
T∑

τ1=0

T∑
τ2=0

k2(τ1, τ2)s(t − τ1)s(t − τ2)
‍�

(7)

where ‍r(t)‍ is the response and ‍s(t)‍ is the stimulus, and ‍k0‍, ‍k1‍, and ‍k2‍ are the zeroth-, first-, and 
second-order Volterra kernels, respectively.

This can be rewritten in matrix form where

	﻿‍

k1 =

∣∣∣∣∣∣∣∣∣∣∣∣

k1(0)

k1(1)
...

k1(T)

∣∣∣∣∣∣∣∣∣∣∣∣
‍�

(8)

	﻿‍

k2 =

∣∣∣∣∣∣∣∣∣∣∣∣

k2(0, 0) k2(0, 1) . . . k2(0, T)

k2(1, 0) k2(1, 1) . . . k2(1, T)
...

k2(T, 0) k2(T, 1) . . . k2(T, T)

∣∣∣∣∣∣∣∣∣∣∣∣
‍�

(9)
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	﻿‍

s⃗(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

s(t)

s(t − 1)
...

s(t − T)

∣∣∣∣∣∣∣∣∣∣∣∣
‍�

(10)

such that

	﻿‍ r(t) = k0 + s⃗(t)Tk1 + s⃗(t)Tk2⃗s(t)‍� (11)

We note that since our network takes predictors across time as input, it can be easily seen that ‍⃗x ‍ 
is equivalent to ‍⃗s ‍ and therefore that the Taylor expansion (Equation 2) of the CNN is equivalent to 
the Volterra series with finite memory above (Equation 11). This indicates that there is a direct corre-
spondence between the elements of the Taylor expansion and those of the Volterra expansion, where 
‍J ‍ corresponds to ‍k1‍ and ‍H ‍ corresponds to ‍k2‍ and our CNN would be an effective means to fit the 
Volterra kernels (Wray and Green, 1994). This suggests that neural receptive fields can be extracted 
from ‍J ‍ and ‍H ‍ of the Taylor expansion in the same manner as they can be obtained from ‍k1‍ and ‍k2‍ of 
the Volterra expansion.

To determine whether MINE could be used to extract system-level characteristics (such as recep-
tive fields) akin to Volterra analysis, a model was used to turn a randomly generated stimulus into 
a response by passing the input through two orthogonal filters followed by two nonlinearities. 
The outputs of these two parallel stages were subsequently combined using addition to form the 
response. The stimulus was either generated as a Gaussian white noise stimulus (by drawing values 

‍St ∼ N (0, 1)‍) or as a smoothly varying random stimulus as described in ‘Ground-truth datasets.’ The 
model consisted of two sets of orthogonal filters, ‍flinear‍ and ‍fnonlinear‍ of length 50 timepoints, as well 
as two nonlinearities ‍glinear‍ and ‍gnonlinear‍ (see Figure 3). The terms ‍flinear‍ and ‍fnonlinear‍ for the filters 
were chosen because the former is expected to be contained within ‍J ‍/‍k1‍, that is, the linear term of 
the Volterra expansion while the latter is expected to be contained within ‍H ‍/‍k2‍, that is, the quadratic 
term of the Volterra expansion. We note, however, that ‍flinear‍ can in addition be extracted from ‍H ‍/‍k2‍ 
due to the particular function chosen for ‍glinear‍. Given a stimulus ‍s‍, the response ‍r‍ was constructed 
according to

	﻿‍ rlinear = glinear(s ∗ flinear)‍� (12)

	﻿‍ rnonlinear = gnonlinear(s ∗ fnonlinear)‍� (13)
	﻿‍ r = rlinear + rnonlinear‍� (14)

, where * denotes convolution.
The two nonlinearities were constructed such that ‍glinear‍ was asymmetric and therefore led to a 

shift in the average spike rate, while ‍gnonlinear‍ was symmetric around 0 so that it predominantly influ-
ences the variance of the spike rate:

	﻿‍ glinear(x) = x
1+e−5x ‍� (15)

	﻿‍ gnonlinear(x) = (0.25 − ex

(1+ex)2 ) ∗ 15‍� (16)

The constant multiplier in ‍gnonlinear‍ was chosen such that ‍rnonlinear‍ is in a similar range as ‍rlinear‍.
The model therefore generates a response from which the two filters should be recoverable when 

fitting the first- and second-order Volterra kernels either through direct means akin to canonical system 
identification approaches or via the CNN used in MINE.

