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Abstract 34 

Combining information from multiple senses is essential to object recognition, core to the ability 35 

to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind 36 

combines sensory input into coherent crossmodal representations – the crossmodal binding 37 

problem – remains poorly understood. Here, we applied multi-echo fMRI across a four-day 38 

paradigm, in which participants learned 3-dimensional crossmodal representations created from 39 

well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the 40 

learned crossmodal object representations from their baseline unimodal shapes and sounds, thus 41 

allowing us to track the emergence of crossmodal object representations as they were learned by 42 

healthy adults. Critically, we found that two anterior temporal lobe structures – temporal pole 43 

and perirhinal cortex – differentiated learned from non-learned crossmodal objects, even when 44 

controlling for the unimodal features that composed those objects. These results provide 45 

evidence for integrated crossmodal object representations in the anterior temporal lobes that were 46 

different from the representations for the unimodal features. Furthermore, we found that 47 

perirhinal cortex representations were by default biased towards visual shape, but this initial 48 

visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed 49 

perirhinal representations such that they were no longer predominantly grounded in the visual 50 

modality, which may be a mechanism by which object concepts gain their abstraction. 51 

 Keywords: Crossmodal binding problem, object representations, integrative coding, 52 

distributed unimodal features, multi-echo fMRI 53 
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Experience Transforms Crossmodal Object Representations in the Anterior Temporal Lobes 86 

The world is a great blooming, buzzing confusion
1
 of the senses. Our ability to 87 

understand “what is out there” depends on combining sensory features to form crossmodal object 88 

concepts. A child, for example, might form the concept “frog” by learning that the visual 89 

appearance of a four-legged creature goes with the sound of its croaking. Consequently, this 90 

child has also learned that frogs do not produce barking sounds, as the child has created a unique 91 

object association for a frog from specific unimodal shape and sound features. Forming coherent 92 

crossmodal object representations is thus essential for human experience, allowing adaptive 93 

behavior under changing environments. Yet how is it possible for the child to know that the 94 

sound of croaking is associated with the visual shape of a frog, even when she might be looking 95 

at a dog? How does the human mind form meaningful concepts from the vast amount of 96 

unimodal feature information that bombards the senses, allowing us to interpret our external 97 

world? 98 

Known as the crossmodal binding problem, this unresolved question in the cognitive 99 

sciences concerns how the mind combines unimodal sensory features into coherent crossmodal 100 

object representations. Better characterization of how this computational challenge is solved will 101 

not only improve our understanding of the human mind but will also have important 102 

consequences for the design of future artificial neural networks. Current artificial machines do 103 

not yet reach human performance on tasks involving crossmodal integration
2,3

 or generalization 104 

beyond previous experience,
4,5,6

 which are limitations thought to be in part driven by the inability 105 

of existing machines to resolve the binding problem.
7
  106 

One theoretical view from the cognitive sciences suggests that crossmodal objects are 107 

built from component unimodal features represented across distributed sensory regions.
8
 Under 108 

this view, when a child thinks about “frog”, the visual cortex represents the appearance of the 109 

shape of the frog, whereas the auditory cortex represents the croaking sound. Alternatively, other 110 

theoretical views predict that multisensory objects are not only built from their component 111 

unimodal sensory features, but that there is also a crossmodal integrative code that is different 112 

from the sum of these parts.
9,10,11,12,13

 These latter views propose that anterior temporal lobe 113 

structures can act as a polymodal “hub” that combines separate features into integrated 114 

wholes.
9,11,14,15

  115 

Thus, a key theoretical challenge central to resolving the crossmodal binding problem is 116 

understanding how anterior temporal lobe structures form object representations. Are crossmodal 117 

objects entirely built from features distributed across sensory regions, or is there also integrative 118 

coding in the anterior temporal lobes? Furthermore, the existing literature has predominantly 119 

studied the neural representation of well-established object concepts from the visual domain 120 

alone,
8-25

 even though human experience is fundamentally crossmodal. 121 

Here, we leveraged multi-echo fMRI
26 

across a novel four-day task in which participants 122 

learned to associate unimodal visual shape and sound features into 3D crossmodal object 123 
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representations. First, we characterized shape
27

 and sound features in a separate validation 124 

experiment, ensuring that the unimodal features were well-matched in terms of their subjective 125 

similarity (Figure 1). On the learning task, participants independently explored the 3D-printed 126 

shapes and heard novel experimenter-constructed sounds. The participants then learned specific 127 

shape-sound associations (congruent objects), while other shape-sound associations were not 128 

learned (incongruent objects).  129 

Critically, our four-day learning task allowed us to isolate neural activity associated with 130 

integrative coding in anterior temporal lobe structures that emerges with experience and differs 131 

from the neural patterns recorded at baseline. The learned and non-learned crossmodal objects 132 

were constructed from the same set of three validated shape and sound features, ensuring that 133 

factors such as familiarity with the unimodal features, subjective similarity, and feature identity 134 

were tightly controlled (Figure 2). If the mind represented crossmodal objects entirely as the 135 

reactivation of unimodal shapes and sounds (i.e., objects are constructed from their parts), then 136 

there should be no difference between the learned and non-learned objects (because they were 137 

created from the same three shapes and sounds). By contrast, if the mind represented crossmodal 138 

objects as something over and above their component features (i.e., representations for 139 

crossmodal objects rely on integrative coding that is different from the sum of their parts), then 140 

there should be behavioral and neural differences between learned and non-learned crossmodal 141 

objects (because the only difference across the objects is the learned relationship between the 142 

parts). Furthermore, this design allowed us to determine the relationship between the object 143 

representation acquired after crossmodal learning and the unimodal feature representations 144 

acquired before crossmodal learning. That is, we could examine whether learning led to 145 

abstraction of the object representations such that it no longer resembled the unimodal feature 146 

representations. 147 

         In brief, we found that crossmodal object concepts were represented as distributed 148 

sensory-specific unimodal features along the visual and auditory processing pathways, as well as 149 

integrative crossmodal combinations of those unimodal features in the anterior temporal lobes. 150 

Intriguingly, the perirhinal cortex – an anterior temporal lobe structure – was biased towards the 151 

visual modality before crossmodal learning at baseline, with greater activity towards shape over 152 

sound features. Pattern similarity analyses revealed that the shape representations in perirhinal 153 

cortex were initially unaffected by sound, providing evidence of a default visual shape bias. 154 

However, crossmodal learning transformed the object representation in perirhinal cortex such 155 

that it was no longer predominantly visual. These results are consistent with the idea that the 156 

object representation had become abstracted away from the component unimodal features with 157 

learning, such that perirhinal representations was no longer grounded in the visual modality. 158 
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Results 159 

Four-Day Crossmodal Object Learning Task 160 

Measuring Within-Subject Changes After Crossmodal Learning 161 

We designed a 4-day learning task where each participant learned a set of shape-sound 162 

associations that created crossmodal objects (Figure 2). There were two days involving only 163 

behavioral measures (Day 1 and Day 3). Before crossmodal learning on Day 1, participants 164 

explored the 3D-printed shapes (Visual) and heard the sounds (Sound) separately. In blocks of 165 

trials interleaved with these exploration phases, participants rated the similarity of the shapes and 166 

sounds (see Figure 2–figure supplement 1). During crossmodal learning on Day 3, participants 167 

explored specific shape-sound associations (Congruent objects) by pressing the button on each 168 

3D-printed shape to play the associated sound, with pairings counterbalanced across observers. 169 

Again, the participants rated the similarity of the shapes and sounds. Notably, all participants 170 

could recognize their specific shape-sound associations at the end of Day 3, confirming that the 171 

congruent shape-sound objects were successfully learned (performance = 100% for all 172 

participants). 173 

There were two neuroimaging days (Day 2 and Day 4), during which we recorded brain 174 

responses to unimodal features presented separately and to unimodal features presented 175 

simultaneously using multi-echo fMRI (Figure 2). During Unimodal Feature runs, participants 176 

either viewed images of the 3D-printed shapes or heard sounds. During Crossmodal Object runs, 177 

participants experienced either the shape-sound associations learned on Day 3 (Congruent) or 178 

shape-sound associations that had not been learned on Day 3 (Incongruent). We were especially 179 

interested in neural differences between congruent and incongruent objects as evidence of 180 

crossmodal integration; experience with the unimodal features composing congruent and 181 

incongruent objects was equated and the only way to distinguish them was in terms of how the 182 

features were integrated. 183 

 184 

Behavioral Pattern Similarity  185 

Subjective Similarity Changes After Crossmodal Learning 186 

To understand how crossmodal learning impacts behaviour, we analyzed the within-187 

subject change in subjective similarity of the unimodal features before (Day 1) and after (Day 3)  188 

participants learned their crossmodal pairings (Figure 2). In other words, we determined whether 189 

the perceived similarity of the unimodal feature representations changed after participants had 190 

experienced those unimodal features combined into crossmodal objects.  191 

We conducted a linear mixed model which included learning day (before vs. after 192 

crossmodal learning) and congruency (congruent vs. incongruent) as fixed effects. We observed 193 

a robust learning-related behavioral change in terms of how participants experienced the 194 

similarity of shape and sound features (Figure 2–figure supplement 1): there was a main effect of 195 

learning day (before or after crossmodal learning: F1,51 = 24.45, p < 0.001, η
2
 = 0.32), a main 196 

effect of congruency (congruent or incongruent: F1,51 = 6.93, p = 0.011, η
2
 = 0.12), and an 197 
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interaction between learning day and congruency (F1,51 = 15.33, p < 0.001, η
2
 = 0.23). Before 198 

crossmodal learning, there was no difference in similarity between congruent and incongruent 199 

shape-sound features (t17 = 0.78, p = 0.44), whereas after crossmodal learning, participants rated 200 

shapes and sounds associated with congruent objects to be more similar than shapes and sounds 201 

associated with incongruent objects (t17 = 5.10, p < 0.001, Cohen’s d = 1.28) (Figure 2–figure 202 

supplement 1). Notably, this learning-related change in similarity was observed in 17 out of 18 203 

participants. We confirmed this experience-dependent change in similarity structure in a separate 204 

behavioral experiment with a larger sample size (observed in 38 out of 44 participants; learning 205 

day x congruency interaction: F1,129 = 13.74, p < 0.001; η
2
 = 0.096; Figure 2–figure supplement 206 

