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Abstract We learn from our experience but the underlying neuronal mechanisms incorporating 
past information to facilitate learning is relatively unknown. Specifically, which cortical areas encode 
history- related information and how is this information modulated across learning? To study the 
relationship between history and learning, we continuously imaged cortex- wide calcium dynamics as 
mice learn to use their whiskers to discriminate between two different textures. We mainly focused 
on comparing the same trial type with different trial history, that is, a different preceding trial. We 
found trial history information in barrel cortex (BC) during stimulus presentation. Importantly, trial 
history in BC emerged only as the mouse learned the task. Next, we also found learning- dependent 
trial history information in rostrolateral (RL) association cortex that emerges before stimulus presen-
tation, preceding activity in BC. Trial history was also encoded in other cortical areas and was not 
related to differences in body movements. Interestingly, a binary classifier could discriminate trial 
history at the single trial level just as well as current information both in BC and RL. These findings 
suggest that past experience emerges in the cortex around the time of learning, starting from 
higher- order association area RL and propagating down (i.e., top- down projection) to lower- order 
BC where it can be integrated with incoming sensory information. This integration between the past 
and present may facilitate learning.

Editor's evaluation
This is important work analyzing the trial- by- trial progression of learning, and how the outcome of 
one trial influences cortex- wide neural responses on the next trial. The strength of the evidence is 
compelling, with control experiments provided to rule out potential confounds of hemodynamic 
effects and extensive analyses provided to address the challenging issue of potential behavioral 
changes induced by the previous trial.

Introduction
Learning is a process of acquiring new knowledge required for appropriate behavior and is highly 
dependent on our previous experience. Our brain integrates incoming sensory information with 
history information of previous stimuli to form a knowledgeable association of the current stimulus. 
Although the strong link between history (i.e., past experience) and learning, the underlying cortex- 
wide dynamics are relatively unknown, partially because most previous studies separately focus either 
on learning or history (Hattori et al., 2019). Learning- related neuronal dynamics are broadly observed 
across the whole cortex, including primary sensory and motor areas (Blake et al., 2002; Chen et al., 
2015; Gilad and Helmchen, 2020; Jurjut et al., 2017; Komiyama et al., 2010; Li et al., 2008; Poort 
et al., 2015; Makino and Komiyama, 2015; Yan et al., 2014), higher- order association areas (Driscoll 
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et al., 2017; Gilad and Helmchen, 2020), and prefrontal cortex (Le Merre et al., 2018; Pasupathy 
and Miller, 2005). But do these areas that participate in the learning process also carry trial history 
information?

Encoding of information carried on from the previous trial (i.e., trial history) has been reported 
mainly in higher- order cortical areas such as the posterior parietal cortex (PPC) (Akrami et al., 2018; 
Harvey et al., 2012; Hwang et al., 2017; Morcos and Harvey, 2016; Scott et al., 2017; Suzuki et al., 
2022), retrosplenial cortex (Hattori et al., 2019; Vann et al., 2009), and prefrontal cortex (Banerjee 
et al., 2020; Johnson et al., 2016; Kawai et al., 2015; Scott et al., 2017; Sul et al., 2010; Tsutsui 
et al., 2016), and to a smaller extent in lower- order primary sensory areas such as BC (Banerjee et al., 
2020; Chéreau et al., 2020; Rodgers et al., 2021). It is still unknown on how different cortical areas 
encode trial history with regard to learning. In other words, does trial history encoding in the cortex 
change as a function of learning? Another important aspect of the history learning is the temporal 
relationship between trial history encoding and the current stimulus. For example, does trial history 
emerge in cortex before the current incoming stimulus, or maybe both past and present information 
emerge simultaneously in a certain cortical area? From the temporal aspect, optogenetic silencing of 
PPC area during the inter- trial interval affected performance, highlighting that higher- order cortical 
areas may maintain history information before the incoming current stimulus (Akrami et al., 2018; 
Hwang et al., 2017).

To study the history- learning relationship, we use wide- field cortical imaging of mice learning to 
discriminate between two textures and focus on the cortex- wide dynamics of trial history. In a previous 
study using the same dataset, we showed that mice learning a whisker- based texture discrimination 
task, increase activity in task- related areas (e.g., BC and rostrolateral association cortex [RL]) as they 
become experts (Gilad and Helmchen, 2020). RL is part of the PPC and is located within the cluster of 
higher- order association areas surrounding V1. RL plays pivotal roles in cross- modal sensory integra-
tion, learning, and history, but the relationship between history and learning in RL is relatively unknown 
(Akrami et al., 2018; Driscoll et al., 2017; Hattori et al., 2019; Hwang et al., 2017; Khodagholy 
et al., 2017; Morcos and Harvey, 2016; Save and Poucet, 2009). By classifying trials according to 
the preceding trial, we were able to detect trial history information that emerges only as the mouse 
gains expertise. Specifically, trial history emerges in RL, before stimulus presentation and then is trans-
ferred to BC during stimulus presentation, which may aid in learning the rewarded stimulus.

Results
In this study, we investigate trial history dynamics across the whole dorsal cortex and its emergence 
during learning in transgenic mice expressing a calcium indicator (GCaMP6f) in L2/3 excitatory 
neurons (n = 7 mice). This dataset is identical to the one published in Gilad and Helmchen, 2020 
where we focused only on learning dynamics. Using wide- field calcium imaging through the intact 
skull (Gallero- Salas et al., 2021; Gilad et al., 2018; Gilad and Helmchen, 2020; Vanni and Murphy, 
2014), we chronically measured large- scale neocortical L2/3 activity in the contralateral hemisphere as 
mice learned a go/no- go whisker- dependent texture discrimination task (Gilad and Helmchen, 2020). 
Whisker movements and body movements were video monitored and synchronized to the calcium 
imaging data (Materials and methods). To map the dorsal cortex, we functionally mapped sensory 
areas for each mouse during anesthesia (see Materials and methods). Based on these maps (and skull 
coordinates) we registered all images to the 2D topview Allen reference atlas (Oh et al., 2014) and 
defined 25 areas of interest, further divided into four groups (Figure 1c; Gilad and Helmchen, 2020).

Mice were trained on a head- fixed, whisker- based go/no- go texture discrimination task (Chen 
et al., 2013; Gilad and Helmchen, 2020; Figure 1a; Materials and methods). Each trial started with 
an auditory cue (stimulus cue), signaling the approach of either two types of sandpapers (grit size 
P100: rough texture; P1200: smooth texture; 3M) to the mouse’s whiskers as ‘go’ or ‘no- go’ textures. 
The texture stayed in touch with the whiskers for 2 s, and then it was moved out after which an addi-
tional auditory cue (response cue) signaled the start of a 2- s response period (Figure 1b) followed by 
a 6- s break until the next trial auditory cue. Five mice were trained to lick for the P100 and two mice 
were trained to lick for the P1200 texture. Mice were rewarded in ‘Hit’ trials for correctly licking after 
the go texture and punished with white noise for incorrectly licking for the no- go texture (‘false alarm’ 
trials, FA). Mice were neither rewarded nor punished when they withheld licking for the go and no- go 
textures (‘Miss’ and ‘correct- rejection’, CR, trials, respectively). We defined two time windows within 
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the trial structure: the ‘pre period’ when the texture approaches the whiskers (−1 to −0.6 s relative to 
the texture stop; mainly before the first whisker- texture touch); and the ‘stim period’ during texture 
touch (−0.2 to 0.2 s relative to texture stop; Figure 1b).