Given the Volterra kernels ‍k0‍, ‍k1‍, ‍k2‍ (‍CNN(x̄)‍, ‍J ‍, ‍H ‍), we attempted to recover ‍flinear‍ and ‍fnonlinear‍ by 
extracting the principal dynamic modes PDM from the kernels Marmarelis, 1997 by performing eigen 
decomposition on an intermediate matrix ‍Q‍, which combines all kernels in the following manner:
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	﻿‍

Q=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k0
1
2 k1(0) 1

2 k1(1) . . . 1
2 k1(T)

1
2 k1(0) k2(0, 0) k2(0, 1) . . . k2(0, T)
1
2 k1(1) k2(1, 0) k2(1, 1) . . . k2(1, T)

...
1
2 k1(T) k2(T, 0) k2(T, 1) . . . k2(T, T)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
‍�

(17)

The PDM were then defined as the eigenvectors with the largest eigenvalues (Marmarelis, 1997). 
The eigenvectors with the three largest (positive) eigenvalues were compared to ‍flinear‍ and ‍fnonlinear‍ 
by computing the cosine similarity according to Equation 36. The best matches were reported in all 
plots in Figures Figure 3 and Figure 3—figure supplement 1. We note that for MINE, it was sufficient 
to compare the eigenvectors with the largest two eigenvalues; however, in the case of directly fitting 
the Volterra kernels (see below), the eigenvectors with the largest two eigenvalues often included an 
eigenvector related to the constant term ‍k0‍.

As a comparison to MINE, a system identification approach, directly fitting the Volterra kernels, was 
followed. We note that by creating an appropriate design matrix ‍X ‍, the elements of ‍k0‍, ‍k1‍, and ‍k2‍ can 
be directly obtained through a linear regression fit:

	﻿‍

X=

∣∣∣∣∣∣∣∣∣∣∣∣

1 s(0) s(0 − 1) . . . s(0 − T) s(0)s(0) s(0)s(0 − 1) . . . s(0 − T)s(0 − T)

1 s(1) s(1 − 1) . . . s(1 − T) s(1)s(1) s(1)s(1 − 1) . . . s(1 − T)s(1 − T)
...

1 s(n) s(n − 1) . . . s(n − T) s(n)s(n) s(n)s(n − 1) . . . s(n − T)s(n − T)

∣∣∣∣∣∣∣∣∣∣∣∣
‍�

(18)

	﻿‍ r = Xβ‍� (19)

	﻿‍

⇒ β =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k0

k1(0)
...

k1(T)

k2(0, 0)

k2(0, 1)
...

k2(T, T)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
‍�

(20)

A linear regression fit was used accordingly, either using ordinary least squares or Ridge regres-
sion with varying penalties ‍α‍ as indicated in Figure 3 and Figure 3—figure supplement 1. We note 
that the direct fits were also performed after pre-whitening the design matrix as this might help with 
model fitting. However, this did not improve median filter quality but increased the variance across 
simulations (data not shown).

Effective degrees of freedom were calculated/estimated according to Hastie et al., 2009. Specif-
ically, for Ridge regression models, the effective degrees of freedom were calculated analytically 
according to

	﻿‍
df(α) = tr

(
X(XTX + αI)−1XT

)
‍� (21)

where ‍α‍ is the Ridge penalty, ‍I‍ is the identity matrix, and ‍tr‍ is the trace operator.

For the CNN used in MINE, the effective degrees of freedom were estimated using simulations 
according to

	﻿‍
df(ŷ) = 1

σ2

N∑
i=1

Cov(ŷi, yi)
‍�

(22)
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where ‍̂y‍ is the model prediction, ‍y‍ is the true output, ‍σ2‍ is the error variance, and ‍Cov‍ is the cova-
riance. Intuitively, this definition of degrees of freedom measures how small variations in the output 
affect variations in the predicted output. In other words, models with high degrees of freedom are 
expected to match predictions to any change in output while models with low degrees of freedom 
are limited in this regard.

All fits were repeated for 100 randomly generated stimuli to obtain different estimates for both 
MINE and Volterra analysis.

Related Python file in the repository: ​cnn_​sta_​test.​py, ​mine_​edf.​py.