1).  207 

 208 

Whole-brain Univariate Analysis 209 

Unimodal Shape and Sound Representations are Distributed  210 

 In the first set of neuroimaging analyses, we examined whether distributed brain regions 211 

were involved in representing unimodal shapes and sounds. During unimodal runs (shapes and 212 

sounds presented separately), we observed robust bilateral modality-specific activity across the 213 

neocortex (Figure 3a-c). The ventral visual stream extending into the perirhinal cortex activated 214 

more strongly to unimodal visual compared to sound information, indicating that perirhinal 215 

cortex activity was by default biased towards visual information in the unimodal runs (i.e., 216 

towards complex visual shape configurations; Figure 3a). The auditory processing stream, from 217 

the primary auditory cortex extending into the temporal pole along the superior temporal sulcus, 218 

activated more strongly to unimodal sound compared to visual information (Figure 3b). These 219 

results replicate the known representational divisions across the neocortex and show that regions 220 

processing unimodal shapes and sounds are distributed across visual and auditory processing 221 

pathways.
29,30,31

. Furthermore, the robust signal quality we observe in anterior temporal regions 222 

demonstrates the improved quality of the multi-echo ICA pipeline employed in the current study, 223 

as these anterior temporal regions are often susceptible to signal dropout with standard single 224 

echo designs due to magnetic susceptibility issues near the sinus air/tissue boundaries (Figure 3 225 

– figure supplement 1).  226 

 227 

Region-of-Interest Univariate Analysis 228 

Anterior Temporal Lobes Differentiate Between Congruent and Incongruent Conditions 229 

 We next examined univariate activity focusing on five a priori regions thought to be 230 

important for representing unimodal features and their integration:
9,11 

temporal pole, perirhinal 231 

cortex, lateral occipital complex (LOC), primary visual cortex (V1), and primary auditory cortex 232 

(A1).
 
For each ROI, we conducted a linear mixed model which included learning day (before vs. 233 

after crossmodal learning) and modality (visual vs. sound feature) as fixed factors. Collapsing 234 

across learning days, perirhinal cortex (t67 = 5.53, p < 0.001, Cohen’s d = 0.67) and LOC (t63 = 235 

16.02, p < 0.001, Cohen’s d = 2.00) were biased towards visual information, whereas temporal 236 
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pole (t67 = 6.73, p < 0.001, Cohen’s d = 0.82) and A1 (t67 = 17.09, p < 0.001, Cohen’s d = 2.07) 237 

were biased towards sound information (Figure 3d). Interestingly, we found a small overall bias 238 

towards sound in V1, consistent with past work
32

 (t67 = 2.26, p = 0.027, Cohen’s d = 0.20). Next, 239 

we determined how neural responses in these regions changed following crossmodal learning. 240 

We observed an interaction between learning day and modality in perirhinal cortex (F1,48 = 5.24, 241 

p = 0.027, η
2
 = 0.098) and LOC (F1,45 = 25.89, p < 0.001, η

2 
= 0.37) (Figure 3d). These regions 242 

activated more strongly to visual information at baseline before crossmodal learning compared to 243 

after crossmodal learning, indicative of a visual bias that was attenuated with experience.  244 

As a central goal of our study was to identify brain regions that were influenced by the 245 

learned crossmodal associations, we next examined univariate differences between Congruent 246 

vs. Incongruent for crossmodal object runs as a function of whether the crossmodal association 247 

had been learned. We conducted a linear mixed model for each ROI which included learning day 248 

(before vs. after crossmodal learning) and congruency (congruent vs. incongruent objects) as 249 

fixed factors. We observed a significant interaction between learning day and congruency in the 250 

temporal pole (F1,48 = 7.63, p = 0.0081, η
2 
= 0.14). Critically, there was no difference in activity 251 

between congruent and incongruent objects at baseline before crossmodal learning (t33 = 0.37, p 252 

= 0.72), but there was more activation to incongruent compared to congruent objects after 253 

crossmodal learning (t33 = 2.42, p = 0.021, Cohen’s d = 0.42). As the unimodal shape-sound 254 

features experienced by participants were the same before and after crossmodal learning (Figure 255 

2), this finding reveals that the univariate signal in the temporal pole was differentiated between 256 

congruent and incongruent objects that had been constructed from the same unimodal features.  257 

By contrast, we did not observe a univariate difference between the congruent and 258 

incongruent conditions in the perirhinal cortex, LOC, V1, or A1 (F1,45-48 between 0.088 and 2.34, 259 

p between 0.13 and 0.77). Similarly, the exploratory ROIs hippocampus (HPC: F1,48 = 0.32, p = 260 

0.58) and inferior parietal lobe (IPL: F1,48 = 0.094, p = 0.76) did not distinguish between the 261 

congruent and incongruent conditions. 262 

 263 

Neural Pattern Similarity  264 

Congruent Associations Differ from Incongruent Associations in Anterior Temporal Lobes 265 

We next conducted a series of representational similarity analyses across Unimodal 266 

Feature and Crossmodal Object runs before and after crossmodal learning. Here, we investigated 267 

whether representations for unimodal features were changed after learning the crossmodal 268 

associations between those features (i.e., learning the crossmodal pairings that comprised the 269 

shape-sound objects). Such a finding could be taken as evidence that learning crossmodal object 270 

concepts transforms the original representation of the component unimodal features. More 271 

specifically, we compared the correlation between congruent and incongruent shape-sound 272 

features within Unimodal Feature runs before and after crossmodal learning (Figure 4a).  273 

We conducted a linear mixed model which included learning day (before vs. after 274 

crossmodal learning) and congruency (congruent vs. incongruent) as fixed effects for each ROI. 275 
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Complementing the previous behavioral pattern similarity results (Figure 2–figure supplement 276 

1), in the temporal pole we observed a main effect of learning day (before or after crossmodal 277 

learning: F1,32 = 4.63, p = 0.039, η
2
 = 0.13), a main effect of congruency (congruent or 278 

incongruent object: F1,64 = 7.60, p = 0.0076, η
2
 = 0.11), and an interaction between learning day 279 

and congruency (F1,64 = 6.09, p = 0.016, η
2
 = 0.087). At baseline before crossmodal learning, 280 

there was no difference in pattern similarity between congruent features compared to incongruent 281 

features in the temporal pole (t33 = 0.22, p = 0.82). After crossmodal learning, however, there 282 

was lower pattern similarity for shape and sound features associated with congruent compared to 283 

incongruent objects (t33 = 3.47, p = 0.0015, Cohen’s d = 0.22; Figure 4). Thus, although in 284 

behavior we observed that learning the crossmodal associations led to greater pattern similarity 285 

between congruent compared to incongruent features (Figure 2–figure supplement 1), this 286 

greater behavioral similarity was related to reduced neural similarity following crossmodal 287 

learning in the temporal pole.  288 

By contrast, the other four a priori determined ROIs (perirhinal cortex, LOC, V1, or A1) 289 

did not show an interaction between learning day and congruency (F1,60-64 between 0.039 and 290 

1.30, p between 0.26 and 0.84; Figure 4 – figure supplement 1). Likewise, our 2 exploratory 291 

ROIs (hippocampus, inferior parietal lobe) did not show an interaction between learning day and 292 

congruency (F1,64 between 0.68 and 0.91, p between 0.34 and 0.41; Figure 5 – figure supplement 293 

1).  294 

 295 

The Visually-biased Code in Perirhinal Cortex was Attenuated with Learning 296 

The previous analyses found that the temporal pole differentiated between congruent and 297 

incongruent shape-sound pairs after participants learned the crossmodal pairings. Next, we 298 

characterized how the representations of these unimodal features changed after they had been 299 

paired with features from another stimulus modality to form the crossmodal objects. Our key 300 

question was whether learning crossmodal associations transformed the unimodal feature 301 

representations.  302 

First, the voxel-wise activity for unimodal feature runs was correlated to the voxel-wise 303 

activity for crossmodal object runs at baseline before crossmodal learning (Figure 5a). 304 

Specifically, we quantified the similarity in the patterns for the visual shape features with the 305 

crossmodal objects that had that same shape, as well as between the sound features and the 306 

crossmodal objects that had that same sound. We then conducted a linear mixed model which 307 

included modality (visual vs. sound) as a fixed factor within each ROI. Consistent with the 308 

univariate results (Figure 3), we observed greater pattern similarity when there was a match 309 

between sound features in the temporal pole (F1,32 = 15.80, p < 0.001, η
2
 = 0.33) and A1 (F1,32 = 310 