The performance of all mice increased with training (5–11 days; ~500 trials/day) and eventually 
reached high discrimination levels (quantified by d′; Figure 1—figure supplement 1; Gilad et al., 
2018; Materials and methods). We defined the ‘learning threshold’ of reaching expert level for each 
mouse by crossing the inflection point of the sigmoid fit for the learning curve (in units of ‘trial number’; 
Figure 1e, Figure 1—figure supplement 1). The fastest learning mouse reached threshold in slightly 
less than thousand trials whereas mouse #4 took substantially longer (Figure 1—figure supplement 
1). In addition, we defined a naive (first day of recording), learning (day of crossing the learning 

Figure 1. Trial types based on history. (a) Behavioral setup for head- fixed texture discrimination with simultaneous wide- field calcium imaging and video 
monitoring of whisker motion and body movement. (b) Trial structure and possible trial outcomes. pre and stim periods are marked in gray and light 
gray colors, respectively. (c) Twenty- five cortical areas used in this study grouped into auditory areas (green), association areas (pink), somatosensory + 
V1 areas (blue), and motor areas (red). (d) Top: Example mean activation map (averaged during the stim period) for the Hit condition. BC – barrel cortex. 
Color denotes normalized fluorescence. Bottom: Time course of activity in BC for Hit (green) and correct rejection (CR; purple). Error bars are mean 
± standard error of the mean (SEM) across trials (n = 376 and 333 for Hit and CR, respectively). (e) Example of a learning curve (d′ as a function of trial 
number) of one mouse, fitted with a sigmoid function (solid black line). Red dashed vertical line indicates the learning threshold. gray rectangles mark 
the naive, learning, and expert phases. (f) Schematic diagram of the different trial types for a Hit trial preceded by a different trial (i.e., history): Hit- Hit 
(blue), CR- Hit (orange), and FA- Hit (gray). (g) Probability of the different trial types along with the distribution of history for the Hit trial during the naïve, 
learning, and expert phases (averaged across seven mice).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Learning curves of all seven mice.

Figure supplement 2. Individual learning curves based on trial history.

Figure supplement 3. Probability of a false alarm (FA) based on a different preceding trial type: Hit (pink), correct rejection (CR; green), or Miss (purple).

https://doi.org/10.7554/eLife.83702
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threshold; second or third day), and expert (last recording day) phases for each mouse (Figure 1e). 
All mice, after gaining expertise, showed strong activation in the BC (Figure 1d, upper panel). This 
activation was during stimulus representation, stronger in Hit trials compared to CR trials (Figure 1d, 
lower panel), not dependent on the texture type (i.e., if the hit was P100 or P1200).

Here, we focus on the trial history content for each trial type. We subgrouped all the Hit trials (i.e., 
the current trial type) based on the previous trial type (i.e., trial history): CR (‘CR- Hit’; n = 423 ± 74, 
mean ± standard error of the mean [SEM]), Hit (‘Hit- Hit’; n = 585 ± 42), FA (‘FA- Hit’; n = 217 ± 24), 
or Miss (‘Miss- Hit’; n = 55 ± 24; Figure 1f, g). ‘Miss- Hit’ were not analyzed due to a small number of 
trials. Our main analysis will compare ‘CR- Hit’ (orange) and ‘Hit- Hit’ (blue) trial pairs, since they are 
present in large numbers during all phases in each mouse separately (Figure 1g; but see Figure 2—
figure supplement 7 for a comparison of other trial pairs). We note that learning curves that are calcu-
lated separately for each pair (i.e., either a preceding Hit or CR trial) were not significantly different 
(Figure 1—figure supplement 2). We further note FA probabilities did not significantly differ based 
on the preceding trial type (Figure 1—figure supplement 3). In addition, the lick reaction time (but 
not the lick rate) between Hit- Hit and CR- Hit were significantly different (p < 0.05; Wilcoxon signed- 
rank test). We emphasize that in this comparison, the current trial type is identical (i.e., Hit) whereas 
only the pervious trial (i.e., the history, CR, or Hit) differed, therefore eliminating activity differences 
due to the current stimulus.

Trial history in BC emerges during learning
First, we focused on trial history encoding in BC, specifically during the stim period. BC displayed 
higher activity during CR- Hit compared to Hit- Hit only during learning and expert phases, but not 
during the naive period (Figure 2a, Figure 2—figure supplement 1). This difference was significant 
during the stim period in learning and expert phases across mice (Figure 2b; two- way analysis of vari-
ance [ANOVA] with repeated measures; DF(1- 6) F = 51 p < 0.001, DF(2- 12) F = 18 p < 0.001, DF(2- 12) 
F = 5 p < 0.05 for trial history, learning, and the interaction between trial history and learning; post 
hoc Tukey analysis p < 0.05 for trial history in learning and expert phases; p > 0.05 in the naive phase). 
In addition, a statistical comparison between CR- Hit and Hit- Hit responses within each mouse sepa-
rately maintained significance for expert (7/7 mice; Mann–Whitney U- test p < 0.05) and learning (6/7 
mice) but not for naive (0/7 mice) (Figure 2—figure supplement 1). We further report that responses 
during the reward period in cortex and specifically in BC went back to baseline 4–5 s after the start 
of the reward period and 6–8 s before the presentation of the next stimulus (total inter- trial interval 
ranged between 10 and 12 s). In addition, responses in BC during the reward period were not consis-
tently modulated as a function of learning (p > 0.05; Wilcoxon signed- rank test between naive and 
expert, BC response averaged during the reward period, 2–4 s after stimulus onset; n = 7 mice). Taken 
together, we find that direct responses from the reward period do not affect history- related responses 
during the next trial.

To control for the possible contamination of non- calcium- related signals such as hemodynamics, we 
performed a battery of additional experiments (see Materials and methods). First, two mice performed 
the task (expert) while we excited the cortex with a control light (510 nm, isosbestic wavelength). 
Correcting the original signal with the control light maintained significant difference in trial history 
(Figure 2—figure supplement 2). Second, we trained an additional three mice on the same task 
and imaged their cortex using an interleaved protocol of 473 (calcium signal) and 405 (control signal, 
isosbestic wavelength) nm lights. The corrected signal (473 signal minus the 405 signal; see Materials 
and methods) maintained a significant trial history difference between CR- Hit and Hit- Hit conditions 
during learning and expert phases, but not during the naive phase (Figure 2—figure supplement 3). 
Finally, we further performed two photon imaging of single cells in BC and RL during the expert phase 
and found significant trial history differences, that is, higher response in CR- Hit compared to Hit- Hit 
in BC (during the stim period) and RL (Figure 2—figure supplement 4; during the pre period). Taken 
together, non- calcium dynamics such as hemodynamics have a minor effect the results, specifically 
regarding trial history differences.