Identifying contributing predictors by Taylor decomposition
To assess the contribution of individual predictors on the network output, a metric based on the 
Taylor decomposition of the network was computed. The Taylor decomposition was truncated after 
the second derivative. Below, Taylor decompositions that include all terms for first- and second-order 
derivatives will be designated as ‘full.’ For all analyses presented in the article, Taylor expansions were 
performed every second (every five timepoints at our data rate of 5 Hz) and predictions were made 5 
s into the future (25 timepoints at our data rate of 5 Hz).

The state of the predictors at timepoint ‍t‍ and the state of the predictors 5 s (in our case, 25 samples) 
later was obtained. Subsequently, these quantities, together with the Jacobian at timepoint ‍t‍ and the 
Hessian at timepoint ‍t‍, were used to compute a prediction of the change in network output over 5 s. 
At the same time, the true change in output was computed. Comparing the predicted changes and 
true changes via correlation resulted in an ‍r2‍ value. This value measures how well the full Taylor expan-
sion approximates the change in network output across experimental time. We note that predicted 
changes in the output were compared via correlation rather than predicted outputs since we specifi-
cally wanted to understand which predictors are important in driving a change in output rather than 
identifying those that the network might use to set some baseline value of the output. In the following, 

‍X(t)‍ is a vector that contains the values of all predictors across all timepoints fed into the network (e.g. 
in our case 50 timepoints of history for each predictor) in order to model the activity at time ‍t‍, ‍f(x)‍ is 
the CNN applied to a specific predictor input, ‍J(x)‍ is the Jacobian at that input, and ‍H(x)‍ the Hessian:

	﻿‍ x⃗ = X(t)‍�

	﻿‍ x⃗′ = X(t + 25)‍�

The Taylor expansion around ‍⃗x ‍:

	﻿‍ f̂(x⃗′) = f(⃗x) + (x⃗′ − x⃗)TJ⃗(⃗x) + 1
2 (x⃗′ − x⃗)TH(⃗x)(x⃗′ − x⃗)‍� (23)

The predicted change in network output according to the Taylor expansion:

	﻿‍ ∆f̂ = f̂(x⃗′) − f(⃗x)‍� (24)

The true change in network output:

	﻿‍ ∆f = f(x⃗′) − f(⃗x)‍� (25)

Variance of the output change explained by the Taylor prediction using Equation 24 and Equation 
25:

	﻿‍ r2
Full = corr(∆f,∆f̂)2

‍� (26)

After the computation of ‍r
2
full‍, terms were removed from the Taylor series. We note that both 

individual timepoints fed into the network and predictors are separated at this level. However, only 
the removal of predictors onto the quality of prediction was tested, not the importance of specific 
timepoints across predictors (i.e. all timepoints across a given predictor or interaction were removed 
to test the importance of the predictors, instead of removing all predictors at one timepoint to test 
the importance of a specific timepoint). For the removal of a given predictor, both its linear (via ‍J ‍) and 
its squared contribution (via ‍H ‍) were subtracted from the full Taylor prediction while for the removal 
of interaction terms only the corresponding interaction term (via ‍H ‍) was subtracted. The following 
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quantities were computed to arrive at the Taylor metric of single predictors ‍xn‍ or interactions of two 
predictors ‍xn,m‍, where ‍xn‍ and ‍Jn‍ identify subvectors that contain all elements belonging to the specific 
predictor ‍n‍ while ‍Hn,m‍ identifies all elements in the Hessian at the intersection of all rows belonging 
to the second derivatives with respect to predictor ‍n‍ and columns with respect to the predictor ‍m‍: 
change predicted by only considering ‍xn‍:

	﻿‍ ∆f̂xn = (x⃗′n − x⃗n)TJn + 1
2 (x⃗′n − x⃗n)THn,n(x⃗′n − x⃗n)‍� (27)

Change predicted when removing ‍xn‍ using Equation 24 and Equation 27:

	﻿‍ ∆f̂−xn = ∆f̂ −∆f̂xn‍� (28)

Change predicted when only considering interaction between ‍xn‍ and ‍xm‍:

	﻿‍ ∆f̂xn,xm = 1
2 (x⃗′n − x⃗n)THn,m(x⃗′m − x⃗m) + 1

2 (x⃗′m − x⃗m)THm,n(x⃗′n − x⃗n)‍� (29)

Change predicted when removing ‍xnxm‍ interaction using Equation 24 and Equation 29:

	﻿‍ ∆f̂−xn,xm = ∆f̂ −∆f̂xn,xm‍� (30)

Variance explained by Taylor prediction after removing ‍xn‍ using Equation 25 and Equation 28:

	﻿‍ r2
xn = corr(∆f,∆f̂−xn )2

‍� (31)

Variance explained by Taylor prediction after removing ‍xnxm‍ interaction using Equation 25 and 
Equation 30:

	﻿‍ r2
xn,xm = corr(∆f,∆f̂−xn,xm )2

‍� (32)

The Taylor metric was then defined as

	﻿‍ Txn = 1 − r2
xn/r2

Full‍� (33)

and

	﻿‍ Txn,xm = 1 − r2
xn,xm/r2

Full‍� (34)

respectively. For the zebrafish data, we additionally calculated an overall ‘Behavior’ Taylor metric in 
which all terms (regular and interaction) that belonged to any behavioral predictor were removed and 
the Taylor metric was subsequently calculated as outlined above. Related Python file in the repository: ​
taylorDecomp.​py.

Clustering of neurons according to receptive field
Jacobians were extracted for each neuron at the data average and used as proxies of the receptive 
field (see section on ‘Comparison to Volterra analysis/determination of receptive fields’). Accordingly, 
the receptive field of a network and therefore neuron (‍RFf ‍) was defined as

	﻿‍ RFf = J(x̄)‍� (35)

This is of course merely an approximation for nonlinear neurons. The first-order derivative of a 
nonlinear function is not constant and therefore the receptive field will depend on the inputs. To 
cluster zebrafish sensory neurons according to the receptive fields, the cosine of the angle between the 
receptive fields of different neurons (‍RFi‍, ‍RFj‍, ‍i ̸= j‍) (and during the process, clusters) was computed 
(cosine similarity, ‍CS‍):

	﻿‍
CSRFi,RFj = RFT

i RFj
∥RFi∥2∥RFj∥2 ‍� (36)

Clustering was subsequently performed by a greedy approach as outlined in Bianco and Engert, 
2015. Briefly: all pairwise CS values were computed. Then, the pair of receptive fields with the highest 
CS was aggregated into a cluster. The average RF in that cluster was computed. Subsequently all pair-
wise CS values, now containing that new cluster average, were computed again and the procedure was 
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iteratively repeated until all receptive fields were clustered or no pairwise similarities ‍CSRFi,RFj ≥ 0.8‍ 
were observed. The advantages of this clustering method are that it is (1) deterministic and (2) the 
number of clusters does not have to be specified beforehand. In the case of the receptive fields on 
the mouse dataset, the matrix of pairwise cosine similarities was used to perform spectral clustering. 
Spectral clustering finds groups of strong connection (high CS in this case) within a similarity graph 
that are separated from other groups by weak connections (low CS). The rationale for changing clus-
tering methods was computational speed, which is much higher for spectral clustering.

Related Python file in the repository: ​utilities.​py.

Ground-truth datasets
To test the capability of MINE to predict the relationships between predictors and neural activity, four 
predictors were computer-generated. Two of these were generated by combining sine, square, and 
triangle waves of random frequencies and amplitudes – simulating smoothly varying sensory inputs. 
The third predictor was generated as a Poisson process – simulating stochastic, unitary events such as 
bouts of movement. The last predictor was generated as a Poisson process as well but events were 
scaled with a random number drawn from a unit normal distribution with mean zero – simulating 
directed, stochastic movements.

Model responses were subsequently created by linearly or nonlinearly transforming individual 
predictors and combining them multiplicatively. After this step, all responses were convolved with 
a ‘calcium kernel’ and ‍i.i.d.‍ Gaussian noise was added to more closely resemble real-world acquisi-
tion. MINE was applied to these data: fitting a CNN on two-thirds of the data and calculating the 
correlation between the CNN prediction and the last third (test set) of the data. As a comparison, 
two linear regression models were fit to the data as well, again split into training and test sets. One of 
these models used raw predictors as inputs to predict the response (equivalent to the inputs given to 
MINE). The other used transformed predictors, convolved with the same calcium kernel applied to the 
responses above, along with all first-order interaction terms of the predictors to predict the response. 
Correlations on the test data were subsequently used for comparisons.