145.73, p < 0.001, η
2
 = 0.82), and greater pattern similarity when there was a match in the visual 311 

shape features in the perirhinal cortex (F1,32 = 10.99, p = 0.0023, η
2
 = 0.26), LOC (F1,30 = 20.09, 312 

p < 0.001, η
2
 = 0.40), and V1 (F1,32 = 22.02, p < 0.001, η

2
 = 0.41). Pattern similarity for each ROI 313 

was higher for one of the two modalities, indicative of a baseline modality-specific bias towards 314 

either visual or sound content.  315 
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We then examined whether the original representations would change after participants 316 

learned how the features were paired together to make specific crossmodal objects, conducting 317 

the same analysis described above after crossmodal learning had taken place (Figure 5b). With 318 

this analysis, we sought to measure the relationship between the representation for the learned 319 

crossmodal object and the original baseline representation for the unimodal features. More 320 

specifically, the voxel-wise activity for unimodal feature runs before crossmodal learning was 321 

correlated to the voxel-wise activity for crossmodal object runs after crossmodal learning 322 

(Figure 5b). Another linear mixed model which included modality as a fixed factor within each 323 

ROI revealed that the perirhinal cortex was no longer biased towards visual shape after 324 

crossmodal learning (F1,32 = 0.12, p = 0.73), whereas the temporal pole, LOC, V1, and A1 325 

remained biased towards either visual shape or sound (F1,30-32 between 16.20 and 73.42, all p < 326 

0.001, η
2
 between 0.35 and 0.70).  327 

 To investigate this effect in perirhinal cortex more specifically, we conducted a linear 328 

mixed model to directly compare the change in the visual bias of perirhinal representations from 329 

before crossmodal learning to after crossmodal learning (green regions in Figure 5a vs. 5b). 330 

Specifically, the linear mixed model included learning day (before vs. after crossmodal learning) 331 

and modality (visual feature match to crossmodal object vs. sound feature match to crossmodal 332 

object). Results revealed a significant interaction between learning day and modality in the 333 

perirhinal cortex (F1,775 = 5.56, p = 0.019, η
2
 = 0.071), meaning that the baseline visual shape 334 

bias observed in perirhinal cortex (green region of Figure 5a) was significantly attenuated with 335 

experience (green region of Figure 5b). After crossmodal learning, a given shape no longer 336 

invoked significant pattern similarity between objects that had the same shape but differed in 337 

terms of what they sounded like. Taken together, these results suggest that prior to learning the 338 

crossmodal objects, the perirhinal cortex had a default bias toward representing the visual shape 339 

information and was not representing sound information of the crossmodal objects. After 340 

crossmodal learning, however, the visual shape bias in perirhinal cortex was no longer present. 341 

That is, with crossmodal learning, the representations within perirhinal cortex started to look less 342 

like the visual features that comprised the crossmodal objects, providing evidence that the 343 

perirhinal representations were no longer predominantly grounded in the visual modality. 344 

To examine whether these results differed by congruency (i.e., whether any modality-345 

specific biases differed as a function of whether the object was congruent or incongruent), we 346 

conducted exploratory linear mixed models for each of the five a priori ROIs across learning 347 

days. More specifically, we correlated: 1) the voxel-wise activity for Unimodal Feature Runs 348 

before crossmodal learning to the voxel-wise activity for Crossmodal Object Runs before 349 

crossmodal learning (Day 2 vs. Day 2), 2) the voxel-wise activity for Unimodal Feature Runs 350 

before crossmodal learning to the voxel-wise activity for Crossmodal Object Runs after 351 

crossmodal learning (Day 2 vs Day 4), and 3) the voxel-wise activity for Unimodal Feature Runs 352 

after crossmodal learning to the voxel-wise activity for Crossmodal Object Runs after 353 

crossmodal learning (Day 4 vs Day 4). For each of the three analyses described, we then 354 

conducted separate linear mixed models which included modality (visual feature match to 355 
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crossmodal object vs. sound feature match to crossmodal object) and congruency (congruent vs. 356 

incongruent). 357 

There was no significant relationship between modality and congruency in any ROI 358 

between Day 2 and Day 2 (F1,346-368 between 0.00 and 1.06, p between 0.30 and 0.99), between 359 

Day 2 and Day 4 (F1,346-368 between 0.021 and 0.91, p between 0.34 and 0.89), or between Day 4 360 

and Day 4 (F1,346-368 between 0.01 and 3.05, p between 0.082 and 0.93). However, exploratory 361 

analyses revealed that perirhinal cortex was the only region without a modality-specific bias and 362 

where the unimodal feature runs were not significantly correlated to the crossmodal object runs 363 

after crossmodal learning (Figure 5 – figure supplement 2). 364 

Taken together, the overall pattern of results suggests that representations of the 365 

crossmodal objects in perirhinal cortex were heavily influenced by their consistent visual 366 

features before crossmodal learning. However, the crossmodal object representations were no 367 

longer influenced by the component visual features after crossmodal learning (Figure 5, Figure 5 368 

– figure supplement 2). Additional exploratory analyses did not find evidence of experience-369 

dependent changes in the hippocampus or inferior parietal lobes (Figure 5 – figure supplement 370 

1). 371 

Importantly, the change in pattern similarity in the perirhinal cortex across learning days 372 

(Figure 5) is unlikely to be driven by noise, poor alignment of patterns across sessions, or 373 

generally reduced responses. Other regions with numerically similar pattern similarity to 374 

perirhinal cortex did not change across learning days (e.g., visual features x crossmodal objects 375 

in A1 in Figure 5; the exploratory ROI hippocampus with numerically similar pattern similarity 376 

to perirhinal cortex also did not change in Figure 5 – figure supplement 1).  377 

 378 

Representations in Perirhinal Cortex Change with Experience  379 

 So far, we have shown that the perirhinal cortex was by default biased towards visual 380 

shape features (Figure 5a), and that this visual shape bias was attenuated with experience 381 

(Figure 5b; Figure 5 – figure supplement 2). In the final analysis, we tracked how the individual 382 

crossmodal object representations themselves change after crossmodal learning.  383 

We assessed the cross-day pattern similarity between Crossmodal Object Runs by 384 

correlating the congruent and incongruent runs across learning days (Figure 6). We then 385 

conducted a linear mixed model which included congruency (congruent vs. incongruent) as a 386 

fixed factor for each a priori ROI. Perirhinal cortex was the only region that differentiated 387 

between congruent and incongruent objects in this analysis (PRC: F1,34 = 4.67, p = 0.038, η
2
 = 388 

0.12; TP, LOC, V1, A1: F1,32-34 between 0.67 and 2.83, p between 0.10 and 0.42). Pattern 389 

similarity in perirhinal cortex did not differ from 0 for congruent objects across learning days (t35 390 

= 0.39, p = 0.70) but was significantly lower than 0 for incongruent objects (t35 = 2.63, p = 0.013, 391 

Cohen’s d = 0.44). By contrast, pattern similarity in temporal pole, LOC, V1, and A1 was 392 

significantly correlated across learning days (pattern similarity > 0; t33-35 between 4.31 and 6.92 393 
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all p < 0.001) and did not differ between congruent and incongruent objects (temporal pole, 394 

LOC, V1, and A1; F1,32-34 between 0.67 and 2.83, p between 0.10 and 0.42). Thus, perirhinal 395 

cortex was unique in that it not only differentiated between congruent and incongruent objects 396 

that were built from the same unimodal features (i.e., representations of the whole crossmodal 397 

object that was different than the unimodal features that composed it), but it also showed no 398 

significant pattern similarity above 0 for the same representations across learning days (i.e., 399 

suggesting that the object representations were transformed after crossmodal learning). 400 

No significant difference between the congruent and incongruent conditions were 401 

observed for the hippocampus (F1,34 = 0.34, p = 0.56) or inferior parietal lobe (F1,34 = 0.00, p = 402 

0.96) in a follow-up exploratory analysis (Figure 5 – figure supplement 1). 403 

 404 

Discussion 405 

Known as the crossmodal binding problem, a long-standing question in the cognitive 406 

sciences has asked how the mind forms coherent concepts from multiple sensory modalities. To 407 

study this problem, we designed a 4-day task to decouple the learned crossmodal object 408 

representations (Day 3 and 4) from the baseline unimodal shape and sound features (Day 1 and 409 

2). We equated the familiarity, subjective similarity, and identity of the unimodal feature 410 

representations composing the learned (congruent) and unlearned (incongruent) objects, ensuring 411 

that any differences between the two would not be driven by single features but rather by the 412 

integration of those features (Figure 2). Paired with multi-echo fMRI to improve signal quality 413 

in the anterior temporal lobes (Figure 3 – figure supplement 1), this novel paradigm tracked the 414 

emergence of crossmodal object concepts from component baseline unimodal features in healthy 415 

adults.  416 

We found that the temporal pole and perirhinal cortex – two anterior temporal lobe 417 

structures – came to represent new crossmodal object concepts with learning, such that the 418 

acquired crossmodal object representations were different from the representation of the 419 

constituent unimodal features (Figure 5, 6). Intriguingly, the perirhinal cortex was by default 420 

biased towards visual shape, but that this initial visual bias was attenuated with experience 421 