To check whether this effect is not due to difference in body or whisker movements between the 
two pair types, we calculated the body movements (1 − frame- to- frame correlation in mouth, forelimb 
and hindlimb areas) and whisker envelope as a function of time (see Materials and methods). Both 
body movements and whisker envelope were similar between CR- Hit and Hit- Hit pairs (Figure 2c) and 
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Figure 2. History information in barrel cortex (BC). (a) Example of average BC response of Hit- Hit (blue) and CR- Hit (orange) from two mice (upper 
and lower rows) in the naive, learning, and expert phases. Shaded bar depicts the stim period. Error bars are mean ± standard error of the mean (SEM) 
across trials (mouse 1: n = 86/66, 90/70, and 166/173 Hit- Hit/CR- Hit for naive, learning, and expert phases, respectively; mouse 6: n = 94/80, 86/121, and 
99/135). (b) Grand average of BC activity during the stim period (−0.2:0.6 ms) for the naive, learning, and expert phases. Error bars are mean ± SEM 
across mice (n = 7). (c) Same as (a) but for body and whisker movements in the Hit- Hit (light gray) and CR- Hit (dark gray) trials. (d) Same as (b) but for 
body (top) and whisker (bottom) movements. *p < 0.05; n.s. – not significant; Wilcoxon signed- rank test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. History information in barrel cortex (BC) for each mouse separately.

Figure supplement 2. Correction for hemodynamic contamination.

Figure 2 continued on next page
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there was no significant difference across mice during the stim period for neither naive, learning, or 
expert phases (Figure 2d, p > 0.05; signed- rank test) nor during the pre period (p > 0.05, signed- rank 
test, data not shown). A within mouse statistical comparison between body or whisker parameters 
in CR- Hit and Hit- Hit maintained a non- significant difference in expert (1/7 mice were significantly 
different; Mann–Whitney U- test p > 0.05), learning (2/7 mice) and naive (0/7 mice). In addition, we 
performed a more detailed body and whisker analysis, for example, decomposing the movement 
to different body parts and obtaining single whisker dynamics. These analyses did not find signifi-
cant differences in movement parameters between CR- Hit and Hit- Hit conditions (Figure 2—figure 
supplement 5 and Figure 2—figure supplement 6). These results, along with the fact that the current 
trial type in both conditions is identical, strongly indicate the presence of trial history information in 
BC.

We next quantified the emergence of trial history with regard to the different time scales, the trial 
structure (within seconds) or the learning profile (across days). We first show 2D activity plots in BC for 
each trial pair (i.e., CR- Hit and Hit- Hit; showing activity of only the Hit trial), where trial time is plotted 
on the x- axis and trial number across learning time on the y- axis (Figure 3a; 100- trial bins regardless of 
trial pair). Both trial pairs display an increase in activity during the stim period slightly after passing the 
learning threshold. We defined a history modulation index as the difference in activity for BC between 
the two pair types (Hit- CR minus Hit- Hit). History modulation increased around the stim period only in 
learning and expert phases but not in the naive case (Figure 3b, c). A significant history modulation 
was defined as values exceeding mean ± 2 standard deviation (SD) of a trial- shuffled sample distri-
bution (n = 1000 iterations) and was performed for each mouse separately (Figure 3b). The onset 
of the history modulation was defined as the first- time frame reaching significant values (red arrows 
in Figure 3b) and was found in BC within the stim period (Figure 3d; 0.08 ± 0.28 s, −0.32 ± 0.28 s, 
median ± SEM relative to texture stop in learning and expert phases, respectively). We note that in the 
expert phase there is also a small peak exceeding the significance around the cue, indicating history 
information in BC may be present to some extent before stimulus presentation. Next, we quantified 
the history modulation in BC during the stim period as a function of the learning profile. History 
modulation in BC had the steepest increase after mice crossed their learning threshold (Figure 3e, 
f). The onset of the history modulation was defined as the first trial bin exceeding mean ± 2 stan-
dard deviation of trial- shuffled sample distribution and was found to occur shortly after the learning 
threshold, highly correlated with the learning threshold indicating strong relationship between history 
emergence and learning of each individual mouse (Figure 3g, h; 500 ± 221 trials, median ± SEM, r = 
0.97, p < 0.001, Spearman correlation). Note that our definition of significance is relatively strict and 
an increase in history information can be observed shortly (i.e., tens of trials) after crossing the learning 
threshold (Figure 3e).

We expanded our trial history analysis also for the other pair types other than CR- Hit and Hit- Hit. 
For sufficient trial numbers, we focused on the learning phase. First, we compare FA- Hit to Hit- Hit and 
CR- Hit, that is, the same current trial type but preceded by an error trial (FA). Response in BC for FA- Hit 
was similar to Hit- Hit and significantly lower compared to CR- Hit (Figure 2—figure supplement 7; 
p < 0.05 signed- rank test). This result highlights that specifically a correct rejection (CR), rather than 
the stimulus (i.e., texture) type, has a strong history effect. Next, we compared FA- CR, Hit- CR, and 
CR- CR, that is, similar to the previous comparison differing only in the current trial type (CR instead of 
Hit). There was no significant difference between the different pairs, indicating that the current trial 
type, that is, Hit in this case, has a strong effect along with the history of the CR (Figure 2—figure 
supplement 7; p > 0.05, signed- rank test). A comparison of FA- FA, Hit- FA, and CR- FA did not show 
a significant difference (Figure 2—figure supplement 7; p > 0.05, signed- rank test). In general, a 
preceding CR trial resulted in higher activation independent of the current trial type (i.e., Hit, CR, or 

Figure supplement 3. Correction for hemodynamic signal maintains history information.

Figure supplement 4. Two- photon single neurons encode trial history similar to the population signals.

Figure supplement 5. Decomposing body movements in Hit- Hit and CR- Hit conditions.

Figure supplement 6. Single whisker parameters do not differ between CR- Hit and Hit- Hit.

Figure supplement 7. Activity in barrel cortex (BC) for other trial pairs.

Figure 2 continued
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FA; not significant for CR and FA), indicating that history information is present at the current time 
independently of incoming sensory information (Figure 2—figure supplement 7; compare orange 
bars to the blue bars). In conclusion, we found that the CR- Hit pair displayed a specific enhancement 
in BC which is related both to the preceding and current trial type (see Discussion).