Related Python file in the repository: ​cnn_​fit_​test.​py.
To test the capability of MINE in predicting the nonlinearity of predictor–response relationships, 

for each test case a new ‘sensory-like predictor’ (introduced above) was generated. For the effect 
of varying nonlinearity (Figure 3B–D), the predictor was transformed by (1) squaring the hyperbolic 
tangent of the predictor, (2) differencing the predictor, or (3) rectifying the predictor using a ‘softplus’ 
transformation. These transformed versions were subsequently mixed to varying fractions with the 
original predictor to generate a response. The coefficients of determination of truncations of the 
Taylor expansion after the linear and quadratic terms were then computed as indicated above. Linear 
correlations were also performed for some of the mixtures to illustrate the effect of both linear and 
nonlinear transformations on this metric. For ROC analysis of the linearity metric, a set of 500 by 5 
random stimuli were generated. For each set, four responses were generated depending only on the 
first of the five random stimuli (the others were used as noisy detractors to challenge the CNN fit). 
Two of the four responses were linear transformations: one was a differencing of the first predictor 
and the other was a convolution with a randomly generated double-exponential filter. The other two 
responses were randomized nonlinear transformations. The first was a variable-strength rectification 
by shifting and scaling a softplus function. The second was a random integer power between one and 
five of a hyperbolic tangent transformation of the predictor. The known category (linear vs. nonlinear) 
was subsequently used to calculate false- and true-positive rates at various thresholds for the linearity 
metric (see above) to perform ROC analysis.

Related Python file in the repository: ​cnn_​nonlin_​test.​py.

Processing of data from Musall et al., 2019b
The data for Musall (Musall et al., 2019a) was downloaded from the published dataset. Temporal 
components Musall et  al., 2019a were loaded from ‘​interpVc.​mat,’ spatial components from ‘​Vc.​
mat,’ and predictors from ‘​orgregData.​mat’ for each analyzed session. Predictors were shifted by 5 s 
relative to the activity traces. The 10-s-long convolutional filters allowed for observing the influences 
of events 5 s into the past as well as preparatory activity for actions occurring in the next 5 s. MINE was 
subsequently used to determine the relationship between predictors and temporal components. The 
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neural activity and the individual terms of the Taylor decomposition were mapped into pixel space. 
Then spatial maps were generated by computing Taylor metrics as above for each individual pixel 
time series. This was necessary since the components in ‘​interpVc.​mat’ are highly linearly dependent, 
making it impossible to carry measures of explained variance directly from ‘component space’ into 
‘pixel space.’ Receptive fields, on the other hand, were directly mapped into pixel space using the 
spatial component matrix as these are linear. Related Python files in the repository: ​processMusall.​py, ​
mine.​py, ​plotMusall.​py.

Zebrafish experiments
All calcium imaging was performed on a custom-built two-photon microscope at 2.5 Hz with a pixel 
resolution of 0.78 ‍µm/pixel‍ and an average power of 12 mW (at sample) at 950 nm (measured optical 
resolution of the system is ‍< 1µm‍ lateral and ‍< 4µm‍ axial). The brain was divided into six overlapping 
regions: two divisions along the dorsoventral axis and three divisions along the anterior–posterior 
axis. The most anterior point in the most anterior region was set to the olfactory epithelium while 
the most posterior point in the most posterior region was the start of the spinal cord. Larval zebrafish 
expressing nuclear localized GCaMP in all neurons and mCherry in all glutamatergic neurons (mitfa 
-/-; elavl3-H2B:GCaMP6s +/-; vGlut2a-mCherry) between 5 and 7 d post fertilization were used for 
all experiments. Larval zebrafish were mounted and stimulated as previously described (Haesemeyer 
et al., 2018) including scan stabilization as previously described to avoid artifacts associated with 
heating-induced expansion of the preparation. The tail of the larva was free and tracked at 250 Hz 
using an online tracking method previously described (Haesemeyer et  al., 2018). Whenever our 
online tail-tracking missed a point along the tail, an image was saved from which the tail was subse-
quently retracked offline as in Mearns et al., 2020. Since the experiments were performed under a 
new microscope, we recalculated a model translating stimulus laser strength to fish temperature as 
described in Haesemeyer et al., 2015; Haesemeyer et al., 2018 and subsequently referred to as the 
‘temperature model’.

For each imaging plane, 495 s of a ‘random wave’ stimulus were generated by superimposing 
sine waves of randomized amplitudes with periods between 13 s and 200 s. The stimuli were set to 
generate temperatures outside the noxious range between 22°C and 30°C. Imaging planes were 
spaced 5 ‍µm‍ apart and 30 planes were imaged in each fish.