(Figure 3c, 5, Figure 5 – figure supplement 2). Within the perirhinal cortex, the acquired 422 

crossmodal object concepts (measured after crossmodal learning) became less similar to their 423 

original component unimodal features (measured at baseline before crossmodal learning); Figure 424 

5, 6, Figure 5 – figure supplement 2. This is consistent with the idea that object representations 425 

in perirhinal cortex integrate the component sensory features into a whole that is different from 426 

the sum of the component parts, which might be a mechanism by which object concepts obtain 427 

their abstraction. 428 

 As one solution to the crossmodal binding problem, we suggest that the temporal pole 429 

and perirhinal cortex form unique crossmodal object representations that are different from the 430 

distributed features in sensory cortex (Figure 4, 5, 6, Figure 5 – figure supplement 2). However, 431 

the nature by which the integrative code is structured and formed in the temporal pole and 432 

perirhinal cortex following crossmodal experience – such as through transformations, warping, 433 
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or other factors – is an open question and an important area for future investigation. Furthermore, 434 

these distinct anterior temporal lobe structures may be involved with integrative coding in 435 

different ways. For example, the crossmodal object representations measured after learning were 436 

found to be related to the component unimodal feature representations measured before learning 437 

in the temporal pole but not the perirhinal cortex (Figure 5, 6, Figure 5 – figure supplement 2). 438 

Moreover, pattern similarity for congruent shape-sound pairs were lower than the pattern 439 

similarity for incongruent shape-sound pairs after crossmodal learning in the temporal pole but 440 

not the perirhinal cortex (Figure 4b, Figure 4 – figure supplement 1). As one interpretation of 441 

this pattern of results, the temporal pole may represent new crossmodal objects by combining 442 

previously learned knowledge.
 8,9,10,11,13,14,15,33

 Specifically, research into conceptual combination 443 

has linked the anterior temporal lobes to compound object concepts such as 444 

“hummingbird”.
34,35,36

 For example, participants during our task may have represented the 445 

sound-based “humming” concept and visually-based “bird” concept on Day 1, forming the 446 

crossmodal “hummingbird” concept on Day 3; Figure 1, 2, which may recruit less activity in 447 

temporal pole than an incongruent pairing such as “barking-frog”. For these reasons, the 448 

temporal pole may form a crossmodal object code based on pre-existing knowledge, resulting in 449 

reduced neural activity (Figure 3d) and pattern similarity towards features associated with 450 

learned objects (Figure 4b).  451 

By contrast, perirhinal cortex may be involved in pattern separation following crossmodal 452 

experience. In our task, participants had to differentiate congruent and incongruent objects 453 

constructed from the same three shape and sound features (Figure 2). An efficient way to solve 454 

this task would be to form distinct object-level outputs from the overlapping unimodal feature-455 

level inputs such that congruent objects are made to be orthogonal from the representations 456 

before learning (i.e., measured as pattern similarity equal to 0 in the perirhinal cortex; Figure 5b, 457 

6, Figure 5 – figure supplement 2), whereas non-learned incongruent objects could be made to be 458 

dissimilar from the representations before learning (i.e., anticorrelation, measured as patten 459 

similarity less than 0 in the perirhinal cortex; Figure 6). Because our paradigm could decouple 460 

neural responses to the learned object representations (on Day 4) from the original component 461 

unimodal features at baseline (on Day 2), these results could be taken as evidence of pattern 462 

separation in the human perirhinal cortex.
11,12

 However, our pattern of results could also be 463 

explained by other types of crossmodal integrative coding. For example, incongruent object 464 

representations may be less stable than congruent object representations, such that incongruent 465 

objects representation are warped to a greater extent than congruent objects (Figure 6).  466 

Our results suggest that the temporal pole and perirhinal cortex are involved in 467 

representing crossmodal objects after a period of crossmodal learning. Although this observation 468 

is consistent with previous animal research
37

 finding that a period of experience is necessary for 469 

the perirhinal cortex to represent crossmodal objects, future work will need to determine whether 470 

our findings are driven by only experience or by experience combined with sleep-dependent 471 

consolidation.
38

 Perhaps a future study could explore how separate unimodal features and the 472 

integrative object representations change over the course of the same learning day compared to 473 

multiple learning days after sleep.
 
Nevertheless, perirhinal cortex was critically influenced by 474 
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experience, potentially explaining why findings in this literature have been at times mixed, as 475 

stimulus history was not always controlled across different experiments.
39,40

 In our study, we 476 

explicitly controlled for stimulus history (Figure 2), ensuring that participants extensively 477 

explored individual features by the end of the first day and formed crossmodal objects by the end 478 

of the third day.  479 

Complementing seminal patient work causally linking anterior temporal lobe damage to 480 

the loss of object concepts,
41

 we show that the formation of new crossmodal concepts also 481 

recruits anterior temporal lobe structures like the temporal pole and perirhinal cortex. An 482 

important direction of future work will be to investigate the fine-grained functional divisions 483 

within the heterogeneous anterior temporal lobe region. One recent study has found that the 484 

anterior temporal lobe can be separated into 34 distinct functional regions,
42

 suggesting that a 485 

simple temporal pole versus perirhinal cortex division may not fully capture the complexity of 486 

this region. Imaging the anterior temporal lobe has long been known to be challenging with 487 

functional neuroimaging due to signal dropout.
43 

We show that a multi-echo fMRI sequence
26 

488 

may be especially useful in future work, as multi-echo fMRI mitigates signal dropout better than 489 

the standard single-echo fMRI (see Figure 3 – figure supplement 1 for a visual comparison).  490 

Importantly, the initial visual shape bias observed in the perirhinal cortex was attenuated 491 

by experience (Figure 5, Figure 5 – figure supplement 2), suggesting that the perirhinal 492 

representations had become abstracted and were no longer predominantly grounded in a single 493 

modality after crossmodal learning. One possibility may be that the perirhinal cortex is by 494 

default visually driven as an extension to the ventral visual stream,
10,11,12

 but can act as a 495 

polymodal “hub” region for additional crossmodal input following learning. A complementary 496 

possibility may be that our visual features contained tactile information (Figure 1c) that the 497 

perirhinal cortex may be sensitive to following the initial exploration phase on our task (Figure 498 

2).
40 

Critically, other brain regions like the LOC also reduced in visual bias (Figure 3c), which 499 

may reflect visual imagery or feedback connectivity between the anterior temporal lobes. 500 

However, the perirhinal cortex was the only region where the visual bias was entirely attenuated 501 

following crossmodal learning (Figure 5b).  502 

An interesting future line of investigation may be to explore whether there exist similar 503 

changes to the visual bias in artificial neural networks that aim to learn crossmodal object 504 

concepts.
2,3,7

 Previous human neuroimaging has shown that the anterior temporal lobes are 505 

important for intra-object configural representations,
45,46

 such that damage to the perirhinal 506 

cortex
20,47

 leads to object discrimination impairment. For example, human participants with 507 

perirhinal cortex damage are unable to resolve feature-level interference created by viewing 508 

multiple objects with overlapping features.
 
Certain types of errors made by deep learning 509 

models
48

 also seem to resemble the kinds of errors made by human patients,
20,39,41,47

 whereby 510 

accurate object recognition can be disrupted by feature-level interference. Writing the word 511 

“iPod” on an apple image, for instance, can lead to deep learning models falsely recognizing the 512 

apple as an actual iPod.
49

 As certain limitations of existing neural networks may be driven by an 513 

inability to resolve the binding problem,
7
 future work to mimic the coding properties of anterior 514 
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temporal lobe structures may allow artificial machines to better mimic the remarkable human 515 

ability to learn concepts, make new inferences, and generalize across distinct entities.
 

516 

Notably, our perirhinal cortex mask overlaps with a key region of the ventral anterior 517 

temporal lobe thought to be the central locus of crossmodal integration in the “hub and spokes” 518 

model of semantic representations.
9,50

 However, additional work has also linked other brain 519 

regions to the convergence of unimodal representations, such as the hippocampus
51,52,53

 and 520 

inferior parietal lobes.
54,55

 This past work on the hippocampus and inferior parietal lobe does not 521 

necessarily address the crossmodal binding problem that was the main focus of our present 522 

study, as previous findings often do not differentiate between crossmodal integrative coding and 523 

the convergence of unimodal feature representations per se. Furthermore, previous studies in the 524 

literature typically do not control for stimulus-based factors such as experience with unimodal 525 

features, subjective similarity, or feature identity that may complicate the interpretation of results 526 

when determining regions important for crossmodal integration. Indeed, we found evidence 527 

consistent with the convergence of unimodal feature-based representations in both the 528 

hippocampus and inferior parietal lobes (Figure 5 – figure supplement 1), but no evidence of 529 

crossmodal integrative coding different from the unimodal features. The hippocampus and 530 

inferior parietal lobes were both sensitive to visual and sound features before and after 531 

crossmodal learning (see Figure 5 – figure supplement 1). Yet the hippocampus and inferior 532 

parietal lobes did not differentiate between the congruent and incongruent conditions or change 533 

with experience (see Figure 5 – figure supplement 1). 534 

In summary, forming crossmodal object concepts relies on the representations for the 535 

whole crossmodal object in anterior temporal lobe structures different from the distributed 536 

unimodal feature representations in sensory regions. It is this hierarchical architecture that 537 

supports our ability to understand the external world, providing one solution to the age-old 538 

question of how crossmodal concepts can be constructed from their component features.  539 