Next, we expanded our analysis to the whole dorsal cortex during the stim period. Mean activation 
maps for both CR- Hit and Hit- Hit pairs (i.e., activity for the current Hit trial whereas only the preceding 
trial was different) during the stim period displayed a pronounced activation patch in BC during naive, 
learning, and expert phases (Figure 4a). BC activity was higher in CR- Hit compared to Hit- Hit espe-
cially during learning and expert phases. The grand average activity for all 25 cortical areas high-
lights history- dependent information that emerges during learning (Figure 4b). We note that other 
areas, for example, different association areas, also encoded trial history information especially during 
learning and expert phases. In addition, we present activity difference maps between CR- Hit and Hit- 
Hit conditions during the stim period (Figure 4—figure supplement 1a). These maps clearly show 
the highest trial history information (i.e., difference in activity) in BC. Taken together, these results 

Figure 3. Temporal dynamics of history information in barrel cortex (BC). (a) 2D plot of BC responses for Hit- Hit (top) and CR- Hit (bottom; trial structure 
on x- axis; trial number across learning in bins of 100 trials) on the y- axis. Red horizontal dashed line indicates learning threshold. Black dashed vertical 
line indicates the time of texture stop. (b) Example from one mouse of the history modulation (activity in CR- Hit minus activity in Hit- Hit) in BC along 
the trial structure in the naive, learning, and expert phases. Dashed gray line is the mean ± 2 standard deviation (SD) of the trial- shuffled data (n = 1000 
iterations). The first- time frame crossing the shuffle data is defined as the onset and is marked in red. (c) Mean history modulation in BC along trial time. 
Error bars depict mean ± standard error of the mean (SEM) across mice (n = 7). (d) Median onset of history modulation. Error bars depict median ± SEM 
across mice (n = 7). (e) Example from one mouse of the history modulation along learning dimension. Dashed gray line is the mean ± 2 SD of the trial- 
shuffled data (n = 1000 iterations). The first- time frame crossing the shuffle data is defined as the onset for learning and is marked in red. The vertical 
red dashed line (trial 0) marks the learning threshold. (f) Mean history modulation in BC along the learning profile aligned to the learning threshold of 
each mouse (time 0). Error bars depict mean ± SEM across mice (n = 7). (g) Onset of the history modulation for learning as a function of the learning 
threshold. Each point is one mouse (n = 7). (h) Median onset of history modulation relative to the learning threshold. Error bars depict median ± SEM 
across mice (n = 7).

https://doi.org/10.7554/eLife.83702


 Research article      Neuroscience

Marmor et al. eLife 2023;12:e83702. DOI: https://doi.org/10.7554/eLife.83702  8 of 21

Figure 4. Cortex- wide history modulation during the stim period. (a) Mean activity maps averaged within the stim period (−0.2 to 0 s relative to texture 
stop) of CR- Hit (left) Hit- Hit (right) during the naive (top), learning (middle), and expert (bottom) phases. Color bar denotes normalized fluorescence 
(∆F/F). 2D top- view atlas is superimposed in gray. (b) Grand average neuronal activity during the stim period (−0.2:0.2 s) for Hit- Hit (blue) and CR- Hit 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.83702
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indicate that BC encodes trial history information that emerges during the stim period and just after 
learning. These results gave us the motivation to examine history- dependent information at time 
periods before texture touch.

Trial history in RL before sensation
We next focused our analysis on the pre period, just before texture touch (−1 to −0.6 s before texture 
stop). Mean activity maps during the pre period highlight activity in association area RL that is present 
for both CR- Hit and Hit- Hit pairs during the naive, learning, and expert phases (Figure 5a; Gilad 
and Helmchen, 2020). RL pre period activity is higher in CR- Hit compared to Hit- Hit mostly during 
learning and expert phases. In addition, higher RL activity in CR- Hit pair starts even before the pre 
period, indicating that trial history is not directly related to the current stimulus (Figure 5b). The grand 
average of all 25 cortical areas, highlights the emergence of trial history during learning, especially in 
RL, but also in other association and sensory areas (Figure 5c). In addition, we present activity differ-
ence maps between CR- Hit and Hit- Hit conditions during the pre period (Figure 4—figure supple-
ment 1b). These maps localize trial history information to RL which also spreads to other adjacent 
association areas. Moreover, activity patches slightly vary across the different mice which may affect 
the grand average (averaged across mice) of each area.

RL activity was significantly higher in CR- Hit compared to Hit- Hit trials in the pre period during 
the expert phase (Figure 5—figure supplement 1; signed- rank test, p < 0.05, similar trend for the 
learning phase but insignificant; not significant for the naive phase). In addition, a statistical compar-
ison between CR- Hit and Hit- Hit responses in RL within each mouse separately maintained significance 
for expert phase (5/7 mice; Mann–Whitney U- test p < 0.05). Body movements and whisker parameters 
did not significantly differ between CR- Hit and Hit- Hit conditions during the pre period (Similar to the 
stim period. Across and within mice. p > 0.05; Mann–Whitney U- test). The onset of history modulation 
within the trial structure (as in Figure 3d) was earlier in RL compared to BC in both learning (−0.15 ± 
0.85 and 0.05 ± 0.86 s, median ± SD in RL and BC, respectively) and expert phases (−0.75 ± 0.53 and 
−0.1 ± 0.74 s, median ± SD in RL and BC, respectively) but not significantly different (p > 0.05, signed- 
rank test). The onset for the history modulation with relation to the learning profile in RL (similar to 
Figure 3h; During the pre period) was also earlier than BC, but not significantly different (200 ± 431 
trials after crossing threshold compared to 500 ± 221 in BC; median ± SD, p > 0.05 singed rank test). 
Taken together, these results indicate that as mice gain expertise, prior to the sensation period, RL 
encodes history information, which may be later projected down onto BC where it is integrated with 
information of the current incoming texture.

Past versus present discrimination power in BC and RL
How well can BC and RL activity discriminate at the single trial level past information compared to the 
information of the current stimulus? To do this, we computed the receiver operating characteristics 
(ROC) analysis between specific trial types (Gilad et al., 2020; Gilad and Helmchen, 2020), along 
with the area under the curve (AUC) quantifying the discrimination power at the single trial level 
(Materials and methods). We calculated the AUC between two types of trials (Figure 6a): (1) Activity 
between CR- Hit and Hit- Hit pairs based on the activity during the Hit trial. This is defined as History 
AUC since only the previous trial is different. (2) Activity between the current Hit and CR trials. This is 
defined as the current AUC because the current trial types are different (both in terms of stimulus type 
and action). Both history and current AUCs are calculated for BC and RL for each time frame along 
the trial structure and for naive, learning, and expert phases. Intuitively, one would assume that the 
current AUC will display higher discrimination power compared to the history AUC because the latter 
AUC measure compares the same previous trial type which should be harder to discriminate. Interest-
ingly, during the expert phase, history AUC in both BC and RL has a discrimination power in the stim 

(orange) in all 25 areas for the naive (top), learning (middle), and expert (bottom) phases. Error bars depict mean ± standard error of the mean (SEM) 
across mice (n = 7).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Activity difference map during stim and pre periods.