For reticulospinal backfills Texas-Red Dextran 10,000 MW (Invitrogen D1828) at 12.5% w/v was 
pressure injected into the spinal cord of larval zebrafish under Tricaine (Syndel MS222) anesthesia. 
Injections were performed in fish expressing nuclear localized GCaMP6s in all neurons (mitfa -/-; 
Elavl3-H2B:GCaMP6s) that were embedded in low-melting point agarose with a glass capillary having 
a 15 ‍µm‍ tip opening. Fish were unembedded after the procedure, woken from anesthesia, and rested 
overnight. Fish were screened the next day for labeling, embedded again, and imaged under the 
two-photon microscope.

Processing of zebrafish data
Raw imaging data was preprocessed using CaImAn for motion correction and to identify units and 
extract associated calcium traces (Giovannucci et al., 2019). Laser stimulus data was recorded at 20 Hz 
and converted to temperatures using the temperature model (see above). The 250 Hz tail data was 
used to extract boutstarts based on the absolute angular derivative of the tail crossing an empirically 
determined threshold. The vigor was calculated as the sum of the absolute angular derivative across 
the swimbout, which is a metric of the energy of tail movement. The directionality was calculated as 
the sum of the angles of the tip of the tail across the swimbout, which is a metric of how one-sided the 
tail movement is. Extracted calcium data, stimulus temperatures, and the three behavior metrics were 
subsequently interpolated/downsampled to a common 5 Hz timebase. To reduce linear dependence, 
the behavior metrics were subsequently orthogonalized using a modified Gram–Schmidt process.

Components outside the brain as well as very dim components inside the brain were identified 
by CaImAn. To avoid analyzing components that likely do not correspond to neurons labeled by 
GCaMP, all components for which the average brightness across imaging time was <0.1 photons were 
excluded. The number of analyzed components was thereby reduced from 706,543 to 432,882.

The CNN was subsequently fit to the remaining components using two-thirds of imaging time as 
training data. For each neuron, the stimulus presented during recording and the observed behavioral 
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metrics were used as inputs. Both the inputs and the calcium activity traces were standardized to zero 
mean and unit standard deviation before fitting. For every neuron in which the correlation ‍r ≥

√
0.5‍, 

all discussed MINE metrics were extracted.
To generate the cyclically permuted controls, all calcium data was rotated forward by a third of the 

experiment length with wrap around. The rationale for constructing the control data in this manner 
was that it maintains the overall structure of the data, but since both our stimuli and the elicited 
behavior are stochastic, it should remove any true relationship between predictors and responses. 
The CNN was fit to the control data in the same manner as to the real data, but no further metrics 
were extracted. To identify which predictors significantly contributed to neural activity, ‍Rfull‍, ‍RPn‍, and 

‍RPn,m‍ were bootstrapped, computing the Taylor metric for each variate. The standard deviation of 
the bootstrap variate was subsequently used to estimate confidence intervals according to a normal 
distribution approximation. While confidence intervals could have been computed directly from the 
bootstrap variates, this would have meant storing all samples for all neurons in questions to retain 
flexibility in significance cutoff. The significance level was set to p<0.05 after Bonferroni correction 
across all fit neurons (effective p-value of ‍1.26 × 10−6‍). To be considered a driver of neural activity, the 
Taylor metric had to be larger than 0.1 at this significance threshold.

The linear comparison model was constructed akin to Musall et al., 2019a. All predictors were 
timeshifted by between 0 and 50 timesteps for a total of 200 predictor inputs to the regression 
model. This setup emulates the convolutional filters present in the CNN used by MINE. A modified 
Gram–Schmidt process was used for orthogonalization to avoid the problems of QR decomposition 
observed in cases of near singular design matrices (singular up to the used floating-point precision). 
Ridge regression (Hastie et al., 2009) was used to improve generalization. Setting the ridge penalty 
to ‍10−4‍ led to a 25–50% increase of identified neurons on small test datasets compared to a standard 
regression model.

All zebrafish stacks (except those acquired after spinal backfills) were first registered to an internal 
Elavl3-H2B:GCaMP6s reference using CMTK (Rohlfing and Maurer, 2003). A transformation from 
the internal reference to the Z-Brain (Randlett et al., 2015) was subsequently performed using ANTS 
(Avants et al., 2009). Micrometer coordinates transformed into Z-Brain pixel coordinates, together 
with region masks present in the Z-Brain, were subsequently used to assign all neurons to brain regions.