 540 

 541 

 542 
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Methods 720 

The experiments described in this study were approved by the University of Toronto 721 

Ethics Review Board (protocols 37590 and 38856). Informed consent was obtained for all 722 

participants in the study prior to their participation. 723 

Initial Stimulus Validation Experiment  724 

Participants 725 

16 participants (Females = 11, Mage = 18.63 years) were recruited from the University of 726 

Toronto undergraduate participant pool and from the community. Course credit or $10/hr CAD 727 

was provided as compensation. 728 

Stimuli 729 

Three shape stimuli were sampled from the Validated Shape Space
27 

at equidistant 730 

positions, ensuring that the shapes were equated in their subjective similarity. The sound stimuli 731 

were manually generated in a similar procedure to how the shape stimuli from the Validated 732 

Shape Space
27

 were originally created. More specifically, distinct sounds were morphed together 733 

to create 5 complex, unrecognizable sounds that lasted for a duration of 2 seconds.  734 

Validation Procedure 735 

The stimulus validation procedure was based on previous work
27

 (see Figure 2–figure 736 

supplement 1 for an example of the task). Across 9 trials, participants rated the similarity of each 737 

of the 3 shapes in the context of every other shape, as well as 4 control trials in which each shape 738 

was rated relative to itself. For this initial stimulus validation experiment we used line drawings 739 

of the three shapes (for the 4-day crossmodal learning task we used images of the printed 740 

objects). Afterwards, participants completed 40 trials in which they rated the similarity of each of 741 

the 5 sounds in the context of every other sound, as well as 4 trials in which every sound was 742 

rated relative to itself. In a self-timed manner, participants viewed pictures of shapes or clicked 743 

icons to play the to-be-rated sounds from a headset.  744 

For the shapes, we replicated the triangular geometry from participant similarity ratings 745 

obtained in our past work
27

 indicating that each shape was about as similar as every other shape 746 

(Figure 1a). We then selected the three sounds that were best equated in terms of their perceived 747 

similarity (Figure 1a). Thus, like the shapes, this procedure ensured that subjective similarity for 748 

the sounds was explicitly controlled but the underlying auditory dimensions could vary (e.g., 749 

timbre, pitch, frequency). This initial validation experiment ensured that the subjective similarity 750 

of the three features of each stimulus modality was equated within each modality prior to the 751 

primary 4-day learning task. 752 

3D-Printed Shape-Sound Objects 753 

The three validated shapes were 3D-printed using a DREMEL Digilab 3D Printer 3D45-754 

01 with 1.75 mm gold-colored polymerized lactic acid filament. To create the 3D object models, 755 

the original 2D images were imported into Blender and elongated to add depth. The face of the 756 
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shape image created a detachable lid, with a small circular opening to allow wiring to extend to a 757 

playable button positioned on the exterior of the shape. An empty space was formed inside the 758 

3D shape for the battery-powered embedded speaker. To ensure that the objects were graspable, 759 

each shape was 3D-printed to be approximately the size of an adult hand (Figure 1c). The lid of 760 

the shape was detached before each learning day (Figure 2), with the embedded speaker 761 

programmed to play either no sound (Day 1) or to play the paired sound that formed the 762 

congruent object (Day 3) (Figure 1a). After the speaker was programmed, the lid of the shape 763 

was reattached using thermoplastic adhesive.   764 

The sounds were played at an audible volume by the 3D-printed shapes during the 765 

learning task (see next section). During the scanning sessions, we individually tailored the 766 

volume until the participant could hear the sounds clearly when inside the MRI scanner. 767 

 768 

4-Day Crossmodal Object Learning Task  769 

Participants 770 

Twenty new participants (Females = 13, Mage = 23.15 years) were recruited and scanned 771 

at the Toronto Neuroimaging Facility. All participants were right-handed, with normal or 772 

corrected-to-normal vision, normal hearing, and no history of psychiatric illness. Of the 20 773 

scanned participants, 1 participant dropped out after the first neuroimaging session. Severe 774 

distortion was observed in a second participant from a metal retainer and data from this 775 

participant was excluded from subsequent analyses. Due to technical difficulties, the functional 776 

localizer scans were not saved for one participant and most feature runs could not be completed 777 

for a second participant. Overall, the within-subject analyses described in the main text included 778 

data from a minimum of 16 participants, with most analyses containing data from 17 779 

participants. Critically, this within-subject learning design increases power to detect an effect. 780 

Compensation was $250 CAD for the 2 neuroimaging sessions and 2 behavioral sessions 781 

(~approx. 6 hours total, which included set-up, consent, and debriefing), with a $50 CAD 782 

completion bonus. 783 

Behavioral Tasks 784 

On each behavioral day (Day 1 and Day 3; Figure 2), participants completed the 785 

following tasks, in this order: Exploration Phase, one Unimodal Feature 1-back run (26 trials), 786 

Exploration Phase, one Crossmodal 1-back run (26 trials), Exploration Phase, Pairwise Similarity 787 

Task (24 trials), Exploration Phase, Pairwise Similarity Task (24 trials), Exploration Phase, 788 

Pairwise Similarity Task (24 trials), and finally, Exploration Phase. To verify learning on Day 3, 789 

participants also additionally completed a Learning Verification Task at the end of the session. 790 

Details on each task are provided below.  791 

The overall procedure ensured that participants extensively explored the unimodal 792 

features on Day 1 and the crossmodal objects on Day 3. The Unimodal Feature and the 793 
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Crossmodal Object 1-back runs administered on Day 1 and Day 3 served as practice for the 794 

neuroimaging sessions on Day 2 and Day 4, during which these 1-back tasks were completed.  795 

Each behavioral session required less than 1 hour of total time to complete. 796 

 Day 1 Exploration Phase. On Day 1 (Figure 2a), participants separately learned the 797 

shape and sound features in a random order. The 3D shapes were explored and physically 798 

palpated by the participants. We also encouraged participants to press the button on each shape, 799 

although the button was not operational on this day. Each 3D-printed shape was physically 800 

explored for 1 minute and each sound was heard through a headset 7 times. There were 6 801 

exploration phases in total, interleaved between the 1-back and pairwise similarity tasks (order 802 

provided above).  This procedure ensured that each individual stimulus was experienced 803 

extensively by the end of the first day. 804 

 Day 3 Exploration Phase. On Day 3 (Figure 2c), participants experienced the 3D-printed 805 

shape-sound objects in a random order. The sound was played over the embedded speakers by 806 

pressing the now-operational button on each object. Participants were allotted 1 minute to 807 

physically explore and palpate each shape-sound object, as well as to listen to the associated 808 

sound by pressing the button. Like Day 1, there were 6 exploration phases in total, interleaved 809 

between the 1-back and pairwise similarity tasks.   810 

Pairwise Similarity Task. Using the same task as the stimulus validation procedure 811 

(Figure 2–figure supplement 1), participants provided similarity ratings for all combinations of 812 

the 3 validated shapes and 3 validated sounds (each of the six features were rated in the context 813 

of every other feature in the set, with 4 repeats of the same feature, for a total of 72 trials). More 814 

specifically, three stimuli were displayed on each trial, with one at the top and two at the bottom 815 

of the screen in the same procedure as we have used previously
27

. The 3D shapes were visually 816 

displayed as a photo, whereas sounds were displayed on screen in a box that could be played 817 

over headphones when clicked with the mouse. The participant made an initial judgment by 818 

selecting the more similar stimulus on the bottom relative to the stimulus on the top. Afterwards, 819 

the participant made a similarity rating between each bottom stimulus with the top stimulus from 820 

0 being no similarity to 5 being identical. This procedure ensured that ratings were made relative 821 

to all other stimuli in the set. 822 

Unimodal Feature and Crossmodal Object 1-back Tasks. During fMRI scanning on 823 

Days 2 and 4, participants completed 1-back tasks in which the target was an exact sequential 824 

repeat of a feature (Unimodal Feature Task) or an exact sequential repeat of the shape-sound 825 

object (Crossmodal Object Task). In total, there were 10 Unimodal Feature runs and 5 826 

Crossmodal Object runs for each scanning session. Two Unimodal Feature runs were followed 827 

by one Crossmodal Object run in an interleaved manner to participants until all 10 Unimodal 828 

Feature runs and 5 Crossmodal Object runs were completed. Each run lasted 3 minutes and had 829 

26 trials.  830 

Each Unimodal Feature and Crossmodal Object run began with a blank screen appearing 831 

for 6 seconds. For Unimodal Feature runs, either a shape or sound feature would then be 832 

presented for two seconds, followed by a fixation cross appearing for 2 – 8 seconds (sampled 833 
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from the following probability distribution: 2 seconds = 30%, 4 seconds = 30%, 6 seconds = 834 

30%, and 8 seconds = 10%). For Crossmodal Object runs, each shape appeared on the monitor at 835 

the same time as a sound was played through the headset for two seconds, followed by a fixation 836 

cross appearing for 2 – 8 seconds (sampled from the following probability distribution: 2 seconds 837 