Figure 4 continued

https://doi.org/10.7554/eLife.83702
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Figure 5. History information in rostrolateral (RL) before stimulus presentation. (a) Mean activity maps averaged within the pre period (−1 to −0.8 s 
relative to texture stop) of CR- Hit (left) Hit- Hit (right) during the naive (top), learning (middle), and expert (bottom) phases. Color bar denotes normalized 
fluorescence (∆F/F). 2D top- view atlas is superimposed in gray. (b) Example from one mouse of average RL response of Hit- Hit (blue) and CR- Hit 
(orange) in the naive (top), learning (middle), and expert (bottom) phases. Shaded gray bar depicts the pre period (−1 to −0.6). Error bars are mean 
± standard error of the mean (SEM) across trials (n = 51/54, 92/78, and 168/173 Hit- Hit/CR- Hit for naive, learning, and expert phases, respectively). 
(c) Grand average neuronal activity during the pre period (−1 to −0.6) for Hit- Hit (blue) and CR- Hit (orange) in all 25 areas for the naive (top), learning 
(middle), and expert (bottom) phases. Error bars depict mean ± SEM across mice (n = 7).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Activity in rostrolateral (RL) during the pre period.

https://doi.org/10.7554/eLife.83702
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Figure 6. History and current information are equally discriminative at the single trial level. (a) Schematic diagram 
for the two types of area under the curve (AUC) measures (derived from a receiver operating characteristics [ROC] 
analysis): history AUC between the Hit responses for Hit- Hit and CR- Hit trial types. Current AUC between Hit and 
CR trial types regardless of their history. (b) Grand average of the history (red) and current (blue) AUC measures 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.83702
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period that is not significantly different than that of the current AUC (Figure 6b, c; p > 0.05; singed 
rank test). In other words, we found that BC and RL discriminate past stimuli just as well as the current 
stimuli. In addition, during the learning phase, RL and to some extent BC, display a significantly higher 
history AUC compared to the current AUC, specifically in the pre period (Figure 6d, e; p < 0.05; 
singed rank test). This indicates that history information is discriminative at the single trial level before 
stimulus onset. Taken together, we find that BC and RL can encode the past just as well as the present.

We next calculated the history AUC for each pixel during either the pre or stim period (during 
expert phase). The history AUC maps during the pre period display AUC values around the RL areas 
(Figure 6f). In contrast, the history AUC maps during the stim period display AUC values mostly in BC 
(Figure 6g). Quantified across 25 areas and averaged across mice, RL displays the highest history AUC 
during the pre period, whereas BC displays the highest history AUC values during the stim period 
(Figure 6h, i). We note that additional cortical areas such as other association areas also display high 
history AUC values. In summary, we find that trial history emerges in RL before the texture arrives and 
then shifts to BC during stimulus presentation.

Discussion
History information is trial-type specific
We have identified cortex wide encoding of trial history information that emerges as mice learn to 
discriminate between two textures. Trial history encoding was not dependent on the current stimulus 
and emerged at RL association area before texture touch. Our results indicate that a previous CR trial 
will lead to higher activity in BC and RL compared to a previous Hit trial. This difference is probably 
not due to pure sensory differences in the previous trial since the effect was not present after FA trials 
(sup Figure 2—figure supplement 7, left panel). In addition, mice trained to lick the P1200 texture 
displayed a similar bias to the CR- Hit, further indicating that these differences are not purely sensory 
related. Moreover, this difference is probably not related to the previous motor action (e.g., either 
lick or no- lick). During the current trial, body and whisker movements were not significantly different, 
emphasizing that there are no motor- related differences based on the previous trial (Figure 2c, d). 
The fact that these differences emerged only after learning implies that these differences are not 
purely sensory or motor related but rather reflect internal history- related information. It may be that 
in a go/no- go discrimination task the mouse mainly learns not to lick for the no- go texture (i.e., CR), 
making the information of a CR trials more pronounced relatively to Hit trials. Another possibility is 
that a previous CR will cause a pronounced anticipatory state for the incoming texture, leading to 
enhanced cortical activity. Again, we did not find any consistent differences in motor movements 
based on the previous trials making this possibility less likely. In summary, our results indicate that 
history- dependent information emerges internally in cortex as mice learn to discriminate between 
two stimuli.

Trial history emerges in RL and transferred to BC
BC is considered a lower- order sensory area but encodes not only lower- order stimulus features (Chen 
et  al., 2013; Estebanez et  al., 2012; Garion et  al., 2014; Safaai et  al., 2013) but also higher- 
order information such as choice and reward value (Chéreau et  al., 2020; Rodgers et  al., 2021; 
Zuo and Diamond, 2019). We additionally found that BC carries trial history information during the 

in barrel cortex (BC; left) and rostrolateral (RL; right) along the trial structure during the expert phase. Error bars 
depict mean ± standard error of the mean (SEM) across mice (n = 7 ). Values significantly differ from chance (0.5) 
in history AUC (p < 0.05, two- tailed t- test, for both BC and RL). (c) Grand average of history and current AUC 
measures during the stim period in the expert phase. Error bars as in a. (d) Same as in a but for the learning phase. 
Error bars as in a, values significantly differ from chance (0.5) for history AUC (p < 0.05, two- tailed t- test, for both 
BC and RL), but not for the current AUC in RL. (e) Same as in c, but for the pre period during the learning phase. 
*p < 0.05; n.s. – not significant; Wilcoxon signed- rank test. (f) History AUC map examples within the pre period. 
Each pixel in the map depicts the history AUC value, that is, the classifier accuracy between Hit- Hit and CR- Hit 
conditions. (g) Same as in f but average within the stim period. (h) History AUC values during the pre period for all 
the 25 cortical areas. Error bars depict number of mice (seven mice). (i) Same as in h, but for the stim period.

Figure 6 continued
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sensation period which is related to the previous trial several seconds back. The presence of trial 
history information in lower- order areas such as BC is interesting by itself, but also raises the question 
of where is its origin. Interestingly, we show that trial history information emerges in RL before texture 
touch, implying that RL may transfer past experience in a top- down manner to BC for optimal sensory 
integration.

The presence of trial history in RL before the sensation period implies that RL may play a crucial 
role in linking past experience to ongoing sensory integration. RL is the lateral part of the PPC adja-
cent to BC, within the cluster of higher- order association areas surrounding V1 (Hovde et al., 2019; 
Lyamzin and Benucci, 2019). Previous studies showed that trial history of choice outcome is encoded 
by PPC neurons (Harvey et al., 2012; Hwang et al., 2017; Morcos and Harvey, 2016; Pho et al., 
2018), as well as history of sensory information (Akrami et al., 2018). Silencing the PPC specifically 
during the inter- trial interval affected the behavioral performance of rats (Akrami et al., 2018; Hwang 
et al., 2017), whereas silencing during the stimulus presentation did not affected performance. The 
PPC is also reciprocally connected to hippocampus via entorhinal and retrosplenial cortices (Save and 
Poucet, 2009; Whitlock et al., 2008) and to basolateral amygdala via the anterior cingulate cortex 
(Suzuki et al., 2022), giving fast access to the different memory hubs. (Khodagholy et al., 2017) 
showed coupling of PPC and hippocampal ripples that strengthen in non- REM (Rapid eye movement) 
sleep after rats learned a spatial exploration task, further indicating that RL may relay history informa-
tion from subcortical memory hubs to cortex.