To identify Z-Brain regions in which a specific functional type is enriched, the following process 
was used. The total number of all types under consideration in each region was computed (i.e. if the 
comparison was between stimulus, behavior, and mixed-selectivity neurons, all these neurons were 
summed, but if the comparison was between different classes of behavior-related neurons only those 
were summed). Subsequently, the fraction of the type of interest among the total in each region was 
computed (plotted as bars in Figure 5—figure supplement 1 and Figure 6—figure supplement 1). 
Similarly, an overall fraction of the type across the whole brain was computed (plotted as vertical blue 
lines in Figure 5—figure supplement 1 and Figure 6—figure supplement 1) This overall fraction was 
used to simulate a 95% confidence interval of observed fractions given the total number of neurons 
considered in each region (horizontal blue lines in Figure 5—figure supplement 1 and Figure 6—
figure supplement 1). Any true fraction above this interval was considered significant enrichment. 
We note that exact confidence intervals could have been computed from the binomial distribution; 
however, the simulation approach allowed us to use the same method when computing confidence 
intervals around the average complexity of receptive field clusters.

For reticulospinal backfill experiments, neurons labeled by the backfill were manually annotated. 
This annotation was used to classify neurons (CaImAn identified components) as reticulospinal.

To study how mixed-selectivity neurons integrate information about the temperature stimulus and 
swim starts, the following strategy was used. Receptive fields for the temperature and swim start 
predictor were extracted for each neuron as described above. Subsequently, the drive for an input 
was defined as a scaled version of the receptive fields after they had been scaled to unit norm. 
Synthetic input stimuli at different combinations of stimulus and swim drive were subsequently gener-
ated and fed into the CNN of the neuron of interest. The response of the CNN was recorded to 
construct the response landscapes shown in Figure 7 and Figure 7—figure supplement 1. To cluster 
similar response landscapes, pairwise 2D cross-correlations were computed between the response 
landscapes of all neurons. Similarity was defined as the maximal value of the cross-correlation to pref-
erentially cluster on similar shapes of the landscape rather than exact alignment. Spectral clustering 
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was used to form the clusters and for each a randomly selected exemplar is shown in the figures. Due 
to the lack of alignment, cluster averages are not meaningful.

To perform anatomical clustering, every identified neuron was clustered based on the spatial 
proximity of their centroids to the centroids of other neurons. A radius of 5 ‍µm‍ (roughly the radius 
of a neuron in the zebrafish brain) was chosen empirically as the clustering radius. The coordi-
nates of the centroids were then placed in a 3D volume with a spatial resolution of 1 ‍µm‍, with 
each centroid occupying one position in this space. Subsequently, a kernel of the chosen radius 
was constructed. The kernel was then convolved with the centroids of the neurons to generate 
a ball around each of them. The goal was that if the space occupied by the balls around two 
neurons overlap, or are adjacent, the two neurons would be clustered together. This was accom-
plished using connected-components-3D (William Silversmith, version 3.12, available on PyPi as 
connected-components-3d; code: https://github.com/seung-lab/connected-components-3d/, 
copy archived at Silversmith, 2023) which was used to cluster the neurons based on their prox-
imity. The connected-components-3D function takes the 3D volume and assigns each occupied 
voxel to a cluster. The corresponding centroids were then identified and assigned the same cluster 
label. For plotting, an alpha value was assigned to each centroid based on the number of neurons 
present in each cluster. The coordinates of the centroids were then plotted and assigned the 
computed alpha values.

Experiments were excluded from further analysis for the following reasons: five fish died during 
functional imaging; eight fish could not be registered to the reference; tail tracking failed during the 
acquisition of six fish and during the acquisition of four fish problems in the acquisition hardware led 
to imaging artifacts. Related Python files in the repository: ​rwave_​data_​fit.​py, ​rwave_​decompose.​py, ​
utilities.​py.
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The following previously published dataset was used:
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Churchland AK, 
Musall S, Kaufman 
MT, Juavinett AL, 
Gluf S

2019 Dataset from: Single-
trial neural dynamics are 
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https://​doi.​org/​10.​
14224/​1.​38599

CSHL, 10.14224/1.38599
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