= 30%, 4 seconds = 30%, 6 seconds = 30%, and 8 seconds = 10%). Ensuring equal trial numbers, 838 

three shape-sound pairings were congruent (learned by participants) and three shape-sound 839 

pairings were incongruent (not learned by participants). Congruent and incongruent pairings 840 

were built from different combinations of the same shape and sound features, with pairings 841 

counterbalanced across participants.  842 

Overall, each stimulus was presented four times in a random order per run, with two 843 

repeats occurring at a random position for the corresponding 1-back task. The stimulus identity 844 

and temporal position of any given 1-back repeat was random. 845 

 Learning Verification Task (Day 3 only). As the final task on Day 3, participants 846 

completed a task to ensure that participants successfully formed their crossmodal pairing. All 847 

three shapes and sounds were randomly displayed in 6 boxes on a display. Photos of the 3D 848 

shapes were shown, and sounds were played by clicking the box with the mouse cursor. The 849 

participant was cued with either a shape or sound, and then selected the corresponding paired 850 

feature. At the end of Day 3, we found that all participants reached 100% accuracy on this task 851 

(10 trials). 852 

Behavioral Pattern Similarity Analysis 853 

The pairwise similarity ratings for each stimulus were averaged into a single feature-level 854 

RDM. We examined the magnitude of pattern similarity for congruent features compared to 855 

incongruent features across learning days (see Figure 2–figure supplement 1).    856 

 857 

Neuroimaging Procedures 858 

Scanning was conducted using a 32-channel receiver head coil with the Siemens 859 

Magnetom Prisma 3T MRI scanner at the Toronto Neuroimaging Facility. To record responses, 860 

participants used a 4-button keypad (Current Designs, HHSC-1X4-CR). Stimulus materials were 861 

displayed using an MR compatible screen at high resolution (1920 x 1080) with zero-delay 862 

timing (32” BOLD screen) controlled by PsychToolbox-3 in MATLAB. At the start of each 863 

neuroimaging session, we performed a sound check with a set of modified in-ear MR-compatible 864 

headphones (Sensimetrics, model S14), followed by a functional localizer and then by the task-865 

related runs.  866 

While in the scanner, participants completed the following: After an initial functional 867 

localizer, we collected a resting state scan. After five 1-back runs, we acquired a whole-brain 868 

high-resolution T1-weighted structural image. After an additional five 1-back runs, we acquired 869 

a second resting-state scan, followed by the last five 1-back runs. The 15 total 1-back runs were 870 
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interleaved such that 2 Unimodal Feature runs would be presented, followed by 1 Crossmodal 871 

Feature run until all 15 runs had been completed (see Figure 2).  872 

Multi-echo fMRI  873 

A 3D multi-echo echo-planer imaging (EPI) sequence with blipped-controlled aliasing in 874 

parallel imaging (CAIPI) sampling
56

 was used to acquire fMRI data on Day 2 and Day 4. For 875 

task-related scans, the 3 echoes (TR = 2000 ms, TE 1 = 11 ms, TE 2 = 31.6 ms, and TE 3 = 52.2 876 

ms) were each acquired with 90 images (210 x 210 field of view with a 100 x 100 matrix resize; 877 

anterior to posterior phase encoding, 78 slices, slice thickness: 2.10 mm, flip angle: 17°, 878 

interleaved multi-slice acquisition), resulting in an in-plane resolution of 2.10 x 2.10 mm. 3D 879 

distortion correction and pre-scan normalization was enabled, with acceleration factor PE = 2 880 

and acceleration factor 3D = 3. These parameters yielded coverage over the entire cortex, and a 881 

B0 field map was collected at the completion of the experiment.  882 

1-back Tasks (Unimodal Feature Runs and Crossmodal Object Runs). Rather than 883 

collecting data from many different instances of a category as is common in a fMRI study using 884 

multivariate pattern analysis, we collected data from many repetitions of the same stimulus using 885 

a psychophysics-inspired approach. This paradigm ensured that the neural representations 886 

specific to each unimodal feature and each crossmodal object was well-powered for subsequent 887 

pattern similarity analyses.
57

 Excluding 1-back repeats, each unimodal feature was displayed 4 888 

times per run for a total of 40 instances per scanning session (80 instances of each unimodal 889 

feature in total). Excluding 1-back repeats, each shape-sound pairing was displayed 4 times per 890 

run for a total of 20 instances per scanning session (40 instances of each shape-sound object in 891 

total). We designed our task-related runs to be 3 minutes in length, as “mini-runs” have been 892 

shown to improve data quality in multivariate pattern analysis.
57 

Details of the task can be found 893 

in the section above.  894 

Standard Functional Localizer. Participants viewed intact visual features and phase 895 

scrambled versions of the same features in separate 24 second blocks (8 functional volumes).
44

 896 

Each of the 32 images within a block were presented for 400 ms each with a 350 ms ISI. There 897 

were 2 groups of 4 blocks, with each group separated by a 12 s fixation cross. Block order was 898 

counterbalanced across participants. All stimuli were presented in the context of an 1-back task, 899 

and the order of images within blocks was randomized with the 1-back repeat occurring once per 900 

block. The identity and temporal position of the 1-back repeat was random. 901 

Structural and Resting State Scans 902 

A standard whole-brain high-resolution T1-weighted structural image was collected (TR 903 

= 2000 ms, TE = 2.40 ms, flip angle = 9°, field of view = 256 mm, 160 slices, slice thickness = 904 

1.00 mm, acceleration factor PE = 2), resulting in an in-place resolution of 1.00 mm x 1.00.  905 

Two 6 minute 42 second resting state scans were also collected (TR = 2000 ms, TE = 30 906 

ms; field of view: 220 mm, slice thickness: 2.00 mm; interleaved multi-slice acquisition, with 907 

acceleration factor PE = 2).  908 
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 909 

Neuroimaging Analysis 910 

ROI Definitions 911 

We conducted region-of-interest univariate (Figure 3c, d) and multivariate pattern 912 

analysis (Figure 4, 5, 6) in five a priori masks: temporal pole, perirhinal cortex, lateral occipital 913 

complex (LOC), primary visual cortex (V1), and primary auditory cortex (A1). These regions 914 

were selected a priori given their hypothesized role in representing individual unimodal features 915 

as well as their integrated whole.
9,11

 More specifically, we expected that the anterior temporal 916 

lobe structures – temporal pole and perirhinal cortex – would differentiate between the congruent 917 

and incongruent conditions. By contrast, we expected LOC, V1, and A1 to possess modality-918 

specific biases for either the visual or sound features. Temporal pole, V1, and A1 masks were 919 

extracted from the Harvard-Oxford atlas. The perirhinal cortex mask was created from the 920 

average of 55 manually-segmented T1 images from a previous publication.
58

 The LOC mask was 921 

extracted from the top 500 voxels in the lateral occipital region of each hemisphere that activated 922 

more strongly to intact than phase scrambled objects in the functional localizer (uncorrected 923 

voxel-wise p < 0.001).
44

  924 

Additionally, we conducted region-of-interest univariate and multivariate pattern analysis 925 

in two exploratory masks: hippocampus and inferior parietal lobes (Figure 5 – figure supplement 926 

1). These regions were selected given their hypothesized role in the convergence of unimodal 927 

feature representations.
51-55

 928 

Probabilistic masks were thresholded at .5 (i.e., voxels labelled in 50% of participants), 929 

with the masks transformed to subject space through the inverse warp matrix generated from 930 

FNIRT nonlinear registration (see Preprocessing) then resampled from 1mm
3
 to 2.1mm

3
. All 931 

subsequent analyses were conducted in subject space. 932 

Multi-echo ICA-based Denoising 933 

For a detailed description of the overall ME-ICA pipeline, see the tedana Community.
59

 934 

The multi-echo ICA-based denoising approach was implemented using the function meica.py in 935 

AFNI. We optimally averaged the three echoes, which weights the combination of echoes based  936 

on the estimated 𝑇2
∗ at each voxel for each echo. PCA then reduced the dimensionality of the 937 

optimally-combined dataset and ICA decomposition was applied to remove non-BOLD noise. 938 

TE-dependent components reflecting BOLD-like signal for each run were used as the dataset for 939 

subsequent preprocessing in FSL (e.g., see Figure 3 – figure supplement 1).  940 

Preprocessing 941 

First, the anatomical image was skull-stripped. Data were high-pass temporally filtered 942 

(50 s) and spatially smoothed (6 mm). Functional runs were registered to each participant’s high-943 

resolution MPRAGE image using FLIRT boundary-based registration, with registration further 944 
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refined using FNIRT nonlinear registration. The resulting data were analyzed using first-level 945 

FEAT Version 6.00 in each participant’s native anatomical space.  946 

Univariate Analysis 947 

To obtain participant-level contrasts, we averaged the run-level Unimodal Feature (Visual 948 

vs. Sound) and Crossmodal Object (Congruent vs. Incongruent) runs to produce the whole-brain 949 

group-level contrasts in FSL FLAME. Whole-brain analyses were thresholded at voxel-level p = 950 

0.001 with random field theory cluster correction at p = 0.05. 951 

For ROI-based analyses (Figure 3), we estimated percent signal change using featquery. 952 