The fact that trial history emerges only after learning, implies that it encodes a subjective value 
or association of a certain past stimulus. It may be that only once the value of a certain stimulus 
is established, for example, by strengthening indirect connections between basolateral amygdala 
(that has a role in associative memory) and RL, history information can aid in efficiently encoding 
the incoming stimulus. In light of this discussion, we suggest that the consolidation of a certain 
association (in our case a CR), induces long- term synaptic plasticity of top- down projections from 
higher- order association area (e.g., RL) to a lower- order sensory area (e.g., BC). This projection- 
specific potentiation may facilitate the recruitment sensory cortex in the context of the immediate 
previous history.

Mechanisms for integrating past and present
The wide- field signal measured in our study reports bulk population activity specifically in L2/3 excit-
atory cells. Are neuronal populations encoding past and present information in the BC overlapping 
or distinct? On the one side, it could be that the same cell in BC encodes both the current stimulus 
and additionally receives top- down input from RL carrying the past stimulus identity. This additional 
top- down information may amplify sensory integration and optimize discrimination of the current 
stimulus. On the other side, previous studies that measured single cell activity in the BC showed 
that single cells tend to respond to one information type (Chéreau et al., 2020; Estebanez et al., 
2012; Rodgers et al., 2021). In this case, we hypothesize that different populations in BC encode 
current and history information, which leads to a larger fraction of neurons in BC that are active for 
the CR- Hit pair. A larger number of active neurons in BC may facilitate sensorimotor integration 
involving downstream areas such as the motor cortex, further resulting in gaining expertise (Zuo and 
Diamond, 2019).

It is probable that both history and learning involve other circuit elements such as deep cortical 
layers (Pasupathy and Miller, 2005; Roelfsema and Holtmaat, 2018; Vecchia et al., 2020), inhibitory 
subtypes, other pathways (Lacefield et al., 2019; Mohan et al., 2022; Musall et al., 2023; Petreanu 
et al., 2012; Williams and Holtmaat, 2019), and subcortical areas (Fu et al., 2015; Garrett et al., 
2020; Pasupathy and Miller, 2005; Pfeffer et al., 2013). Future work may aim to dissect specific 
subpopulations that carry history information using similar behavioral tasks, for example, imaging of 
cortex- wide layer 5 dynamics. Layer 5 neurons may be ideal in integrating past information arriving 
onto the apical dendrites in layer 1 (Petreanu et al., 2012) with incoming information arriving from the 
thalamus. In addition, similar task with reward after CR trails, or tasks that better differentiate between 
choice and outcome (decision tasks, giving different probabilities of outcome to each choice), or 
tasks with a dynamic inter- trial interval may shed light on the meaning of this history- learning effect. 
In summary, our results imply that as we learn, the cortex learns to better integrate past and present 
information resulting in expert performance.

https://doi.org/10.7554/eLife.83702
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Materials and methods
Animals and surgical procedures
Methods were carried out according to the guidelines of the Veterinary Office of Switzerland and 
following approval by the Cantonal Veterinary Office in Zurich and by the Institutional Animal Care 
and Use Committee (IACUC) at the Hebrew University of Jerusalem, Israel (Permit Number: MD- 20- 
16065- 4). A total of seven adult male mice (1–4 months old) were used in this study. These mice were 
triple transgenic Rasgrf2- 2A- dCre; CamK2a- tTA;TITL- GCaMP6f animals, expressing GCaMP6f in excit-
atory neocortical layer 2/3 neurons (Gilad and Helmchen, 2020). The dataset used here is identical to 
our previous study (Gilad and Helmchen, 2020), but here we have applied a completely novel history 
analysis. To generate triple transgenic animals, double transgenic mice carrying CamK2a- Tta62 and 
TITL- GCaMP6f63 were crossed with a Rasgrf2- 2A- dCre line (64; individual lines are available from The 
Jackson Laboratory as JAX# 016198, JAX#024103, and JAX# 22864, respectively). The Rasgrf2- 2A- 
dCre;CamK2a- tTA;TITL- GCaMP6f line contains a tet- off system, by which transgene expression can be 
suppressed upon doxycycline treatment (Garner et al., 2012; Gossen and Bujard, 1992). However, 
doxycycline treatment is not necessary in these animals, since the Rasgrf2- 2A- dCre line holds an 
inducible system of its own, given that the destabilized Cre (dCre) expressed under the control of 
the Rasgrf2- 2A promoter needs to be stabilized by trimethoprim (TMP) to be fully functional. TMP 
(Sigma T7883) was reconstituted in Dimethyl sulfoxide (DMSO, Sigma 34869) at a saturation level 
of 100 mg/ml, freshly prepared for each experiment. For TMP induction, mice were given a single 
intraperitoneal injection (150 µg TMP/g body weight; 29 g needle; 3–5 days post- surgery), diluted 
in 0.9% saline solution. We used an intact skull preparation (Silasi et al., 2016) for chronic wide- field 
calcium imaging of neocortical activity (Gilad et al., 2018). Mice were anesthetized with 2% isoflurane 
(in pure O2) and body temperature was maintained at 37°C. We applied local analgesia (lidocaine 
1%), exposed and cleaned the skull, and removed some muscles to access the entire dorsal surface of 
the left hemisphere (Figure 2a; ~6 × 8 mm2 from ~3 mm anterior to bregma to ~1 mm posterior to 
lambda; from the midline to at least 5 mm laterally). We built a wall around the hemisphere with adhe-
sive material (iBond; UV- cured) and dental cement ‘worms’ (Charisma). Then, we applied transparent 
dental cement homogenously over the imaging field (Tetric EvoFlow T1). Finally, a metal post for head 
fixation was glued on the back of the right hemisphere. This minimally invasive preparation enabled 
high- quality chronic imaging with high success rate.

Texture discrimination task
Mice were trained on a go/no- go discrimination task (Figure 1a) using a data acquisition interface 
(USB- 6008; National Instruments) and custom- written LabVIEW software (National Instruments) avail-
able as a source code file (Gilad, 2016). Each trial started with an auditory cue (stimulus cue; 2 beeps 
at 2 kHz, 100 ms duration with 50 ms interval), signaling the approach of either two types of sand-
papers (grit size P100: rough texture; P1200: smooth texture; 3M) to the mouse’s whiskers as ‘go’ or 
‘no- go’ textures (Figure 1a; pseudo- randomly presented with no more than three repetitions). Sand-
papers were mounted onto panels attached to a stepper motor (T- NM17A04; Zaber) mounted onto 
a motorized linear stage (T- LSM100A; Zaber) to move textures in and out of reach of whiskers. The 
texture stayed in touch with the whiskers for 2 s, and then it was moved out after which an additional 
auditory cue (response cue; 4 beeps at 4 kHz, 50 ms duration with 25 ms interval) signaled the start 
of a 2- s response period. The stimulus and response cues were identical in both textures. The interval 
between the trails was 6 s (8 s from response to next cue). A water reward (~3 µl) was given to the 
mouse for licking for the go texture only after the response cue (‘Hit’), that is for the first correct lick 
during the response period (Figure 1a; lick were detected using a piezo sensor). Punishment with 
white noise was given for licking for the no- go texture (‘false alarms’; FA). Licking before the response 
cue was neither rewarded nor punished. Reward and punishment were omitted when mice withheld 
licking for the no- go (‘correct- rejections’, CR) or go (‘Misses’) textures.

Training and performance
Five mice were trained to lick for the P100 texture (mice #1–4 and 6) and two mice were trained to 
lick for the P1200 texture (mice #5 and 7). Mice were first handled and accustomed to head fixation 
before starting water scheduling. Before imaging began mice were conditioned to lick for reward after 
the go texture (presented within a similar trial structure as the task itself). Imaging began only after 
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mice reliably licked for the response cue (typically after the first day; 200–400 trials). On the first day 
of imaging, mice were presented with the ‘go’ texture and after 50 trials the ‘no- go’ texture was grad-
ually introduced (starting from 10% and increasing by 10% approximately every 50 trials; Guo et al., 
2014) until reaching 50% probability for the no- go texture by the end of the day. Six out of the seven 
mice learned the task within 3–4 days after around a thousand trials (Supplementary Fig. 1). Mouse 
#4 learned the task within 10 days. An effort was made to maintain a constant position of the texture 
and cameras across imaging days in order to maintain similar stimulation and imaging parameters.

Wide-field calcium imaging
We used a wide- field approach to image large parts of the dorsal cortex while mice learned to perform 
the task (Gilad et al., 2018). A sensitive CMOS camera (Hamamatsu Orca Flash 4.0) was mounted on 
top of a dual objective setup. Two objectives (Navitar; top objective: D- 5095, 50 mm f0.95; bottom 
objective inverted: D- 2595, 25 mm f0.95) were interfaced with a dichroic (510 nm; AHF; Beamsplitter 
T510LPXRXT) filter cube (Thorlabs). This combination allowed a ~9 mm field- of- view, covering most 
of the dorsal cortex of the hemisphere contralateral to texture presentation. Blue LED light (Thorlabs; 
M470L3) was guided through an excitation filter (480/40 nm BrightLine HC), a diffuser, collimated, 
reflected from the dichroic mirror, and focused through the bottom objective ~100 µm below the 
blood vessels. Green light emitted from the preparation passed through both objectives and an emis-
sion filter (514/30 nm BrightLine HC) before reaching the camera. The total power of blue light on 
the preparation was <5 mW; that is, <0.1 mW/mm2. At this illumination power we did not observe 
any photobleaching. Data were collected with a temporal resolution of 20 Hz and a spatial sampling 
of 512 × 512 pixels, resulting in a spatial resolution of ~20 μm/pixel. On each imaging day a green 
reflectance image was taken as reference to enable registration across different imaging days using 
the blood vessel pattern (fibercoupled LED illuminated from the side; Thorlabs).

Mapping and area selection
Each mouse underwent a mapping session under anesthesia (1% isoflurane), in which we presented 
five different sensory stimuli (contra- lateral side) (Garion et  al., 2014). Next, we registered each 
imaging day to the mapping day using skull coordinates from the green images. Finally, we regis-
tered each mouse onto a 2D top view mouse atlas using both functional patches from the mapping 
and skull coordinates (Garion et al., 2014; 2004 Allen Institute for Brain Science. Allen Mouse Brain 
Atlas. Available from http://mouse.brain-map.org/29). Within the atlas borders, we defined 25 areas 
of interest, with some manual modifications within these borders to fit the functional activity for each 
mouse. Motor cortex areas were defined based on stereotaxic coordinates and functional patches for 
each mouse (see below). Thus, all mice had similar regions of interest that were comparable within and 
across mice. We grouped these 25 areas into auditory (green), association (pink), somatosensory + V1 
(blue), and motor (red) areas (Figure 1d ). Auditory areas: primary auditory (A1), auditory dorsal (AD), 
and temporal association area (TEA). Sensory areas: somatosensory mouth (Mo), somatosensory nose 
(No), somtosensory hindlimb (HL), somtosensory forelimb (FL), barrel cortex (BC; primary somato-
sensory whisker); secondary somatosensory whisker (S2), somtosensory trunk (Tr), and primary visual 
cortex (V1). Motor areas: whisker- related primary motor cortex (M1; 1.5 anterior and 1 mm lateral 
from bregma, corresponding to the whisker evoked activation patch in M1 from the mapping session), 
anterior lateral motor cortex (ALM; 2.5 anterior and 1.5  mm lateral from bregma) and secondary 
motor cortex (M2; 1.5 anterior and 0.5 mm lateral from bregma corresponding; Gilad et al., 2018). 
Association cortex: rostrolateral (RL), anterior (A), anterior lateral (AL), anterior medial (AM), posterior 
medial (PM), lateral medial (LM), lateral intermediate (LI), posterior lateral (PL), post- rhinal (PR), retro-
splenial dorsal (RD), and retrosplenial angular (RA). We note that our definition of association cortex is 
broad and may include or exclude areas that are not necessarily classical association areas.

Control for non-calcium-dependent signals
The data collected in this study used a single wavelength (473 nm) to image calcium dynamics (similar 
to Gallero- Salas et al., 2021; Gilad et al., 2018; Gilad and Helmchen, 2020). This protocol may 
additionally collect non- calcium- dependent signal, such as hemodynamic signal, which may affect the 
results. To control for this, we performed several steps:
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1. In two out of the seven original mice we also imaged expert mice with a block session using 
an isosbestic control light (510  nm). Responses in cortex and specifically BC were relatively 
low, displaying a gradual decrease after texture stop (Figure 2—figure supplement 2a). By 
correcting an adjacent 473- light session based on the 510 nm session (473 signal minus 510 
signal), trial history was maintained, that is, responses in BC were significantly higher in CR- Hit 
compared to Hit- Hit (Figure 2—figure supplement 2a).

2. We replicated the experiment in three additional mice using an interleaved imaging protocol 
of 473 and 405 nm (isosbestic) excitation lights (Figure 2—figure supplement 3; 10 Hz for 
each signal; Using a teensy 3.5 for light alteration). Mice further underwent a craniotomy to 
implant a 5- mm window covering most of the posterior cortex (Figure 2—figure supplement 
3b). Correcting for non- calcium signals (473 light minus 405 light within each trial) maintain trial 
history finding, that is, we find a significant difference between CR- Hit and Hit- Hit in RL and BC 
during the pre and stim periods, respectively. This was true during learning and expert phases 
but not during the naive phase (Figure 2—figure supplement 3d)

3. The three mice then continued to two- photon imaging of single cells in BC and RL. Two- photon 
imaging single cell imaging is less prone to hemodynamic artifacts. Localization of BC and RL 
was done by aligning functional patches and blood vessel patterns obtained from the same 
mice in the wide- field system. We used a mesoscope (Thorlabs) and imaged each area (sepa-
rately or simultaneously) with a temporal resolution of 44.7 Hz (or 22.8 Hz for simultaneous 
imaging). Data were collected, and went through a preprocessing pipeline that included back-
ground subtraction, X–Y movement correction (based on frame- to- frame optimal correlation 
correction), manual cell body selection, and frame- zero division (20 frames before cue onset 
similar to the wide- field signal). Single cells were screened for responsiveness by exceeding a 2 
STD activity during pre and stim periods as compared to baseline. Next, single cell responses 
were divided to CR- Hit and Hit- Hit pairs similar to the wide- field signals. In general, we found 
significant differences in single cell activity (i.e., higher response in CR- Hit compared to Hit- Hit) 
in RL and BC during the pre and stim phases, respectively (Figure 2—figure supplement 4)

Taken together, we were able to replicate our finding by either controlling for non- calcium contam-
ination or directly imaging single cells in BC and RL.