The parameter estimates (beta weight) were scaled by the peak height of the regressor, divided 953 

by the baseline intensity in the Visual vs. Sound and Congruent vs. Incongruent contrasts to 954 

obtain a difference score. Inferential statistical analyses were performed with these difference 955 

scores using a linear mixed model which included learning day (before vs. after crossmodal 956 

learning) and hemisphere (left or right) as fixed effects for each ROI, with participants modelled 957 

as random effects. All linear mixed model analyses were conducted using the nlme package in R 958 

version 3.6.1.  959 

Single Trial Estimates 960 

We used the least squares single approach
60

 with 2 mm smoothing on the raw data in a 961 

separate set of analyses distinct from the univariate contrasts. Each individual stimulus, all other 962 

repetitions of the stimulus, and all other individual stimuli were modelled as covariates, allowing 963 

us to estimate whole-brain single-trial betas for each trial by run by mask by hemisphere by 964 

subject. All pattern similarity analyses described in the main text were conducted using the 965 

CoSMoMVPA package in MATLAB. After the single-trial betas were estimated, the voxel-wise 966 

activity across runs were averaged into a single overall matrix.  967 

Neuroimaging Pattern Similarity Analysis 968 

Four comparisons were conducted for each a priori ROI: 1) the autocorrelation of the 969 

average voxel-wise matrix during Unimodal Feature runs (Figure 4a, Figure 5 – figure 970 

supplement 1), 2) the correlation between the RDM created from the Unimodal Feature runs 971 

before crossmodal learning to the RDM created from the Crossmodal Object runs before 972 

crossmodal learning (Figure 5a), 3) the correlation between the RDM created from the Unimodal 973 

Feature runs before crossmodal learning to the RDM created from the Crossmodal Object runs 974 

after crossmodal learning (Figure 5b), and 4) the correlation between the RDM created from the 975 

Crossmodal Object runs before crossmodal learning to the RDM created from the Crossmodal 976 

Object runs after crossmodal learning (Figure 6). 977 

The z-transformed Pearson’s correlation coefficient was used as the distance metric for 978 

all pattern similarity analyses. More specifically, each individual Pearson correlation was Fisher 979 

z-transformed and then averaged (see 
61

). Inferential statistical analyses were performed for each 980 

individual ROI using linear mixed models which could include congruency (congruent or 981 
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incongruent), learning day (before or after crossmodal learning), modality (visual or sound), and 982 

hemisphere (left or right) as fixed factors, with participant modelled as random effects allowing 983 

intercepts to vary by learning day when appropriate. One-sample t-tests also compared the z-984 

transformed pattern similarity scores relative to 0. All linear mixed model analyses were 985 

conducted using the nlme package in R version 3.6.1. 986 

 987 

Crossmodal Object Learning Task: Behavioral Replication  988 

Participants 989 

44 new participants (Females = 34, Mage = 23.95 years) were recruited from the 990 

University of Toronto undergraduate participant pool and from the community. Course credit or 991 

$10/hr CAD was provided as compensation.  992 

Procedure 993 

We conducted a same-day behavioural-only variant of the four-day task described in the 994 

main text (Figure 2), excluding neuroimaging sessions. Participants first explored the 3D-printed 995 

shapes and heard the sounds separately (the button-activated speaker was not operational on this 996 

day). Each 3D-printed shape was physically explored for 1 minute and each sound was heard 997 

through a headset 7 times. On a separate pairwise similarity rating task, participants then 998 

provided similarity ratings for all combinations of the 3 shapes and 3 sounds (rated in the context 999 

of each other stimulus in the set, with 4 repeats of the same item; 72 total trials). Every 24 trials, 1000 

participants again explored the same shapes and sounds (separately before crossmodal learning, 1001 

in a counterbalanced order across participants).  1002 

Next, participants learned that certain shapes are associated with certain sounds, such that 1003 

the 3D-printed shapes now played a sound when the button was pressed. Participants were 1004 

allotted 1 minute to physically explore and palpate each shape-sound object, as well as to listen 1005 

to the associated sound by pressing the button. Participants repeated the pairwise similarity rating 1006 

task, and every 24 trials, participants explored the 3D-printed shape-sound objects. 1007 

The behavioral similarity judgments before and after crossmodal learning were analyzed 1008 

in the same pattern similarity approach described in the main text (Figure 2–figure supplement 1009 

1). 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 
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Figure Captions 1017 

Figure 1. 3D-printed objects. An independent validation experiment ensured that the similarity of the selected 1018 
shapes and sounds were well-matched. (a) Three shapes were sampled from the Validated Circular Shape (VCS) 1019 
Space (shown as black points on VCS space),27 a stimulus space whereby angular distance corresponds to subjective 1020 
shape similarity. Three sounds were sampled from a set of five experimenter-created sounds. This independent 1021 
validation experiment ensured that we could characterize the change in similarity structure following crossmodal 1022 
learning, because we knew the baseline similarity structure (i.e., two triangular representational geometries 1023 
visualized using multidimensional scaling28; also see Figure 2–figure supplement 1). Furthermore, this procedure 1024 
ensured that the subjective similarity of the three features was equated within each modality. (b) The shapes were 1025 
then 3D-printed with a hollow space and embedded with a button-activated speaker. (c) Participants could 1026 
physically explore and palpate the 3D shape-sound objects. Critically, we manipulated whether the button-activated 1027 
speaker was operational across learning days (see Methods/Figure 2).  1028 

 1029 

Figure 2. Four-day crossmodal object learning task. On Day 1 (behavior), participants heard sounds through a 1030 
headset and explored 3D-printed shapes while the button-activated speakers were not operational. During a separate 1031 
task (Figure 2–figure supplement 1), participants rated the similarity of the visual shapes and sound features. On 1032 
Day 2 (neuroimaging), participants completed (i) 10 Unimodal Feature runs in which they performed a 1-back task 1033 
involving the shape and sound features experienced separately and (ii) 5 Crossmodal Object runs in which they 1034 
performed a 1-back task for the shapes and sounds experienced simultaneously. As participants at this point have not 1035 
yet learned the congruent shape-sound pairings, the Day 2 neuroimaging session serves as a within-subject neural 1036 
baseline for how the unimodal features were represented before crossmodal learning. On Day 3 (behavior), 1037 
participants again explored the shape and sound features. Participants now learned to make crossmodal associations 1038 
between the specific visual and sound features that composed the shape-sound object by pressing the button to play 1039 
an embedded speaker, thus forming congruent object representations (i.e., crossmodal learning). Shape-sound 1040 
associations were counterbalanced across participants, and we again collected similarity ratings between the shapes 1041 
and sounds on a separate task. On Day 4 (neuroimaging), participants completed the same task as on Day 2. In 1042 
summary, across four days, we characterized the neural and behavioral changes that occurred before and after 1043 
shapes and sounds were paired together to form crossmodal object representations. As the baseline similarity 1044 
structure of the shape and sound features were a priori defined (see Figure 1) and measured on the first day of 1045 
learning (see Figure 2–figure supplement 1), changes to the within-subject similarity structure provide insight into 1046 
whether the crossmodal object representations (acquired after crossmodal learning) differed from component 1047 
unimodal representations (acquired before crossmodal learning).  1048 

 1049 

Figure 2 – figure supplement 1. Pairwise similarity task and results. In the initial stimulus validation experiment, 1050 
participants provided pairwise ratings for 5 sounds and 3 shapes. The shapes were equated in their subjective similarity that 1051 
had been selected from a well-characterized perceptually uniform stimulus space27 and the pairwise ratings followed the 1052 
same procedure as described in ref 27. Based on this initial experiment, we then selected the 3 sounds from the that were 1053 
most closely equated in their subjective similarity. (a) 3D-printed shapes were displayed as images, whereas sounds were 1054 
displayed in a box that could be played when clicked by the participant. Ratings were averaged to produce a similarity 1055 
matrix for each participant, and then averaged to produce a group-level similarity matrix. Shown as triangular 1056 
representational geometries recovered from multidimensional scaling in the above, shapes (blue) and sounds (orange) were 1057 
approximately equated in their subjective similarity. These features were then used in the four-day crossmodal learning 1058 
task. (b) Behavioral results from the four-day crossmodal learning task paired with multi-echo fMRI described in the main 1059 
text. Before crossmodal learning, there was no difference in similarity between shape and sound features associated with 1060 
congruent objects compared to incongruent objects – indicating that similarity was controlled at the unimodal feature-level. 1061 
After crossmodal learning, we observed a robust shift in the magnitude of similarity. The shape and sound features 1062 
associated with congruent objects were now significantly more similar than the same shape and sound features associated 1063 
with incongruent objects (p < 0.001), evidence that crossmodal learning changed how participants experienced the 1064 
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unimodal features (observed in 17/18 participants). (c) We replicated this learning-related shift in pattern similarity with a 1065 
larger sample size (n = 44; observed in 38/44 participants). *** denotes p < 0.001. Horizontal lines denote the comparison 1066 
of congruent vs. incongruent conditions. 1067 

 1068 

Figure 3. (a-b) Univariate analyses superimposed on MNI-152 standard space. All contrasts were thresholded at voxel-1069 
wise p = 0.001 and cluster-corrected at p = 0.05 (random-effects, FSL FLAME; 6-mm spatial smoothing).  Collapsing 1070 
across learning days, robust modality-specific activity was observed across the neocortex. (c-d) Five ROIs were a priori 1071 
selected based on existing theory:9,11 temporal pole – TP, perirhinal cortex – PRC, lateral occipital complex – LOC, 1072 
primary visual cortex – V1, and primary auditory cortex – A1. (c) Consistent with the whole-brain results, LOC was biased 1073 
towards visual features whereas A1 and TP were biased towards sound features. Activation in PRC and LOC showed 1074 
learning-related shifts, with the magnitude of visual bias decreasing after crossmodal learning. (d) TP was the only brain 1075 
region to show an experience-dependent change in univariate activity to the learned shape-sound associations during 1076 
crossmodal object runs. * p < 0.05, ** p < 0.01, *** p < 0.001. Asterisks above or below bars indicate a significant 1077 
difference from zero. Horizontal lines within brain regions reflect an interaction between modality or congruency with 1078 
learning day (e.g., reduction in visual bias after crossmodal learning in PRC). 1079 

 1080 

Figure 3 – figure supplement 1. Signal quality comparison from a representative participant. (a) The multi-1081 
echo sequence we used acquired 3 measurements after every radiofrequency pulse, compared to the standard single-1082 
echo EPI which acquires a single measurement (usually at a TE around 30 ms). A multi-echo sequence with 3 1083 
echoes acquires 3 times as much data as the current standard single-echo approach, and accounts for differences in 1084 
measured T2* across brain regions. For example, better signal is obtained at high TE values for the anterior 1085 
temporal lobes, which would otherwise reveal substantial signal dropout due to susceptibility artifacts at TE = 30 1086 
ms. (b) We optimally averaged the three echoes, using a method that weighs the combination of echoes based on the 1087 
estimated 𝑇2

∗ at each voxel for each echo, and then applied ICA decomposition to remove non-BOLD noise. We 1088 
found that the multi-echo approach better recovered signal from the anterior temporal lobe structures compared to 1089 
the standard single-echo approach (shown in the Echo 2 column). 1090 

 1091 

Figure 4. (a) Contrast matrix comparing the effect of congruency on feature representations. The voxel-wise matrix 1092 
averaged across unimodal runs were autocorrelated using the z-transformed Pearson’s correlation, creating a 1093 
unimodal feature-level contrast matrix. We examined the average pattern similarity between unimodal features 1094 
associated with congruent objects (green) compared to the same unimodal features associated with incongruent 1095 
objects (yellow). (b) Pattern similarity analysis revealed an interaction between learning day and congruency in the 1096 
temporal pole (TP). At baseline before crossmodal learning, there was no difference in neural similarity between 1097 
unimodal features that paired to create congruent objects compared to the same unimodal features that paired to 1098 
create incongruent objects. After crossmodal learning, however, there was less neural similarity between the 1099 
unimodal features of pairs comprising congruent objects compared to the unimodal features of pairs comprising 1100 
incongruent objects. Because congruent and incongruent objects were built from the same shapes and sounds, this 1101 
result provides evidence that learning about crossmodal object associations influenced the representations of the 1102 
component features in the temporal pole. There was no difference between the congruent and incongruent pairings 1103 
in any other ROI (Figure 4 – figure supplement 1). ** p < 0.01. 1104 

 1105 

Figure 4 – figure supplement 1. Pattern similarity analyses between unimodal features associated with congruent 1106 
objects and incongruent objects, before and after crossmodal learning (analysis visualized in Figure 4 in the main 1107 
text). (a-c) Interestingly, the perirhinal cortex, LOC, and V1 – primarily visually-biased regions (see main text) – 1108 
reduced in pattern similarity after crossmodal learning. (d) By contrast, there was no change across learning days in 1109 
A1. No region displayed a difference between congruent and incongruent feature pairings other than the temporal 1110 
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pole (see Figure 4). * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001. Horizontal lines denote the 1111 
main effect of learning day.  1112 

 1113 

Figure 5. Contrast matrices and pattern similarity analyses investigating the effect of crossmodal learning on 1114 
modality-specific biases. The voxel-wise matrix for unimodal feature runs on Day 2 were correlated to the voxel-1115 
wise matrix for crossmodal object runs on (a) Day 2 and (b) Day 4, creating a contrast matrix between visual and 1116 
auditory unimodal features to crossmodal objects that contained those features. We compared the average pattern 1117 
similarity (z-transformed Pearson correlation) between shape (blue) and sound (orange) features across learning 1118 
days. (a) Robust modality-specific feature biases were observed in all examined regions before crossmodal learning. 1119 
That is, pattern similarity for each brain region was higher for one of the two modalities, indicative of a modality-1120 
specific bias. For example, pattern similarity in perirhinal cortex (PRC) preferentially tracked the visual features of 1121 
the crossmodal objects, evidence of a default visual shape bias before crossmodal learning. (b) Critically, we found 1122 
that perirhinal representations were transformed with experience, such that the initial visual bias was attenuated after 1123 
crossmodal learning (i.e., denoted by a significant interaction, shown by shaded green regions), evidence that 1124 
representations were no longer predominantly grounded in the visual modality. * p < 0.05, ** p < 0.01, *** p < 1125 
0.001. Horizontal lines within brain regions indicate a significant main effect of modality. Vertical asterisks denote 1126 
pattern similarity comparisons relative to 0.  1127 

 1128 

Figure 5 – figure supplement 1. Analyses for the hippocampus (HPC) and inferior parietal lobe (IPL). (a) In the 1129 
visual vs. auditory univariate analysis, there was no visual or sound bias in HPC, but there was a bias towards 1130 
sounds that increased numerically after crossmodal learning in the IPL. (b) Pattern similarity analyses between 1131 
unimodal features associated with congruent objects and incongruent objects. Similar to Figure 4 – figure 1132 
supplement 1, there was no main effect of congruency in either region. (c) When we looked at the pattern similarity 1133 
between Unimodal Feature runs on Day 2 to Crossmodal Object runs on Day 2, we found that there was significant 1134 
pattern similarity when there was a match between the unimodal feature and the crossmodal object (e.g., pattern 1135 
similarity > 0). This pattern of results held when (d) correlating the Unimodal Feature runs on Day 2 to Crossmodal 1136 
Object runs on Day 4, and (e) correlating the Unimodal Feature runs on Day 4 to Crossmodal Object runs on Day 4. 1137 
Finally, (f) there was no significant pattern similarity between Crossmodal Object runs before learning correlated to 1138 
Crossmodal Object after learning in HPC, but there was significant pattern similarity in IPL (p < 0.001). Taken 1139 
together, these results suggest that both HPC and IPL are sensitive to visual and sound content, as the (c, d, e) 1140 
unimodal feature-level representations were correlated to the crossmodal object representations irrespective of 1141 
learning day. However, there was no difference between congruent and incongruent pairings in any analysis, 1142 
suggesting that HPC and IPL did not represent crossmodal objects differently from the component unimodal 1143 
features. For these reasons, HPC and IPL may represent the convergence of unimodal feature representations (i.e., 1144 
because HPC and IPL were sensitive to both visual and sound features), but our results do not seem to support these 1145 
regions in forming crossmodal integrative coding distinct from the unimodal features (i.e., because representations 1146 
in HPC and IPL did not differentiate the congruent and incongruent conditions and did not change with experience). 1147 
* p < 0.05, ** p < 0.01, *** p < 0.001. Asterisks above or below bars indicate a significant difference from zero. 1148 
Horizontal lines within brain regions in (a) reflect an interaction between modality and learning day, whereas 1149 
horizontal lines within brain regions in reflect main effects of (b) learning day, (c-e) modality, or (f) congruency.  1150 

 1151 

Figure 5 – figure supplement 2. The voxel-wise matrix for Unimodal Feature runs on Day 4 were correlated to the 1152 
voxel-wise matrix for Crossmodal Object runs on Day 4 (see Figure 5 in the main text for an example). We 1153 
compared the average pattern similarity (z-transformed Pearson correlation) between shape (blue) and sound 1154 
(orange) features specifically after crossmodal learning. Consistent with Figure 5b, perirhinal cortex was the only 1155 
region without a modality-specific bias. Furthermore, perirhinal cortex was the only region where the 1156 
representations of both the visual and sound features were not significantly correlated to the crossmodal objects. By 1157 
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contrast, every other region maintained a modality-specific bias for either the visual or sound features. These results 1158 
suggest that perirhinal cortex representations were transformed with experience, such that the initial visual shape 1159 
representations (Figure 5a) were no longer grounded in a single modality after crossmodal learning. Furthermore, 1160 
these results suggest that crossmodal learning formed an integrative code different from the unimodal features in 1161 
perirhinal cortex, as the visual and sound features were not significantly correlated with the crossmodal objects. * p 1162 
< 0.05, ** p < 0.01, *** p < 0.001. Horizontal lines within brain regions indicate a significant main effect of 1163 
modality. Vertical asterisks denote pattern similarity comparisons relative to 0. 1164 

 1165 

Figure 6. Contrast matrix shown on the left panel, with actual results shown on the right panel. We compared the 1166 
average pattern similarity across learning days between crossmodal object runs on Day 2 with crossmodal object 1167 
runs on Day 4 (z-transformed Pearson correlation). We observed lower average pattern similarity for incongruent 1168 
objects (yellow) compared to congruent (green) objects in perirhinal cortex (PRC). These results suggest that 1169 
perirhinal cortex differentiated congruent and incongruent objects constructed from the same features. Furthermore, 1170 
pattern similarity was never above 0 for the perirhinal cortex. By contrast, there was no significant difference 1171 
between congruent and incongruent objects in any other examined region, and pattern similarity was always above 1172 
0. * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001. Horizontal lines within brain regions denote a 1173 
main effect of congruency. Vertical asterisks denote pattern similarity comparisons relative to 0.  1174 
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