Whisker and body tracking
In addition to wide- field imaging, we tracked movements of the whiskers and the body of the mouse 
during the task (Figure 1a). The mouse was illuminated with a 940- nm infrared LED. Whiskers were 
imaged at 50 Hz (500 × 500 pixels) using a high- speed CMOS camera (A504k; Basler), from which 
we calculated time course of whisking envelope and the time of first touch (see below). An additional 
camera monitored the movements of the mouse at 30 Hz (The imaging source; DMK 22BUC03; 720 
×48 0 pixels). We used movements of both forelimbs and the head/neck region to assess body move-
ments, to reliably detect large movements (Figure 1a; see Data analysis).

Calculating body movements
We used a body camera to detect general movements of the mouse (30 Hz frame rate). For each 
imaging day, we first outlined the forelimbs and the neck areas (one area of interest for each), which 
were reliable areas to detect general movements. Next, we calculated the body movement (1 minus 
frame- to- frame correlation) within these areas as a function of time for each trial. We than averaged 
all the defined body areas to one ‘body’ vector. As a more detailed analysis, we tracked 22 individual 
body points using DeepLabCut (Mathis et al., 2018; Figure 2—figure supplement 5a; Mathis et al., 
2018). For each tracking point we calculated the Euclidian distance between consecutive frames and 
compared trial history during naive, learning, and expert phases.

Whisker tracking
The average whisker angle across all imaged whiskers was measured using automated whisker 
tracking software (Knutsen et al., 2005). The mean whisker envelope was calculated as the differ-
ence between maximum and minimum whisker angles along a sliding window equal to the imaging 
frame duration (50 ms; Gilad et al., 2018). Whisker envelope was normalized just before the auditory 
cue similar to wide- field data (Frame zero). In a more detailed analysis, we tracked single whiskers 
using DeepLabCut (Mathis et al., 2018) and calculated single whisker kinematics (Figure 2—figure 
supplement 6). Single whisker parameters were compared between CR- Hit and Hit- Hit conditions 
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(Figure 2—figure supplement 6). In addition, we manually detected the first frame, in which any 
whisker touched the upcoming texture, using the movies from the whisker camera (LabVIEW custom 
program). The first touch occurred on average 0.33 and 0.34 s before the texture stopped for naive 
and expert mice, respectively. Time of first touch did not differ between expert and naive mice (p > 
0.05; Mann–Whitney U- test; n = 7 mice). We note that the first touch occurred mostly (but not exclu-
sively) in the pre period from −1 to −0.5 relative to texture stop.

Data analysis
Data analysis was performed using Matlab software (Mathworks). All mice were continuously imaged 
during learning (5–11 days). Wide- field fluorescence images were sampled down to 256 × 256 pixels 
and pixels outside the imaging area were discarded. This resulted in a spatial resolution of ~40 μm/
pixel and was sufficient to determine cortical borders, despite further scattering of emitted light 
through the tissue and skull. Each pixel and each trial were normalized to baseline several frames 
before the stimulus cue (frame 0 division). Our main focus was on the history effect. Because the hit 
trails had the largest portion from all trails, we focused on the hit trials. We subgrouped all the Hit 
trials based on the type of the preceding trial as follows: CR- Hit – Hit trials that were preceded by CR 
trial. Hit- Hit – Hit trials that were preceded by a Hit trial. FA- Hit – hit trials that were preceded by an 
FA trial. We mainly focused on comparing Hit- Hit and CR- Hit pairs since they had a large proportion 
in naive, learning, and expert phases (but see Figure 2—figure supplement 7). We defined two time 
periods within the trial structure: pre (−1 to 0.6 s relative to texture stop) and stim (−0.2 to 0.2 relative 
to texture stop; Figure 1a).

Calculation of learning curves
Trials were binned (n = 100 trials with no overlap) across learning (at the stimulus time, adjusted for 
each mouse) and the performance (defined as d′ = Z(Hit/(Hit + Miss)) − Z(FA/(FA + CR)), where Z 
denotes the inverse of the cumulative distribution function) was calculated for each bin. Next, each 
behavioral learning curve was fitted with a sigmoid function 

 
s
(
t
)

= a 1

1+e
−

(
t−b

)
c  

, where a denotes the 

amplitude, b the time point (in trial numbers) of the inflection point, and c the steepness of the 
sigmoid.

A learning threshold was defined as the bin in which the d′ crossed the inflection point (half point) 
of the learning curve sigmoid fit (Figure 1—figure supplement 1).

Defining the learning phases
We defined the naive, learning, and expert phase each as 1 day of recordings, the naive day was 
defined as the first day to have enough CRs that the performance is still before the crossing threshold 
(typically the second recording day). The learning day was defined as the day that the mouse crossed 
the learning threshold, and the expert was defined as the last day of the mouse (usually the fifth day).

Calculating history modulation and onset
We defined the ‘history modulation’ as the difference between the average activation of all CR- Hit and 
Hit- Hit trials. To calculate significance of history modulation, we calculated the sample distribution by 
trial shuffling between CR- Hit and Hit- Hit trials (n = 1000 iterations). We than defined the onset of the 
history modulation as the first bin exceeding mean ± 2 SD of the sample distribution. We calculated 
this history modulation and significance across the trial dimension (every frame) and across learning 
dimension (every 100 trials). In the learning dimension, we calculated the average activity in the stim 
period (−0.2:0.2) of all the CR- Hit and Hit- Hit trials that were falling within each 100 trials bin.

Discrimination power between hit trials subgrouped by history
To measure how well could neuronal populations discriminate between go and no- go textures, we 
calculated an ROC curve and calculated its AUC (with a value of 0.5 indicating no discrimination 
power). This can be done for a given area, each time frame within each learning phase separately 
(Figure 6).

Statistical analysis
In general, the Wilcoxon signed- rank test was used to compare a population’s median to zero (or 
between two paired populations). For non- paired populations we used a Mann–Whitney U- test 

https://doi.org/10.7554/eLife.83702


 Research article      Neuroscience

Marmor et al. eLife 2023;12:e83702. DOI: https://doi.org/10.7554/eLife.83702  18 of 21

to compare between medians. A two- way repeated measure ANOVA was used to relate between 
learning and history in BC and RL separately. Multiple group correction was used when comparing 
between more than two groups.
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•  Source code 1. Behavioral GoNoGo program.
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